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Hexagonal warping induced nonlinear planar Nernst effect in nonmagnetic topological insulators
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We propose theoretically an effect, i.e., the nonlinear planar Nernst effect (NPNE), in nonmagnetic topological
insulator (TI) Bi2Te3 in the presence of an in-plane magnetic field. We find that the Nernst current scales
quadratically with temperature gradient but linearly with magnetic field and exhibits a cosine dependence on
the orientation of the magnetic field with respect to the direction of the temperature gradient. The NPNE has
a quantum origin arising from the conversion of a nonlinear transverse spin current to a charge current due to
a joint result of hexagonal warping effect, spin-momentum locking, and the time-reversal symmetry breaking
induced by the magnetic field.
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I. INTRODUCTION

The three-dimensional (3D) topological insulators (TI)
[1,2] represent a new class of 3D materials, having an insu-
lating bulk and conductive surface states. The surface Dirac
electrons have their spin locked perpendicularly to their
momenta, namely, spin-momentum locking, giving rise to
highly efficient spin-to-charge conversion [3–5] and magnetic
switching [6–9], and showing great potential for application
in spintronics and quantum computation [1].

Owing to the spin-momentum-locked surface states, a
series of magnetotransport properties are identified in non-
magnetic TI film or bilayer structures composed of a
ferromagnetic layer and a nonmagnetic TI layer, includ-
ing both linear and nonlinear magnetoelectric effects, such
as nonsaturating linear magnetoresistance [10], anisotropic
magnetoresistance [11,12], negative longitudinal magnetore-
sistance [13,14], bilinear magnetoresistance [15,16], unidirec-
tional magnetoresistance [17–21], planar Hall effect [22–25],
nonlinear planar Hall effect, etc. The nonlinear planar Hall
effect was recently observed in nonmagnetic TI Bi2Se3 [26],
in which the Hall resistance is linearly dependent on both
the applied electric field and in-plane magnetic field and is
shown to originate from concerted actions of spin-momentum
locking and time-reversal symmetry breaking.

Unlike the extensive exploration of the magneoelectric
transport in TIs, only a few works have recently focused on the
magnetothermal transport. The unidirectional Seebeck effect
[27], a nonlinear magnetothermal effect, owing to the asym-
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metry magnon scattering was discovered in magnetic TIs,
in which the thermoelectric voltage from the Seebeck effect
depends on the relative orientations of in-plane magnetization
with respect to the temperature gradient.

In this paper, we report another type of nonlinear magne-
tothermal effect: the nonlinear planar Nernst effect (NPNE)
in a 3D nonmagnetic TI, i.e., Bi2Te3, in which the Nernst
current is quadratically proportional to the temperature gra-
dient and linearly proportional to the in-plane magnetic field.
NPNE manifests itself when the applied temperature gradient,
the magnetic field, and the induced transverse voltage are
all coplanar, where the conventional Nernst effect vanishes.
Unlike the recently reported topological nonlinear anomalous
Nernst effect in strained MoS2 [28] and in bilayer WTe2

[29] that origintess from Berry curvature in the absence of
a magnetic field, this nonlinear planar Nernst effect in non-
magnetic TIs is found to originate from the generation of a
transverse nonlinear spin current [Fig. 1(f)] as a second-order
response to temperature gradient, which can be converted into
a transverse nonlinear planar Nernst current [Fig. 1(g)] via an
in-plane magnetic field collinear with a temperature gradient
in the presence of the hexagonal warping effect of a 2D Fermi
contour. We believe that the proposed effect is very useful in
magnetotransport and spin caloritronics [30–35], which is an
extension and combination of spintronics and conventional
thermoelectrics, investigating the interplay between a tem-
perature gradient, spin, and charge degrees of freedom and
aiming at increasing the efficiency and versatility of spin-
involved thermoelectric devices.

The paper is organized as follows. We derive the formula
of the transverse nonlinear spin current js

y driven by a tem-
perature gradient ∇xT up to the second order based on the
Boltzmann theory in Sec. II. The expression of NPNE for
TI is derived and determined in Sec. III. The behavior of
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FIG. 1. (a) The electron distribution along arbitrary k to the first
order of the temperature gradient. (b) Illustration of the generation
of a nonequilibrium spin current js,a⊥,2

a with spin pointing in the
a⊥ direction to the second order of temperature gradient, where
a = x or y and a⊥ is orthogonal to a in 2D plane. δ f1 (δ f2) are the
corrections to the equilibrium distribution at the first (second) order
of the temperature gradient. Schematic illustration of the asymmet-
ric distortion of the Fermi contour induced by x-direction (c) and
y-direction (d) magnetic fields B. The blue dashed (yellow solid)
curves represent the Fermi contours of the surface band without
(with) external magnetic field, respectively. (e) When B ‖ x, carriers
near the Fermi surface with spin pointing along the +x axis or −x
axis can be converted into carriers with opposite spin orientation
leading to the imbalance of two spin carriers. But when B ⊥ x, the
transition between carriers with spin pointing along the +x axis or
−x axis is forbidden. (f) The generation of the nonlinear spin Nernst
current as a second-order response to the temperature gradient.
(g) Schematic illustration of the generation of the nonlinear planar
Nernst current when applying an external magnetic field parallel to
the temperature gradient.

NPNE is discussed in Sec. IV. Finally, we give a conclusion
in Sec. V.

