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The spin-flipping effect can be induced by the Rashba spin-orbit coupling (RSOC), leading to triplet equal-spin
pairs in a superconducting hybrid structure. Herein, by combining the Dirac–Bogoliubov–de Gennes equation
and the Furusaki-Tsukada formalism at a finite temperature, we theoretically investigate the Josephson effect
in graphene-based superconductor-ferromagnet-R-superconductor junctions, where R refers to a region with the
RSOC. It is demonstrated that as a result of the RSOC, one 0-π transition can be attained by tuning the orientation
of the exchange field �h, which is determined by its magnitude h that could be periodically taken, and the
periodical 0-π transitions are also caused by manipulating h during a considerable scope of the orientation. More
interestingly, although varying the RSOC strength λ cannot give rise to the 0-π transition in itself, not only is it
a necessary condition for the 0-π transition induced by modulating the orientation of �h but also can produce the
shift of the crossover point. Furthermore, two different kinds of anomalous Josephson current effect are exhibited
by controlling the orientation of �h. Particularly, the out-of- and in-plane magnetoanisotropic Josephson currents
always exist, varying monotonically with λ while nonmonotonically with h. The characteristics may provide
more insights into the proximity-induced RSOC and pave the way to a new class of tunable superconducting
spintronic devices based on large-scale graphene.
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I. INTRODUCTION

Undoped graphene is intrinsically a zero-gap semicon-
ductor and not a superconductor (S), however, it was
experimentally demonstrated that s-wave superconductivity
could be induced in graphene via the proximity effect by
depositing an S film on it [1–4]. The proximity-induced
ferromagnetism in graphene has also been realized experi-
mentally [5–9]. For the magnitude of exchange field h > EF , a
peculiar Andreev reflection (AR) process, a so-called specular
one, is accompanied by a Klein tunneling through the ex-
change field p-n barrier in graphene-based ferromagnet (F)/S
junctions [10]. It has been found that this spin Andreev-Klein
process leads to an enhancement of the amplitude of specular
AR and the resulting subgap conductance of the junctions.
The corresponding Andreev-Klein bound states in graphene-
based S/F/S structure are responsible for the long-range
Josephson coupling [11], which shows that the Josephson
current is nonvanishing at strong exchange field h � EF .
Particularly, the Josephson junction also demonstrates the ex-
istence of 0-π transitions in the structure.

Spin-orbit coupling (SOC) is central for a variety of spin-
tronics phenomena [12,13], such as spin relaxation, spin
transport, and topological quantum spin Hall effects. How-
ever, as a pure two-dimensional material, a graphene flake
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on a substrate lacks inversion symmetry, and it is natural to
expect that Rashba spin-orbit coupling (RSOC) may intro-
duce important changes to the material properties. Itinerant
electrons in graphene have weak SOC, as they are formed
primarily from pz orbitals which have zero orbital momentum.
Recently, it has experimentally been demonstrated that at an
artificial interface between monolayer graphene and few-layer
semiconducting tungsten disulphide (WS2), graphene can ac-
quire the RSOC strength λ up to 17 meV, three orders of
magnitude higher than its intrinsic value [14]. The RSOC in
monolayer graphene removes the spin degeneracy and creates
a spin splitting 2λ at the K and K ′ points, but the energy
splitting does not break the time-reversal symmetry, unlike
the exchange splitting in the F. Thus the RSOC may affect the
tunneling conductance in graphene-based R/S junctions, with
R standing for the RSOC region because the RSOC mixes
spin-up and spin-down states [15–17].

Vast efforts have been devoted to study the AR in the
junction with the RSOC, which is composed of the F and
S [18–26]. The magnetoanisotropic ARs have been recently
predicted in the F/S junctions with the interfacial RSOC [22],
mainly caused by unconventional AR at the F/S interface.
In S/F/S junctions, the presence of interfacial RSOCs leads
to the out-of-plane and in-plane magnetoanisotropies of the
Josephson current [23]. In the context of the RSOC, an
anomalous equal-spin AR occurs between F and S regions,
where the incident electrons and the reflected holes come
from the same spin subband. As a result, the spin-singlet
Cooper pairs convert into the spin-triplet ones, which remark-
ably enhances the charge conductance or Josephson current.
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The spin-triplet AR is strongly dependent on the direction
of magnetization, resulting in magnetoanisotropic quantum
transports in the superconducting junctions. The anomalous
Josephson effect has also been found in S/R/F/S heterostruc-
tures due to the breaking of time-reversal symmetry and spin
rotation [25]. It has been proposed that in a graphene-based
F/R/S junction, the magnitude of anomalous AR, and the
triplet pairings are experimentally controllable [26]. How-
ever, in a graphene-based F/R/S junction, at the exchange
field h > EF , the usual or spin-triplet retro AR is replaced
by a specular one, which is also determined by the direc-
tion of magnetization. Particularly, so far, the reports on the
magnetoanisotropies in ferromagnetic graphene Josephson
junctions remain scarce, in which similarly, the correspond-
ing Andreev-Klein bound states are strongly sensitive to the
direction of magnetization as shown in the following parts.
This indicates the magnetoanisotropy of the Josephson cur-
rent. It is highly desirable that the phase shift of Josephson
current in such junctions could possess the 0-π transitions
induced by magnetoanisotropic modulation. Especially, it is
expected to maximize the control of the 0-π transition from
the combination of the magnetoanisotropies and RSOC in
ferromagnetic graphene Josephson junctions. Such a control
can bring new functionalities into graphene-based Josephson
junction devices which own low-energy dissipation and much
convenience simultaneously.

