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Non-Hermitian Aharonov-Bohm effect in the quantum ring
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We investigate the topological properties, energy spectrum, and persistent currents of a non-Hermitian ring
with anti-Hermitian hopping terms. It is demonstrated that the anti-Hermitian hopping can effectively induce
a synthetic gauge field. As the magnetic flux of the synthetic gauge field threads through the ring, the non-
Hermitian system exhibits an Aharonov-Bohm effect. For the case of a non-Hermitian ring in the topological
phase, the system, having an energy spectrum structure with a real gap, supports an imaginary persistent
current. For the trivial case, a non-Hermitian system with an imaginary gap supports a real persistent current.
Furthermore, we also investigate the transport property of a non-Hermitian Aharonov-Bohm ring connected by
two semi-infinite leads. We find that the transmission coefficient shows the Aharonov-Bohm quantum oscillation
as a function of the synthetic gauge field.
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I. INTRODUCTION

There exist two routes when electrons are transported
through a two-terminal quantum ring structure. As a magnetic
field is applied perpendicular to the plane of such a ring,
the electron wave function will acquire an extra phase. The
extra phase coherence can give rise to quantum interference of
electrons such as the well-known magnetic Aharonov-Bohm
(AB) effect [1], which shows the eminent transport signal
of the periodic oscillation as a function of magnetic flux
[2–4]. Since AB oscillation was experimentally observed in
the mesoscopic regime in metallic [5,6] and semiconductor
rings [7,8], the AB effect has become a standard tool to
quantitatively investigate the phase coherence and is expected
to have potential applications in realizing quantum computa-
tional devices.

However, the electromagnetic potential is not a neces-
sary condition for the AB effect. Nitta and co-workers have
proposed that the spin-interference device, consisting of a
ballistic AB ring connected by a gate electrode, works by
Rashba spin-orbit coupling [9,10]. Because neutral particles
are not influenced by electromagnetic fields, the quest for the
nonmagnetic AB effect is to create a situation in which a
neutral particle acquires a geometric phase as it travels along a
closed contour [11]. The geometric phase for the photons can
be synthesized by dynamical modulation of the dielectric con-
stant [12,13], magneto-optical effects through a connection
with Berry’s curvature [14–16], and photon-phonon interac-
tions [17].

Recently, it has been demonstrated that an imaginary mag-
netic flux can be generated by the nonreciprocal coupling in a
ringlike structure [18–22], which induces a non-Hermitian AB
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effect [23]. However, as an imaginary magnetic flux makes the
Bloch wave function of the particle no longer keep a periodic
phase, it is difficult to observe the transport signal of the
periodic oscillations as a function of the imaginary magnetic
flux. In this paper, we propose a non-Hermitian AB ring, in
which the anti-Hermitian intradimer hopping is considered.
It is found that a real magnetic flux can be induced by the
anti-Hermitian interaction. As the magnetic flux threads the
ring, the particles traveling around the ring will undergo a
periodic phase shift, and the observable non-Hermitian AB
effect will occur.

The rest of the paper is organized as follows. In Sec. II, we
investigate the model Hamiltonian and the topological prop-
erties of the non-Hermitian system. In Sec. III, we study the
band structure of the system under the periodic boundary con-
dition (PBC). In Sec. IV, we investigate the persistent current
of the non-Hermitian ring. In Sec. V, we calculate the trans-
mission coefficient through a non-Hermitian AB ring, which
shows the quantum AB oscillation as synthetic magnetic flux
induced by anti-Hermitian hopping. Finally, a summary is
presented in Sec. VI.

II. MODEL AND TOPOLOGICAL PROPERTY

A typical one-dimensional tight-binding lattice with two
sites per unit cell can be considered as an extension of the
Su-Schrieffer-Heeger (SSH) lattices. The Hamiltonian for the
extended SSH model under PBC with N pairs of lattice sites
is given by

H =
N∑

j=1

(tLc†
j,Ac j,B + tRc†

j,Bc j,A) +
N−1∑
j=1

(t2c†
j,Bc j+1,A + H.c.)