II. NONLINEAR SPIN NERNST CURRENT IN
TOPOLOGICAL INSULATOR

With the relaxation time approximation, the Boltzmann
equation for the distribution of electrons in the absence of an
electric field can be written as

f − f0 = −τ
∂ f

∂ra
va. (1)

where τ denotes the relaxation time, and ra and va repre-
sent the a components of coordinate position and velocity

of electrons, respectively. f0 = 1/(exp [ ε(k)−E f

kBT ] + 1) is the
equilibrium Fermi distribution, where ε(k) is energy disper-

sion, E f indicates the Fermi energy and kB represents the
Boltzmann constant. The nonequilibrium distribution function
response to the second order in temperature gradient can be
expanded as f ≈ f0 + δ f1 + δ f2 with the term δ fn vanishing
as (∂T/∂ra)n. After detail derivation (see Appendix D), the
formulas of δ f1 and δ f2 can be determined by Eq. (A11).

In the absence of a magnetic field B, the effective
Hamiltonian for the surface state of topological insulator
[15,36,37] Bi2Te3 is

H0(k) = E0(k) + σ · h(k), (2)

with

h(k) = vF h̄k × ẑ + λk × ŷ
(
k2

x − 3k2
y

)
, (3)

where h̄ is the Plank constant, vF denotes the Fermi velocity, σ
indicates the Pauli matrices for the two basis functions of the
energy bands, and λ represents the energy warping parame-
ter. The spin independent term E0(k) = h̄2k2/2m∗ generates
the particle-hole asymmetry. Unlike the contribution to the
nonlinear Hall planar effect [26], the signal of the nonlinear
planar Nernst effect arising from the particle-hole asymmetry
is insignificant (the details can be found in Appendix D 2).
For simplicity and to emphasize the hexagonal warping effect,
we will neglect the particle-hole asymmetry E0(k) in the main
text. The second term is the hexagonal warping term which is
invariant under threefold rotation C3v . H0(k) is invariant under
the following two operators: 1() mirror reflection Mx about the
y-z plane, and (2) threefold rotation C3 about the z axis. The
energy eigenvalues

ε0
n (k) = n

√
(vF h̄k)2 + λ2k6 cos2 3φk, (4)

where ε0
n=+1(−1) denotes the energy dispersion of upper

(lower) surface bands, respectively, and φk is the azimuthal an-
gle of wave vector k with respect to the kx axis. In the absence
of a magnetic field, the time-reversal symmetry is guaranteed,
which requires that the energy dispersion respects ε0

n (k) =
ε0

n (−k) and the mirror symmetry Mx imposes the constraint
ε0

n (kx, ky) = ε0
n (−kx, ky). Both constraints on the energy dis-

persion also imply the relation ε0
n (kx, ky) = ε0

n (kx,−ky ). In
the following, the upper surface band, namely, n = 1, will
be considered and ε0

n=1(k) is written as ε0
k for simplicity. The

lower surface bands can be analyzed in a similar way.
The spin current js,b

a in the a direction with spin pointing
in the b direction is given by

js,b
a = h̄

2

∫
[dk]〈σ b〉va(k) f (k), (5)

where
∫

[dk] is shorthand for
∫

dk/(2π )2, and the average
〈· · · 〉 is carried out over the surface state of the upper (lower)
band and can be replaced by 〈σ b〉 = nhb(k)/h with h(k) de-
fined by Eq. (3).

In the absence of a magnetic field, the time-reversal sym-
metry guarantees that the energy dispersion is even in k, i.e.,
ε0(k) = ε0(−k), which hints that the nonequilibirum elec-
tron distribution δ f1 ∼ [(εk − E f )∂ f0/∂ka]∂aT [Eq. (A11)] in
the first order of temperature gradient ∂aT is odd in k, i.e.,
δ f1(−k) = −δ f1(−k), as shown in Fig. 1(a). In other words,
if the nonequilibrium surface states in (k, σ ) in excess (de-
pleted) due to the first-order variation of temperature gradient,
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then the surface states with opposite momentum and spin will
be depleted (in excess), which gives no contribution to the spin
Nernst current.

In contrast, the second-order nonequilibrium electron dis-
tribution δ f2(k) is even in k. Hence, the nonequilibrium
surface states’ responses to the second order of temperature
gradient with opposite momentum and opposite spins (due to
the spin-momentum locking) are equally populated, as shown
in Fig. 1(b), which leads to a nonzero nonlinear spin current
js,a⊥
a with spin orientation in the a⊥ direction due to the spin-

momentum locking, namely, the spins of topological surface
states are locked perpendicular to their momenta. Therefore,
when applying the temperature gradient in x-direction, only
nonlinear spin Nernst current js

nl (where the subscript “nl” and
superscript “s” refer to nonlinear and spin, respectively) with
spin pointing in the x direction gives rise to a transverse spin
current in the y direction and is found to be

[js
nl ]

x
y = τ 2h̄

2

∫
[dk]

(αh̄ky)

ε0
k

[
ε0

k − μ

T 2h̄
vyvx

∂ f0

∂kx

+
(

ε0
k − μ

h̄T

)2

vy
∂2 f0

∂k2
x

]
(∂xT )2, (6)

where y and x in [js
nl ]

x
y indicate the movement direction of the

carrier and the spin orientation, respectively. This nonlinear
spin Nernst current originating from the topological surface
states could be a source of spin injection and spin current
generation in future applications of spin caloritronics.

A set of constant energy contours of H0(k) are be obtained,
as plotted in Fig. 2(c), where we have taken λ = 250 eV Å3

and vF h̄ = 2.25 eV Å for Bi2Te3 [36]. When the Fermi energy
gets close to the Dirac point (E = 0 eV), the Fermi surface
manifests itself as a circle and the warping effect is not appar-
ent. The Fermi surface starts to deviate considerably from a
circle and becomes more hexagonalike around E = 0.2 eV.