In this work, therefore, we study the Josephson effect
in graphene-based S/R/F/S hybrids with the ferromagnetic
graphene in different exchange fields �h, where the triplet
equal-spin pairs are induced by the RSOC. A quantum scat-
tering method, combining the Dirac–Bogoliubov–de Gennes
(DBdG) equation with the Furusaki-Tsukada formalism, is
employed to calculate the Josephson current [27]. Some
unique signatures of Josephson effects are exhibited due to
the presence of the RSOC. We could obtain not only one 0-π
transition by manipulating the orientation of exchange field
�h but also periodical 0-π transitions by modulating its mag-
nitude h, where the shift of the crossover point is caused by
varying the RSOC. Two different kinds of anomalous Joseph-
son current effect are also shown by controlling the orientation
of �h. Particularly, the out-of and in-plane magnetoanisotropic
Josephson currents (MAJCs) vary monotonically with λ but
nonmonotonically with h. The characteristics are ascribed to
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FIG. 1. (a) Schematic of the graphene-based S/F/R/S junction,
with F, R, and S denoting the ferromagnetic, RSOC, and supercon-
ducting regions, respectively. (b) The orientation of �h presented by
the polar angle θ and azimuthal angle ϕ.

the chiral nature of the carriers in ferromagnetic graphene
combined with the ferromagnetism and RSOC.

II. COMBINATION OF GRAPHENE-BASED
MAGNETOANISOTROPIC MODULATION

AND SUPERCONDUCTIVITY

Let us consider a graphene-based S/F/R/S junction as
shown in Fig. 1, with the F region for −L1 < x < 0, R region
for 0 < x < L2, and two S regions for x < −L1 and x > L2,
respectively. The low-energy excitations of the structure can
be described by an extended DBdG equation [28,29], which
combines the Dirac Hamiltonian with the Bogoliubov–de
Gennes equation in the presence of RSOC and exchange field
�h as follows:

(
Ĥ (x) − EF �(x)

�∗(x) EF − Ĥ (x)

)(
u

v

)
= ε

(
u

v

)
, (1)

with ε being the quasiparticles’ energy relative to the
Fermi energy EF and the spinor basis in the Nambu space
(u, v)T =[(ψ↑

A , ψ
↑
B , ψ

↓
A , ψ

↓
B )τ , (−ψ

↓∗
A , ψ

↓∗
B , ψ

↑∗
A ,−ψ

↑∗
B )τ̄ ]T ,

where the index τ = + (−) with τ̄ = −τ indicates the
two so-called valleys of K (K ′), the arrow index (↑,↓)
corresponds to real spin, and A and B denote the two trigonal
sublattices. The single-particle Hamiltonian is given by

Ĥ (x) = H0 +
⎧⎨
⎩

HF = −σ0 ⊗ �h · �σ , −L1 < x < 0,

HRSOC = λ(sy ⊗ σx − τ sx ⊗ σy), 0 < x < L2,

HS = −U0s0 ⊗ σ0, x > L2, x < −L1,

(2)

with a two-dimensional Dirac Hamiltonian of a linear disper-
sion at low energies H0 = h̄vF s0 ⊗ (σxkx + τσyky), where kx

and ky are respectively the components of wave vectors in the
x and y directions, σi (i = 1, 2, 3) and si represent the Pauli
matrices acting on the pseudospin and real-spin degrees of
freedom, respectively, both σ0 and s0 stand for the 2×2 iden-
tity matrix, and vF means the Fermi velocity in graphene. The
exchange field �h is given by h(sin θ cos ϕ, sin θ sin ϕ, cos θ )
with the polar angle θ and the azimuthal angle ϕ. λ and

U0 are the RSOC strength and electrostatic potential in the
two superconducting regions, respectively. Neglecting the
proximity effect in the F/S interface, the superconducting
pairing potential is given by �(x) = �(T )[�(−x − L1)eiφL +
�(x − L2)eiφR ], with �(T ) = �0 tanh(1.74

√
Tc/T − 1) and

φL(R) the macroscopic phase of the left (right) S.
Due to the valley degeneracy, we consider Ĥ (x) only in-

cluding the K valley with τ+ in Eq. (1). By solving the
DBdG equation, we can obtain the states of electronic and
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hole excitations in each region, which are described by the
eigenfunctions. With an incident spin-up electronlike quasi-
particle (ELQ) from the left S at an angle α with energy
ε, the total wave functions in the different regions can be
constructed from the linear combination of corresponding

electronlike and holelike states. We assume that the junc-
tion width W is enough large so that the y component
of the wave vector ky is a conserved quantity upon the
scattering. The total wave function in the left S region is
given by

