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Plasmonic lattice Kerker effect in ultraviolet-visible spectral range
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Mostly forsaken, but revived after the emergence of all-dielectric nanophotonics, the Kerker effect can be
observed in a variety of nanostructures from high-index constituents with strong electric and magnetic Mie
resonances. A necessary requirement for the existence of a magnetic response limits the use of generally
nonmagnetic conventional plasmonic nanostructures for the Kerker effect. In spite of this, we demonstrate here
the emergence of the lattice Kerker effect in regular plasmonic Al nanostructures. Collective lattice oscillations
emerging from the delicate interplay between Rayleigh anomalies and localized surface plasmon resonances
both of electric and magnetic dipoles, and electric and magnetic quadrupoles result in suppression of the
backscattering in a broad spectral range. Variation of geometrical parameters of Al arrays allows for tailoring the
lattice Kerker effect throughout UV and visible wavelength ranges, which is close to impossible to achieve using
other plasmonic or all-dielectric materials. It is argued that our results set the ground for wide ramifications in
the plasmonics and further application of the Kerker effect.
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I. INTRODUCTION

The concept of backscattering suppression of light by a
single spherical particle was proposed over three decades ago
by Kerker et al. [1] The essential pre-requisite for this effect is
the equivalence of permittivity and permeability of a sphere,
ε = μ, which implies a co-existence of pronounced electric
and magnetic responses at the same frequency. This exciting
idea did not receive a lot of attention in the past because such
materials are close to impossible to find in nature. However,
the situation has changed dramatically with the emergence of
all-dielectric nanophotonics [2]. Optically induced magnetic
moments mediate so-called “artificial magnetism” [3], which
surpasses the requirement for the material to exhibit conven-
tional magnetic properties. Thus, experimental evidence of the
Kerker effect has been provided for single high-index Si [4] or
GaAs [5] nanoparticles (NPs). After these pioneering experi-
mental observations, the Kerker effect has been demonstrated
in numerous setups [6–16] with a promising applications in
a variety of endeavors such as sensing [17], imaging [18],
and others [19]. These advances of all-dielectric nanophoton-
ics left plasmonics much in a shadow. The inherently weak
magnetic response of metal NPs, together with losses makes
it difficult [20] yet possible [21] to harness the Kerker effect
in single plasmonic NPs. Moreover, different combinations
of plasmonic materials with all-dielectric [22,23] or magnetic
[24] structures may satisfy the Kerker condition.
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On a larger scale, i.e., in arrays of NPs, the Kerker effect
can be implemented via collective lattice resonances (CLRs)
[25,26]. CLRs emerging in arrays of both plasmonic [27–30]
and all-dielectric [31–33] NPs are high-quality modes origi-
nating from the coupling between Rayleigh anomaly and Mie
resonances of a single NP. By tailoring the configuration of
the array and the shape of constituents, the lattice Kerker
effect can be observed. The lattice Kerker effect arises due to
interaction between lattice modes (i.e., CLRs) and resonances
in a single NP, while the conventional Kerker effect is based
on resonances in a single NP. We emphasize that the lattice
Kerker effect is heavily studied in all-dielectric nanostruc-
tures with strong magnetic dipole (or quadrupole) resonances
[34–37] with only one exception of arrays of relatively large
plasmonic Au NPs exhibiting the Kerker effect at 750 nm [38].
Rapidly developing aluminum plasmonics [39–41] provides
a solid ground for CLRs [42–46], but most of the studies
are traditionally limited to purely electric interactions, either
dipole or dipole-quadrupole [42]. In our recent work [47], we
have shown that plasmonic arrays of Al NPs, very much simi-
lar to all-dielectric nanostructures, support magnetic dipole or
quadrupole CLRs. We take the advantage of this property and
demonstrate the Kerker effect in plasmonic Al metasurfaces.
It is worth noting that Al is the only plasmonic material
that manifests localized surface plasmon resonance in the UV
wavelength range.

II. THEORY

The lattice Kerker effect in regular arrays of NPs can be
understood as follows. Consider a plane wave with frequency
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FIG. 1. (a),(f) Reflectance spectra, and (b)–(e), (g)–(j) multipole (ED, MQ, MD, EQ) decomposition of extinction efficiency for arrays
with fixed hx = 240 nm and different hy (top), and with fixed hy = 280 nm and different hx (bottom). Al NPs with radius R = 60 nm have
been considered in all cases. Notice a suppression of reflection which follows [0;1] RA, λRA = √

εhhy [see Fig. 2(a) for details]. The order of
the multipoles appearance is chosen for the sake of consistency with Eq. (5). Tabulated values of Al permittivity from Ref. [48] are used in
simulations.

