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Surface plasmon polaritons (SPPs) due to their subwavelength nature could significantly modify electronic
transition behaviors in various optoelectronic systems. Here, using a model system with a spherical quantum
dot (QD) close to a flat metal surface, we show that the conventional forbidden optical transitions in a QD
could be largely enabled by the spontaneous SPP decay. The electronic states of the QD are approximated by
a Bloch state combined with wave functions in a spherical potential well, which provides multiple hole states
with mixed electronic multipoles. Moreover, the SPP is quantized by using a canonical quantization scheme
followed by a Green’s function approach to introduce its dissipation. In particular, we find that when the SPP
dissipation is included, the spontaneous decay of the corresponding QD exciton is dominant by the transition
into the off-resonance mode of SPPs with large momenta. Also, we have studied the dependence of spontaneous
decay rates on the size and crystal orientation of a QD, the distance between the QD and metal surface, and
the linewidth of SPPs. Some useful scaling relations have been revealed, and the multipole transitions are found
to be comparable with the dipole transition under specific system parameters. These findings have important
implications for our understanding of the electronic transition at a metal near field and might prove instrumental
for the future design of plasmonic and QD devices.

DOI: 10.1103/PhysRevB.103.035416

I. INTRODUCTION

Surface plasmon describes the collective motion of the
conduction electrons near a metal surface. It can strongly
couple with an electromagnetic field to form the hybrid mode
known as surface plasmon polaritons (SPPs) [1]. The SPP
inherits a large momentum of electronic collective motion,
possessing a much shorter wavelength than light, confined
at the metal near field. Many intriguing applications, includ-
ing plasmonic lithography [2], subwavelength optics [1,3],
and surface-enhanced Raman spectroscopy [4,5], are rooted
in the short wavelength and/or near-field enhancement of
such excitations [6,7]. Due to its short-wavelength nature,
forbidden transitions under the conventional electric dipole
selection rule of optic transitions are enabled by decaying
into SPPs. The near-field enhancement of the SPP, meanwhile,
provides a vast optical local density of state (LDOS) and thus
enlarges the transition rates of different channels by Purcell
effect, making it essential for electronic transitions. In the past
decade, considerable efforts have been devoted to exploring
the effects of this shrinking light [7–11].

Quantum dots (QDs) provide an attractive platform for
tailoring light-matter interaction, especially when combined
with the shrinking light of metal nanostructures. The physics
and in particular the optical properties of QDs can be effec-
tively and precisely controlled by changing the shape, size,
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and chemical composition of the nanoparticles [12], giving
rise to a rich variety of applications, such as light-emitting
diodes (LEDs) [13,14], solar cells [15], and quantum informa-
tion devices [16]. In particular, due to the mesoscopic size and
large oscillator strength of QDs, they can fully utilize the short
wavelength and strong LDOS enhancement of electromag-
netic fields, rendering the QD or QD-metal hybrid systems
many intriguing phenomena. For example, due to the break-
down of the dipole approximation, the decay of a QD exciton
could depend on the orientation [17]. The oscillator strength
of QDs can be tuned by changing the particle size [18,19] or
applying a magnetic field [20] to control the wave function of
their excitons. Also, multipole transitions in asymmetry QDs
have been observed experimentally [21]. On the theoretical
side, we note that most of the previous studies on the hybrid
systems focused on a simply QD electronic structure, i.e.,
a phenomenological dipole or quadrupole transition [22], or
their interference [23]. It will be very interesting to get into de-
tailed electronic states of QDs, by considering more realistic
and complex transition channels of QDs under diverse control
parameters. Such a systematic study is expected to improve
the understanding of fundamental properties of QD-metal hy-
brid systems, which is essential to realize the full potential of
the systems.

In this study, we investigate a prototypical hybrid system
composed of a spherical QD proximity to a metal surface, by
using a full quantum mechanical approach with the detailed
electronic states of a QD and a dissipative SPP at a metal
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FIG. 1. The sketch of the system with a spherical QD above a
metal surface in vacuum. We consider two different coordinates: one
is the coordinate xyz fixed by the metal surface, and the other is the
coordinate XY Z depicted by the red dashed lines attach to the crystal
symmetry axes.

surface. The electronic states of the QD are approximated by
a Bloch state combined with wave functions in a spherical
potential well. The SPP is quantized by using a canonical
quantization scheme followed by a Green’s function approach
to introduce its dissipation. In analogy to a spherical CdTe
QD, we obtain different hole states categorized by the party
and angular momentum. Due to an effective spin-orbit cou-
pling, the hole states involve the envelope functions with
different angular momenta, and thus gain mixed electronic
multipoles. The spontaneous decay rate of the exciton is then
obtained by using the Fermi’s golden rule. In particular, we
find that the introduction of the SPP dissipation allows the
exciton decay into off-resonance modes of the SPP. This
“nonradiative” SPP decay strongly enhances the total spon-
taneous decay rate, comparing with the “radiative” decay
when only consider a nondissipative SPP. In addition, we
evaluate the spontaneous decay for different excitonic states,
which includes the different multipole transitions and their
interference. The results indicate that the multipole transition
can have a non-negligible contribution for the spontaneous
decay under specific system parameters. The dependence of
the decay rates on the size and crystal orientation of a QD, the
distance between the QD and metal surface, and the linewidth
of SPPs, are also evaluated. This study may prove instrumen-
tal in the design of future high-efficiency energy devices, such
as QD LEDs and QD solar cells. Understanding these exci-
tonic optical properties is much required in order to optimally
engineer QDs for controllable light-matter interactions.

This paper is organized as follows. In Sec. II we present
theoretical models, including the quantization of a dissipative
SPP, the electronic states in QDs, and the spontaneous SPP
decay rate. In Sec. III, we compare in detail the deexcitation
processes of the excitons mediated by free photons and the
SPPs. We close the paper with a summary in Sec. IV.

II. THEORETICAL MODELS

The system of interest, sketched in Fig. 1, is a QD of
radius a close to an adjacent metal surface, with the distance

z0 between the QD center and metal surface. The angle be-
tween the Z axis of the QD crystal and the z axis normal to
the metal surface is θ . The metal surface supports SPPs of
momenta k far greater than that of free photons. Therefore, the
conventional dipole approximation (long-wavelength approx-
imation) cannot be applied, and the multipole components of
the SPPs will largely modify the transition behaviors of the
QD excitons. In addition, due to the dissipation of the SPP,
the dispersion curve of the SPP gets a finite broadening �.
For the energy transition from a QD exciton to an SPP at an
energy ω, we need to integrate over k. Consequently, for the
multipole transition proportional to the high-order k terms, a
significant contribution from high-k region can be expected.

In this section, we first describe the quantization method of
a dissipative SPP, then evaluate electronic states in a QD, and
finally give the spontaneous SPP decay rate of the QD exci-
tonic state. We will see how the above parameters, including
the radius a, distance z0, angle θ , energy ω, broadening �, and
momentum k, affect the decay rate.