�S
L (x) = �S+

e,1 + r1�
S−
e,1 + r2�

S−
e,2 + rA1�

S−
h,1 + rA2�

S−
h,2 (3)

for x < −L1, where

ψS±
e,1 (x) = (e+iβ,±e+iβ±iγ , 02, e−iφ,±e−iφ±iγ , 02)T e±kS,e

x x, ψS±
e,2 (x) = (02, e+iβ,±e+iβ±iγ , 02, e−iφ,±e−iφ±iγ )T e±kS,e

x x,

ψS±
h,1 (x) = (e−iβ,∓e−iβ∓iγ , 02, e−iφ,∓e−iφ∓iγ , 02)T e∓kS,h

x x, ψS±
h,2 (x) = (02, e−iβ,∓e−iβ∓iγ , 02, e−iφ,∓e−iφ∓iγ )T e∓kS,h

x x, (4)

with β = arccos(ε/�0), γ = arcsin[h̄vF ky/(U0 + EF )], kS,e
x = (EF + U0 + �)/(h̄vF ), kS,h

x = (EF + U0 − �)/(h̄vF ), � =√
ε2 − �2

0, with 0n representing a 1×n matrix with only zero entries, and T being a transpose operator. The scattering coefficients
r1(2) and rA1(2) are respectively corresponding to the normal reflection without (with) a spin flip and the usual (novel) AR. In the
F region, we have the wave function

�F (x) = a1�
F+
e,↑ (x) + a2�

F−
e,↑ (x) + a3�

F+
e,↓ (x) + a4�

F−
e,↓ (x) + a5�

F+
h,↑ (x) + a6�

F−
h,↑ (x) + a7�

F+
h,↓ (x) + a8�

F−
h,↓ (x) (5)

for −L1 < x < 0, where

ψF±
e↑ (x) =

(
cos

θ

2
e−iϕ,± cos

θ

2
e−iϕe±iαe

↑ , sin
θ

2
,± sin

θ

2
e±iαe

↑ , 04

)T

e±ikF,e
x↑ x,

ψF±
e↓ (x) =

(
− sin

θ

2
e−iϕ,∓ sin

θ

2
e−iϕe±iαe

↓ , cos
θ

2
,± cos

θ

2
e±iαe

↓ , 04

)T

e±ikF,e
x↓ x,

ψF±
h↑ (x) =

(
04,− sin

θ

2
,± sin

θ

2
e±iαh

↑ , cos
θ

2
e−iϕ,∓ cos

θ

2
e−iϕe±iαh

↑

)T

e±ikF,h
x↑ x,

ψF±
h↓ (x) =

(
04, cos

θ

2
,∓ cos

θ

2
e±iαh

↓ , sin
θ

2
e−iϕ,∓ sin

θ

2
e−iϕe±iαh

↓

)T

e±ikF,h
x↓ x. (6)

The propagation angles are given by α
e(h)
↑↓ =

arcsin[h̄vF ky/(ε + (−)EF + σh)]. The x component of wave
vectors during the scattering processes can be accordingly
expressed by

kF,e
x↑ = (ε + EF + h) cos αe

↑/(h̄vF ),

kF,e
x↓ = (ε + EF − h) cos αe

↓/(h̄vF ),

kF,h
x↑ = (ε − EF − h) cos αh

↑/(h̄vF ),

kF,h
x↓ = (ε − EF + h) cos αh

↓/(h̄vF ). (7)

The wave function in the R region is given by

�R(x) = b1�
R+
e,+(x) + b2�

R−
e,−(x) + b3�

R−
e,+(x) + b4�

R+
e,−(x)

+ b5�
R+
h,+(x)+b6�

R−
h,−(x)+b7�

R−
h,+(x)+b8�

R+
h,−(x)

(8)

for 0 < x < L2, where

ψR±
e,η=+1(x) = (∓i f e

+e∓iθ e
+ ,−i, 1,± f e

+e±iθ e
+ , 04)T e±ikR,e

x,+x,

ψR±
e,η=−1(x) = (± f e

−e∓iθ e
− , 1,−i,∓i f e

−e±iθ e
− , 04)T e±ikR,e

x,−x,

ψR±
h,η=+1(x) = (04,∓i f h

+e∓iθh
+ ,−i, 1,± f h

+e±iθ e
+ )T e±ikR,h

x,+x,

ψR±
h,η=−1(x) = (04,± f h

−e∓iθh
− , 1,−i,∓i f h

−e±iθ e
− )T e±ikR,h

x,−x.

(9)

Accordingly, the x component of wave vectors during
the scattering processes can be expressed by kR,e

x,η =
(EF + ε) f e

η cos θ e
η/(h̄vF ), kR,h

x,η = (EF − ε) f h
η cos θh

η /(h̄vF ),
and the definition of auxiliary parameters are f e

η =√
1 + 2ηλ(EF + ε)−1, f h

η =
√

1 + 2ηλ(EF − ε)−1, where
θ e(h)
η are the electron and hole propagation angles,

respectively. The wave function in the right S region is
given by

�S
R(x) = t1�

s+
e,1(x) + t2�

s+
e,2(x) + t3�

s+
h,1(x) + t4�

s+
h,2(x) (10)

for x > L2, where t1(2) and t3(4) are the usual (novel) transmis-
sion as ELQs and the usual (novel) transmission as holelike
quasiparticles (HLQs), respectively.

All the coefficients will be determined by matching the
boundary conditions

�S
L (x)|x=−L1− = �F (x)|x=−L1+,

�F (x)|x=0− = �R(x)x=0+ ,

�R(x)x=L2− = �S
R(x)x=L2+ . (11)

Analogously, one can easily obtain rA1 and rA2 for the in-
cident spin-down ELQ, and then the scattering coefficients of
the ARs rA3 and rA4 for the incident spin-σ HLQ with energy
ε > � from the left S region. The analytical expressions for
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rAi (i = 1, 2, 3, 4) are extremely tedious and thus not given
here.