ω and a wave vector |k| = k = √
εhω/c normally incident on

a regular infinite array of NPs embedded in a homogeneous
medium with permittivity εh (see the sketch in Fig. 1). In this
case, each NP becomes indistinguishable from each other in
terms of induced �-th multipoles. The dependence of the Mie
coefficients on the particle radius shows that the amplitude of
the magnetic quadrupole is relatively small and higher-order
modes can be ignored. The latter gives one the possibility
to restrict the discussion by � = 1 and � = 2 fundamental
modes, i.e., electric dipole (ED), d, magnetic dipole (MD),
m, electric quadrupole (EQ), D, and magnetic quadrupole
(MQ), M.

The electric field in the far field reads as [49]

Esc = − ω2

c2r

(
[[d × n] × n] − [m × n]

− iω

6c
([[D × n] × n] − [M × n])

)
eikr . (1)

Here r is the distance to the observation point and n is
the unit vector pointing to the observation point. Cartesian
components of EQ and MQ are Da = Dabnb, Ma = Mabnb

(summation over repeating indices is implied), where a, b =
x, y, z. In the particular case of an incident electric field polar-
ized along the y axis, dx, my, Dxz, and Myz are all equal to zero.
Thus, after introducing shorthands d = dy, m = mx, D = Dyz,
and M = Mxz, the reflected field is

Eref = ω2

c2r

[
d − m + iω

6c
(−D + M )

]
eikr . (2)

Dipole and quadrupole moments from the equation above
can be found as d = α̃d Einc, m = α̃mHinc, D = α̃D∇zEinc,
M = α̃M∇zHinc, where α̃ are the respective effective

polarizabilities, which depend on the geometry of the array:

α̃d = i
3εh

2k3
ã1, α̃M = i

15ε
3/2
h

k5
b̃2,

α̃m = i
3εh

2k3
b̃1, α̃D = i

15ε
3/2
h

k5
ã2, (3)

where ã� and b̃� are expansion coefficients that take into
account the interaction between NPs (not to be confused with
the expansion coefficients for a single NP). For a discussion
on magnetic polarizability, see Appendix A. We emphasize
that effective polarizabilities in the equation above depend on
the properties of the individual constituent and on the lattice
geometry, and also capture cross interactions between dipoles
and quadrupoles [50].

For a plane wave considered here, Hinc = εhEinc and
∇zEinc = ikEinc, thus Eq. (2) can be rephrased as

Eref = ω2

c2r

[
α̃d − α̃m + kω

6c
(−α̃D + α̃M )

]
E0eikr . (4)

It can be seen from Eq. (4) that the reflection is suppressed if
the expression in square brackets is zero. Thus, by appropri-
ately tailoring both NPs properties and their arrangement, the
lattice Kerker effect may emerge.

III. RESULTS

We demonstrate the lattice Kerker effect in regular arrays
of Al NPs embedded in a homogeneous environment with
εh = 2.25. In a real experiment such a structure corresponds
to NPs deposited onto a glass substrate and subsequently
covered with a PMMA layer [43]. It is of critical importance
to match refractive indices of substrate and interparticle host
medium (superstrate), to have CLRs not vanished [51]. NPs
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are arranged in infinite regular 2D lattice with periods hx

and hy. The array is illuminated from the top by the plane
wave with normal incidence along the z axis and polarization
along the y axis. Narrowband suppression of the reflection
can be observed in Figs. 1(a) and 1(f). We elaborate on this
observation by plotting the contributions of each �-th mode
(electric and magnetic) to the reflection in Figs. 1(b)–1(e)
and 1(g)–1(j) [higher-order � � 3 modes have been taken into
account in Figs. 1(a) and 1(f), but are negligible). To do so,
we consider the extinction efficiency that is proportional only
to the real part of the expression in square brackets in Eq. (4).
We justify this choice as follows. On using the equations for
polarizabilities (3) and recalling that extinction efficiencies
for electric and magnetic �-th mode are proportional to real
parts of the expansion coefficients, Qe

ext;� ∝ (2� + 1)�(ã�)
and Qm

ext;� ∝ (2� + 1)�(b̃�), the Kerker condition can be re-
formulated as

Qe
ext;1 + Qm

ext;2 − Qm
ext;1 − Qe

ext;2 = 0 . (5)