+ (t2c†
N,Bc1,A + H.c.), (1)
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FIG. 1. (a) Schematic illustration of a non-Hermitian AB effect
system. An array of dimeric lattices form a closed circle in the central
scattering region. The nonzero magnetic flux threading the ring is
induced by the anti-Hermitian coupling processes. The left and right
terminals are exactly extended from unified lattices. (b) Detail of the
tight-binding model of the asymmetric coupling processes. tL = t1

and tR = −t∗
1 are intracell anti-Hermitian hopping terms which in-

duce the Peierls phase, and t2 is the intercell hopping term. The
yellow box indicates the unit cell. (c) The interaction between two
adjacent lattices in the unit cell has an angle in the complex plane.

where tL (tR) describes the intracell hopping from left to right
(right to left) and t2 describes the intercell hopping. A and
B describe the sublattice subspace. The index j denotes the
number of the unit cell, and c†

j (c j) is the creation (annihi-
lation) operator. Without loss of generality, we take the t2 in
the second term of Eq. (1) to be real and positive. The last
term, representing the hopping between two ends of the chain,
implies that the system has PBC. We can approach the open
boundary conduction (OBC) by removing the last term.

In Eq. (1), for tL = tR ∈ R, the Hamiltonian describes the
ordinary SSH model. For tL �= tR ∈ R, the Hamiltonian de-
scribes the SSH model with asymmetric intradimer hopping
amplitudes, which has been proposed to produce the non-
Hermitian skin effect [24–26]. The asymmetric hopping term
leads to the breakdown of bulk-boundary correspondence
[27,28], which is a guiding principle in the topological matter.

In this paper, our research mainly focuses on the case of
the intracell hopping satisfying tL = −t∗

R ∈ C, which can be
defined as the anti-Hermitian hopping. For more clarity, in
Fig. 1(b) we show a schematic diagram of the intracell hop-
ping terms tL and tR and the intercell hopping term t2. While
tL can be described as t + iγ , tR will be set to −t + iγ , where
both t and γ are the real numbers, as shown in Fig. 1(c). Here,
we would like to point out that such anti-Hermitian hopping
can be realized by an auxiliary cluster with dissipative sites
coupled to the main network in optics [29].

In Figs. 2(a) and 2(b), we first plot the energy spectrum of
the one-dimensional chain under PBC and OBC. It can be seen
that the bulk states in the case of OBC do coincide with the
bulk states for the system with PBC. However, there are two
zero-energy modes in the energy spectrum of the system with
OBC in Fig. 2(a). In Fig. 2(c), we calculate the distribution
of the wave function along with the one-dimensional chain
under OBC. One can see that the probability distribution of
the wave function corresponding to the zero-energy modes is

FIG. 2. Distribution of the energy spectrum in (a) the topological
phase and (b) the trivial phase. The solid blue circles and the open
red circles represent the eigenvalues of the non-Hermitian system
under OBC and PBC, respectively. (c) Distribution of the eigenvec-
tors on one-dimensional open chains. The blue and red lines show
the wave functions of edge eigenvectors, and the remaining lines
show the wave function of the bulk eigenvectors. (d) Geometric
characterization of the non-Hermitian system. The parameters of the
blue loop and the red loop correspond to the parameters in (a) and
(b), respectively. The parameters are N = 56, t = 0.5, t2 = 1, and
(a) γ = 0.5 and (b) γ = 1.

at the two boundaries and the wave functions of bulk states
localize at the whole chain, which indicates the appearance of
topological boundary states and that there is no skin effect. For
a Hermitian SSH chain, the left and right edge modes are lo-
calized at both ends of the chain, respectively [30]. However,
for our calculated non-Hermitian SSH chain with N = 56, the
two boundary modes are simultaneously distributed at both
ends of the chain.