A. Quantization of dissipative SPPs

For the sake of completeness and self-containing presen-
tation, we first write the canonical quantization result of a
nondissipative SPP [24]. Then, different from the widely
used macroscopic QED scheme [7,25], we introduce the dis-
sipation using a Green’s function approach by considering
a bosonic pool surrounding the nondissipative SPPs [26].
Both methods eventually bring a finite broadening to the SPP
mode described approximately by the dispersion curve of the
nondissipative SPPs. The advantage of the method used here
is that it can straightforwardly introduce the energy shifting
and broadening of the SPP by a phenomenological way with
clear underlying physics, while it keeps the essential differ-
ences between the SPP and free photon field, i.e., the different
dimensionality, field polarization, and energy dispersion. Con-
sequently, clear insight can be revealed.

In analogy to the quantized photon field, we can write the
quantized vector potential operator of an SPP as [24]

Â(r, t ) =
∑

k

√
h̄

2ε0ωkSL(ωk )

(
ek − k

q j
ez

)

× (âke−iωkt + â†
−keiωkt )eik·ρeiq j z, (1)

where r = (ρ, z) is divided in the coordinates ρ parallel and
z perpendicular to the metal-dielectric interface; S and k
are, respectively, the quantized area and wave vector parallel
to the interface; L(ω) and q are, respectively, the effective
mode length and wave number perpendicular to the interface;
(ek − k

q j
ez ) indicates the polarization of the field; âk (â†

k) is the
annihilation (creation) operator, labeled with the wave vector
k; ωk depending on k is the frequency of the field. The wave
number q is a complex number, defined as

q2 =
{

q2
1 = ε1(ω)ω2/c2 − k2 for z > 0,

q2
2 = ε2(ω)ω2/c2 − k2 for z < 0,

(2)

which is a complex number and guarantees the field decaying
away from interface in both air and metal regions with dielec-
tric functions ε1 and ε2, respectively.
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The dispersion relation between wave vector k and ω can
be obtained by solving Maxwell’s equations as

k2 =
(

ω

c

)2
ε1ε2

ε1 + ε2
. (3)

By considering a dielectric setup with ε1 = 1 and

ε2(ω) = 1 − ω2
p

ω2
, (4)

describing the dielectric function of a nondissipative material
with plasmon frequency ωp, we can explicitly write the dis-
persion relation of the SPP as

ωk =
⎛
⎝ω2

p

2
+ k2c2 −

√
ω4

p

4
+ k4c4

⎞
⎠

1/2

, (5)

where c is the speed of light. This dispersion will be changed
as the dissipation is introduced. A detailed discussion about
this change and its relation with the quantization results given
below are shown in Appendix A.

The effective mode length L(k) is evaluated to ensure the
each SPP mode with wave vector k having the energy h̄ωk .
Based on the above dielectric function, it can be obtained by
following the procedure in Ref. [24] as

L(k) = −1

2|q1|
(

1 − 1

ε2

)(
1

ε2
+ ε2

)
. (6)

Physically, L(k) describes the SPP field decay length normal
to the metal surface. Because the field decay lengths in air
and metal regions are different, and depend on the correspond-
ing dielectric functions, the form of this normalization factor
looks complicated. However, if one considers the large-k
limit, which implies ωk = ωp/

√
2 and ε2 = −1 from Eqs. (4)

and (5), the effective mode length is simply the direct sum of
the decay lengths in air and metal as L = 2

|q1| � 1
|q1| + 1

|q2| .
By now, we see that the main differences between the

quantization of the SPP field and the free photon field are the
volume regulator V , the field polarization, and the dispersion
ωk . Now, we introduce the damping mechanism by connecting
the SPP with an environment that is characterized by a bosonic
pool [27,28]. The total Hamiltonian reads as [26]

H =
∑

k

[
h̄ωkâ†

kâk +
∫ ∞

0
dω h̄ωĈ†

k,ω
Ĉk,ω

+ h̄
∫ ∞

0
dωV (ω, k)(âk + â†

−k)(Ĉk,ω + Ĉ†
−k,ω

)

]
, (7)

where Ĉk,ω (Ĉ†
k,ω

) is the the annihilation (creation) operator
of a single boson with the momentum k and energy ω, and
V (ω, k) is the coupling strength between the boson and SPP.

To obtain the new quantized vector potential Â(r, t )
including the dissipation, one could first diagonalize the
Hamiltonian in Eq. (7). The diagonalization can be performed
exactly using the method given by Huttner and Barnett [29],
which allows us to write the Hamiltonian in the following
form:

H =
∑

k

∫ ∞

0
dω h̄ω f̂ †

k,ω
f̂k,ω, (8)

where the new operator f̂k,ω ( f̂ †
k,ω

), so-called dressed SPP
(dSPP), describes the annihilation (creation) of a SPP in the
damping environment. Here, the integration of ω implies
that for a certain wave number k, the energy of the dSPP
exhibits a broadening due to the bosonic pool. Then, using
the f̂k,ω ( f̂ †

k,ω
), we can rewrite the quantized vector potential

Â(r, t ) in Eq. (1) as

Â(r, t ) =
∑

k

√
h̄

2ε0ωkSL(ωk )

(
ek − k

q j
ez

)
eik·ρeiq j z

×
∫ ∞

0
dω[N (ω, k) f̂k,ωe−iωt

+ N∗(ω,−k) f̂ †
−k,ω

eiωt ], (9)

where the normalization factor N (ω, k) should satisfy∫ ∞

0
dω |N (ω, k)|2 = 1. (10)

In this study, to obtain the square modulus of the above factor,
we adopt a Green’s function method [26]. According to the
discussion in Appendix B, the normalization factor can be
obtained from the relation

|N (ω, k)|2 = − 1

π
Im[G(ω, k)], (11)

where G(ω, k) is the Green’s function of the dSPP described
by the Hamiltonian in Eq. (7).

The lowest-order Feynman diagram of a propagating SPP
connected with the bosonic pool can be drawn as

spp b spp
, (12)

where the wavy line denotes the propagator of the nondissi-
pative SPP, the dashed line denotes the propagator of a boson
in the bosonic pool. Following Dyson’s method, we obtain the
dSPP denoted by a coiled line as

dspp
=

spp
+

spp b dspp
. (13)

This diagram can be translated into the Green’s function as

G = G0 + G0V GbV G. (14)

Then, the G, denoting the Green’s function of the dSPP, can
be solved as

G = G0

1 − G0V GbV
, (15)

where G0, denoting the Green’s function of the nondissipative
SPP, is written as

G0 = 1

ω − ωk + iη
(16)

with an infinitesimal constant η (see Appendix B for details);
Gb describes the propagator of a boson from the bosonic
pool. The Gb has the similar form as the nondissipative SPP
in Eq. (16), and can be written by absorbing the coupling
strength V as

GbV
2 =

∫ ∞

0

|V (ω′, k)|2
ω − ω′ + iη

dω′. (17)
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Finally, the Green’s function G can be explicitly written as

G = 1

ω − ωk − (δωk + i�/2)
(18)

with

δωk − i�/2 = GbV
2 =

∫ ∞

0

|V (ω′, k)|2
ω − ω′ + iη

dω′, (19)

where δωk and � indicate, respectively, the energy shifting
and linewidth broadening due to the bosonic pool.