Figures 2(a) and 2(b) illustrate the dependence of nonlinear
spin Nernst current (NSNC) [js

nl ]
x
y on the Fermi energy and

the hexagonal warping effect. A larger [js
nl ]

x
y can be gener-

ated by increasing the hexagonal warping parameters and the
absolute value of the Fermi energy in which the hexagonal
warping effect will be enhanced. An interesting finding is
that, in addition to the contribution of the hexagonal warp-
ing term, the linear-k Dirac dispersion (λ = 0) can also give
rise to the signal of nonlinear spin Nernst current, which is
distinct from the electric-field-induced nonlinear spin Hall
current[26]. This can explain why the NSNC is nonzero when
the energy is in the range of [0 eV, 0.2 eV] [Fig. 2(a)], in
which the trigonal warping effect is insignificant [Fig. 2(c)].
However, the signal of NSNC originating from the linear-k
Dirac dispersion cannot be converted into the nonlinear planar
Nernst current when the Fermi energy is away from the Dirac
point (see the details in Sec. III and Appendix D 1).

III. NONLINEAR PLANAR NERNST EFFECT IN A
TOPOLOGICAL INSULATOR

In the absence of a magnetic field, the carriers with op-
posite spins are equally populated and move in opposite
directions in the transverse direction (y direction) [Fig. 1(f)].

FIG. 2. The nonlinear spin Nernst current [ js
nl ]

x
y dependent

on Fermi energy Ef and hexagonal warping parameter λ.
(a) 2e

h̄ [ js
nl ]

x
y/(∇xT )2 versus Ef in the presence and absence of the

hexagonal warping effect. (b) 2e
h̄ [ js

nl ]
x
y/(∇xT )2 versus λ for differ-

ent Fermi energies. The unit of the vertical axis in (a) and (b) is
nA μm/K2. (c) Energy contour of ε0

k for Bi2Te3. kx and ky axes are
in units of 1 Å. (d) Schematic depiction of the band structure for the
surface states of topological insulator Bi2Te3.

Hence, there is no charge current flux vertical to the temper-
ature gradient. However, when applying an in-plane magnetic
field to the topological insulator, because of the spin-
momentum locking, the Fermi surface will be distorted in the
direction perpendicular to the magnetic field [Figs. 1(c) and
1(d)] due to the hexagonal warping term, which leads to the
imbalance between the two spin fluxes of the spin current and,
thus, the spin current is partially converted into the nonlinear
planar Nernst current (NPNC) [Fig. 1(g)].

It should be emphasized that the successful conversion
from the spin current into NPNC is ensured by the hexagonal
warping effect. If there is no hexagonal warping term, i.e., λ =
0, the energy dispersion turns into the linear-k Dirac disper-
sion and the Fermi surface returns to a circle. Previous studies
[20,27] show that, instead of being distorted, the whole linear
dispersion will shift in the momentum space when applying
an in-plane magnetic field. Thus, the spin population will
stay the same and the two spin fluxes still keep the balance,
hinting that there is no NPNC in this case. However, one might
notice that there is very weak signal [almost 500 times smaller
than the sign from the warping effect; see Fig. 3(a)] stemming
from the linear dispersion when the Fermi energy is located
near Dirac point within 10kBT . This weak signal can be at-
tributed to the temperature broadening effect (see Appendix
D 1 for a detailed discussion).
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FIG. 3. The nonlinear planar coefficient (NPC) Qyxxx [(a) and (c)]
as a function of Fermi energy for different temperatures and different
energy warping parameters λ. (b) Qyxxx (T )/Q0

yxxx versus temperature.
Q0

yxxx is the NPC for T = 300 K. (d) Qyxxx as a function of λ at
different Fermi energies. The energy warping parameter λ is taken
to be 250 eV Å3 in (a) and (b). T = 30 K is fixed in (c) and (d).
Parameters used: vF h̄ = 2.25 eV Å, g = 2, and τ = 5.864 × 10−13 s.
Here, all parameters are taken from topological insulator Bi2Te3.

In the presence of a magnetic field B, the effective Hamil-
tonian for the surface state of topological insulator Bi2Te3 [36]
is given by

H (k) = σ · [h(k) + gμBB], (7)

where g and μB represent the g- actor and Bohr magneton,
respectively. The energy eigenvalues are

εM
n (k) = n|h(k) + gμBB|. (8)

In the following, we shall consider the upper surface bands,
namely n = 1, and write εM

n=1(k) as εM
k for simplicity. The

lower surface bands can be analyzed in a similar way.
The charge current ja in the a direction is ja =

−e
∫

[dk]va f (r, k). After the tedious derivation in Ap-
pendix B, the currents j (1)

a and j (2)
a as the first-order and

second-order responses to the temperature gradient in the
first-order approximation of the magnetic field are found,
respectively, to be

j (1)
a =

∑
b

Gab∂bT +
∑

bc

Kabc∂bT Bc,

j (2)
a =

∑
bc

Wabc∂bT ∂cT +
∑
bcd

Qabcd∂bT ∂cT Bd ,
(9)

where the relation ∂εM
k /∂Bd = gμB∂εM

k /∂hd has been ap-
plied. Explicit expressions for the linear current response
(Gab, Kabc) and nonlinear response function (Wabc, Qabcd ) are
given in Eqs. (B4) and (B5).

TABLE I. Parity about kx or ky for Dirac dispersion of a topolog-
ical insulator in the absence of a magnetic field.