In order to verify topological characterization of the
non-Hermitian model, next we give the Hamiltonian in the
momentum space

H (k) = (iγ + t2 cos k)σx + (it + t2 sin k)σy, (2)

where σx,y are Pauli matrices. Now the topological invariant
can be described by a winding number

w = 1

2π

∫ π

−π

∂kθ (k)dk, (3)

where θ (k) = tan−1(dy/dx ) with dy = it + t2sin(k) and dx =
iγ + t2cos(k). The geometric characterization of the non-
Hermitian system with the topological (trivial) phase is
displayed in Fig. 2(d), where the blue (red) circle consists of
the endpoints of the vector d(k) as k goes across the Brillouin
zone. Obviously, the winding number is determined by t2 and
|t1|, where |t1| =

√
t2 + γ 2 is the distance from the center of

the ring to the origin of the coordinates and t2 is the the radius
of the circle. Two different phases appear in the parameter
space: a topological phase with the winding number w = 1
for the case of |t1| < t2 and a trivial phase with w = 0 for
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the case of |t1| > t2. In the topological phase, there exist two
zero-energy states under OBC, the wave functions of which
are localized at both ends of the non-Hermitian chain, as
shown in Figs. 2(a) and 2(c).

Now it is clear that our proposed non-Hermitian model
satisfies the bulk-boundary correspondence. Thus the non-
Hermitian skin effect does not occur in such a non-Hermitian
chain.

III. NON-HERMITIAN AB RING

Now, let us concentrate on the non-Hermitian system under
the PBC, where a key feature of the ring with anti-Hermitian
hopping marks the presence of the AB effect. If we define
the parameter φ via tL = t + iγ = |t1|eiφ , the hopping terms
are equivalent to a coupling amplitude |t1| =

√
t2 + γ 2 with

Peierls phase factor eiφ . In a similar way, we can define
tR = −t + iγ = −|t1|e−iφ . When the phase factor accumu-
lates along the circular path under the PBC, the total factor in
one circle is eiNφ , where N is the number of unit cells. Thus the
non-Hermitian system generates the real magnetic flux with a
value of � = Nφ in the ringlike structure (see Appendix A).
The eigenvalues of Eq. (2) are

E±(k, φ) = ±
√

−|t1|2 + t2
2 + 2i|t1|t2 sin(k + φ), (4)

with k, φ = 2π j/N , integer j ∈ [1, N]. From Eq. (4), one can
see that the phase φ and the wave vector k play the same role
in the energy spectrum. It is easy to see that varying of φ by
2 jπ/N will get the same eigenvalue. Thus the magnetic flux
� can give rise to a periodic change in the complex plane of
the energy spectrum. So it leads to a magneto-oscillation in
the energy spectrum with an oscillation period of � = 2π .

In order to observe this more intuitively, in Fig. 3 we plot
the energy spectra as a function of the real magnetic flux �,
where |t1| = t2, |t1| > t2, and |t1| < t2 are considered in the
non-Hermitian system, respectively, and |t1| = t2 is consid-
ered in the Hermitian system. The following conclusions can
be drawn.

(i) For |t1| = t2, the eigenvalues will be given by E± =
±√−2i|t1|t2 sin(k + φ). In Fig. 3(a), it can be seen that the
projection of eigenvalues lies on two straight lines Re(E ) =
±Im(E ) in the complex-energy plane. While the magnetic
flux � is adjusted from −3π to 3π , the complex-energy
bands have evolved through three periods, which implies the
presence of the non-Hermitian AB effect. Since such energy
spectra are continuously distributed in both real and imaginary
space in the complex-energy plane, the non-Hermitian system
has a gapless band structure (see red lines in Fig. 3). Actu-
ally, |t1| = t2 corresponds to the topological phase transition
point between the trivial phase and the topological phase in
the parameter space, and it can be seen in the discussion of
Figs. 3(b) and 3(c) below that the gap band will be produced
for |t1| �= t2.

