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Charge density wave and superconducting phase in monolayer InSe

Mohammad Alidoosti ,1 Davoud Nasr Esfahani,2,3 and Reza Asgari 4,5,*

1School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
2Pasargas Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
3Department of Converging Technologies, Khatam University, Tehran, Iran

4School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
5ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, Sydney 2052, Australia

(Received 5 July 2020; revised 28 December 2020; accepted 5 January 2021; published 14 January 2021)

In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide
is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped
dependence of the Fermi surface is exclusively fundamental for monolayer InSe. It leads to the extensive
modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For
low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures
Tc ∼ 55–75 K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb
potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of
the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a
charge density wave that emerged at a temperature far above the corresponding Tc. Having included nonadiabatic
effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase
occurs in the system. In addition, monolayer InSe becomes dynamically stable by including nonadiabatic effects
for different carrier concentrations at room temperature.
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I. INTRODUCTION

Motivated by the discovery of graphene [1], a two-
dimensional (2D) advanced material with spectacular prop-
erties, researchers have greatly discovered 2D layered ma-
terials, namely, hexagonal boron nitride [2], transition metal
dichalcogenides (such as MoS2 and WS2) [3], magnetic 2D
crystallinelike monolayer chromium triiodide (CrI3) [4], and
other elemental 2D semiconductors such as black phosphorus
[5] and silicene [6], ranging from insulators, semiconductors,
metals, magnetics, and superconductors.

In addition, group III-VI semiconductors (M2X2, M =
Ga and In and X = S, Se, and Te) with sombrero-shaped
valence band edges have shown marvelous electrical and
optical properties [7,8]. Bulk indium selenide (InSe), a III-
monochalcogenide semiconductor, has β, ε, and γ structural
phases depending on the stacking characteristics [9–11].
Among these phases, ε has an indirect band gap about 1.4 eV
[10], while β and γ phases have a direct band gap close to
1.28 [12] and 1.29 eV [13], respectively. Electron-phonon
coupling (EPC) and the superconductive properties of an
electron-doped monolayer InSe were studied [14] and a super-
conductive transition temperature about 3.41 K was reported.
Moreover, it has been shown that hole states in monolayer
InSe are strongly renormalized by coupling with acoustic
phonons leading to the formation of satellite quasiparticle
states near the Fermi energy [15]. Not long ago, monolayer
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InSe has been fabricated from its bulk counterpart by me-
chanical exfoliation [16–18]. A high carrier mobility of about
103 cm2/V s, which is greater than that of MoS2 [19], has
been reported at room temperature [20,21], suggesting that
this 2D material is promising for ultrathin digital electronics
applications. Furthermore, InSe represents a promising mate-
rial for making use of field-effect transistors (FETs) [22].

The presence of a sombrero-shaped valence band in the
electronic band structure of monolayer InSe gives rise to a
larger density of states (DOS), which is similar to that of
one-dimensional material, and specifies a Van Hove singu-
larity at the valence band maximum (VBM) which could
primarily lead to a magnetic transition and superconducting
phases as well [23–27]. Stimulated by the remarkable dis-
covery of gate-induced superconductivity in graphene (upon
lithium adsorption) [28–31], a new field for investigating su-
perconducting features on other 2D materials typically has
emerged. In advance, lithium adsorbed graphene was prop-
erly utilized for 2D superconductivity. Undoubtedly owing
to a small DOS at the Fermi level and σh symmetry which
gives rise to a weakened electron coupling with the flexural
modes, graphene illustrates a small electron-phonon coupling
constant λ. However, these shortcomings could be lifted by
typically making use of lithium adsorption [30,31].

Even though monolayer InSe naturally has σh symmetry,
electrons in monolayer InSe could couple to the flexural
phonons owing to the presence of atomic layers away from
the symmetry plane. Notably, this coupling alongside a larger
DOS near the VBM potentially leads to a significant EPC
parameter. On the other hand, the active presence of a
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significant DOS as well as λ makes the system susceptible
to a charge density wave (CDW) instability, which represents
a static modulation of the itinerant electrons and is usually
accompanied by a periodic distortion of the lattice. The CDW
formation may naturally arise from a possible combination
of a large nesting and/or electron-phonon interaction at a
specific phonon wave vector (qCDW). Therefore, the formation
of the CDW must be carefully examined for systems with a
strong EPC, though a superconducting state is possible.

The standard method of properly investigating CDW for-
mation is first to calculate the phonon dispersion of the system
within density functional theory (DFT) calculations, i.e., con-
sidering either a small displacement or density functional
perturbation theory (DFPT) method at specific temperatures
[32]. It is worth mentioning that the static electron-phonon
interaction is carefully considered in the phonon dispersion
of both mentioned approaches [33]. However, it has become
evident that dynamical phonons undoubtedly play a signifi-
cant role and nonadiabatic/dynamic effects could give rise
to a significantly renormalized phonon dispersion for doped
semiconducting materials [34–36] including InSe.

Here, we investigate a viable superconducting and CDW
phases of monolayer InSe based on DFT and necessary DFPT
calculations. We calculate the renormalized phonon disper-
sion owing to the electron-phonon coupling in both adiabatic
and nonadiabatic regimes for different temperatures and dop-
ing levels. We further investigate the competition between
CDW formation and the superconductive phase for differ-
ent hole and electron doping levels. We eagerly discuss the
most important phonon wave vectors leading to the remark-
able electron-phonon coupling strength which well expresses
the significance of both bare susceptibility and the nesting
function below and above the Lifshitz transition point. By
including nonadiabatic effects, we carefully analyze condi-
tions for which either a superconductive or CDW phase could
typically emerge in the system. Our desired results show that
in some hole-doped cases, CDW instability prevents access to
quite high-temperature superconductivity, whereas for some
other doped levels, the achievement of such superconduct-
ing temperatures is possible. In the electron-doped cases, the
CDW instability is significantly suppressed, and therefore the
superconducting phase is possible.