Function Parity for kx Parity for ky

ε0
k even even

vx odd even
vy even odd
∂ f0
∂kx

odd even
∂ f0
∂ky

even odd

Through exploiting the parity in Table I, one can find the
following tensor elements are zero:

Gxy = Gyx = 0,

Kabc = 0, Wabc = 0, a, b, c = x, y,

Qxyyx = Qxyxy = Qxxyy = Qxxxy = 0,

Qyxxy = Qyxyx = Qyyxx = 0, (10)

which suggest that, when applying an in-plane magnetic field
B = B(cos θ, sin θ ) and temperature gradient ∂xT along the x
direction (i.e., b = c = x), the planar Nernst effect j (1)

a dis-
appears in Bi2Te3 and has no contribution to the transverse
thermal voltage signal. And the current density j (2)

y flowing
along the y direction (i.e., d = y) as the response to the second
order in temperature gradient stems from the nonlinear planar
Nernst current density jp

nl (where the subscript “nl” and su-
perscript “p” denote nonlinear and planar, respectively) and is
found to be

j (2)
y = jp

nl = (Qyxxx cos θ + Qyxxy sin θ )(∂xT )2B

= Qyxxx cos θ (∂xT )2B, (11)

where the nonlinear planar coefficient Qyxxx is given as

Qyxxx = −eτ 2guB

αT 2h̄2

∫
[dk]

[
∂ f0

∂ε0
k

h̄2ϒ1 + (
ε0

k − μ
)

×
(

∂ f0

∂ε0
k

h̄ϒ2 + 3
∂2 f0

∂ (ε0
k )2 h̄2ϒ1

)
+ (

ε0
k − μ

)2

(
∂ f0

∂ε0
k

ϒ3 + ∂2 f0

∂ (ε0
k )2 h̄ϒ4 + ∂3 f0

∂ (ε0
k )3 h̄2ϒ1

)]
, (12)

where the coefficients ϒ1, ϒ2, ϒ3, and ϒ4 are given
in Eq. (B8).

IV. RESULTS AND DISCUSSION

Equation (11) indicates that the nonlinear planar current jp
nl

exhibits cos θ dependence on the orientation of magnetic field
and is proportional to the x component of the magnetic field
Bx ∝ B cos θ . Thus, when the magnetic field is collinear with
the temperature gradient (i.e., θ = 0, π, 2π ), the magnitude
of | jp

nl | will reach its maximum. However, the nonlinear
planar Nernst effect will disappear when the magnetic field
B is vertical to the temperature gradient. These features of
the nonlinear planar Nernst current depending on the orienta-
tion of magnetic field can be ascribed to the spin-momentum
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FIG. 4. (a) The conversion rate (black solid line) of nonlinear
spin current (NSC) js

nl to nonlinear planar Nernst current j (2)
y and

js
nl (red dash-dot-dotted line) against the Fermi energy Ef . (b) The

conversion of js
nl − js,′′

nl to nonlinear planar Nernst current vs Fermi
energy Ef . js

nl involves both contributions from hexagonal warping
effect and linear Dirac dispersion. js,′′

nl represents the NSC stemmed
from the linear-k Dirac dispersion, namely the nonlinear spin current
for λ = 0. Thus, js

nl − js,′′
nl denotes the hexagonal-warping-effect-

induced NSC.

locking. As shown in Fig. 1(f) and discussed in Sec. II, the
spin orientation in the nonlinear spin Nernst current gener-
ated by temperature gradient ∇xT is along the x direction.
Therefore, only the x component of the magnetic field can
lead to a transition between the two spin currents and induce
the imbalance of two spin carriers [Fig. 1(e)]. As a result the
nonlinear spin Nernst current will be partially converted to
nonlinear planar Nernst current [Figs. 1(f) and 1(g)].

We use the following parameters for Bi2Te3: the Fermi ve-
locity vF h̄ = 2.25 eV Å, g = 2; and the scattering relaxation
time τ ≈ 5.864 × 10−13 s is estimated by τ = μm/e. The
mobility of surface states in Bi2Te3 can range from 9 × 103

to 104 cm2V−1s−1 [38]; μ = 9000 cm2V−1s−1 is used for an
estimation.

It’s observed that a very weak signal appears near the
Dirac point with a few kBT , and Qyxxx is almost zero when
the energy is in the range of [0, 0.2] eV, as expected, since
the trigonal warping effect is insignificant and the Fermi sur-
face almost displays like a circle [Fig. 2(c)] in this range. The
appearance of a faint signal at the Dirac point can be attributed
to the thermal broadening effect of the nonequilibrium Fermi
distribution near the Dirac point for the linear-k Dirac disper-
sion (the details can be found in Appendix D 1). Besides, one
might notice that the signal of Qyxxx is still quite weak when
the Fermi energy is in the range of [0.2, 0.4] eV, a regime
where a warped Fermi surface is present [Fig. 2(c)]. This
can be attributed to the low conversion efficiency from the
nonlinear spin to charge current (Fig. 4). However, when the
absolute value of Fermi energy |E f | is increased sufficiently,
the trigonal warping effect will become profound and lead to
a large enhancement of the nonlinear planar Nernst effect. It
is interesting to note that the impact of varying temperature
is negligible [Figs. 3(a) and 3(b)] when Fermi energy is away
from the Dirac point. Figures 3(c) and 3(d) present the Fermi
energy and hexagonal warping dependence of Qyxxx. The mag-
nitude of Qyxxx increases monotonically with the enhanced
energy warping parameter λ. As expected, when λ tends to
zero, the nonlinear planar Nernst effect will disappear.

To numerically estimate the proposed effect, we take
Qyxxx ≈ 0.8 nA μm/T K2 [Fig. 3(b)] for T = 3 K and E f =
0.5 eV. In experiment, the temperature gradient can already
reach 1 K μm−1 [39]. Therefore, when applying the magnetic
field B = 3 T parallel to temperature gradient, the nonlinear
planar Nernst current jp

nl × l [Eq. (11)] of Bi2Te3 is estimated
to be of order 0.16 μA with the length of sample l = 50 μm,
which is measurable.

Rashba-split surface states in a two-dimensional electron
gas (2DEG) [40–42] [Fig. 7(d)] might coexist with topolog-
ical surfaces states (TSS) due to the surface band bending
in topological insulators, which may also have a significant
contribution to the nonlinear planar Nernst effect. However,
it is found that only when the Fermi energy locates near the
Lifshitz point within a few kBT , a very weak signal (100 times
smaller than the signal arising from TSS) can be generated
(see the details in Appendix D 3). Therefore, the contribution
of Rashba 2DEG to NPNE can be neglected.