The dc Josephson current at a given temperature can be
expressed in terms of rAi by using the temperature Green’s
function formalism, the Furusaki-Tsukada formalism [27]

I (φ) = e�

2h̄
�

σ,ky

kBT �
ωn

1

2�n

(
ke

n + kh
n

)

×
(

r1
An + r2

An

ke
n

− r3
An + r4

An

kh
n

)
, (12)

where ke
n, kh

n , r1
An, r2

An, r3
An, r4

An are obtained from kS
e , kS

h , rA1,

rA2, rA3, rA4 by the analytic continuation ε → iωn, the
Matsubara frequencies are ωn = πkBT (2n + 1) with n =
0,±1,±2, . . . , �n=

√
ω2

n + �2, and φ = φR − φL is the
macroscopic phase difference across the junction.

In the calculations, the normalizations of the Joseph-
son current, energies, and lengths are respectively by R =
2h̄2πυF /(e2W EF ), �0, and the superconducting coherent
length ξ = h̄vF /�0 for simplicity. We set the low tempera-
ture T = 0.1Tc with the critical temperature Tc = 0.57�0/kB

based on BCS theory and Fermi energy EF = 15�0 for the
weakly doped situation in the F region. �0 � EF + U0 is
assumed for the mean-field requirement of superconductivity,
i.e., the Fermi wave vector in the S region should be much
larger than that in the F one [30].

In terms of realistic parameters, we choose the typical
superconducting energy gap �0 = 1 meV and the coherence
length ξ = 10 nm if the S is Nb [31]. It was demonstrated that
the graphene interfacing with WS2 could acquire the RSOC
strength λ up to 17 meV because of the proximity effect [14],
which means that λ can be taken 0 − 17�0. According to
the first-principles calculations, the RSOC in graphene can
be induced by the transverse electric field E . It creates a
spin-splitting 2λ at K or K ′ points that has a linear depen-
dence on E , about 50 μeV per V/Å for the zero-buckling
case [32,33]. Note that the former stems from the proximity
effect while the latter from σ − π mixing. Furthermore, it is
shown that EuS could induce a large magnetic exchange field
(>14 tesla) in graphene with the potential to reach hundreds of
tesla [5], and thus we assume that the magnetization strength
h > 10 meV can be realized in the experiments. Moreover,
the Fermi energy EF in graphene is usually in the order of
0 − 100 meV [34] and can be shifted in a controllable fashion
(by doping or electric fields).

III. RESULTS AND DISCUSSION

A. Two kinds of current-phase relations

On the basis of Eq. (12), we calculate the Josephson current
as a function of φ for different polar angle θ , the current-phase
relation I (φ), as shown in Fig. 2, where the azimuthal angle
ϕ = 0 is fixed and the polar angle θ is varied in the x − z
plane. It is found that the effect of θ on I (φ) is strongly de-
termined by the exchange field magnitude h and the deviation
from the sine function is always exhibited. In Fig. 2(a) for
h = 4�0, the 0-π transition tuned by the orientation of �h is
shown. At θ = 0, the junction is in the stable π state. With in-
creasing θ , the coexistence of 0 and π states emerges. When θ

is enhanced to 0.15π , the 0-π transition takes place. With θ in-

(a)

(b)

θ
θ
θ

θ
θ

FIG. 2. The current-phase relation I (φ) at different θ in the x-z
plane (ϕ = 0), where EF = 15�0, L1 = 0.2ξ , L2 = 0.1ξ , λ = 4�0,
h = 4�0 (a) and 15�0 (b).

creased from 0.3π up to 0.5π , the junction remains the stable
0 state throughout and its corresponding curves of I (φ) ap-
proach the sine function. However, the characteristics shown
in Fig. 2(b) for h = 15�0 are thoroughly different from those
in Fig. 2(a). For θ from 0 up to 0.5π , the curves all approach
the sine function, particularly, the junction keeps the stable 0
state all the time, accompanied by the increase of the current
with θ except for at φ = 0 and π . These indicate that whether
the 0-π transition exists or not is determined by the initial
state. It follows that the characteristics of magnetoanisotropic
modulation are strongly dependent on the exchange field h,
which determines not only the initial state but also if the 0-π
transition can be induced by magnetoanisotropic modulation
or not. The characteristics can be explained by the Andreev
bound states (ABSs) in the following, carrying the Josephson
currents.

B. Anomalous Josephson current effect

The current-phase relations I (φ) for different polar angles
θ in the y-z plane (ϕ = −π/2) and different azimuthal angle
ϕ in the x-y plane (θ = π/2) are shown in Figs. 3(a) and 3(b),
respectively. For the former, the sine function landscape can
be found to basically remain, and with increasing θ , I (φ)
at φ < 0.3π is enhanced while it is suppressed in the range
of 0.3π to π . Particularly, at θ = 0, the Josephson current
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(a)

(b)

θ

θ
θ
θ
θ

φ

φ
φ
φ
φ

FIG. 3. I (φ) (a) for different θ in the y-z plane (ϕ = −π/2) and
(b) for different ϕ in the x-y plane (θ = π/2), where h = 4�0 and
the other parameters are the same as those in Fig. 2.

I (φ = 0) is no longer zero and increased with θ , indicating
the so-called anomalous Josephson effect. However, for the
latter, with the enhancement of ϕ, the obvious deviation from
the sine function always displays. Especially, the anomalous
Josephson effect also takes up, and with increasing ϕ, the
corresponding I (φ = 0) could be not only negative but also
positive. The anomalous Josephson effect will not be specifi-
cally discussed in this work.