(ii) In Fig. 3(b), we show that the projection of the com-
plex eigenvalue lies on a hyperbola in the complex-energy
plane for the topological phase with the parameter relationship
|t1| < t2. The reason for this is that the relationship between
the real part and the imaginary part of the eigenvalue is given

FIG. 3. Complex-energy spectra for the AB ring as functions of
the real magnetic flux �. The projections of the energy spectra onto
the complex plane are also presented with red lines for a better view.
The system parameters are N = 6, t2 = 1, and (a) |t1| = 1, (b) |t1| =
0.5, (c) |t1| = 1.5, and (d) t1 = 1.

by

[Re(E )]2 − [Im(E )]2 = t2
2 − |t1|2, (5)

where Re(E ) and Im(E ) satisfy the equation of a hyperbola.
From Fig. 3(b), one can see that the projections of two contin-
uous parts of the band spectrum on the complex-energy plane
neither touch nor intersect for any �, so there exists a line gap
in the band spectrum (see the red lines) [31]. In Refs. [31,32],
it was shown that if an energy spectrum of the non-Hermitian
Hamiltonian has a line gap, it could be continuously flattened
into a Hermitian Hamiltonian with a real gap or an anti-
Hermitian Hamiltonian with an imaginary gap. Based on the
above point of view, the flattening procedures in our model
can be accomplished by gradually reducing the value of |t1|.
For |t1| = 0, the anti-Hermitian intradimer hopping terms van-
ish, and Eq. (2) is transformed into a Hermitian Hamiltonian
with the eigenvalues ±t2. Thus, for the topological phase with
|t1| < t2 in our model, the non-Hermitian ring hosts a real
gap with the magnitude {−t2, t2}. Besides, as the magnetic
flux � varies, the energy spectrum shows a periodic change
with an oscillation period of � = 2π , which means that the
non-Hermitian AB effect should be produced.

(iii) In Fig. 3(c), we also show that the energy spectrum
generates periodic oscillation by magnetic flux � for the triv-
ial phase with |t1| > t2. From Eq. (5), it is easy to verify that
the projection of two continuous parts of the spectrum lies on
a hyperbola in the complex-energy plane with its focal points
located at the real axis. Similar to the flattening procedures
mentioned earlier, when the value of t2 gradually decreases
to zero through adiabatic approximation, the Hermitian inter-
dimer hopping terms vanish. At this time, the non-Hermitian
Hamiltonian in Eq. (2) is transformed into an anti-Hermitian
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Hamiltonian with the imaginary eigenvalues ±i|t1|. Thus the
magnitude of an imaginary gap is {−i|t1|, i|t1|}.

(iv) Last, we briefly discuss the physical property of the
Hermitian Hamiltonian. The purpose of introducing the Her-
mitian model is to compare with the non-Hermitian model,
in order to provide the similarities and differences between
the two models. The intracell hopping terms of the Hermitian
system are tL = t1 = t + iγ and tR = t∗

1 = t − iγ , which sym-
metrically distribute about the real coordinate axis of t1. The
Bloch Hamiltonian of the Hermitian system is

HHer (k) = (t + t2 cos k)σx + (γ + t2 sin k)σy, (6)

where γ is an extensional term of the general SSH model.
Through a similar transformation which we have mentioned
earlier, we can rewrite the intracell hopping as t1 = |t1|eiφ .
The energy dispersion relation of Eq. (6) reads

EHer,±(k) = ±
√

|t1|2 + t2
2 + 2|t1|t2 cos(k + φ), (7)

with k, φ = π j/N , integer j ∈ [1, 2N]. The energy spectrum
of the Hermitian system is exhibited in Fig. 3(d) for the case
of t1 = t2.

IV. PERSISTENT CURRENTS

One of the well-known manifestations of the AB effect
consists of the periodically nondissipative persistent currents
in the ring threaded by a magnetic flux �. In this section, we
investigate the persistent current I (�) as a function of the flux
� of our proposed non-Hermitian ring. The persistent current
can be defined as

I (�) = −c
∂E

∂�
, (8)

which indicates the derivative of the ground-state energy with
respect to the magnetic flux [33,34]. Since the eigenvalues are
distributed in the complex-energy plane for our proposed non-
Hermitian system, the imaginary part of the current will be
yielded [18,19].