By inserting the result of G in Eq. (11) and by making a
further transition

(2π )2

S

∑
k

→
∫

dk, (20)

and a substitution β = |q1| =
√

k2 − ε1ω2/c2, we can write
the vector potential of the dSPP as

Â(r, t ) =
∫ ∞

0
dω

∫
dk
(

ek + i
k

β
ez

)
eik·ρe−βz

×[A(ω, k) f̂k,ωe−iωt + A∗(ω,−k) f̂ †
−k,ω

eiωt ] (21)

with amplitude A(ω, k) defined as

|A(ω, k)|2 = h̄

8π2ε0ωkL(ωk )

�/2π

(ω− ωk − δωk )2 + �2

4

. (22)

Here, the Lorentz function in the amplitude clearly signals a
dissipative SPP resonance with the energy ω = ωk + δωk and
broadening �.

In order to elucidate the connection between the SPP
dissipation and the decay of the QD exciton, we show a
numerical result for the amplitude |A(ω, k)|2 of the dSPP
in Fig. 2(a), where we approximate the energy shifting
δωk = 0 and linewidth broadening � = 0.05 ωp. The valida-
tion of this approximation has been carefully discussed in
Appendix A. The solid curves in Fig. 2(b) display the broad-
ening of |A(ω, k)|2 in respect to k for a fixed ω. Due to
the energy broadening, the amplitude of the dSPP exhibits a
finite value in the high-k region. Close to the surface plas-
mon resonant frequency ωsp, the value at large k becomes
comparable with the resonant peak, because the SPP becomes
nondispersive. Later, when we consider the decay rate of QD
excitons, we need to integrate over the momentum k for a
fixed exciton energy ω [30]. Consequently, a large contribu-
tion can be expected from the “off-resonance” high-k region,
especially for the multipole transitions involving high-order k
terms. Since these off-resonance modes represent the mixing
states between the SPP and the bosonic pool, in this study,
we call the transition from a QD exciton to these modes as a
nonradiative SPP decay, while the transition into the resonant
mode as a radiative SPP decay.

We note that we have ignored the nonclassical correction
for the SPP dispersion and LDOS [31], namely, we did not
consider the redshift and probably larger broadening of the
SPP resonance at a large k. In addition, we are not trying to
discuss any real materials, for which the plasmon dispersion
should be calculated more carefully, or consider other effects,
such as the nonlocal correction. However, within an ideal
Drude model, we show that as dissipation is introduced to

FIG. 2. The value of |A(ω, k)|2 is mapped as the energy ω and
momentum k in (a), where the dashed lines indicate |A(ω, k)|2 at
ω/ωp = 0.5, 0.55, 0.6, and 0.65 corresponding to the solid curves
with the same color in (b).

the SPP, it allows the nonradiative decay due to the induced
off-resonance distribution, and then the corresponding distri-
bution in the high-k region can largely modify the multipole
transition rate of a nearby emitter.

B. Electronic states of excitons in QDs

To investigate a system with more realistic band structures,
including different types of transitions, we consider a spher-
ical CdTe QD, which has an s-orbital conduction band and
a p-orbital valence band. More specifically, we consider the
cubic crystal lattice for simplicity. We believe the concept
demonstrated in this simple setup could be applied to other
QDs with different materials and crystal structures. One ex-
ample is that the validation of using cubic zinc-blende lattice
to approximate wurtzite lattice has been shown in Ref. [32]. In
CdTe, and many other II-VI and III-V compounds, due to the
spin-orbit coupling induced valence band splitting, the direct
interband transition is between the conduction band �6c and
valence band �8v .

For this spherical QD, we evaluate the electronic state by
using the envelope-function method [12,32,33]. Within this
method, the electronic wave function consists of two parts
written as


(r) = ψl,m(r)un,k=0 = Rl (r)Y m
l (�)un,k=0, (23)
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where ψl,m(r) describes the wave function in an infinite spher-
ical potential well, including the radial part Rl (r) and the
spherical harmonic function Y m

l (�) with angular momentum
quantum number l and magnetic quantum number m; un de-
scribing the motion in a primitive cell, represents the Bloch
function of the corresponding bulk band at the � point with
quantum number n labeling the different bands.

The lowest electronic state in the conduction band �6c is
mainly contributed by s-orbital electron, we write the cor-
responding Bloch state as |Sα〉 with S standing for its S
symmetry and α =↑,↓ standing for the electron spin pro-
jection. Combining this Bloch state and the ground state of
the infinite spherical potential well with angular momentum
l = 0, one obtains the wave function of the electron state as


e
α (r) = f (r)Y 0

0 (�)|Sα〉

=
√

2

a

sin(πr/a)

r
Y 0

0 (�)|Sα〉, (24)

where a is the radius of the QD and f (r) gives the radial part
of the envelope function.

For the hole states in the valence band, the wave functions
become much more complicated due to the heavy- and light-
hole bands are degenerate at the � point of the bulk band.
In bulk, these two bands are labeled by the total angular
momentum J = 3

2 due to the spin-orbit coupling between
the p orbit and spin- 1

2 electron. In a spherical QD, these
heavy- and light-hole states will be mixed, and the eigen-
states should be labeled by a total angular momentum F
due to the “spin-orbit coupling” between the orbital angular
momentum l in the spherical quantum well and the “spin”
J = 3

2 bulk electron. This problem is first studied by Luttinger
[34], and then simplified by Baldereschi and Lipari using the
so-called “spherical approximation” [35,36]. The details to
obtain the radial part of the envelope function can be found in
Appendix C.

The Bloch function of the hole state can be described as
the state |J μ〉 with angular momentum J = 3

2 and the cor-
responding magnetic quantum number μ = ± 3

2 and ± 1
2 for

heavy- and light-hole states, respectively. The total angular
momentum is described by |F M〉, where �F = �J + �l is the
total angular momentum and M = μ + m is the corresponding
magnetic quantum number. The ground state of the hole state
is found to have F = 3

2 [32]. So, the angular momentum l
satisfying |F − J| � l � F + J is in the range of 0 � l �
3. Moreover, because the total Hamiltonian commutes with
parity, the states with F = 3

2 can be further categorized by
parties, corresponding to the states composed by l = 0, 2 and
l = 1, 3, respectively. Figure 3 shows a schematic plot of the
electronic states in QDs. For convenience, we call the states
with M = ± 3

2 and ± 1
2 as high-spin (HS) and low-spin (LS)

hole states, respectively. The final results of the hole states are
written as


h,o
M = 2

∑
l=0,2

Rl (r)
∑

m+μ=M

[ 3
2 l 3

2

μ m −M

]
Y m

l (�)uμ (25)

for the odd state and


h,e
M = 2

∑
l=1,3

Rl (r)
∑

m+μ=M

[ 3
2 l 3

2

μ m −M

]
Y m

l (�)uμ (26)

l = 0, 2 l = 1, 3

l = 0|Sα

M = ±3/2
M = ±1/2

FIG. 3. The schematic plot of the electronic states in the spher-
ical QD. The blue solid line indicates the electron state. The red
thick (thin) line indicates the M = ± 3

2 (± 1
2 ) hole states, and the solid

(dashed) line indicates the odd (even) state. The black solid (dashed)
arrows represent the dipole allowed (forbidden) transitions.

for the even state, where the radial function Rl (r) can be found
in Appendix C, the big square brackets denote the Wigner 3 j
symbol, and uμ are the fourfold Bloch functions of the valence
band �8v , written as [32]

u3/2 = 1√
2

(X + iY ) ↑,

u−3/2 = i√
2

(X − iY ) ↓,

u1/2 = 1√
6

[(X + iY ) ↓ −2Z ↑],

u−1/2 = i√
6

[−(X − iY ) ↑ +2Z ↓].