C. Magnetoanisotropic dependence of Andreev bound energies

The ABS spectrum can be obtained numerically. The
boundary conditions, Eq. (11), can be organized neatly into a
matrix equation of the form Az = 0, where the 24×24 matrix
A is a function of ε, φ, and ky, and z is a column vector contain-
ing 24 unknown coefficients. A nontrivial solution requires
the determinant of matrix A, det A = 0, from which the ABSs
can be obtained in the form of a relation between ε and φ

at a given ky, i.e., the dispersion εi(φ) (i = 1, . . . , 4) due to
the coherent subgap processes [35], corresponding to ±εσ .
Without loss of generality, we only give the results for the case
of the vertical incidence (ky = 0) and neglect the difference of
the wave vectors of ELQ and HLQ.

The typical energy-phase relation for ABSs in the
S/normal metal/S junction is obtained as [36,37] εnσ =
±�

√
1 − Dn sin2(φ/2), where the junction is characterized

by a set of transport channels labeled n = 0, 1, . . . , N and the
transmission coefficient Dn is determined by the transverse
momentum ky. In the ballistic regime (Dn = 1 with ky = 0),
there exist two levels, one with the positive sign in εnσ is
corresponding to the left-moving electrons, the other with
the negative one corresponds to the right-moving electrons,
cross at φ = π . The gap opens for Dn < 1 with ky = 0. In an
S/F/S junction, the different phase shifts for different spin
directions result in a spin-dependent energy shift of the ABSs,
and two zero-energy Andreev levels are located at the phase
differences π + δφ with δφ dependent of the value of kσ

ε=0L1.
For the usual F/S junction, the AR occurs at the interface,

in which the incident spin-up electron from the F region is
reflected back as a spin-down hole and thus a Cooper pair
is injected into the S. The opposite-spin AR and the resul-
tant corresponding ABSs are strongly affected by the spin
polarization of the F lead [38]. However, in the presence of
interfacial RSOC, which breaks the inversion symmetry of
the lattice, triplet equal-spin AR or equal-spin pairs can be
induced in the F with the incident electrons and the reflected
holes coming from the same spin subband. As for the present
graphene-based S/F/R/S junction, the spin-dependent AR
occurs at the right interface, and a right-moving spin-up elec-
tron is reflected as a left-moving hole that has both spin-up and
-down components due to the RSOC region. The phase depen-
dences of the ABS εσ for the junction are illustrated in Fig. 4,
where Figs. 4(a)–4(c) and Figs. 4(d)–4(f) are respectively
corresponding to Figs. 2(a) and 2(b). The spin directions have
been denoted in the phase-dependent spectrum [see Fig. 4(b)].
It is found that for the small h, with the increase of θ , the spin
splitting first strengthens, then weakens, and finally the energy
band becomes degenerate at θ = 0.5π , while for the large h,
the spin splitting monotonically weakens. The degeneration
at θ = 0.5π corresponds to the vanished opposite-spin AR
with the reflected holes all coming from the same spin band as
the incident electrons. An extra momentum change 2h/vF and
a resultant phase shift induced in the opposite-spin AR [39],
leading to the so-called π junction, could not be exhibited in
the equal-spin AR. This means that the junction at θ = 0.5π

is always in the stable 0 state.
Now we investigate the relation of the spins close to zero-

energy states and the 0-π transition. For ε > 0, except for θ

near 0.5π , the spin-up and -down bound energy levels are all
taken far apart for other θ , as shown in Figs. 4(a), 4(b), 4(d),
and 4(e), and only the spin-down one owes the zero-energy
states, implying the spins close to zero-energy states are spin
down. However, at θ approaching 0.5π , the two kinds of
levels are dragged very closely, therefore although only the
spin-down level has the zero-energy states, and the spins near
them are partially spin up. Obviously, due to degeneration of
the spin-up and -down levels at θ = 0.5π , the proportions
of up and down spins at the neighborhood of zero-energy
states are evenly distributed [see Figs. 4(c) and 4(f)]. The
same behaviors for ε < 0 can be exhibited. As a result, the
change of spin close to the zero-energy state does not indicate
a conversion of different states (0-π state transition). This is
much different from that for the S with magnetic impurities
as deduced by Sakurai in Ref. [40]. In the S, there exist two
kinds of states: one is the so-called state ψ , closely connected
with the continuum and bound modes, the other is the one ψ ′
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spin-up

spin-down

ε/
Δ 0

ε/
Δ 0

FIG. 4. Spin-splitting dispersion of ABS ±εσ for different h and θ of �h in the x-z plane (ϕ = 0) at the incident angle α = 0. Here, θ = 0 for
(a) and (d), θ = 0.2π for (b) and (e), θ = 0.5π for (c) and (f), h = 4�0 for the top row, and 15�0 for the bottom row, and the other parameters
are the same as those in Fig. 2.

only determined by the continuum mode. One bound mode
β0 can localize a half spin-up electron and the continuum one
camps a spin-down electron. With the interaction strength ζ

increasing, the total spin density at the impurity site in the
state ψ decreases from 0 and approaches −1 and ψ turns
into the lowest excited state from the ground one at ζ = 1.
However, ψ ′ is the lowest excited one for weak interactions
while becoming the ground one for ζ > 1. The ground state
abruptly changes to ψ ′ from ψ at ζ = 1. It follows that the
interchange of different states is accompanied with the change
of the total spin density at the impurity site.