For a ring with anti-Hermitian intradimer hopping in one
unit cell, a current of the single state can be calculated as the
derivative,

In(�) = −c
∂En

∂�
= − iI0t1 cos φn√

t2
2 − t2

1 + 2t1t2i sin φn

, (9)

where φn = 1
N (2πn + �). The details of the calculations in

Eq. (9) are presented in Appendix B. The total persistent
current is obtained by the sum of the currents of all occupied
electron states

I (�) =
∑
occ,n

In(�). (10)

For the case of |t1| = t2, Eq. (9) can be simplified to In =
I0it1 cos φn/

√
2t1t2i sin φn, which implies that the persistent

current is a straight line Re(I ) = Im(I ) in the complex plane.
In Fig. 4(a), we plot the persistent current as a function of
� for the case of |t1| = t2. One can see that the persistent
current is a 2π -periodic function of �. However, the function
is not defined at � = 2nπ , corresponding to a removable
discontinuity at this point in Fig. 4(a). The physical reason

FIG. 4. Dimensionless persistent currents for the AB ring as
functions of the magnetic flux �. The current-flux relation I/I0(�) is
exhibited in (a) the (IRe(I )=Im(I ), �) plane, (b) the (IRe(I )=0, �) plane,
and (c) the (IIm(I )=0, �) plane. The system parameters are N = 60,
t2 = 1, and (a) |t1| = 1, (b) |t1| = 0.5, and (c) |t1| = 1.5.

is that the energy bands around E = 0 are almost parallel to
the complex plane of energy, as shown in Fig. 3(a). Thus the
derivative of energy with respect to � tends to infinity.

For the topological phase with |t1| < t2, in the non-
Hermitian system there exists a real energy band gap. Since
the real part of the energy band is discontinuous, the real
persistent current cannot be produced in this case. However,
as shown in Fig. 3(b), the imaginary part of the energy bands
is continuous with the magnetic flux �. Thus we can calculate
an imaginary persistent current as a function of �, as shown
in Fig. 4(b). One can see that the imaginary persistent cur-
rent also is a periodic function with period 2π and exhibits
discontinuous steps at � = 2nπ . The reason for this is that
a single energy band passes through the imaginary Fermi
surface Im(E ) = 0, as shown in Fig. 3(b), which leads to the
current reversal. In addition, we can get a similar conclusion
by analyzing Eq. (9). While the number of unit cells N is large
enough in the non-Hermitian ring, the persistent current of a

single state is approximately expressed as In = iI0t1/
√

t2
2 − t2

1 .
For |t1| < t2, the denominator of the above formula is a real
number, and the system supports an imaginary current.

For the case of |t1| > t2, the system is a trivial phase, and in
this case the energy band hosts an imaginary gap. According
to the above analysis, we know that only the real persistent
current could be produced by the magnetic flux �, which
is plotted in Fig. 4(c). We can see that the real persistent
current also is a periodic function with period 2π and exhibits
discontinuous steps at � = 2nπ , for the same reasons as in
the case of the topological phase.
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FIG. 5. (a), (c), (e), and (g) The transmission coefficient T as a function of the Fermi energy E and the magnetic flux �. (b), (d), (f), and
(h) The transmission coefficient T as a function of the magnetic flux � with the fixed Fermi energy E = 0 for (b) and (h), E = 0.86 for (d),
and E = 1.15i for (f). The coupling amplitude of intracell anti-Hermitian hopping is |t1| = 1 for (a) and (b), |t1| = 0.5 for (c) and (d), and
|t1| = 1.5 for (e) and (f). The coupling amplitude of intracell Hermitian hopping is |t1| = 1 for (g) and (h). The other system parameters are
N = 6 and t2 = 1. The coupling term between the left (right) terminal and the central scattering region is set to 0.4.

Recently, we have also noticed that the persistent current
is predicted in the non-Hermitian ring in Ref. [35], in which
the non-Hermitian skin effect is also related to the persistent
current. In our model, the persistent current is not completely
related to the non-Hermitian skin effect.