Keeping in mind that both real and imaginary parts of the
expression in square brackets in Eq. (4) are anticipated to be
zero for a case of suppressed backscattering, we shall limit
the discussion only to a real part captured by the extinction
efficiency, Eq. (5). The procedure for calculating extinction
efficiency corresponding to each �-th mode from the equation
above is described in Appendix B.

Figures 1(b)–1(e) and 1(g)–1(j) show that spectral proper-
ties of two-dimensional (2D) arrays are tailored by varying
one of the periods while keeping the other one constant
[32,52]. In particular, the variation of hx keeping hy = const
yields in control of the [1; 0] Rayleigh anomaly (RA) λRA =√

εhhx and adjusts the position of ED and MQ modes. The
variation of hy and hx = const adjusts [0; 1] RA: λRA =√

εhhy, which controls the MD and EQ modes. Thus,
Figs. 1(b)–1(e) clearly shows that ED and MQ resonances are
coupled to [1; 0] RA, while MD and EQ are coupled to [0; 1]
RA. Noteworthy, is that the cross interaction between different
modes [50,53] results in the emergence of additional minima
and maxima in Figs. 1(b)–1(e) and 1(g)–1(j). Full suppression
of reflection occurs when the spectral position of resonances
corresponding to different anomalies coincide with each other
and the total contribution of MD and EQ modes is equal to the
contribution of ED and MQ modes.

This effect is clearly visible in Fig. 2(b), which shows the
phases of the reflected wave created by individual multipoles.
It can be seen from this figure that at λ = 420 nm, phases
of the ED and MQ are close to zero while the phases of the
EQ and MD are near to π . This means that the multipoles are
in antiphase and destructively interfere with each other at the
wavelength of the Kerker effect. It should be noted that this
condition is not fulfilled near the [1; 0] RA.

It can be clearly seen in Fig. 2(a) that the reflection is
completely suppressed at wavelengths close to [0; 1] RA.
Moreover, the lattice Kerker effect can be also achieved for
NPs with different R arranged in 2D lattices with properly
chosen hx and hy. Thus, a complete suppression of backscat-
tering can be tailored across UV and visible wavelength
ranges, as shown in Fig. 2(a). As it was shown in our re-
cent paper [[47], Fig. 6], the increase of the NP radius is

FIG. 2. (a) Reflectance for arrays with different geometrical pa-
rameters (R, hx, hy ) as marked in the legend. Vertical dashed lines
show respective spectral positions of [1; 0] and [0; 1] RAs for each
array. (b) Multipole decomposition of the phase of the reflection
amplitude φ = arg(Eref ) Eq. (2)] for NPs array with (60, 240, 280)
nm [cf. orange line in (a)]. Notice the 	φ = π phase difference
between EQ and MD contributions on one hand, and ED and MQ
counterparts on the other hand, at λ = √

εhhy, the wavelength of the
lattice Kerker effect. (c) Reflectance for arrays with different NP radii
R and fixed hx = 240 nm, hy = 280 nm. (d) Electric field distribution
in the ZY plane for (60, 240, 280) nm array at λ = 417.6 nm (top,
maximum reflectance) and λ = 420.5 nm (bottom, zero reflectance).
Notice rapidly vanishing reflected and transmitted fields at λ = 420.5
nm in the far zone due to strong localization of the electric field in
the vicinity of NP, and high absorption shown in Fig. 3. The dynam-
ics of the electromagnetic field propagation at both wavelengths is
demonstrated in the Supplemental Material [66].