The paper is organized as follows. We commence with a
description of our theoretical formalism in Sec. II, followed
by the details of the DFT and DFPT calculations. Numeri-
cal results for the band structures, phonon dispersions, DOS,
superconducting critical temperature, and CDW in adiabatic
and nonadiabatic approximations are reported in Sec. III. We
summarize our main findings in Sec. IV.

II. THEORY AND COMPUTATIONAL DETAILS

Self-consistent DFT calculations are carefully performed
with the local density approximation (LDA)-norm-conserving
pseudopotential as implemented in the QUANTUM ESPRESSO

package [37]. The phonon dispersion and self-consistent de-
formed potentials are calculated based on the DFPT method
[32,33,38]. The Kohn-Sham wave functions and Fourier ex-
pansion of the charge density are truncated at 90 and 360
Ry, respectively. To eliminate spurious interactions between

adjacent layers, a vacuum space of 25 Å along the z direction
is adopted. For the electronic and phononic calculations, a
24 × 24 × 1 k mesh and 12 × 12 × 1 q mesh are used, and a
finer k mesh of 240 × 240 × 1 and q mesh of 120 × 120 × 1,
respectively, are applied to calculate the Wannier interpolation
of the electronic and phonon dispersions as implemented in
EPW code [39–42]. The Dirac delta functions are approxi-
mated by applying a Gaussian smearing of σel = 5 meV and
σph = 0.2 meV. The convergence of results is carefully per-
formed as a function of the k and q mesh and Gaussian
smearing. Moreover, to adequately describe the temperature
dependence of the electronic structure, a Fermi-Dirac smear-
ing of about 0.01 Ry is used [43].

Since the static part of the phonon self-energy is typically
included in the phonon dispersion, one may uniquely define a
dressed phonon frequency as [44]

ω2
q,ν = 	2

q,ν + 2ωqν
qν, (1)

where 	q,ν is the bare phonon frequency and 
q,ν =
2

Nk

∑
k,m,n |gν

nk,mk+q|2 f (εnk )− f (εmk+q )
εnk−εmk+q

is the static part of the first-
order self-energy of phonon modes, m and n refer to the
electronic band indices, Nk is the considerable number of k
points, gmn,ν (k, q) is the electron-phonon interaction matrix
elements, and f (ε) represents the Fermi-Dirac distribution
function.

It is justifiable to assume k independent electron-phonon
interactions in which gν

nk,mk+q = gν
qn,m. Therefore, Eq. (1) can

be written as follows,

ω2
q,ν = 	2

q,ν + 2ωqν

∣∣gν
qn,m

∣∣2
χ0(q), (2)

where χ0(q) = 2
Nk

∑
k,m,n

f (εnk )− f (εmk+q )
εnk−εmk+q

is the bare charge
susceptibility. Phonon softening typically emerges at some
branches of the phonon spectrum, known as the Kohn
anomaly [45] which originates from any sizable variation
of χ0 as a function of q and/or the electronic temperature.
Consequently, it is standard practice to scientifically verify
χ0 as a necessary signature of the phonon softening and thus
the formation of the CDW. The CDW instability can be well
appeared in the form of an imaginary phonon band when the
temperature lies below TCDW (the temperature where softened
modes touch the zero frequency at qCDW).

To estimate the superconducting temperature in systems
with a strong EPC, we utilize the Migdal-Eliashberg for-
malism [46,47] in the form of a modified Allen-Dynes
parametrization [48],

Tc = f1 f2ωlog

1.2
exp

(
− 1.04(1 + λ)

λ − μ∗
c (1 + 0.62λ)

)
, (3)

with λ = 2
∫ ∞

0 ω−1α2F(ω)dω, ωlog =
exp [ 2

λ

∫ ωmax

0 dωα2F(ω)
ω

log ω], μ∗
c is the Morel-Anderson

Coulomb potential, in general, adopted in the range of
0.1–0.2, and f1 and f2 represent strong-coupling and shape
corrections, respectively (for detailed definitions of f1

and f2, see Ref. [48]). The Eliashberg function is defined
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as

α2F(ω) = 1

N (εF )NkNq

∑
q,k

ν,m,n

|gmn,ν (k, q)|2

× δ(εnk − εF )δ(εmk+q − εF )δ(ω − ωqν ), (4)

where N (εF ) is the electronic density of states at the Fermi
level. The imaginary part of the phonon self-energy γqν reads
as follows:

γqν = 2πωqν

Nk

∑
mn,k

|gmn,ν (k, q)|2δ(εnk − εF )δ(εmk+q − εF ).