V. CONCLUSION

In summary, we propose an effect, i.e., the nonlinear pla-
nar Nernst effect (NPNE) in this work. It is found that a
nonlinear spin-Nernst current, originating from the hexagonal
warping effect and the nonequilibrium carrier distribution,
flows transversely to the temperature gradient direction and
can be partially converted into the nonlinear planar Nernst
current jp

nl when an in-plane magnetic field is applied to a TI.
The quantity of jp

nl is strongly dependent on the orientation
of the magnetic field. When the in-plane magnetic field is
collinear to the temperature gradient, | jp

nl | will reach its max-
imum. However, jp

nl becomes zero when the magnetic field
is perpendicular to the temperature gradient. The magnitude
of NPNE is strongly affected by the hexagonal warping term
and the Fermi energy. Except for a very faint signal of NPNE
appearing near the Dirac point within a few kBT due to the
temperature broadening effect, when the Fermi level is close
to the Dirac point, the signal of the NPNE mostly disappears
due to the weak hexagonal warping effect. However, when
enlarging the value |E f | sufficiently, the NPNE rapidly in-
creases owing to the profound hexagonal warping effect. The
nonlinear planar Nernst effect proposed here might also occur
in other noncentrosymmetric materials with strong spin-orbit
coupling and nontrivial spin textures. Therefore, our findings
have great potential for application in magnetothermal trans-
port and spin caloritronics, and might pave a new way to the
emerging field of nonlinear spin caloritronics.

ACKNOWLEDGMENTS

This work is supported by the Fundamental Research
Funds for the Central Universities and the NSFC (Grant
No. 12004107). G.S. and Z.G.Z. are supported in part
by the National Key R&D Program of China (Grant No.
2018YFA0305800), the Strategic Priority Research Program
of CAS (Grants No. XDB28000000 and No. XDB33000000),
the NSFC (Grant No. 11834014), and the Beijing Mu-
nicipal Science and Technology Commission (Grant No.
Z118100004218001). Z.G.Z. is also supported in part by the
NSFC (Grants No. 11674317 and No. 11974348).

035410-5



XIAO-QIN YU, ZHEN-GANG ZHU, AND GANG SU PHYSICAL REVIEW B 103, 035410 (2021)

APPENDIX A: THE NONEQUILIBRIUM DISTRIBUTION
FUNCTION IN THE PRESENCE OF TEMPERATURE

GRADIENT

With the relaxation time approximation, the Boltzmann
equation for the distribution of electrons in the absence of an
electric field can be written as

∂ f

∂ra
· va + e

h̄
(�v × �B) · ∂ f

∂�k = − f − f0

τ
. (A1)

In two-dimensional (2D) transport, the Lorentz force has no
contribution to the electron dynamics for the in-plane mag-
netic field because of (�v × �B) · ∂ f

∂�k = 0. Thus, in the presence
of an in-plane magnetic field the Boltzmann equation in
Eq. (A1) for 2D transport can be further simplified as

f − f0 = −τ
∂ f

∂ra
· va. (A2)

To the response up to the second order in temperature gradient
∇T , the local distribution function f (r, k) can be expanded as

f (k, r) = f0(k, r) + Aa
∂T

∂ra
+ Baβ

∂T

∂ra

∂T

∂rb
+ O[3]

≈ f0(k, r) + δ f1(∂aT ) + δ f2(∂aT ∂bT ), (A3)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ f1(∂aT ) = Aa∂aT,

δ f2(∂aT ∂bT ) = Bab∂aT ∂bT,

∂a → ∂

∂ra
,

(A4)

where f0(k, r) is the local equilibrium distribution, which is
itself fixed by the temperature at r [43], giving

∂ f0

∂ra
= ∂ f0

∂T

∂T

∂ra
= − (εk − μe)

T

∂ f0

∂εk

∂T

∂ra
. (A5)

Substituting the formula of f in Eq. (A3) into Eq. (A2) and
comparing the expansion coefficients in the first order of ∂aT ,
one obtains

δ f1(∂aT ) = − τ
∂ f0

∂ra
· va + O[∂aT ∂bT ]. (A6)

Thus, we can have

δ f1(∂aT ) = −τ
∂ f0

∂T
∂aT · va. (A7)

By iteration, then, we can have

δ f2(∂aT ∂bT ) = −τ
∂δ f1

∂ra
· va

= τ 2

(
∂2 f0

∂2T
∂aT ∂bT + ∂ f0

∂T
∂abT

)
vbva. (A8)

Here, we introduce a trick to transform ∂ f0

∂T into ∂ f0

∂k through
a partial differential treatment,

∂ f0

∂k
= ∂ f0

∂εk
· ∂εk

∂k
= −∂ f0

∂T

h̄vT

(εk − μe)
. (A9)

In the above, we have used the relation ∂ f0

∂T = − (εk−μe )
T

∂ f0

∂εk

and ∂εk
∂k = h̄v.

From Eq. (A9), it is easily to obtain the following
identities:

∂ f0

∂T
· va = −εk − μe

h̄T

∂ f0

∂ka
,

∂2 f0

∂T 2
vavb = Ek −μe

h̄T 2

∂ f0

∂ka
vb+

(Ek −μe

h̄T

)2 ∂2 f0

∂ka∂kb
. (A10)

Taking these identities into the formulas of δ f1 [Eq. (A7)] and
δ f2 [Eq. (A8)] and assuming a uniform temperature gradient
in the system, i.e., ∂abT = 0, one obtains

δ f1 = τ

T h̄
(εk − μe)

∂ f0

∂ka
∂aT,

δ f2 = τ 2

T 2h̄2

(
h̄vb

∂ f0

∂ka
+ (εk − μe)

∂2 f0

∂ka∂kb

)

× (εk − μe)∂aT ∂bT .