Either the 0 or π state can be seen from the free energy,
which depends on the ABS, as shown in Fig. 5. The 0 or π

state for the Josephson junction is determined by the minimum
of the φ-dependent free energy [41],

F (φ) = − 1

β
ln[

∏
i

(1 + e−βεi (φ) )]

= − 1

β
�
σ

ln

[
2 cosh

(
βεσ (φ)

2

)]
. (13)

The corresponding F (φ) for the same three directions of �h as
in Fig. 4(a)–4(c), respectively, are shown in Fig. 5(a), where
the curves of F (φ) are found to be all symmetrical about the
axis φ = π . When θ = 0 with the orientation of �h normal to
the x-y plane, the maximum and minimum are located at φ =
0 (2π ) and π , respectively. With θ increased, the locations of
the two maximums gradually approach the axis φ = π , while
the two minimums start to be at φ = 0 and 2π from some
polar angle θ , respectively, indicating a 0-π transition. As θ

is increased to π/2, i.e., the orientation of �h lies in the x-y
plane, the maximum exhibits at the axis φ = π , whereas the

minimum is located at φ = 0 (2π ), which means the structure
is in the stable 0 state. Figure 5(b) shows F (φ) corresponding
to Figs. 4(d)–4(f). However, the two minimums for different

θ

θ
θ

θ

θ
θ

(a)

(b)

FIG. 5. Free energy F (φ) for different θ in the x-z plane (ϕ = 0),
where (a) h = 4�0, (b) h = 15�0, and the other parameters are the
same as those in Fig. 2.
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FIG. 6. The critical supercurrent I±
c (a) as a function of θ and h

at L1 = 0.2ξ and (b) a function of θ and L1 at h = 4�0, where the
other parameters are unchanged.

θ are always located at φ = 0 and 2π , respectively, which
means that the junction is in the stable 0 state all the way.

D. Two different phases of the critical Josephson current

In order to get a much more in-depth look at the θ depen-
dence of the Josephson current, we now turn to the critical
Josephson current. It is defined as Ic = max |I (φ)| and further
divided into I±

c = ± max |I (φ)| with the positive and negative
signs corresponding to the 0 and π states, respectively, the
experimentally measured relevant quantities. The Josephson
current can be also estimated by the ABSs [35,42]:

I (φ) = 2e

h̄
�
i

f (εi )
dεi

dφ
= −2e

h̄
�
σ

tanh

(
βεσ

2

)
dεσ

dφ
. (14)

The phase shift induced by the extra momentum change
2h/vF of the reflected hole due to the F region, in the context
of dimensionless units, is approximately η = (k− − k+)L1 ∼
hL1 as in Ref. [43]. However, in the presence of RSOC, the
phase shift is determined by not only hL1 but also the orienta-
tion of �h and RSOC strength λ.

The dependences of I±
c on θ and h are shown in Fig. 6(a).

With h increased, two different parts or phases are exhibited.
One is that for larger θ , there only exists the 0 state, and the
other is that for smaller θ , the 0 and π states emerge alter-
nately, indicating that the 0-π transition appears periodically
with increasing h; however, both of the initial states are always
the stable 0 ones regardless of θ . And with the enhancement
of θ , there exist two kinds of phases with and without one
0-π transition, respectively, which appear alternately with the
variation of h. Which phase emerges with increasing θ is

λ Δ
λ
λ
λ Δ

Δ
Δ

FIG. 7. Ic as a function of θ for h = 4�0 with the other parame-
ters unchanged.

determined by the initial state, and it must be only the π one
for the former. As shown in Fig. 2, the initial state is strongly
dependent on h. More interestingly, in the first three phases
with the 0 − π transition, θ corresponding to the crossover
point gradually increases while remaining almost unchanged
in the subsequent ones. As λ is other values, the characteristics
including the period of h are found to remain the same, except
for the different magnitudes of I±

c , which are not presented by
the figures for simplicity.

In Fig. 6(b), I±
c as a function of θ and the F region length L1

are also illustrated, where similar characteristics with those in
Fig. 6(a) are displayed. Although the 0-π transition appears
periodically with increasing L1, the I±

c display the trend of
gradual decay, which is much different from that in Fig. 6(a).

Unlike the ferromagnetism of the F layer in the s-wave
S/F/S junction, the RSOC of the R layer cannot reverse the
supercurrent or give rise to the 0-π transition in the s-wave
S/R/S junction [44–46] because the RSOC maintains time-
reversal symmetry, leading to the result that the singlet Cooper
pair cannot achieve any extra phase shift π after entering
into the R region. In the present graphene-based S/F/R/S
hybrid structure, the spin-flipping effect induced by RSOC
generates the triplet equal-spin pairs but cannot achieve any
phase shift for I (φ) as well, as mentioned in Sec. III C, so
that the RSOC could not induce the 0-π transition. However,
it has an influence on the crossover point of the 0-π transition
as shown in Fig. 7. The dependences of the critical current Ic

on θ for different λ are shown in Fig. 7. It is clearly seen that
the curves are symmetric about the axis θ = π/2, and with
increasing λ, the values of the peak and two dips (crossover
points of 0-π transition) are all decreased, in particular, the
two crossover points shift towards the axis θ = π/2.