(27)

The states X , Y , and Z denote the three orthogonal p-orbit
states of the valence band.

C. Spontaneous SPP decay of the excitons

Now, we have quantum states of both the SPP and QD
exciton ready for the further evaluation. To evaluate the spon-
taneous decay rate, we assume that the initial state |i〉 = |
, 0〉
and final state | f 〉 = |
, 1k〉, where 0 in the initial state indi-
cates the SPP vacuum, while 1k indicates one SPP with the
wave number k. Therefore, by considering the time average,
the decay rate can be given by Fermi’s golden rule as

�M,α = 2π

h̄2

∫∫
dk dω|〈 f |Hint|i〉|2δ(ω − ωeh), (28)

where Hint = e
m p̂ · Â(k) is the interacting part of the total

Hamiltonian and ωeh is the exciton energy. By integrating over
ω and considering the action of the field operator, we obtain

�M,α = 2π

h̄2

e2

m2

∫
dk e−2βz0 |A(ωeh, k)|2TM,α (k) (29)

with the term

TM,α (k) = ∣∣〈
e
α

∣∣e−βz+ikxep · p̂
∣∣
h

M

〉∣∣2, (30)

where ep = ex + i k
β

ez is the polarization of the SPP field and
the coordinate (x, y, z) is measured from the QD center.
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The integrand part TM,α (k) includes the important informa-
tion about the selection rule discussed in this study. To deal
with it, we first consider the electrostatic limit with k 
 ω

c to
apply the approximation β � k and then expand the exponen-
tial factor to the polynomial of r as

e−kz+ikx �
∑

l=0,1,2,3

rlYl (k,�), (31)

where

Y0(k,�) =
√

4πY 0
0 (�), (32)

Y1(k,�) = k

√
2π

3

[−
√

2Y 0
1 + i

(
Y −1

1 − Y 1
1

)]
, (33)

Y2(k,�) = k2

√
2π

15

[√
6Y 0

2 − 2i
(
Y −1

2 − Y 1
2

)− (
Y −2

2 + Y 2
2

)]
,

(34)

and

Y3(k,�) = k3

6

√
π

35

[− 2
√

5Y 0
3 +

√
15i
(
Y −1

3 − Y 1
3

)
+

√
6
(
Y −2

3 + Y 2
3

)− i
(
Y −3

3 − Y 3
3

)]
. (35)

Here, we note that the unit cell of the QD has a size much
smaller than the SPP wavelength. In this case, the oscillation
part e−βz+ikx can be considered as a constant as it acting on
the Bloch functions, and only the envelope function of the
electronic state is affected by the variation of this SPP electric
field [20,37]. So, the selection rule discussed in this study is
explicitly referred to the transition of the envelope function
under the SPP field. It is easy to see that when this selection
rule applies to the photon, we have the dipole selection rule
allowed transition with �l = 0.

By separating the Bloch and envelope functions of the
electronic state, the term TM,α (k) can be rewritten into the
following three different parts as

TM,α (k) =
∣∣∣∣∣2
∑
l,μ

IM
l,μ(k)KlCμα

∣∣∣∣∣
2

, (36)

where

IM
l,μ(k) =

[ 3
2 l 3

2

μ m −M

] ∫
d�Y 0

0 Yl (k,�)Y m
l (37)

is the transition amplitude from the angular part of the enve-
lope function, providing the selection rule of the transition

Kl = alJl = al
∫

dr r2
( r

a

)l
f (r)Rl (r) (38)

is the transition amplitude from the radius part of the envelope
function, giving the size dependence of the transition, and

Cμα = 〈Sα|ep · p̂|uμ〉 (39)

is the transition amplitude from a unit cell, offering the crystal
orientation dependence of the transition.

The term IM
0,μ tells us that by considering dipole selection

rule �l = 0 and the electron state with l = 0, only the transi-
tion into the odd hole states including the term with l = 0 is
allowed by the spontaneous photon decay. Therefore, we call
the exciton with the odd hole state as a bright exciton and that
with the even hole state as a dark exciton. In the following,
we can see that due to the short wavelength of the SPP, the
term with l = 1, 2, 3 and their interference will have large
contributions to the spontaneous SPP decay and, therefore,
breaking the conventional dipole selection rule.

The integration of the radius part of the envelope function
Kl has been written into the radius-dependent part al and a
dimensionless term Jl . It is clear that for a QD with a larger
size, l > 0 term will have a larger contribution. The radius part
of the wave function Rl involving the hybridization between
the heavy- and light-hole state has been given in Appendix C,
where we have evaluated the value of Jl at different “spin-orbit
coupling” strengths.

The excitation of the SPP is restricted at the metal surface,
which breaks the isotropic property of the spontaneous photon
decay in vacuum. Therefore, Cμα exhibits the crystal orien-
tation dependence as shown in Appendix D. The amplitude
of the corresponding transition matrix and an average over
the surface plasmon propagating in different azimuthal angle
can be done separately. The results can also be found in
Appendix D.

After some algebraic manipulations, we obtain the inte-
grand part TM,α (k) for the different excitons as

T o
± 1

2

= T o
± 1

2 ,↑ + T o
± 1

2 ,↓ = P2J2
0

[
1 − J2

J0

(ka)2

5

]
(7 + 3 cos2 θ )

12
+ P2J2

2 (ka)4 (11 − cos2 θ )

600
, (40)

T o
± 3

2

= T o
± 3

2 ,↑ + T o
± 3

2 ,↓ = P2J2
0

[
1 + J2

J0

(ka)2

5

]
(3 − cos2 θ )

4
+ P2J2

2 (ka)4 (31 + 3 cos2 θ )

600
, (41)

T e
± 1

2

= P2J2
0

[
J2

1

J2
0

(ka)2 (31 + 3 cos2 θ )

270
− J1J3

J2
0

(ka)4 (1 + cos2 θ )

105
+ J2

3

J2
0

(ka)6 (5 + cos2 θ )

2940

]
, (42)

T e
± 3

2

= P2J2
0

[
J2

1

J2
0

(ka)2 (17 − 3 cos2 θ )

90
+ J1J3

J2
0

(ka)4 (3 − cos2 θ )

420
+ J2

3

J2
0

(ka)6 (13 + cos2 θ )

35 280

]
, (43)

where θ is the angle between the crystal Z axis of the QD
and the z axis of the metal surface, and P = 〈S| p̂X |X 〉 =
〈S| p̂Y |Y 〉 = 〈S| p̂Z |Z〉 is the Kane interband transition matrix

element [32]. More details of the above equations are given
in Appendix E. In addition, we can see that since Ji > 0, the
transitions due to the interference between different l terms
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are always destructive for LS hole and constructive for HS
hole states.