(5)

To carefully analyze the different contributions of λ and α2F,
the projected quantities are defined as follows. Two principal
directions are typically considered: in-plane and out-of-plane
distortions. The F(ω) along the specific direction κ is written
as

Fκ (ω) =
∑
s,ν

∫
dq

(2π )2
Pκ,s

qν δ(ω − ωq,ν ), (6)

for the atom type s in the unit cell (including In2 or Se2) where
κ = xy (labeled as in plane), z (labeled as out of plane), and

Pxy,s
q,ν =

∑
κ=x,y

e∗ κ,s
q,ν eκ,s

q,ν, Pz,s
q,ν = e∗ z,s

q,ν ez,s
q,ν , (7)

where vector eqν is the eigenvector of the dynamical matrix.
The α2F can also be projected into Cartesian coordinates
by making use of the phonon displacements associated with
various atom types in different directions,

α2Fκ,κ ′
s,s′ (ω) = 1

NkNqN (εF )

∑
m,n,ν,k,q

g∗ κ,s
nk,mk+q,νgκ ′,s′

nk,mk+q,ν

× δ(εnk − εF )δ(εmk+q − εF )δ(ω − ωq,ν ), (8)

where κ, κ ′ refer to the in-plane and out-of-
plane deformations, respectively, with gxy,s

nk,mk+q,ν =∑
κ=x,y( h̄

2ωqν
)1/2 dκ,s

nk,mk+quκ,s
qν and gz,s

nk,mk+q,ν
=

( h̄
2ωqν

)1/2 dz,s
nk,mk+quz,s

qν , and uκ,s
q = eκ,s

q√
ms

is the displacement

pattern [49], so that α2Fκ,κ ′
s,s′ satisfies the following relation:

α2F(ω) =
∑

k,k′,s,s′
α2Fκ,κ ′

s,s′ (ω). (9)

In particular, we define α2Fz,xy(ω) =
2

∑
s,s′

∑
k′=x,y Re [α2Fz,κ ′

s,s′ (ω)], α2Fxy,xy(ω) =∑
s,s′

∑
k,k′=x,y Re [α2Fκ,κ ′

s,s′ (ω)], and α2Fz,z(ω) =∑
s,s′ α2Fz,z

s,s′ (ω). Projected λ can be obtained by projected
α2F as follows:

λκ,κ ′
s,s′ = 2

∫
dω

α2Fκ,κ ′
s,s′ (ω)

ω
. (10)

It would be worth mentioning the Fermi surface of mono-
layer InSe is anisotropic for some doping levels, implying the
importance of using the anisotropic Eliashberg theory. In this
regard, the μ∗

c in anisotropic equations [50] was implemented
as a cutoff independent quantity in EPW code. However, to

get better consistent results comparable with that obtained by
Eq. (3), we gain use of a cutoff dependent μ∗

N given by

μ∗
N = μ∗

c

1 + μ∗
c ln (ω̄2/ωN )

, (11)

where N represents the number of Matsubara frequencies at a
defined temperature and ωN ≈ 8 ω̄2 [48,51] is a good estima-
tion. This approach provides better results compared with the
one when μ∗

c is used [50]. The value of Tc is obtained when
the superconducting gap becomes smaller than 5 × 10−4 eV.

Furthermore, in metallic systems, the ion dynamic affects
the electron dynamics and leads to the excited state owing to
the proximity of phonon energies and electron excited states
[33]. The experimental realization of such dynamics on the
phonon energies is observable in the form of a Raman fre-
quency shift at the zone center, so-called nonadiabatic effects
[35,36,52,53]. To explore this, a time-dependent perturbation
theory (TDPT) is necessary for a full ab initio treatment
of nonadiabatic effects. Since a full TDPT is complicated
enough in practical terms of complexity of the accurate cal-
culations, we adopt the following procedure, by pursuing
Ref. [33], to properly include the nonadiabatic effects. As
the first necessary step for a specific q vector, adiabatic self-
consistent force constants Csr (q, 0, T1) are calculated. Here,
T1 is the electronic temperature applied in self-consistent cal-
culations (T1 is large enough to prevent a Kohn anomaly). The
nonadiabatic phonons can be naturally obtained by diagonal-
izing the phonon dynamical matrix related to nonadiabatic
non-self-consistent force constants C̃(q, ω, T0) at a physical
temperature T0 given by [33]

C̃sr (q, ω, T0) = 
sr (q, ω, T0) + Csr (q, 0, T1), (12)

where 
sr comprises both the addition (subtraction) of nona-
diabatic (adiabatic) effects at the specific temperature T0 (T1)
used in the related Fermi-Dirac distribution function fkm, re-
spectively,


sr (q, ω, T0) = 2

Nk(T0)

Nk(T0 )∑
k,m,n

fkm(T0) − fk+qn(T0)

εkm − εk+qn + ω + iη

× ds
mn(k, k + q)dr

nm(k + q, k)

− 2

Nk(T1)

Nk(T1 )∑
k,m,n

fkm(T1) − fk+qn(T1)

εkm − εk+qn

× ds
mn(k, k + q)dr

nm(k + q, k), (13)

where Nk(T0) is the k-point grid at smearing T0 and much
larger than Nk(T1), and we consider η as a positive real
infinitesimal parameter. Furthermore, ds

mn are deformation
potential matrix elements which include the derivative of
the Kohn-Sham self-consistent potential with respect to the
Fourier transform of the phonon displacements [33]. There-
fore, to obtain phonon energies within an adiabatic regime,
a coarse 24 × 24 × 1 k-point mesh and T1 = 1580 K as a
proper starting point are considered, while a dense enough
k-point grid of 72 × 72 × 1 is adopted for the calculation of
nonadiabatic and adiabatic force constant matrices at more
reduced temperatures (T0).