V. NON-HERMITIAN AB OSCILLATION

From the view of the band spectrum, we have predicted
that the non-Hermitian AB effect could be produced in
our proposal anti-Hermitian quantum ring system. To ver-
ify the existence of the non-Hermitian AB effect in more
detail, we investigate the electron transmission through the
non-Hermitian quantum ring doubly connected systems [see
Fig. 1(a)] by using the nonequilibrium Green’s function
method [36–38]. Assuming that there is an incoming electron
with energy E from the left terminal and transport through the
non-Hermitian AB ring, the transmission coefficient T can be
written as [39]

T (E ,�) = Tr[	L(E )Gr (E ,�)	R(E )Ga(E ,�)], (11)

where 	L(E ) = i[
r
L − 
a

L] and 	R(E ) = i[
r
R − 
a

R] are
the linewidth functions. 
r

L = 

a,†
L = HLCgrHCL (
r

R =
HRCgrHCR) is the retarded self-energy contributed by the left
(right) semi-infinite lead [40]. HLC (HRC) is the coupling term
between the left (right) terminal and the central scattering re-
gion, and gr is the surface Green’s function of the semi-infinite
lead. In Eq. (11), Gr = [Ga]† = (E − HC − 
r

L − 
r
R)−1 is

the retarded Green’s function of the central scattering region,
where HC is the tight-binding Hamiltonian of the AB ring and
E is the Fermi energy.

In Fig. 5(a), at fixed parameters |t1| = t2 = 1, we plot
the transmission coefficient T as a function of the Fermi
energy E and the magnetic flux �. One can see that
the electron transmission coefficient has three peak regions
in the plane which consists of the real Fermi energy E
and the magnetic flux �. In Fig. 3(a), we showed that
the coalescing points of two bands emerge at the fixed
parameters E = 0 and � = 2 jπ while the Fermi energy
changes in the real-valued range. The peak regions of the
transmission coefficient almost correspond to the three co-
alescing points of the two bands. However, in Fig. 5(a),
one can see that the destructive interference with tun-
neling coefficient T = 0 appears at � = 2 jπ and E = 0,
and constructive interference with tunneling coefficient T =
1 emerges near � = 2 jπ . This abnormal phenomenon is
because when we calculate the transport coefficient, two
semi-infinite leads are connected on the ring, which change
the structure of the system. Thus the smaller the hopping
between the non-Hermitian ring and the lead, the closer
the contour of the transport result is to the contour of the
energy band. While the Fermi energy E = 0 is fixed, the
transmission coefficient shows the periodic oscillation as a
function of the magnetic flux �, as shown in Fig. 5(b),
which indicates the occurrence of the non-Hermitian AB
effect. In addition, for the case of � �= 2 jπ , the trans-
port results show that even when the Fermi energy is
zero, the non-Hermitian ring still has a transport coefficient,
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which indicates that the system supports the persistent
current.

In Fig. 5(c), the transmission coefficient is plotted with
the fixed parameters |t1| = 0.5 and t2 = 1. In Fig. 3(b), we
demonstrated that the gap between conduction and valence
bands will be produced for |t1| < t2. In Fig. 5(c) it can be
found that the transmission coefficient shows zero value while
the Fermi energy EF is zero, and the peaks of the transmission

coefficient with the value of T = 1 occur for E = ±
√

t2
2 − |t2

1 |
and � = 2 jπ . The reason for this is that while the Fermi
energy changes in the real-valued range, the real-valued bands

of the energy spectrum emerge in E = ±
√

t2
2 − |t2

1 | and � =
2 jπ , as shown in Fig. 3(b). Besides, in Fig. 5(d) one can see
that the transmission coefficients show the periodic oscillation
as a function of the magnetic flux � for the Fermi energy
E = 0.86. Thus we can observe the transport signal of the AB
oscillations with a period of 2π in this case.