E. MAJC

Although the RSOC is characterized by spin-triplet pairs
in the present hybrid structure, the magnetic anisotropy of
the Josephson current is a singular peculiarity for the RSOC
experimentally. As presented above, when the exchange field
�h lies in different planes, there exist different features. As
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FIG. 8. (a) The in-plane MAJC as a function of ϕ and (b) out-of-
plane MAJC as a function of θ for different h. The other parameters
are unchanged.

usual, two configurations important for investigating transport
anisotropies in vertical junctions are considered here. One is
the “out of plane” with �h in a plane perpendicular to the F
layer, where the corresponding out-of-plane MAJC is defined
as

MAJC(θ ) = Ic(0, ϕ) − Ic(θ, ϕ)

Ic(θ, ϕ)

∣∣∣∣
ϕ=−90◦

.

The other is the “in plane” with �h in a plane parallel to the F
layer, whose MAJC is given by

MAJC(ϕ) = Ic(θ, 0) − Ic(θ, ϕ)

Ic(θ, ϕ)

∣∣∣∣
θ=90◦

.

The angular dependences of the in-plane and out-of-plane
MAJCs for different h in the present hybrid structure are
shown in Fig. 8. Both the MAJCs are found to display non-
monotonic variations with h. For the in-plane configuration,
the MAJC first increases with the enhancement of h and
reaches its maximum at h/EF = 1, with the F region being
completely spin polarized, and then is highly suppressed for
h > EF , for instance, the MAJC is even approximately zero
at h/EF = 1.5. However, for the out-of-plane configuration,
the MAJC is first increased with the enhancement of h and
gets its maximum at h/EF = 0.4, then decreases and reaches
the minimum at h/EF = 1, and finally increases all the time,
which is thoroughly different from that for the in-plane con-
figuration. Since the MAJC essentially measures the current’s
“magnetosensitivity,” especially “large” MAJC amplitudes
should occur when tuning the junction through the transi-

tion point by changing magnetization orientations. Indeed, for
h/EF = 0.4 and 1.5, there exist rather pronounced MAJCs,
which facilitates θ -controlled 0-π transitions [see Fig. 6(a)].
Furthermore, at the two exchange splittings, besides the rather
pronounced MAJCs, the curve shapes for the MAJC with θ in
Fig. 8(b) seem to be alike, while the MAJCs are relatively
small in stable 0 states at h/EF = 1.0, explaining the overall
nonmonotonic h variations.

To have a high insight into the impact of RSOC on the
magnitudes of MAJCs with or without the magnetically con-
trolled 0-π transitions, we plot the angular dependencies of
the in-plane and out-of-plane MAJCs for different RSOCs λ

as shown in Fig. 9. The out-of-plane and in-plane MAJCs
are found to be very sensitive to the change of the RSOC
and vary monotonically with λ, which is contrary to that in
the previous works. Furthermore, the previous studies showed
that the in-plane anisotropy stems from the interplay of the
interfacial Rashba and Dresselhaus spin-orbit fields [21–23],
in other words, if either of the two fields is absent, the in-plane
MAJC vanishes. The so-called interfacial spin-orbit coupling
is due to the fact that in hybrid structures, two sides of
the junction have different crystal and electronic structures,
and the interface potential barrier is asymmetric, resulting in
the Rashba and Dresselhaus type of SOC localized near the
interface. The Rashba (or Bychkov-Rashba) field is present
due to the space inversion asymmetry of the heterostructure.
If bulk inversion symmetry is also broken, there will addi-
tionally be a spin-orbit field of the Dresselhaus type. In the
F/S junctions with interfacial SOC, incoming electrons feel
an effective wave vector k-dependent magnetic field which
couples to their spin. And the in-plane anisotropy arises from
the interference between the Rashba and Dresselhaus fields,
which results in a C2v symmetric field in the corresponding
interface. It is worth noting that in the present structure, how-
ever, the in-plane MAJC is always exhibited in the absence of
Dresselhaus spin-orbit field [see Figs. 9(a) and 9(c)].

The physics on the finite in-plane MAJC in the present
structure can be described as follows, which is significantly
different from that for the interfacial SOC [19,22]. Due to the
RSOC, for the low-energy bands with the Dirac-like disper-
sion in graphene, there exist the anisotropic spin splitting of
band around the K (K ′) point [47]. One spin subband under-
goes trigonal-warping deformation, while the opposite-spin
subband is still almost of isoenergy with spin precession. The
RSOC-induced spin splitting can be considered to correspond
to an effective exchange field. Its direction is closely con-
nected with the wave vector direction and its magnitude is
also anisotropic. Therefore, for a fixed in-plane magnetization
of the F region, its exchange field and the effective one of
the RSOC region are almost always noncollinear. This means
that the spin-triplet AR is induced as in an F/F/S junction
with the noncollinear magnetic configuration [48], which in
fact corresponds to the k-independent spin flip due to the
RSOC. In the F/F/S junction, the spin-triplet AR probability
amplitude is determined by the angle between the exchange
field directions of the two Fs. Therefore the corresponding
spin-triplet AR probability amplitude in the present struc-
ture is strongly dependent on the magnetization orientation
of the F. In other words, the AR including the specular AR
is magnetoanisotropic and thus the in-plane MAJC always
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FIG. 9. The in-plane MAJC as a function of ϕ for h/EF = 1.5 (a) and 1 (c), and the out-of-plane MAJC as a function of θ for the same h
(b) and (d) as in (a) and (c), respectively. Here, various λ are marked in the figure and the other parameters are unchanged.

remains finite. In the AR process, the incident electron and
Andreev-reflected hole come from different valleys, and their
chiralities for the retro-AR are the same while opposite for the
specular one.