Note that Fermi levels are calculated associating to given
temperature and doping levels.
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FIG. 1. The Fermi surface contour of monolayer InSe based on
the jellium model. (a) The Fermi surface for doping −0.1. (b) The
Fermi surfaces corresponding to different shifts of the EF from the
EF related to the doping level +0.04 (represented by red lines). The
color bar shows the shift of the Fermi energy. The gray dashed lines
are applied to illustrate the first Brillouin zone boundaries.

III. NUMERICAL RESULTS AND DISCUSSIONS

Two distinct types of structural phases (α and β) have
been properly reported for pristine monolayer InSe in Ref. [8]
whose α phase has mirror symmetry, while β has inversion
symmetry. Moreover, both of them are dynamically stable, but
the former possesses cohesive energy slightly lower than the
latter. We efficiently perform our DFT calculations on α phase
by incorporating a hexagonal structure with D3h symmetry.
The relaxed geometry calculations of pristine monolayer InSe
show that the optimized hexagonal unit cell naturally has a
lattice constant a = 3.90 Å and two sublayers are separated
by distance dIn-In = 2.66 Å and dSe-Se = 5.15 Å. These pa-
rameters are in good agreement with those results reported in
Refs. [8,14,26].

A. Investigation of superconductive properties
of monolayer InSe

In this work, both the electron- and hole-doped cases are
studied within the jellium model for monolayer InSe. A com-
pensate positive or negative background charge is included
to guarantee the charge neutrality. There are different ex-
perimental techniques such as the electrolytic gate [54] to
precisely control the rate of the electron and hole densities.
Here, we consider electron doping levels −0.1 and −0.2
electron per formula unit (e/f.u.) precisely corresponding
to the electron densities 7.44 × 1013 and 1.46 × 1014 cm−2,
respectively. Similarly, +0.01, +0.04 (low doping regime),
+0.1, +0.2, +0.3, and +0.4 e/f.u. (high doping regime) for
hole-doped cases corresponding to 7.58 × 1012, 3.0 × 1013,
7.58 × 1013, 1.51 × 1014, 2.26 × 1014, and 3.0 × 1014 cm−2

charge densities are considered. For the sake of simplicity, we
promptly drop e/f.u. units corresponding to various doping
levels, and +/− refers to the hole/electron doping, respec-
tively.

The Fermi surfaces of the system are described in Fig. 1
for different doping levels. Figure 1(a) displays the topology
of the Fermi surface for −0.1 doping consisting precisely of
two types of electronic pockets located at the � and M points.
In the case of the deeper electronic doping level −0.2, the
specific form of the Fermi surface is similar to the previous
doping level. The Fermi surface of the +0.04 doping system
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FIG. 2. The α2F and projected phonon DOS within the jellium
model. (a), (c), and (e) Total α2F and cumulative EPC, λ(ω), for
specific doping levels −0.1, +0.01, and +0.1. The dashed lines are
utilized for λ(ω). (b), (d), and (f) refer to the projected phonon DOS,
F(ω), respectively, for In and Se atoms along the in-plane and out-
of-plane directions for corresponding doping levels. All of the graphs
have been plotted in T1 = 1580 K.

consists of six separated pockets located around a point be-
tween � and K as shown in Fig. 1 marked by the red color.

In the hole-doped case [see Fig. 1(b)] and upon more sig-
nificantly decreasing the Fermi energy EF, a Lifshitz transition
[8] occurs. Therefore, the topology of the Fermi surface with
six pockets, located between � and K , changes to two coaxial
pockets around the � point. This fundamental change of the
principal character of the Fermi surface results in a tangible
variation of the superconductive properties of the hole-doped
system which we adequately address in the following. More-
over, this specific concentration is obtained to be equal to
5.8 × 1013 cm−2 or +0.076 e/f.u., which is in good agree-
ment with that reported in Ref. [8]. To begin with, we carefully
look at the Eliashberg function in terms of various doping
levels. Figures 2(a) and 2(b) depict the projected α2F(ω) and
phonon DOS for doping level −0.1. The projected Eliashberg
functions along the in-plane and out-of-plane deformations
show a mighty peak at around 27 meV related to a scatter-
ing process which originates primarily from α2Fz,xy + α2Fz,z

resulting from the out-of-plane vibration of In atoms and in-
plane vibration of Se atoms. This is equally consistent with the
projected F(ω) in Fig. 2(b), where there is a significant density
of phonons with Inz and Sexy deformations. Looking at more
reduced energies there is a two-peak structure between 21 and
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TABLE I. The superconducting properties of monolayer InSe including the EPC constant λtot, density of states at the Fermi level N (εF) in
units of states/eV/spin/unit cell, logarithmically averaged phonon frequency ωlog, and isotropic transition temperature to the superconducting
phase Tc, for the studied hole/electron concentrations. The charge density is in units of 1013 cm−2. Tc’s are calculated for three different
amounts of μ∗

c (0.1, 0.15, and 0.2).

Tc(K)

e/f.u. Charge density λtot N (εF) ωlog (K) μ∗
c = 0.1 0.15 0.20

+0.01 0.758 7.62 4.26 123 65 58 51
+0.04 3.0 7.36 8.05 106 55 48 42
+0.1 7.58 6.99 8.30 90 44 38 34
+0.2 15.1 3.07 3.02 79 21 17 15
+0.3 22.6 1.44 1.50 78 9 8 7
+0.4 30 0.85 0.76 80 4 3 2
−0.1 7.44 0.55 0.82 97 2 1 0
−0.2 14.6 0.50 0.63 103 2 1 0

24 meV, which comes from α2Fz,xy + α2Fxy,xy. On the other
hand, peaks at more reduced energies originate from α2Fxy,xy.