III. NUMERICAL RESULTS AND DISCUSSIONS

The results shown in Eqs. (40)–(43) provide abundant
physics related to the spontaneous SPP decay. In this section,
based on the above analytic results, we provide quantitative
results and discussion about the decay rates. Essentially, we
compare the decay rates due to free photons and SPPs for
systems with different key parameters: the energy of the ex-
citon ω0, the linewidth of the SPP �, the size a and crystal
orientation θ of the QD, and the distance between QD and
metal surface z0.

First, we evaluate the spontaneous photon decay rate of the
bright excitons. Similar to the integrand part TM,α (k) of the
SPP transition in Eq. (30), and by considering a different field
polarization eγ , we evaluate the integrand part of the photon
decay as [32]

T o,γ
1/2,↓(θ ) = N2

γ J2
0 |〈S ↓ |eγ · p̂|u1/2〉|2

= 1

6
N2

γ J2
0 P2 sin2 θ, (44)

where Nγ =
√

h̄
2ε0ωV is introduced due to the standard photon

quantization. Due to the dipole selection rule, the above result
only includes the J0 term. Similarly, for the other bright state
transitions, we obtain

T o,γ
1/2,↑(θ ) = 2

3 N2J2
0 P2 cos2 θ, (45)

T o,γ
3/2,↑(θ ) = 1

2 N2K2P2 sin2 θ, (46)

and

T o,γ
3/2,↓(θ ) = 0. (47)

Then, by integrating over k, the photon decay rate is
obtained as

�
o,γ
1/2,↓ = 2π

h̄2

e2

m2

V

(2π )3

∑
i=1,2

∫
d3k Po,γ

1/2,↓δ(kc − ω0)

= 1

3
�0 (48)

with the definition

�0 = 4

3

1

4πε0

ω0

h̄c3

e2

m2
J2

0 P2 = 4α

3

ω0

m2c2
J2

0 P2, (49)

where ω0 represents the transition energy, α = e2

4πε0 h̄c is the
fine-structure constant, and the summation over i represents
the two different polarizations of the photon. Similarly, we
find

�
o,γ
1/2,↑ = 2

3�0 (50)

and, therefore,

�
o,γ
1/2 = �

o,γ
1/2,↑ + �

o,γ
1/2,↓ = �0. (51)

Actually, we find that all the bright excitons have the same
transition rate as

�
o,γ
±1/2 = �

o,γ
±3/2 = �0. (52)

FIG. 4. The numerical results of the k distribution of ∂As/∂k in
Eq. (55) for s = 0, 2, 4, and 6, corresponding to the lines in black,
red, green, and blue, respectively. The corresponding parameters are
ω0 = 0.5 ωp, � = 0.05 ωp, a = 0.5 z0, and z0 = 30 nm. The dashed
vertical line in the upper zoomed-in view indicates k � 0.612, which
gives the resonant energy ωk = 0.5 ωp.

Now, to make a comparison with the above results for the
photon, we define the enhancement factor η based on �0, and
organize the result in Eq. (28) as

ηo = �o

�0
= A0�

o
0 + A2�

o
2

J2

J0
+ A4�

o
4

J2
2

J2
0

(53)

for the bright excitons and

ηe = �e

�0
= A2�

e
2

J2
1

J2
0

+ A4�
e
4

J1J3

J2
0

+ A6�
e
6

J2
3

J2
0

(54)

for the dark excitons, where we define the result due to angular
integration of the transition matrix as �o/e

s , and combine the
rest of the quantity including (ka)s to the term

As = P2J2
0

�0

2π

h̄2

e2

m2

∫
d2k (ka)se−2βz0 |A(ω0, k)|2

= 3πc3as

2ω0

∫ ∞

0
dk

ks+1e−2kz0

ωkL(k)

�/(2π )

(ω0 − ωk )2 + �2/4
. (55)

The value of �o/e
s can be easily extracted from Eqs. (40)–(43),

while the value of As requires a further discussion.
Figure 4 displays the k distribution of As at ω0 = 0.5 ωp.

Comparing with the result shown in Fig. 2, we can see that the
current result is the amplitude distribution of SPP combined
with the k dependence acquired from the evaluation of the
decay rate. Clearly, the sharp peak appearing at a small k,
which gives ωk = ω0, is the on-resonance peak due to the
SPP with the same energy ω0 as the exciton. Intriguingly,
huge contributions can be seen in the large-k region. They
can be attributed to the high-order k terms and, meanwhile,
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the “Lorentzian function” in As provides a long constant tail
at the off-resonance region k → ∞ since ωk approaches ωsp

in this region.
For the on-resonance peaking part, it can be approximated

as a delta function. Therefore, for the k giving ωk around ω0,
the integration gives

As1(ω0) = 3πc3as

2ω0

(
dk

dωk

)∣∣∣∣
ωk=ω0

ks+1e−2kz0

ω0L(k)
. (56)

It is the spontaneous decay rate through a nondissipative SPP
and can be viewed as the “radiative” spontaneous SPP decay.
We note that for s = 0, the above equation gives the same
result as evaluated in Ref. [24].

Conversely, for the long off-resonance tail in the large-k
region, we have L(ωk ) → 2

k , and then the maximum of the
function ks+2e−2kz0 is at kz0 = s+2

2 , which means that the SPP
largely contributes to the decay around the wavelength

λSPP = 2

s + 2
z0. (57)

Upon different system parameters, this wavelength could be
very small. For example, with the parameters ωp = 4 eV and
a typical value z0 ∼20 nm in a QD system, we can obtain
λSPP = 5 nm corresponding to k = 60 for s = 6. We note
that in the recent study by Christensen et al., the authors
have shown the possibility to modify the transition energy by
utilizing a similar large momentum of plasmons [38]. For a
real SPP material, a cutoff may need for the k integration, and
the SPP dispersion may be different. However, we believe it
will not make a qualitative change to the result obtained here.

Now, to focus on the off-resonance contribution by assum-
ing ωk = ωsp for the integration, one obtains

As2(ω0) = 3πc3as

2ω0

(s + 2)!(2z0)−(s+3)�

4πωsp[(ω0 − ωsp)2 + �2/4]
. (58)

Normally, we will have As2 
 As1, so the behavior of the
enhancement is mainly determined by As2. Figure 5 displays
the numerical results of As with s = 0, 2, 4, and 6, where
we have assumed ωp = 4 eV. All the exhibited scaling rules
can also be observed from the expression of As2. Based on
As2, for (ω0 − ωsp) 
 �, we can obtain that As ∝ � as shown
in Fig. 5(a). In addition, we can expect the enhancement is
peaking when ω → 0 or ω → ωsp as shown in Fig. 5(b).
Figure 5(c) displays another relation that for a fixed a/z0, we
have As ∝ z−3

0 [7,31]. In the end, we see that for a fixed z0,
As ∝ (a/z0)s as shown in Fig. 5(d), where As clearly gives a
constant result for s = 0. Also, as we can expect, the high-
order terms will have larger contributions for the systems with
bigger a/z0.