Since the non-Hermitian system hosts an imaginary gap
for the case of |t1| > t2, the variation of the Fermi energy in
the real-valued range cannot obtain any transmission signal.
To describe the transport properties of the non-Hermitian
ring with an imaginary gap, we change the Fermi energy
of the non-Hermitian quantum ring to the imaginary value
Fermi energy, while we fix the incident energy as zero in
the left and right leads. The transmission coefficient as a
function of the imaginary-valued Fermi energy E and the
magnetic flux � is plotted in Fig. 5(e). It is worth noting
that the transmission coefficient exceeds 1, which implies
that the probability current is not conserved in the non-
Hermitian AB ring. This behavior is because when we
consider the incoming energy E to be imaginary valued
in the calculation, it is equivalent to introducing gain or
loss in the on-site term of the Hamiltonian. In general,
the real value Fermi energy, referring to the energy differ-
ence between the highest and lowest occupied single-particle
states, determines the average particle density in a quantum
system of noninteracting fermions at absolute zero tem-
perature. Through the above analysis, the complex Fermi
energy can be understood as the average particle density
in the system with gain or loss. This means that there is
an exchange of particles or energy between the system and
the external environment. Even so, one can see that the
transmission peak corresponds well to the point where the
energy spectrum intersects the imaginary axis in the com-
plex plane, as shown in Fig. 3(c). Figure 5(f) shows the
transmission coefficient as a function of the magnetic flux
� with the energy E = 1.15i. From Figs. 5(g) and 5(h),
one can see that the non-Hermitian setup yields periodic
oscillations.

Here, we briefly discuss the transport property when the
non-Hermitian Hamiltonian in the central scattering region
transforms into the Hermitian Hamiltonian. For the case of
|t1| = t2 = 1, one can see that the peaks of the transmis-
sion coefficient, as shown in Fig. 5(g), can correspond well
to the energy spectra, as shown in Fig. 3(d). In particu-
lar, for an incoming electron where the energy is E = 0
and the hopping parameters satisfy the relationship |t1| =
t2, the transport result of the Hermitian system is consis-
tent with that of the non-Hermitian system, as shown in

Figs. 5(b) and 5(h). Similar conclusions have been men-
tioned in Refs. [41,42], in which they have investigated the
Hermitian-like scattering behavior of a non-Hermitian scatter-
ing center with the anti-Hermitian hopping terms. In contrast
to other non-Hermitian systems with dissipation and uncon-
served transmission probability, e.g., a system induced by
hopping terms with amplifying or attenuating amplitude or
a system with gain or loss, a system with anti-Hermitian
hopping terms may exhibit a physical and conserved transport
result. Thus a clear non-Hermitian AB oscillation is observed
for the varying parameter relationship between |t1| and t2, as
shown in Fig. 5.

VI. CONCLUSION

We investigate the topological properties, energy spec-
trum, and persistent currents of a non-Hermitian ring with
the anti-Hermitian hopping terms. An intercell anti-Hermitian
hopping with complex values not only can supply the non-
Hermiticity in the ringlike system but also can induce a phase
factor. When the phase factor accumulates along the circular
path under the PBC, the non-Hermitian system generates a
synthetic gauge field thread through the ringlike structure,
which leads to the non-Hermitian AB effect. The energy spec-
trum of the non-Hermitian AB ring holds the periodicity by
the synthetic magnetic flux and exhibits the hyperbola in the
complex-energy plane. The hyperbolical spectrum hosts a real
gap in the topological phase or an imaginary gap in the trivial
phase, which can be controlled by the parameters of appropri-
ate hopping terms in the model. For the topological phase, the
non-Hermitian ring supports an imaginary persistent current;
for the trivial phase, the system supports a real persistent
current. To further verify the AB effect in the non-Hermitian
system, we investigate the electron transmission through a
system which is composed of a non-Hermitian ring and two
semi-infinite one-dimensional leads. Our transport results can
support the AB oscillations and provide an effective demon-
stration of the presence of the real (imaginary) gap in the
ringlike system.
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APPENDIX A: PEIERLS PHASE FACTORS

In this Appendix, we give a simple derivation of the Peierls
substitution. The Peierls substitution method gives a very
convincing way of taking the complex-valued anti-Hermitian
hopping as a synthetic gauge field. The Hamiltonian of a
one-dimensional tight-binding lattice with an anti-Hermitian
hopping is given by

H =
N∑

j=1

[(t + iγ )c†
j c j+a + (−t + iγ )c†

j+ac j]

=
N∑

j=1

(|t1|eiφc†
j c j+a − |t1|e−iφc†

j+ac j ), (A1)
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where a describes the lattice constant. Through the Fourier
transformation, the creation and annihilation operators can be
described as

c†
j = 1√

Na

∑
k

e−ikr j c†
k , (A2)

c j = 1√
Na

∑
k

eikr j ck . (A3)