The α2F(ω) and F(ω) are shown in Figs. 2(c) and 2(d)
for the low hole doping level +0.01. A peak around 28 meV
comes principally from single optical phonon mode with
out-of-plane In and in-plane Se vibrations. In this case, the
deformation of α2Fz,z is considerably larger than α2Fz,xy.
Moreover, the lesser peak at around 26 meV has a major
α2Fxy,xy and a minor α2Fz,z character with a negative contribu-
tion from α2Fz,xy, while the strong peak at around 8 meV has
a major α2Fz,xy character with relatively similar contributions
from the other two deformations.

As a notable example of a high hole-doped regime, α2F(ω)
and projected F(ω) for +0.1 are shown in Figs. 2(e) and
2(f), respectively. Despite the low hole-doped and electron-
doped cases, the prominent peak around 28 meV is absent. In
general, the spectrum of +0.1 hole doped is slightly shrunk
in comparison with the +0.01 one. Moreover, the gapped
two-peak structure in the high-energy part of α2F(ω) for
+0.01 is replaced with a gapless one at an energy of about
25–27 meV. The outstanding contribution of this high-energy
part arises mainly from α2Fz,z and α2Fxy,xy deformations,
however, α2Fz,xy has a completely negative contribution. The
low-energy peak between 5 and 7 meV has almost an iden-
tical character to the low-energy peak of the +0.01 doping
level, albeit with a lesser height. Therefore, the peak of α2F
is shifted to lower energies by passing through the Lifshitz
transition point (increasing hole doping levels). In addition,
there is a tangible suppression of the proportion of the spectral
weight of high-energy phonons to low-energy phonons. Such
a modulation of optical phonons affects their superconductive
properties, which mainly manifests itself in the suppression of
ωlog (see Table I).

Looking at the cumulative λ(ω) in Figs. 2(a), 2(c) and 2(e),
we can fairly state that in hole doping the acoustic branches
carry out a more pronounced role in the formation of λtot.
Unlike the hole-doped cases, for electron doping, there is a
more uniform distribution of each branch contributing in the
formation of λtot for electron doping, as inferred from λ(ω).

The tabulated amounts of λtot with respect to various doped
levels in Table I reveal that increasing the hole/electron dop-
ing levels leads to a descending/constant behavior of λtot,
respectively. To perceive the correlation between the DOS at

the Fermi energy N (εF) and λ, we collect the results of Table I
into Fig. 3, where λ and N (εF) are shown for different doping
levels. Upon progressively increasing the hole density, while λ

decreases monotonously, N (εF) increases up to a doping level
+0.1, then decreases for a larger doping level.

One can seemly remark that λ can take an effect from
N (εF) and the average of the electron-phonon matrix elements
on the Fermi surface, and effectively could be represented
as λ = 2N (εF)〈|g|2〉/ω0, where 〈|g|2〉 is an average electron-
phonon interaction. To estimate the average electron-phonon
interaction we use 〈|g|2〉 = 1

N (εF )

∫
α2F(ω)dω, and the results

of the 〈|g|2〉 are presented in the inset of Fig. 3. As seen, the
average electron-phonon interaction is enhanced for +0.01,
compared to the other hole and electron doping levels. Thus,
in general, a larger DOS results in a larger λ with a linear
dependency, with the only exception being the 0.01 doping
level, where 〈|g|2〉 is enhanced in comparison with the other
doping levels where it is almost constant.
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FIG. 3. The variation of the EPC and N (εF ) with respect to
different doping levels in monolayer InSe. Inset: The

√〈g2〉 as a
function of the doping level in units of eV. In the case of hole doping,
an increment in the carrier density leads to a decreasing of both the
λ and N (εF ) and nearly constant value for the

√〈g2〉, while in the
case of electron doping, an increment in the carrier density leads to a
constant behavior of λ, N (εF ), and

√〈g2〉.
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Furthermore, Eq. (10) is used to carefully consider the
contribution of the projected λ for different atom types and
the out-of/in-plane directions in λtot. Figure 4 shows the pro-
jected λ while those are rescaled to λtot for four doping levels
−0.1, +0.01, +0.1, and +0.4. The desired results show, for
the electron-doped case, the highest contribution to λtot is
attributed to the in-plane displacements. For −0.1 the cor-
responding in-plane/out-of-plane contributions are λxy,xy =
0.73 > λz,z = 0.27 > λz,xy = −0.45.

For the hole-doped levels beyond +0.1, on the other hand,
the largest contribution arises from the out-of-plane deforma-
tions and mixed in-plane In and out-of-plane Se deformations.
For doping level +0.1 the projected λ’s read λz,z = 2.73 >

λz,xy = 2.7 > λxy,xy = 1.55.
In the case of +0.01 doping, the system is somewhere

between a greater hole doping and the electron-doped cases.
While its in-plane contributions share the same behavior as
of the electron-doped one, its out-of-plane and mixed in-
plane/out-of-plane contributions behave properly, similar to
the high doping levels, λz,z = 2.88 > λxy,xy = 2.48 > λz,xy =
2.26. To be specific, the valuable contribution which comes
from (Inxy -Sez) deformation has a negative impact for the
electron-doped system, while it has a positive contribution for
low and high hole-doped cases. This key difference originates
from the distinction between the generic forms of the topology
of the Fermi surface such that this type of polarization is
beneficial for hole-doped cases and it is a disadvantage for
the electron-doped ones.