Finally, to show the strength of the enhancement, we eval-
uate the η in Eqs. (53) and (54) by combining the results of
As, Ji, and �s. In the numerical study, we choose ωp = 4 eV,
and the factors J1/J0 = 0.8, J2/J0 = 0.7, J3/J0 = 0.6. Their
values are determined by the actual material, as discussed in
Appendix C. In Fig. 6, the solid lines in red, green, blue, and
purple represent the enhancement factors for HS bright (ηo

3/2),
LS bright (ηo

1/2), HS dark (ηe
3/2), and LS dark (ηe

1/2) excitons,
respectively. For a comparison, we show the dashed lines in
red and green representing the enhancement factors with only

FIG. 5. The numerical results of As with s = 0, 2, 4, and 6
corresponding to the lines in black, red, green, and blue, respectively.
(a) � dependence of As with ω0 = 0.5 ωp, z0 = 15 nm, a = 0.8 z0.
(b) ω0 dependence of As with � = 0.2 ωp, z0 = 15 nm, a = 0.8z0.
(c) z0 dependence of As with ω0 = 0.5 ωp, � = 0.2 ωp, a = 0.7z0.
(d) a/z0 dependence of As with ω0 = 0.5 ωp, � = 0.2 ωp, z0 =
20 nm.

FIG. 6. The numerical results of ηo
3/2, ηo

1/2, ηe
3/2, and ηe

1/2 cor-
responding to the solid lines in red, green, blue, and purple,
respectively. The numerical results of η3/2 and η1/2 corresponding
to the dashed lines in red and green, respectively, indicate the dipole-
only transition of the two bright excitons. The thick and thin lines
represent the results for the QD with its crystal Z axis parallel
(‖) (θ = π/2) and perpendicular (⊥) (θ = 0) to metal surface, re-
spectively. (a) � dependence of η with ω0 = 0.5 ωp, z0 = 20 nm,
a = 0.8z0. (b) � dependence of η with ω0 = 0.68 ωp, z0 = 20 nm,
a = 0.8z0. (c) ω0 dependence of η with � = 0.2 ωp, z0 = 20 nm,
a = 0.8z0. (d) a/z0 dependence of η with ω0 = 0.68 ωp, � = 0.2 ωp,
z0 = 20 nm.
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the dipole transition (s = 0) labeled as η3/2 and η1/2 for HS
and LS bright excitons, respectively. In addition, the thick and
thin lines represent the results for the QD with its crystal Z
axis parallel (θ = π/2) and perpendicular (θ = 0) to metal
surface, respectively. In general, the LS bright exciton has a
larger η when the QD is perpendicular to a metal surface,
while all the other states have a larger η when the QD is
parallel to the surface. We note that a correlation between the
orientation of the QD and the plasmon mode has been con-
firmed experimentally [17]. Figure 6(a) clearly shows that for
ω0 = 0.5 ωp, the enhancement factor enlarges as � increases.
In addition, the multipole transition for the bright states en-
hances the η3/2 of the HS bright state, while suppresses the
η1/2 of the LS bright state. Figure 6(b) indicates that for
ω0 = 0.68 ωp, η increases when � < (ω0 − ωsp), while de-
creases when � > (ω0 − ωsp). This can be easily seen from
the Lorentz function, which shows that η ∝ � as � � (ω0 −
ωsp), and η ∝ 1/� when � 
 (ω0 − ωsp). Significantly, the η

of dark excitons gain the similar strength as the bright exciton
for the system with large a/z0 as shown in Fig. 6(d).

IV. SUMMARY

In summary, we employ a prototypical hybrid system com-
posed of a spherical QD proximity to a metal surface to
investigate the spontaneous SPP decay of the different types
of QD excitons. In this system, there exist four different types
of excitons distinguished by their hole states, i.e., the HS/LS
hole states with odd/even party. We find that the spontaneous
SPP decay is dominant by the “nonradiative” decay into the
off-resonance SPP mode, which is the hybrid mode between
the SPP and dissipative bosonic pool. The transition rates
of multipole state s is proportional to z−3

0 for a fixed a/z0

and proportional to (a/z0)s for a fixed z0. Also, the decay
rate is proportional to �

(ω0−ωsp)2+�2/4 , and therefore it is ∝�

for � � (ω0 − ωsp) and ∝1/� for ω0 → ωsp. By comparing
with the spontaneous photon decay of the bright excitons, we
show that the large LDOS of the SPP can strongly enhance
the decay by Purcell effect, and the multipole transitions in-
cluding their interference effect will further change the decay
rate significantly. In particular, the dark excitons acquire a
comparable decay rate with the bright exciton due to the
multipole transition enhancement. The decay rate of the LS
bright exciton is suppressed due to the multipole transition,
while that of the HS bright exciton is enlarged. Also, the decay
rate of the LS bright exciton will be enlarged as the crystal
axis of the QD changes from parallel to perpendicular to the
metal surface, while the decay rate of the other three excitons
change in the opposite way. The above predictions of techno-
logical importance can be readily tested experimentally, and
are expected to shed new light on advancing plasmonic and
QD devices.
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APPENDIX A: DISPERSION OF THE SURFACE
PLASMON POLARITONS WITH LOSSES

In this study, the dissipation of the quantization SPP is
introduced by a bosonic pool, which connects with the nondis-
sipative SPP. Here, we go through a classical way to evaluate
the dissipation induced SPP frequency shifting and broaden-
ing from a lossy dielectric function. In this way, we can justify
the validation of our simple approximation on the frequency
shifting and broadening in the SPP quantization.

The dispersions of the SPP with a lossy dielectric function
can be solved from Eq. (3) by using the Drude dielectric
function

ε2(ω) = 1 − ω2
p

ω(ω + iγ )
, (A1)

where γ gives the dissipation rate. Since ε2 is complex now,
as indicated by Archambault et al. [30], there are two different
ways to draw the dispersion lines based on Eq. (3), implying
very different physics.

When one analyzes the propagation of the SPP after it is
excited by a stationary monochromatic excitation localized in
space, the dispersion should be given as a complex k versus
a real ω as shown in Fig. 7(a). Monochromatic excitation
implies that the ω should be viewed as a real value, and Im(k)
here describes the spatial attenuation of the SPP during its
propagation.

Conversely, the dispersion with a real k should be chosen,
when one analyzes the local density of states of the SPP as dis-
cussed in Ref. [30]. This is exactly the case in this study. Here,
we investigate the coupling between the exciton and SPP. This
coupling strength is determined by the SPP density of states at
a certain wave vector k, which provides the spatial distribution
of the SPP field and thus should be considered as a good
quantum number. Then, when the dissipation is introduced
due to a lossy dielectric function or bosonic pool, the SPP field
will keep a real wave vector k and gain a complex frequency
ω, with the real part indicating the shifted dispersion and the
imaginary part indicating the finite lifetime and broadening
in the frequency. As shown in Fig. 7(b), when the dispersion
is given by a real k versus a complex ω, we find that the
difference between the Re(ω) and lossless ω0(k) (for γ = 0),
defined as �[Re(ω)], is very small, and the Im(ω) → γ /2 for
k → ∞. This result justifies our approximation, i.e., δω = 0
and � = constant for the effect of the bosonic pool.