(A11)

APPENDIX B: THE FORMULA OF NONLINEAR PLANAR
CURRENT FOR A TOPOLOGICAL INSULATOR

Based on Eq. (A11), one can determine the charge current
ja = −e

∫
[dk]va f (r, k) in the a direction as the first-order

and second-order responses to the temperature gradient, re-
spectively, as

j (1)
a = −τe

∫
[dk]

εk − μ

T h̄
va

∂ f0

∂kb
∂bT,

j (2)
a = −τ 2e

∫
[dk]

[
εk − μ

T 2h̄
vavb

∂ f0

∂kc

+
(εk − μ

h̄T

)2

va
∂2 f0

∂kb∂kc

]
∂bT ∂cT . (B1)

In the presence of a magnetic field, the energy dispersion
εM

n (k) for nonmagnetic topological insulator Bi2Te3 is given
in Eq. (8). We only consider the upper surface band, and
write εM

n (k) as εM
k . One can find ∂εM

k /∂Bd = guB∂εM
k /∂hd ,

which hints

∂F
(
εM

k

)
∂Bd

= guB
∂F

(
εM

k

)
∂hd

. (B2)

Therefore, to the first order of magnetic field, the currents
j (1)
a and j (2)

a in Eq. (B1) are found to be

j (1)
a =

∑
b

Gab∂bT +
∑

bc

Kabc∂bT Bc,

j (2)
a =

∑
bc

Wabc∂bT ∂cT +
∑
bcd

Qabcd∂bT ∂cT Bd , (B3)
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with

Gab = − τe

h̄T

∫
[dk]

(
ε0

k − μ
)
va

∂ f0

∂kb
,

Kabc = −τeguB

h̄T

∫
[dk]

[
va

∂ε0
k

∂hc

∂ f0

∂kb
+ (

ε0
k − μ

)(∂va

∂hc

∂ f0

∂kb
+ va

∂2 f0

∂hc∂kb

)]
,

Wabc = − τ 2e

T 2h̄2

∫
[dk]va

[(
ε0

k − μ
)
h̄vb

∂ f0

∂kc
+ (

ε0
k − μ

)2 ∂2 f0

∂kb∂kc

]
, (B4)

Qabcd = −τ 2eguB

T 2h̄2

∫
[dk]

[(
ε0

k − μ
)2

(
∂2 f0

∂kb∂kc

∂va

∂hd
+ va∂

3 f0

∂kb∂kc∂hd

)
+ ∂ε0

k

∂hd
h̄vavb

∂ f0

∂kc
+ 2

(
ε0

k − μ
) ∂ε0

k

∂hd
va

∂2 f0

∂kb∂kc

+(
ε0

k − μ
)
h̄

(
∂2 f0

∂kc∂hd
vavb + ∂ f0

∂kc

∂va

∂hd
vb + ∂ f0

∂kc

∂vb

∂hd
va

)]
. (B5)

To obtain Eqs. (B4) and (B5), we have used the rela-

tion ∂F (εM
k )

∂Bd
= guB

∂F (εM
k )

∂hd
with hd (d = x, y, or z), and ε0

k =
|h(k)| is the eigenvalue for the effective Hamiltonian H (0) =
σ · h(k). According to the formula for h(k) in Eq. (3), one
can obtain

∂

∂hx
= ∂

(αh̄ ∂ky)
,

∂

∂hy
= ∂

(αh̄ ∂kx )
. (B6)

When applying an in-plane magnetic field B =
B(cos θ, sin θ ) and temperature gradient ∂xT along the x
direction (i.e., b = c = x), the planar Nernst current density
j (1)
y and nonlinear planar Nernst current density j (2)

y in the y
direction (i.e., d = y), as the responses to the first order and
the second order in temperature gradient, are found to be,
respectively,

j (1)
y = [Kyx∂xT + (Kyxx cos θ + Kyxy sin θ )B]∂xT

= 0,

j (2)
y = [Wyxx +(Qyxxx cos θ+Qyxxy sin θ )B](∂xT )2

= Qyxxx cos θ (∂xT )2B. (B7)

To obtain Eq. (B7), we have used the Eqs. (10). Taking a =
y, b = c = d = x into Eq. (B5) and, meanwhile, using the
relation in Eq. (B6), the quantity Qyxxx can be determined and
is given in Eq. (12). And the coefficients (ϒ1, ϒ2, ϒ3, and ϒ4)
in Eq. (12) are found to be

ϒ1 = v2
x v

2
y ,

ϒ2 = 2vyvxvxy + 2vxxv
2
y + v2

x vyy,

ϒ3 = vxxvyy + vxxyvy,

ϒ4 = (
v2

x vyy + 2vxvyvxy + v2
y vxx

)
. (B8)

va = ∂ε0
k/(h̄∂ka) denotes the a component of electron veloc-

ity in the absence of a magnetic field. Here, for simplicity, the
coefficients vab = ∂va/∂kb and vabc = ∂va/∂kb∂kc have been
introduced. In the polar coordinate system (k,φk), where φk is
the polar angle measured from the kx axis, one can obtain

ε0
k =

√
ε2

1 + η2ε6
1 cos2 3φk, (B9)

where ε1 = vF h̄k and η = λ/(vF h̄)3. For vx,

vx = vF ε1[cos φk + 1.5η2ε4
1 (cos φk + cos 5φk )]

ε0
k

, (B10)

For vy,

vy = vF ε1[sin φk + 1.5η2ε4
1 (sin φk − sin 5φk )]

ε0
k

, (B11)