In addition, Table I shows the critical transition temper-
ature to the superconducting phase with the aforementioned
doped conditions calculated through Eq. (3) by considering
three values for μ∗

c = 0.1, 0.15, and 0.2. In the case of hole
doping, the highest value of Tc = 65 K is obtained for μ∗

c =
0.1. Our results reveal that Tc can be shrunk about 20% when
μ∗

c = 0.2 was applied. Obviously, while the amount of λ is
almost the same for the first three hole-doped cases, the Tc for
+0.01 is larger than that of +0.1 (by considering μ∗

c = 0.1),
stemming from a larger value of ωlog. The larger value of the

TABLE II. The anisotropic superconducting transition temper-
ature of monolayer InSe. The transition temperatures to the CDW
region, TCDW, in both adiabatic (A) and nonadiabatic (NA) regimes
were obtained by using the fitting curve. Three various amounts of
μ∗

c (0.1, 0.15, and 0.2) are used to calculate Tc.

Tc (K)

e/f.u. μ∗
c = 0.1 0.15 0.20 T A

CDW (K) T NA
CDW (K)

+0.01 73 64 54 122 <2
+0.04 75 68 62 145 <2
+0.1 55 50 43 416 120
+0.2 20 17 15 539 191
+0.3 9 8 7 476 246
+0.4 4 3 2 <2 <2
−0.1 2 0 0 <2 <2
−0.2 2 1 0 <2 <2

ωlog corresponding to the former originates from the fact that
the phonon dispersion for +0.01 doped is typically harder
than +0.1. Moreover, the proportion of the high-energy peak
to the low-energy peak of α2F for the case of +0.01 is appre-
ciably larger than that of +0.1 [see Figs. 2(c) and 2(e)]. Thus,
ωlog is enhanced for +0.01 in comparison with +0.1.

Notice that the highest tabulated temperature is comparable
with Tc = 88 K for blue phosphorene studied in Ref. [55].
Moreover, it is much larger than the reported Tc for Li-
decorated monolayer graphene and antimonene with Tc ≈ 6 K
[28] and 4 K [56], respectively. However, the high value of
λ needs a careful examination and further insights into the
formation of the CDW phase at low temperatures for the hole-
doped system which we adequately address in the following
section.

To have a better estimate of Tc, we utilize a self-consistent
solution of the anisotropic Migdal-Eliashberg theory. The
results are reported in Table II. Obviously, anisotropic ef-
fects alter Tc at the first three hole-doped cases, where the
Fermi surface has a more pronounced anisotropic character
[see Fig. 1(b)], while a slight variation of Tc is observed for
other hole- and electron-doped cases when Tc’s are extracted
from the Allen-Dynes formula [Eq. (3)] and self-consistent
anisotropic Eliashberg equations. These results indicate that
below the Lifshitz transition point, in comparison with the
Allen-Dynes estimate, the Tc is more pronounced in com-
parison with the cases above the Lifshitz transition point as
well as the electron-doped levels. For the +0.04 doping level,
such an anisotropy can enhance Tc from a range 42–55 K
corresponding to the Allen-Dynes estimate to 62–75 K for
different applied μ∗

c .

B. CDW formation in adiabatic and nonadiabatic
approximations

More reduction in the electronic temperature to achieve
TCDW is alongside the giant amplitude of the Kohn anomaly.
To acquire an estimate of TCDW, we extract the frequency
of the most softened mode on the whole q mesh, for dif-
ferent temperatures, then we fit the extracted frequencies to
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FIG. 5. Estimation of TCDW for case +0.3 in both adiabatic and
nonadiabatic regimes with respect to different electronic tempera-
tures. The red dashed lines illustrate the mean-field fitting according
to ω = a0 (T − TCDW)δ . Here, a0 and δ yield values of about 0.37 and
0.41, respectively.

ω = a0(T − TCDW)δ [57]. In our calculations, a0 is a constant
close to 0.4 and δ yields values in the range 0.40–0.43 for
all hole doping levels which are partly close to the value
δ = 0.5 extracted from the mean-field approximation [57,58].
Figure 5 shows the variation of the phonon frequencies as a
function of electronic temperature and related fitting curves
(red dashed lines) for case +0.3 in both adiabatic and nona-
diabatic regimes. The results indicate that the transition to the
CDW region occurs in T A

CDW = 476 K and T NA
CDW = 246 K. The

values of TCDW corresponding to other doping levels, for both
adiabatic and nonadiabatic regimes, are reported in Table II.

Figure 6 depicts the amplitude of the Kohn anomaly as a
function of the electronic Fermi-Dirac smearing for doping
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FIG. 6. The phonon dispersion as a function of electronic tem-
peratures for a doping +0.1 in the adiabatic (A) regime. The lower
the electronic smearing, the appearance of a greater amplitude of
the Kohn anomaly which finally leads to CDW instability at a
temperature lower than T0 = 416 K in the adiabatic regime while
these instabilities can be faded out at upper temperatures such as
T0 = 420 and 470 K. The black solid lines were carried out with
typical electronic broadening, T1 = 1580 K, which is large enough to
wipe out the Kohn anomaly in linear response self-consistent force
constants.