It is worth mentioning that in the unphysical coordinate
system with the x axis not being along the Josephson current
direction, the finite in-plane MAJC can be also exhibited.
This is because the exchange field direction of the F and
the effective one of the RSOC region are still almost always
noncollinear. With the magnetization direction of the F vary-
ing, the angle between the two exchange field directions is
also changed, and thus there still exists the AR’s magne-
toanisotropy.

The explanation of the finite in-plane MAJC in graphene-
based Josephson junctions only in presence of RSOC can
be also given by the ABS magnetoanisotropies. The ABSs,
carrying the Josephson currents, are also shown to be magne-
toanisotropic with ϕ, which are not presented by figures for
simplicity here. This indicates that the Josephson current is
magnetoanisotropic as well; therefore, the resultant in-plane
MAJC can be finite.

The curve shapes, ellipses for the in-plane MAJCs with
ϕ at different λ, appear to be all similar, and the ellipses
are enlarged with the increase of λ, as shown in Figs. 9(a)
and 9(c), which means that for a fixed ϕ, the in-plane MAJC
monotonically varies with λ. These modulations also suggest
no λ-induced 0-π transitions.

The great increase of out-of plane MAJC amplitudes at
h/EF = 1.5 is shown with λ in Fig. 9(b). At about π/4 of θ

[see Fig. 6(a), the point of 0-π transition at h/EF = 1.5], the
MAJC ≈25% for λ = 4�0, while it is ≈40% for λ = 6�0.
Since the RSOC does not induce the 0-π transition, the en-
hancement of λ is in favour of identifying the vicinity of a 0-π
transition from MAJC measurements. However, for param-
eters far away from magnetically controlled 0-π transitions,
e.g., h/EF = 1, the junctions are in stable 0 states and the

MAJCs are obviously smaller as compared with h/EF = 1.5
[see Fig. 9(d)]. For the in-plane MAJC, the situation is just
contrary. The in-plane MAJC can reach 80% at h/EF = 1 [see
Fig. 9(c)], while its maximum is not beyond 9% at h/EF = 1.5
[see Fig. 9(a)].

The magnetoanisotropic features of Figs. 8 and 9 can be
all ascribed to the interplay of the proximity-induced RSOC
and ferromagnetism in graphene combined with chiral nature
of the carriers, which can be seen from the above explanation
of the finite in-plane MAJC. Specifically, the combination of
the ferromagnetism with the chiral nature of the quasiparti-
cles, Dirac-like linear dispersion, and k-independent spin-flip
mechanism in the graphene interlayer leads to the highly mag-
netoanisotropic equal-spin triplet AR including the specular
one. And thus the resultant quantum tunneling transport in the
present heterojunction becomes highly magnetoanisotropic,
which is qualitatively different from the case for normal,
nonrelativistic electrons. Here, for a ferromagnetic graphene
sheet with the Dirac-like linear dispersion at low energies, the
normal Fermi level at Dirac point (EF = 0) is shifted by the
exchange field, which is characterized by the specular AR in
the ferromagnetic graphene-based S hybrid structure. In the
presence of the RSOC, the equal-spin triplet AR, particularly,
the specular one at h > EF , is induced. The chiral nature of
the carriers in graphene is formally a projection of pseudospin
on the direction of motion, which is positive and negative for
electrons and holes, respectively.

IV. CONCLUSIONS

We have shown that the graphene-based S/F/R/S Joseph-
son junctions display a very rich and experimentally acces-
sible magnetoanisotropic Josephson effect induced by the
RSOC, which is characteristic by the triplet equal-spin pairs.
Two kinds of 0-π transitions, the two significant experimental
signatures for the structure, are exhibited. One is that in the
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presence of the RSOC, one 0-π transition is observed by
manipulating the orientation of exchange field �h. It is strongly
dependent on the magnitude of �h that must be periodically
taken from nEF to (n + 1/2)EF with n = 0, 1, 2, . . . , where
the θ corresponding to the transition point can be from 0.25π

to 0.35π . The other is that tuning the magnitude of �h allows
for the periodical appearance of a 0-π transition in a consid-
erable scope of the orientation (θ = 0 ∼ π/3). In addition,
there exist two different types of anomalous Josephson current
effect by controlling the orientation of �h: one corresponds to
either the positive or negative Josephson current at zero phase
shift, the other corresponds only to the negative. Specifically,
the in- and out-of-plane MAJCs are found to vary mono-
tonically with λ while nonmonotonically with h, which are
observable experimental characteristics for the present hybrid
structure. For the former the in- and out-of-plane MAJCs can
reach 15% and 35%, respectively, while for the latter they
reach 17% and 60%, respectively. It is pointed out here that
for an observable finite magnitude of MAJC, λ � 4 meV

and h � 10 meV are needed, which can be experimentally
achieved.

These obtained characteristics, being particular to such
hybrid junctions due to the Dirac-like band structure, may
confirm the proximity-induced RSOC in the graphene. State-
of-the-art experimental techniques have recently made it
possible to quantitatively measure the current-phase rela-
tion of the ballistic graphene Josephson junctions by a fully
gate-tunable graphene superconducting quantum interference
device [49]. With recent experimental advances, we hope
that this work will stimulate future experiments involving
graphene-based magnetoanisotropic Josephson devices.
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