APPENDIX B: GREEN’S FUNCTION AND DENSITY OF
STATES FOR THE DRESSED SPP

Here, we restrict our discussion within the Green’s function
of a bosonic operator. For the sake of completeness, we start
from a nondissipative bosonic field. Now, assume there is a
well-defined bosonic field with its Hamiltonian written as

H =
∑

k

h̄ωkâ†
kâk (B1)
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FIG. 7. The dispersion of the SPP with a lossy dielectric function
at γ = 0.05 ωp. (a) The dispersion with a real frequency ω. The blue
solid (red dashed) line indicates the real (imaginary) part of k. (b) The
dispersion with a real wave vector k. The blue solid (red dashed) line
indicates the real (imaginary) part of ω. The black solid line indicates
the difference between the dispersion line with and without the loss.

with an assumption that ωk = ω−k. The corresponding
Green’s function is defined as

G(k, t − t ′) = −i〈0|TAk(t )A−k(t ′)|0〉, (B2)

where the operator T is the time order operator and |0〉 is the
particle vacuum state. For the bosonic field described by (B1),
the operator Ak(t ) reads as

Ak(t ) = ake−iωkt + a†
−keiωkt . (B3)

By using the relations that

〈0|aka†
k|0〉 = 1 and 〈0|a†

kak|0〉 = 0, (B4)

we obtain

G(k, t − t ′) = −i[�(t − t ′)e−iωk (t−t ′ )

+�(t ′ − t )eiωk (t−t ′ )]. (B5)

Then, the Fourier transform of the Green’s function gives

G(k, ω) = 1

ω − ωk + iη
− 1

ω + ωk − iη
, (B6)

where η is an infinitesimal constant. This is the Green’s
function of the free bosonic field described by Eq. (B1). In
the main text, for simplicity, we have ignored the term with
(ω + ωk) because it has much smaller contribution than that
of the (ω − ωk) term at ω → ωk.

Now we turn to the dressed SPP (dSPP) described by the
Hamiltonian

H =
∑

k

∫ ∞

0
dω h̄ω f̂ †

k,ω
f̂k,ω. (B7)

For this Hamiltonian, we write

Ak(t ) =
∫ ∞

0
dω [N (ω, k) f̂k,ωe−iωt + N∗(ω,−k) f̂ †

−k,ω
eiωt ],

(B8)
where N (ω, k) is a normalization factor satisfying∫ ∞

0
dω |N (ω, k)|2 = 1. (B9)

Now by inserting the new Ak(t ) in Eq. (B2) and applying the
new commutation relations

〈0| fk,ω f †
k,ω′ |0〉 = δ(ω − ω′),

〈0| f †
k,ω

fk,ω′ |0〉 = 0, (B10)

we can easily obtain the relation between the Green’s function
and normalization factor as

G(ω, k)=
∫ ∞

0

[ |N (ω′, k)|2
ω − ω′ + iη

− |N (ω′,−k)|2
ω + ω′ − iη

]
dω′. (B11)

Apparently, when we chose the normalization factor
|N (ω, k)|2 to be δ(ω − ωk), the above equation can be reduced
to the nondissipative form in Eq. (B6). Here, the actual form
N (ω, k) cannot be determined and thus it is not realistic to
obtain an analytic result for G(ω, k). However, by focusing
on the imaginary part of the above equation, a generic relation
can be obtained as

Im[G(ω, k)] = −π

∫ ∞

0
[|N (ω′, k)|2δ(ω − ω′)

+ |N (ω′,−k)|2δ(ω + ω′)]dω′. (B12)

For the system we consider, we keep only the term with ω >

0, so that

Im[G(ω, k)] = −π |N (ω, k)|2, (B13)

which has been used in the main text. The physical meaning
of the normalization factor can be interpreted as the density
of states of the dSPP. Consequently, we obtain the relation
between the Green’s function and density of states of the
dSPP.

APPENDIX C: RADIAL FUNCTION Rl FOR
STATES WITH F = 3

2

The Hamiltonian of the hole states in the QD with a zinc-
blende structure can be written as [35]

Hh = γ1

2m0

[
p2 − μ

9
(P(2) · J (2) )

]
+ VQD(r), (C1)

where P(2) and J (2) are second-rank spherical tensors for
linear and angular momenta, and μ = 2γ2

γ1
is determined by

Luttinger parameters γ1 and γ2. This equation was deduced
from Luttinger Hamiltonian [34], by considering the so-called
“spherical approximation” with γ2 = γ3. The above equation
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is valid in the limit of strong spin-orbit coupling between va-
lence bands, and the spherical approximation is valid for most
of crystals with the diamond and zinc-blende structures [35].
For simplicity, the confined potential VQD(r) is considered to
be a spherical infinity potential well with the form

V (r) =
{

0, r < a

+∞, r � a
(C2)

where a is the radius of the QD. The existing SOC term in the
Hamiltonian mixing the typical heavy- and light-hole bands
in the bulk system, and the corresponding wave function has
been shown to satisfy the following function [32,39]:(−(1 + C1)H11 C2H12

C2H21 −(1 − C1)H22

)(
Rl

Rl+2

)
= 2m0E

γ1h̄2

(
Rl

Rl+2

)
,

(C3)
where E denotes the eigenenergy,

H11 = d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
, (C4)

H12 = d2

dr2
+ 2l + 5

r

d

dr
+ (l + 1)(l + 3)

r2
, (C5)

H21 = d2

dr2
− 2l + 1

r

d

dr
+ l (l + 2)

r2
, (C6)

H22 = d2

dr2
+ 2

r

d

dr
− (l + 2)(l + 3)

r2
, (C7)

and the radial part of the wave function Rl is mixed by heavy-
and light-hole solutions as

Rl (r) = A

a3/2
bl

[
jl (kH r) − jl (kH a)

jl (kLa)
jl (kLr)

]
, (C8)

where jl is the spherical Bessel function of lth order;
kH = √

2mhhEh/h̄ and kL = √
2mlhEl/h̄ with effective masses

of heavy hole mhh = m0/(γ1 − 2γ2) and light hole mlh =
m0/(γ1 + 2γ2). The above form of the wave function guar-
antees the boundary condition

Rl (a) = 0 (C9)

by noticing the relations [39]

H12 jl+2 = k2 jl , (C10)

H21 jl = k2 jl+2, (C11)

the analytic form of the solutions can be easily obtained. For
the even parity state with l = 0, 2, C1 = 0, and C2 = μ,

R0 = A

a3/2
[ j0(kH r) − η0 j0(kLr)], (C12)

R2 = A

a3/2
[ j2(kH r) − η2 j2(kLr)], (C13)

and the energy of the state is determined from

η0 + η2 = 0, (C14)

FIG. 8. The values of Ji and Ji/J0 as a function of μ.

where ηl = jl (kH a)/ jl (kLa). The same result has been shown
in Ref. [32]. For the odd parity state with l = 1, 3, C1 = − 4

5μ,
and C2 = 3

5μ, we find

R1 = A

a3/2
[ j1(kH r) − η1 j1(kLr)], (C15)

R3 = 3A

a3/2
[ j3(kH r) − η3 j3(kLr)], (C16)

and the energy of the state is determined from

η1 + 9η3 = 0. (C17)

Finally, the normalization factor A can be obtained by the
normalizing condition∫

dr r2[R2
l + R2

l+2

] = 1. (C18)

The result of Rl relies on the ratio of the effective mass
β = mlh/mhh, and thus the SOC strength μ as

β = 1 − μ

1 + μ
. (C19)

In Fig. 8, we show the numerical result of Jl in Eq. (38)
at different μ values. It eventually gives upper boundaries
for J1/J0 = 0.803, J2/J0 = 0.707, J3/J0 = 0.596 at the large
SOC limit.