FIG. 7. The effective factors to determine the CDW instability
as a function of temperature for all doped levels in the adiabatic
regime. (a) The dressed phonon energies squared, (b) electronic bare
susceptibility, (c) real part of the phonon self-energy multiplied by
2ω, and (d) the magnitude of 〈|g̃|2〉 related to the softening branch of
phonon dispersion. The splines connecting the points are guides to
the eyes and the tilde symbol refers to related calculations at qCDW.

level +0.1. Typically decreasing the temperature leads to a
more softening of the phonon energies, and finally, the sys-
tem suffers from a CDW instability at a smearing slightly
lower than 416 K. For exploring the considerable variations
of the phonon softening as a function of the Fermi-Dirac
smearing, three upper temperatures, 420, 470, and 1580 K, in
the adiabatic/static regime are depicted. The typical smearing
1580 K, as a starting point in the adiabatic regime, is large
enough to wipe out the Kohn anomaly in the linear response
calculations. In addition, this figure shows there are two qCDW
which give rise to two different chiralities. One includes a
6 × 6 commensurate supercell corresponding to the dip in
the middle of the �-K direction. The secondary point of the
CDW instability is related to an incommensurate distortion
precisely corresponding to another dip along the �-M path.
Our numerical calculations reveal that the dip in the middle
of the �-K direction has a lower ω and we therefore refer to
this point as qCDW in the reminder. Notice that for the other
higher doped levels, i.e., +0.2 and +0.3, the CDW forms at
the same q for the +0.1 doping level. On the other hand, in
the adiabatic regime, low hole doping levels +0.01 and +0.04
show an instability in a q marginally different from the high
doped regime. However, it does not show any instability of
the system even at extremely low temperatures by including
nonadiabatic effects as illustrated in Table II. Besides, in the
comparison between low doped and high doped regimes in
terms of phonon softening at qCDW, we therefore report our
results at qCDW for doping levels +0.01 and +0.04 as well.

Figure 7 shows different quantities associated with the
CDW formation for various doping levels and temperatures.
In particular, the average amounts of the electron-phonon
interaction 〈g2〉qν = γqν

2πωqν ξq
, where the nesting function is pre-
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cisely defined as ξq = N−1
k

∑
mn,k δ(εnk − εF )δ(εmk+q − εF ),

is properly used. The tilde symbol in Fig. 7 refers to the related
calculations at qCDW. Moreover, the depicted quantities are
associated with the softened branch at qCDW, therefore, the
branch index ν is dropped.

The effects of phonon energy renormalization as a function
of temperature within the adiabatic/static regime are shown
in Fig. 7(a). These results reveal the tendency of the system to
the CDW region for the three +0.1, +0.2, and +0.3 doping
levels. On the contrary, the electron-doped and low hole dop-
ing levels, below the Lifshitz transition point, almost retain
their constant behavior as a function of various temperatures.
Figure 7(b) shows the bare susceptibility as a function of
doped levels at the qCDW for the aforementioned temperatures.
Notice that the 〈g̃2〉 is the largest for doping level +0.2 [see
Fig. 7(d)], in addition, the largest change of the χ0 basically
belongs to the doping level +0.2. This leads to a further
decline of 2ω̃
̃ (from a temperature of 1580 K) for doping
level +0.2 as shown in Fig. 7(c). Moreover, such a larger
variation in χ0 for doping levels +0.1, +0.2, and +0.3 leads
to a giant Kohn anomaly and finally the appearance of the
instability in monolayer InSe for smearing lower than 416,
539, and 476 K, respectively. A comparison for doping +0.4
implicitly expresses that though there is a reduction of the
self-energy correction, having less temperature dependence
on χ0 together with a smaller average of 〈g̃2〉 [Fig. 7(d)] on
the Fermi surface results in a less effective Kohn anomaly
and therefore the CDW is suppressed at qCDW for doping level
+0.4.

Further analyses associated with the polarization of the
softened mode at qCDW adequately explain the instability at
this point mainly involves the in-plane displacements of the
In atoms and the out-of-plane displacements of the Se atoms
at the same time.

The notable absence of the Kohn anomaly for an electron
doping is owing to the lack of a reduction of χ0 with respect
to the different temperatures alongside an extremely small
〈g̃2〉 [Fig. 7(d)]. In two low hole doping cases, 〈g̃2〉 is smaller
than that obtained for other hole-doped levels. For doping
level +0.01 a specific combination of a small 〈g̃2〉 and the
lack of a typical decreasing of χ0 as a function of tempera-
ture results in the absence of the Kohn anomaly at qCDW. In
doping level +0.04, although there is a depletion in χ0 upon
temperature reduction, due to a slight value of 〈g̃2〉, it suffi-
ciently shows a smaller softening. Therefore, considering the
adiabatic regime, the competition and coexistence between
Tc and TCDW reveals that TCDW is exceedingly greater than
Tc, and consequently the CDW instability prevents access to
the high-temperature superconductivity in the first five hole-
doped cases +0.01, +0.04, +0.1, +0.2, and +0.3. On the
other hand, in the intrasheet scattering process, when |εk+q −
εk| ≈ ω, the substantial difference of the nonadiabatic and
adiabatic frequencies is �ω, which approximately specifies
�ω 
 N (εF)〈g̃2〉 at the Fermi surface [34–36]. Hence, this
proper discrepancy is remarkable for the doping cases +0.01,
+0.04, +0.1, +0.2, and +0.3 encompassing large amounts
for both N (εF) and 〈g̃2〉, essentially restating the considerable
importance of the nonadiabatic effects for these hole-doped
cases.
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FIG. 8. The phonon dispersion corresponding to adiabatic high
(T1 = 1580 K) and nonadiabatic low (T0 = 130 and 470 K) electronic
smearing for doping +0.1. The related Eliashberg spectral func-
tions are depicted at the right side of the plot for two temperatures
T0 = 130 and T1 = 1580 K. Applying the nonadiabatic effects well
expresses the suppression of the CDW phase at a low temperature of
130 K.