accompanied by the long-wavelength shift of ED, MD,
EQ, MQ modes with their simultaneous broadening. Similar
behavior of the modes should be expected for the array config-
urations in Fig. 2(a). This dependence is shown in Fig. 2(c) for
arrays with different NP radii R and hx = 240 nm, hy = 280
nm. It can be seen that with increase of the NP radius, the
suppressed reflectance range shifts to the long-wavelength
range and broadens. To get more insight, we plot in Fig. 2(d)
the amplitude of electric field in the ZY plane for the unit cell
of the array with hx = 240 nm, hy = 280 nm, at λ = 420.5,
which corresponds to zero reflection. For comparison, we also
show the respective electric field distribution at λ = 417.5 nm,
which corresponds to the maximum reflectance. In the case
of a maximum reflection, the standing wave originates from
the interference between incident and reflected wave of com-
parable amplitudes. For a zero reflectance, a symmetrical
field distribution around a particle without an interference is
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FIG. 3. Absorption spectra for arrays with the same parameters
as in Fig. 1, i.e., for varying (a) hy and (b) hx , and (c) for array with
hx = 240 nm and hy = 280 nm. Dashed horizontal lines indicate the
lattice periods at which the absorption spectral line λ = 420.5 nm
(c) is observed.

observed. In this case, the amplitude of the far field rapidly
vanishes along the Z axis according to Eq. (2), in contrast
to the case of a standing wave at λ = 417.5 nm. Thus, at
λ = 420.5, i.e., in the lattice Kerker regime, we are left only
with the incident field in the far zone in the backscattering
direction.

Noteworthy, is that the electric field enhancement near NP
is significantly larger for the case of suppressed reflection
due to overlapping of the ED, EQ, MD, and MQ modes
at the corresponding wavelength. Thus, the Kerker effect in
plasmonic arrays is accompanied by high absorption of the
electromagnetic energy shown in Fig. 3, up to 80%. The
latter feature is generally not observed in weakly absorbing
dielectric structures [34], except a few cases for amorphous
[54] or crystalline [55] silicon.

IV. SUMMARY

We have demonstrated the lattice Kerker effect in plas-
monic arrays of Al nanoparticles, whereas for single lossy
NPs it is, in principle, impossible to achieve within a frame-
work of dipole approximation [20]. The plasmonic lattice
Kerker effect is based on the interference suppression of
dominant ED radiation (with negligible MQ impact) by the
cumulative contribution of the fields produced by MD and EQ
that is introduced in classical electrodynamics [49]. We show
that a complete suppression of the backscattering can be tuned
within the UV and visible spectral ranges by varying geometry
of arrays, i.e., radius of NPs and the distance between them.
High absorption and strong electric field localization are ob-
served at the frequency that corresponds to the lattice Kerker
effect.

The lattice Kerker effect can also be observed in other
metals besides aluminum under strict adherence to a number
of conditions: it was shown in Ref. [38] that regular arrays of
Au NPs also demonstrate resonant suppression of reflection
at the border of the IR range at λ = 750 nm. Obviously,
the effect can be also predicted in the IR range using large
particles (R > 100 nm) and with a large lattice period. In this
sense, gold differs just a little in comparison to all-dielectric
materials that manifest the Kerker effect only in the IR spec-
tral range.

Utilization of aluminum completely eliminates spectral re-
strictions and makes it possible to create conditions for the
manifestation of the Kerker effect both in the entire visible and

in the long-wavelength range of the UV spectrum. We believe
that aluminum opens the possibilities of employing the Kerker
effect in a set of different applications as is discussed below.
For example, it can be used in spectroscopy of biomaterials
with characteristic absorption bands in UV spectral range, in
photocatalysis [56] and in studies of organic and biological
systems [57] that exhibit strong UV absorption. Arrays of Al
NPs also provide the possibility of selective suppression of
intense lines of undesirable radiation. The latter property is
of critical importance for ultra-narrowband absorption [58]
and surface-enhanced Raman spectroscopy [59,60]. Selective
suppression of background radiation at the excitation laser
wavelength is important for studies of luminescence spectra
or Raman spectra [61]. This problem can be solved by using
arrays of Al NPs as optical filters using the backscattering
suppression within one high-Q spectral line. The effect can
be useful in applications related to cloaking, where there is
the requirement to expand the spectral range with effective
suppression of radiation from a surface.