For vxx, vxy, vyy, and vxxy,

vxx = ξk
[
6ζ 2 cos4 φk (2 cos 2φk − 1)3 + sin2 φk

+ ζ (3.5 + 1.5 cos 2φk + 6 cos 4φk − cos 6φk )
]
,

vxy = ξk

[
−6ζ 2 cos 3φk sin φk − 1

2
sin 2φk

+1.5(sin 2φk − 4 sin 4φ)ζ

]
,

vyy = ξk cos2 φk
[−6ζ 2 cos2 φk (2 cos 2φk − 1)3

+ 1 + ζ (15 − 16 cos 2φk − 4 cos 4φk )
]
,

vxxy = ε1ξk

(ε0
k)

2

[
48ζ 2 cos6 φksin φk

(
cos4 φk −9 sin4 φk

)

+ζ

8
(35 sin φk − 162 sin 3φk + 26 sin 5φk

+7 sin 7φk ) + 1

4
(3 sin 3φk − sin φk )

]
.x (B12)

with ξk = v2
F h̄ε2

1/(ε0
k )3 and ζ = η2ε4

1 .

APPENDIX C: THE CONVERSION RATE FROM
NONLINEAR SPIN TO CHARGE CURRENT

Figure 4 illustrates the conversion rate from the nonlinear
spin to charge current. One might observe that an unexpected
peak appeared around E f = 0.21 eV [black line in Fig. 4(a)],
in the regime where the nonlinear spin current js

nl is almost
zero and the warping effect is inapparent. The appearance
of peak feature is actually reasonable since the nonlinear
spin current js

nl = js,′
nl + js,′′

nl can be regarded as the sum of
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FIG. 5. (a) The nonlinear planar coefficient (NPC) Qyxxx from the
linear-k Dirac dispersion as a function of Fermi energy for different
temperatures. (b)The nonlinear spin Nernst current [ js

nl ]
x
y against

Fermi energy Ef . (c),(d) Schematic depiction for the generation of
nonlinear planar Nernst effect from linear-k Dirac dispersion. (e)
Q′

yxxx (εk ) vs εk .

hexagonal-warping-induced nonlinear spin current js,′
nl and

js,′′
nl from the linear-k Dirac dispersion.

The nonzero js,′′
nl cannot be converted into the nonlinear

charge current around E f = 0.21 eV but the nonzero js,′
nl could

give rise to a faint signal of charge current, leading to a peak
feature of conversion rate for | j (2)

y / js
nl |. When subtracting the

js,′′
nl from the nonlinear spin current js

nl , the peak feature dis-
appears and the conversion rate increases monotonically with
the increase of Fermi energy [Fig. 2(b)], as expected, since the
hexagonal warping effect is enhanced with increasing Fermi
energy.

APPENDIX D: THE OTHER POSSIBLE CONTRIBUTIONS
TO NPNE

1. The contribution of linear dispersion near the Dirac point
within a few kBT

In this section, the faint signal (Fig. 5) arising from the
linear dispersion near the Dirac point within a few kBT will
be analyzed. Setting the involved hexagonal warping term to
zero (i.e., λ = 0) in quantities ϒ1, ϒ2, ϒ3, and ϒ4 and combin-
ing with a tedious derivation, the nonlinear planar coefficient
Qyxxx [Eq. 12] originating from the linear dispersion can be
determined as

Qyxxx = πeτ 2gμBvF

4T 2h̄2

∫
dεk[Q1(εk ) + E f Q2(εk )], (D1)

where

Q1(εk ) = (εk − E f )

(
7
∂ f0

∂εk
+ Q2(εk )

)
+ 4(εk − E f )2 ∂2 f

∂ε2
k

,

Q2(εk ) = ∂ f0

∂εk
+ 3(εk − E f )

∂2 f0

∂ε2
k

+ (εk − E f )2 ∂3 f0

∂ε3
k

. (D2)

The quantities Q1(εk ) and Q2(εk ) are essentially zero when
the energy is beyond the range of [E f − 10kBT, E f + 10kBT ].
When the Fermi level is larger than 10kBT [Fig. 5(d)], the
term Q1(εk ) will have no contribution to the nonlinear planar
Nernst effect owing to the antisymmetry property, namely
Q1(εk + E f ) = −Q1(εk − E f ) [Fig. 5(d)]. For Q′′(εk + E f )
term, although it is an even function of εk , it satisfies

∫ E f +10kBT

E f

dεkQ2(εk ) =
∫ E f

E f −10kBT
dεkQ2(εk ) ≈ 0. (D3)

Thus, when Fermi energy is larger than 10kBT , Q2(εk ) also
has no contribution to Qyxxx. This is consistent with the result
in the main text that the signal of nonlinear spin current origi-
nating from the linear-k Dirac dispersion will not be converted
into the nonlinear planar Nernst current.

Next, let us analyze the appearance of the weak signal near
the Dirac point within a few kBT , namely E f < 10kBT . In
this regime, the contribution of E f Q2(εk ) term in Eq. (D1)
to the nonlinear planar Nernst coefficient Qyxxx can be ne-
glected since E f can be viewed as a small quantity (kBT ≈
2.5 meV for T = 30 K). The contribution to the nonlinear
planar Nernst effect mainly come from Q′(εk ). Figure 5(a)
shows the variation of Q′(εk ) towards energy εk . When the
Fermi energy is located in the range of [0, 10kBT ], there are no
states in the range of [E f − 10kBT, 0] eV for the upper band.
Therefore, the depleted or excessive carriers below the Fermi
energy due to the second-order variation of temperature gra-
dient and magnetic field are no longer equal to the excessive
or depleted carriers above the Fermi energy. As a result, the
carries are no longer in balance and lead to a weak signal of
the nonlinear planar Nernst coefficient. Thus, the appearance
of the weak signal from the linear-k Dirac dispersion could,
physically, be attributed to the temperature broadening effect
of the nonequilbirum Fermi distribution near the Dirac point.