Figure 8 shows nonadiabatic effects on phonon modes in
the case of +0.1 doping for two low temperatures (T0 =
130 and 470 K) together with a high enough temperature
(T1 = 1580 K). In order to perceive the effect of the phonon
softening on Tc, T0 = 130 K is chosen such that it is slightly
larger than T NA

CDW = 120 K. Employing nonadiabatic phonons
at T0 = 130 K for the calculation of Tc results in a slight en-
hancement of Tc = 57 K within anisotropic Eliashberg theory,
which still is much smaller than T NA

CDW = 120 K. This lack of
enhancement of Tc could be understood based on the Allen-
Dynes estimation of Tc, as softening related to phonon modes
is accompany with a shift of α2F to the lower frequencies,
T0 = 130 K, in particular in acoustic branches [see Fig. 8(b)].
This softening results in both a remarkable enhancement of λ

and suppression of ωlog at the same time, which finally leads
to a little enhancement of Tc. Notice that the amplitude of
the Kohn anomaly decreases in the presence of nonadiabatic
effects as one may compare the phonon dispersion corre-
sponding to the electronic broadening at 470 K in Figs. 6
and 8.

In addition, the same calculations are repeated for doping
+0.2 and +0.3. Applying the nonadiabatic effects on the
phonon modes in two cases +0.2 and +0.3 at temperatures
slightly above their T NA

CDW reveal a negligible enhancement of
the superconducting transition temperature, Tc = 26 and 15 K,
respectively. This slight enhancement of Tc is simultaneous
with a considerable enhancement of λ together with consid-
erable suppression of ωlog (36 K), for both +0.2, and +0.3
doping levels.

Consequently, nonadiabatic effects shift only the CDW
region to lower temperatures 120, 191, and 246 K for elevated
doping levels +0.1, +0.2, and +0.3, respectively, and are not
capable of suppressing the formation of the CDW instability
in these three cases. Therefore, it appears that the supercon-
ducting transition for the three mentioned hole doping levels
is unlikely to be accessible as a CDW phase forms before
a superconductive phase. On the other hand, Table II shows
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FIG. 9. The phonon dispersion corresponding to adiabatic high
(T1 = 1580 K) and nonadiabatic low (T0 = 16 K) electronic temper-
atures for doping +0.01. The corresponding Eliashberg function is
depicted on the right side of the plot. Also, fading out of the CDW
phase via nonadiabatic phonons at low temperatures is visible.

no dynamic instability at the remaining doped levels in the
presence of nonadiabatic effects.

In Fig. 9 the high-temperature phonon dispersion, T1 =
1580 K, and nonadiabatic low-temperature one with T NA

0 =
16 K are plotted along with their corresponding α2F for
hole doping level +0.01. The system is stable even for tem-
peratures considerably smaller than its Tc ≈ 54–73 K (see
Table II). Notice that the α2F calculated based on nonadia-
batic phonons gives marginally different Tc as small as 2 K,
owing to the slight softening at certain q points. Accordingly,
the low hole-doped monolayer InSe likely shows a supercon-
ductive phase with maximum Tc ∼ 75 K. The same analysis
holds for hole doping level +0.04, where T NA

CDW is far below
its Tc as it is shown in Tables I and II.

Note that the convergence of Eq. (13) for η is carefully
checked to adequately explain this equation becomes prac-
tically η independent when η was changed in the range of
0.0015–0.015 Ry. In addition, the desired results reported in
Table II show that in the presence of nonadiabatic effects,
monolayer InSe is dynamically stable for all aforesaid doped

levels at room temperature because all T NA
CDW’s are lower than

room temperature.

IV. CONCLUSION

In summary, based on the first-principles DFT and DFPT
methods, the superconducting properties of pristine mono-
layer InSe employing the Migdal-Eliashberg theory are
explored. We have also calculated the renormalized phonon
dispersion owing to the electron-phonon coupling in both the
adiabatic and nonadiabatic regimes for various temperatures
and doping levels. We have further investigated the competi-
tion between CDW formation and the superconductive phase
for various hole and electron doping levels.

We have adequately discussed the most important phonon
wave vectors leading to the remarkable electron-phonon cou-
pling strength. That correctly expresses the significance of
both bare susceptibility and the nesting function below and
beyond the Lifshitz transition point. Also, more analyses as-
sociated with the polarization of the softened phonon mode at
qCDW explain that instability at this point mainly involves the
in-plane displacements of the In atoms and the out-of-plane
displacements of the Se atoms at the same time.

Our desired results show that in some hole-doped cases
associated with elevated doping levels beyond the Lifshitz
transition point (+0.1, +0.2, and +0.3 e/f.u.), TCDW is much
greater than Tc, and consequently, CDW instability prevents
access to the superconductive phase, whereas for other hole
doping levels, i.e., doping levels below the Lifshitz transition
point (+0.01 and +0.04 e/f.u.) and very deep hole doping
level +0.4 e/f.u., TCDW is lower than Tc and a maximum
Tc ∼ 75 K was achieved for low hole doping levels. In the case
of very deep hole doping +0.4 and electron doping, rather
small Tc = 4 and Tc = 2 K, respectively, are obtained. The
nonadiabatic phonon effects correctly determining monolayer
InSe become dynamically stable for different carrier concen-
trations at room temperature.
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