It is argued that our results expand the list of materials for
fabrication of photonic devices for short-wavelength spectral
range and have academic interest of its own being a theoretical
prediction of the Kerker effect utilizing the broad spectral
range in plasmonic materials.
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APPENDIX A: MAGNETIC POLARIZABILITY

It is a well-known fact that magnetic permeability at optical
frequencies is almost equal to 1 (moreover, it is not quite
clear what is the magnetic permeability at these frequencies
at all) [[62], Chap. 79]. Therefore, the mechanism underlying
the emergence of a magnetic moment at these frequencies
is the interaction of an electric field with matter. Under a
electromagnetic wave (in our case, a plane incident wave and
at least a locally plane scattered wave in the far field), we
imply the entire electromagnetic field, not its separate com-
ponents. Since the wave vector and one of the field amplitude
vectors (electric or magnetic) fully determine the wave, and
the remaining vector is fully determined by the other two,
we can safely operate with the electric or magnetic field am-
plitude vector at our discretion. We may write the magnetic
dipole moment in terms of an electric field, but they would be
connected by a pseudotensor of the second rank, not a scalar,
as it is in our case. This is simply inconvenient, so we choose
a more convenient representation, which does not affect the
obtained results.

Polarizability is generally defined as the tensor connecting
the external field and the corresponding dipole moment. For
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the case of magnetic moment

mi = αi jH
0
j . (A1)

Since M is linearly dependent on H0, and P is linearly
dependent on E, Eq. (B2) can be rewritten as:

mi = Ai jH
0
j + Bi jE

0
j . (A2)

Here Ai j , Bi j are linear operators that depend on the properties
of the particle and the array geometry. For a plane electromag-
netic wave E = ε

−1/2
h [H0 × n]. Thus we get

mi = (
α1

i j + α2
i j

)
H0

j = αi jH
0
j , (A3)

where α1
i j = Ai j , α2

i j = ε
−1/2
h εm jl nlBim, εm jl is the Levi-Civita

symbol. Tensor αi j is nothing but the familiar magnetic dipole
polarizability. The second term cannot be ignored for most
materials in the optical range, and even more, α2

i j � α1
i j . So

in our case we assume α1
i j = 0. Due to the symmetry of the

system in our case αi j = αmδi j , which gives the expression
for the magnetic dipole used in the paper.

APPENDIX B: MULTIPOLE FIELD DECOMPOSITION

The total field E and the reflectance spectra are calculated
with the commercial Finite-Difference Time-Domain package
[63]. A Standard approach is used to mimic infinite 2D pe-
riodic structures [33,43,47,64]: periodic boundary conditions
have been applied at the lateral boundaries of the simulation
box, while perfectly matched layer boundary conditions were
used on the remaining top and bottom sides. Reflectance is
calculated at the top of the simulation box. An adaptive mesh
is used to reproduce accurately the nanosphere shape. Multi-
pole decomposition of the extinction efficiency from Eq. (5)
is calculated from the spatial electromagnetic field distribution
as described in Ref. [65]. Namely, The electric dipole moment

is defined by the simple equation [49]

d =
∫∫∫

V
Pd3r. (B1)

The magnetic dipole moment in the general case in the time
representation reads as follows:

m =
∫

V
MdV + 1

2c

∫
V

[
r × ∂P

∂t

]
dV, (B2)

where M is magnetization. Since in the optics for the most
materials magnetic susceptibility is small [62], the first term
in the right side of the equation can be ignored. Thus, in
the complex representation we obtain an expression for the
magnetic dipole moment:

m = i
k

2

∫∫∫
V

[P × r]d3r. (B3)

Similar expressions can be obtained for quadrupole moments:

D̂ = 3
∫∫∫

V
(P ⊗ r + r ⊗ P)d3r,

M̂ = 2

3
ik

∫∫∫
V

r ⊗ [P × r]d3r, (B4)

where ε is permittivity of the particles, P = (ε − 1)/4πE is
polarization density, and k is the wave number. The corre-
sponding extinction cross sections read as follows:

σ d
ext = 4πk√

εh|E0|2 �(E∗
0 · d),

σ m
ext = 4πk√

εh|H0|2 �(H∗
0 · m),

σ D
ext = − πk

3
√

εh|E0|2 �[(∇ ⊗ E∗
0 + E∗

0 ⊗ ∇ ) : D̂],

σ M
ext = − 2πk√

εh|H0|2 �[(∇ ⊗ H∗
0 + H∗

0 ⊗ ∇ ) : M̂], (B5)

where E0 and H0 are components of the incident electromag-
netic field. The respective extinction efficiency Q is defined
as the extinction cross section σ normalized to the geometric
cross section πR2 of a single particle with radius R.
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