2. Contribution of the particle-hole asymmetry

In this section, we will discuss the contribution of the
particle-hole asymmetry, namely the E0(k) = h̄2k2

2m∗ term, to
the nonlinear planar Nernst effect (NPNE). Unlike the con-
tribution of particle-hole asymmetry to the nonlinear planar
Hall effect (NPHE) in which the contributions related to
particle-hole asymmetry and hexagonal warping are the same
order of magnitude, we shall show below that the indepen-
dent contribution of the particle-hole asymmetry to NPNE
is insignificant. Explicitly, we start with the following model
Hamiltonian without hexagonal warping effect for a topologi-
cal insulator in the presence of the in-plane magnetic field H:

H ′ = h̄2k2

2m∗ + vF h̄σ · (k × ẑ) + guBσ · H, (D4)

The energy eigenvalues are

εM
n = h̄2k2

2m∗ + n
√

(vF h̄k)2 + 2vF h̄guBH · (k × ẑ) + (guBH )2,

(D5)
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FIG. 6. The nonlinear planar coefficient Qyxxx (a) and the nonlin-
ear spin Nernst current [ js

nl ]
x
y (b) of the upper band as a function

of Fermi energy with or without particle-hole asymmetry (PHA).
Inset: Qyxxx vs Ef near the Dirac point. Parameters are T = 30 K,
vF h̄ = 2.25 eV Å, m∗ = 0.09m, g = 2, and τ = 5.864 × 10−13 s.
Here, all parameters are taken from topological insulator Bi2Te3.

and the corresponding energy ε0
k in Eq. (12) without the per-

turbation of magnetic field for the upper band is

ε0
k = η2

2
ε2

1 + ε1, (D6)

where η2 = ( h̄2

m∗ )/(vF h̄)2 and ε1 = vF h̄k. Thus, the corre-
sponding quantities [vx, vy, vxx, vyy, vxy, vxxy] in Eq. (B8) are
found to be

vx = vF cos φk (1 + η2ε1),

vy = vF sin φk (1 + η2ε1),

vxx = v2
F h̄

(
sin2 φk

ε1
+ η2

)
,

vyy = v2
F h̄

(
cos2 φk

ε1
+ η2

)
,

vxy = v2
F h̄

(
− sin 2φ

2ε1
+ η2

)
,

vxxy = v2
F h̄

4ε2
1

(3 sin 3φk − sin φk ). (D7)

With Eqs (B8) and (D7), the nonlinear planar Nernst coef-
ficient (NPNC) Qyxxx [Eq. (12)] quantizing the NPNE can
be determined. Figure 6(a) shows the variation of Qyxxx as a
function of Fermi energy with or without particle-hole asym-
metry (PHA) h̄2k2/2m∗. It is found that presence or absence
of the particle-hole asymmetry makes no difference to the
magnitude of Qyxxx [Fig. 6(a)] in Bi2Te3, which means that
the particle-hole asymmetry cannot independently give rise to
NPNE that is distinct from the nonlinear planar Hall effect.
In fact, the weak signal appearing near the Dirac point within
25 meV (∼10kBT for T = 30 K) originated from the linear-k
Dirac dispersion and was induced by the thermal broadening
effect (see details in Sec. D 1). Parameters are, for Bi2Te3, the
Fermi velocity vF h̄ = 2.25 eV Å and m∗ = 0.09me [44,45],
where me is the free electron mass.

FIG. 7. The nonlinear planar coefficient Qyxxx (a) and the non-
linear spin Nernst current [ js

nl ]
x
y (b) from the Rashba-split surface

states in two-dimensional electron gas (2DEG) as a function of Fermi
energy. The red dashed line and the blue dotted line are the contribu-
tions from upper n = +1 and lower n = −1 subbands, respectively.
The black solid line is the sum of the two contributions. (c) Qyxxx

vs Ef for different temperature. (d) Schematic depiction of the band
structures for the surface states of topological insulators, where the
shaded part indicates the Rashba 2DEG due to the surface band
bending. T = 30 K is fixed in (a) and (b). Parameters are m∗

e = 0.2me

with the bare mass of an electron me, αR = 0.5 eV Å, and g = 2.

3. Contribution of the Rashba 2DEG

Due to the surface band bending in topological insulators,
a Rashba-split surface states in two-dimensional electron gas
(2DEG) [Fig. 7(d)] might coexist with topological surfaces
states (TSS). To theoretically investigate the contribution of a
Rashba to nonlinear planar Nernst effect, we begin with the
following model Hamiltonian:

H ′ = u0 + h̄2k2

2m∗
R

+ αRh̄σ · (k × ẑ) + guBσ · H, (D8)

where m∗
R represents the effective mass, u0 is the chemical

potential, and αR denotes the strength of the Rashba spin-
orbit coupling. The nonlinear planar Nernst coefficient Qyxxx

[Eq. (12)] with an in-plane magnetic field and spin Nernst
current [ js

nl ]
x
y without a magnetic field as the second-order

response to temperature gradient can be obtained accordingly
based on the Hamiltonian (D8) in the same manner as in
Appendix D 2.

Figure 7(a) shows the contributions of the n = +1 and
n = −1 subbands (namely, the inner and outer Fermi contours
of a Rashba 2DEG) to the nonlinear planar Nernst effect.
It is found that only when the Fermi energy is located near
the Lifshitz point [Fig. 7(d)] within a few kBT [Figs. 7(a)
and 7(c)], a nonzero Qyxxx can be generated and is almost
100 times smaller than the signal from TSS. In fact, the
appearance of this faint signal might be attributed to the
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temperature broadening effect, like the signal stemming from
the linear-k Dirac dispersion (see details in Appendix D 1).
When modulating Fermi energy away from the Lifshitz point,

the nonlinear planar Nernst effect disappears since there is
no nonlinear spin current converted into charge current for
both subbands.
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