APPENDIX D: MATRIX ELEMENT 〈Sα|ep · p̂|uμ〉
By using the Bloch function uμ of valence band �8v in

Eq. (27), we can evaluate transition between state |J, μ〉 =
| 3

2 , 3
2 〉 and |S ↑〉 as

C 3
2 ,↑ = 〈S ↑ |ep · p̂|u3/2〉

= ep · 〈S ↑ | p̂−
∣∣∣∣ 1√

2
(X + iY ) ↑

〉

= 1√
2

P ep · (X̂ + iŶ ), (D1)

where P = 〈S| p̂X |X 〉 = 〈S| p̂Y |Y 〉 = 〈S| p̂Z |Z〉 is the Kane in-
terband transition matrix element for the cubic lattice with
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isotropic values. Similarly, we can obtain the relations

C 3
2 ,↑ = 1√

2
P ep · (X̂ + iŶ ),

C 3
2 ,↓ = 0,

C− 3
2 ,↓ = i√

2
P ep · (X̂ − iŶ ),

C− 3
2 ,↑ = 0 (D2)

for the transitions to heavy hole, and

C 1
2 ,↑ = −

√
2

3
P ep · Ẑ,

C 1
2 ,↓ = 1√

6
P ep · (X̂ + iŶ ),

C− 1
2 ,↓ = i

√
2

3
P ep · Ẑ,

C− 1
2 ,↑ = − i√

6
P ep · (X̂ − iŶ ) (D3)

for the transitions to light hole. To evaluate the dot products
in above relations, we first write the polarization of SPP in a
more general form

ep
xyz = cos φx̂ + sin φŷ + i

k

β
ẑ, (D4)

which indicates the polarization of the SPP propagating in
different azimuthal angle φ of the coordinate xyz. The tran-
sition from the coordinate xyz to the coordinate XY Z of the
QD crystal lattice can be simply considered as a rotation by
angle θ about the y axis because the self-rotation angle of QD
about the Z axis will not affect the result and the rotation about
the z axis will be integrated. So, the polarization of the SPP in
XY Z is written as

ep
XY Z =

⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ep

xyz (D5)

and we obtain

ep · (X̂ ± iŶ ) = cos θ cos φ − i
k

β
sin θ ± i sin φ (D6)

and

ep · Ẑ = sin θ cos φ + i
k

β
cos θ. (D7)

In addition, by doing the integration for azimuthal angle φ of
xyz, we obtain that

∫
dφ

2π
|ep · (X̂ ± iŶ )|2 = 1 + cos2 θ

2
+ k2

β2
sin2 θ (D8)

and ∫
dφ

2π
|ep · Ẑ|2 = sin2 θ

2
+ k2

β2
cos2 θ (D9)

and then

〈|C 3
2 ,↑|2〉 = 〈|C− 3

2 ,↓|2〉 = P2
(

3
4 − 1

4 cos2 θ
)
, (D10)

〈|C 3
2 ,↓|2〉 = 〈|C− 3

2 ,↑|2〉 = 0, (D11)

〈|C 1
2 ,↑|2〉 = 〈|C− 1

2 ,↓|2〉 = P2( 1
3 + 1

3 cos2 θ
)
, (D12)

〈|C 1
2 ,↓|2〉 = 〈|C− 1

2 ,↑|2〉 = P2( 1
4 − 1

12 cos2 θ
)
. (D13)

APPENDIX E: INTEGRAND PART
OF THE EMISSION RATE

In this Appendix, we give some details about the evaluation
of the integrand part TM,α (k) of the decay rate as in Eq. (36).
By explicitly inserting the results of the angular integration
(37) of the transition matrix, for odd state, we obtain that

T o
± 1

2 ,α
=
∣∣∣∣J0C± 1

2 ,α − (ka)2

10
J2

(
C± 1

2 ,α ∓ i2
√

3

3
C± 3

2 ,α +
√

3

3
C∓ 3

2 ,α

)∣∣∣∣
2

(E1)

and

T o
± 3

2 ,α
=
∣∣∣∣J0C± 3

2 ,α + (ka)2

10
J2

(
C± 3

2 ,α ± i2
√

3

3
C± 1

2 ,α −
√

3

3
C∓ 1

2 ,α

)∣∣∣∣
2

. (E2)

Then, by inserting the value of Cμα , we obtain that

T o
1
2 ,↑ = P2

(
J2

0 − J0J2
(ka)2

5

)(
1

4
− 1

12
cos2 θ

)
+ P2J2

2
(ka)4

102

(
5

4
− 5

12
cos2 θ

)
, (E3)

T o
1
2 ,↓ = P2

(
J2

0 − J0J2
(ka)2

5

)(
1

3
+ 1

3
cos2 θ

)
+ P2J2

2
(ka)4

102

(
7

12
+ 1

4
cos2 θ

)
, (E4)

T o
3
2 ,↑ = P2

(
J2

0 + J0J2
(ka)2

5

)(
3

4
− 1

4
cos2 θ

)
+ P2J2

2
(ka)4

102

(
23

18
+ 1

6
cos2 θ

)
, (E5)

and

T o
3
2 ,↓ = P2J2

2
(ka)4

102

4

9
. (E6)
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Following the same procedure as in the case of the odd state, the results of the even states are

T e
1
2 ,↑ = P2J2

1
(ka)2

45

(
43

12
− 3

4
cos2 θ

)
− P2J1J3

(ka)4

105

(
1

12
+ 5

12
cos2 θ

)
+ P2J2

3
(ka)6

5 × 142

(
5

6
+ 1

6
cos2 θ

)
, (E7)

T e
1
2 ,↓ = P2J2

1
(ka)2

45

(
19

12
+ 5

4
cos2 θ

)
− P2J1J3

(ka)4

105

(
11

12
+ 7

12
cos2 θ

)
+ P2J2

3
(ka)6

5 × 142

(
5

6
+ 1

6
cos2 θ

)
, (E8)

T e
3
2 ,↑ = P2J2

1
(ka)2

5

(
31

36
− 5

36
cos2 θ

)
+ P2J1J3

(ka)4

105

(
3

4
− 1

4
cos2 θ

)
+ P2J2

3
(ka)6

5 × 422

(
3

2
− 1

2
cos2 θ

)
, (E9)

and

T e
3
2 ,↓ = P2J2

1
(ka)2

5

(
1

12
− 1

36
cos2 θ

)
+ P2J2

3
(ka)6

5 × 422

(
7

4
+ 3

4
cos2 θ

)
. (E10)

.
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