Under this representation, it is easy to get c†
j+ac j =

e−ipxa/h̄c†
j c j , where the momentum satisfies px = h̄k. Because

the vector potential does not vary significantly over one lat-
tice spacing, we can set the phase factors to φ = aqAx

h̄ and
expand up to the second order the phase factors by eiφ = 1 +
iaqAx

h̄ − a2q2A2
x

2h̄2 + O(a3). Substituting these expansions into the
relevant part of the Hamiltonian yields

Hj = eiφc†
j c j+a − e−iφc†

j+ac j

=
[

1 + iaqAx

h̄
− a2q2A2

x

2h̄2 + O(a3)

]

×
[

1 − ipxa

h̄
− p2

xa2

2h̄2 + O(a3)

]
c†

j c j

−
[

1 − iaqAx

h̄
− a2q2A2

x

2h̄2 + O(a3)

]

×
[

1 + ipxa

h̄
− p2

xa2

2h̄2 + O(a3)

]
c†

j c j

= i
2a

h̄
(px − qAx )c†

j c j . (A4)

Then, we arrive at the Hamiltonian at the continuum limit,

H = i
2a

h̄
(p − qA). (A5)

Note that the reason for the unit imaginary number in Eq. (A5)
is that the Hamiltonian is an anti-Hermitian matrix with an
imaginary eigenvalue. Hence an anti-Hermitian hopping term
is equivalent to the hopping terms subjected to a synthetic
magnetic field.

APPENDIX B: PERSISTENT CURRENT

In this Appendix, we provide a detailed derivation of the
persistent current for the single energy state in Eq. (9). For
a quantum ring system with the anti-Hermitian intradimer

hopping tL = −t∗
R ∈ C, the tight-binding Hamiltonian is given

by Eq. (A1), in which φ is the corresponding phase change
from unit cell j to j + 1,

φ = e

ch̄

∫ j+1

j
A · dl = 2π�

N�0
, (B1)

where �0 is the magnetic flux quantum. From the PBC, we
can obtain ψL = ψ0ei2π�/�0 = ψ0ei2nπ , where L is the cir-
cumference of the ring and n = 0,±1,±2, . . . is an integer.
Then the wave function of the jth unit cell can be expressed as
ψ j = ψ0ei j

N 2nπ , and one can obtain the relationship between
the wave function of two adjacent unit cells

ψ j+1 = ψ je
i 2nπ

N . (B2)

Substituting this wave function into the Schr ödinger equation
H |ψ〉 = E |ψ〉, we can obtain(

0 |t1|e−i 2π
N ( �

�0
)

0 0

)(
ψ j,A

ψ j,B

)
e−i 2nπ

N +
(−E t2

t2 −E

)

×
(

ψ j,A

ψ j,B

)
+

(
0 0

−|t1|ei 2π
N ( �

�0
) 0

)(
ψ j,A

ψ j,B

)
ei 2nπ

N = 0.

(B3)

Then the energy eigenvalues of the nth energy level can be
obtained:

En = ±
√

t2
2 − |t1|2 + 2|t1|t2i sin

[
2π

N

(
n + �

�0

)]
. (B4)

At the zero temperature, the persistent current is defined as
the derivative of the ground-state energy I (�) = −c∂E/∂�,
which for a single energy state has the form

In(�) = −2πci|t1|t2cos
[

2π
N

(
n + �

�0

)]
N�0

√
t2
2 − |t1|2 + 2|t1|t2i sin

[
2π
N

(
n + �

�0

)] . (B5)

Defining the current amplitude as I0 = 2πct2/N�0, finally we
can obtain Eq. (9).

It is worth noting that the total persistent current is given by
the sum of the currents of all occupied electron states. Since
the eigenvalues of the non-Hermitian system are distributed
on the complex-energy plane, it is natural to define the Fermi
surfaces occupying the real or imaginary energy levels, re-
spectively, and we can obtain the the real (imaginary) part of
the persistent current.
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