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An exotic anomalous plasmon (AP) mode is found in strained Weyl semimetals utilizing the topological
Landau Fermi liquid and chiral kinetic theories, in which quasiparticle interactions are modeled by long-range
Coulomb and residual short-range interactions. The gapped collective mode is derived from the dynamical
charge pumping between the bulk and the surface and behaves like k−1

F . The charge oscillations are accurately
determined by the coupling between the induced electric field and the background pseudofields. This novel mode
unidirectionally disperses along the pseudomagnetic field and manifests itself in an unusual thermal conductivity
in apparent violation of the Wiedemann-Franz law. The excitation can be achieved experimentally by mechanical
vibrations of the crystal lattice in the THz regime.
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I. INTRODUCTION

Collective excitations in systems with long-range Coulomb
interactions are referred to as longitudinal bulk plasmons [1].
They are consistent with the classical plasma picture and can
be controlled by tailoring the spatial region filled by a charged
plasma. Plasmonics is based on the interaction processes
between electromagnetic radiation and itinerant charges. It
seamlessly combines fundamental research and applications
across areas ranging from condensed matter physics [2], to
compact stars [3] and plasma in the early universe [4], to color
engineering, chemistry, biology, and medicine [5].

Dirac and Weyl materials mimic the properties of high-
energy relativistic matter and provide an excellent opportunity
to explore novel quantum effects [6]. Their topological band
structure and electron correlations are accurately described
by topological Fermi liquid theory [7–9]. The nonzero Berry
phase of quasiparticles in Weyl semimetals, together with the
novel axionic term in the electromagnetic response [10–12],
make the dynamics of excitations completely different from
collective modes in ordinary metals. A considerable effort is
devoted to identifying novel excitations in interacting Weyl
fermions in a three-dimensional (3D) relativistic-like plasma,
which may originate from anomaly-induced intrachiral or in-
terchiral particle number fluctuations.

One example is the violation of axial current conserva-
tion, termed the chiral [13] anomaly, i.e., ∂μJμ

5 = e2

3π2 E · B
[11,14], stemming from the topological modification of the
electromagnetic response [6,11]. It leads to a nondissipative
current along a magnetic field through the chiral magnetic
effect in the presence of an axial chemical potential. The
collective dynamics of Weyl fermions in the presence of
quantum anomalies undergoes a qualitatively change in the
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dispersion of conventional collective modes [15–21], and even
gives rise to novel and unprecedented types of excitations
[12,16,17,20,22–24]. Moreover, the electron-phonon coupling
in strained Weyl semimetals in the form of elastic gauge fields,
Ael [25–27], leads to new collective dynamics [23,28,29]. No-
tably, the phonon collective excitations receive considerable
modifications in both the longitudinal [28] and the optical
[30] branches due to electron-phonon interactions. The pres-
ence of both ordinary and strain-induced pseudofields, i.e.,
Eel = ∂tAel and Bel = ∇ × Ael , not only modifies the chiral
anomaly equation, but also results in the nonconservation of
local charges [26,27,31,32].

In this paper we identify a new anomalous plasmon (AP)
mode in interacting type-I Weyl semimetals in the presence
of a pseudomagnetic field induced by strain. We assume the
conventional model of Weyl semimetals with the minimum
number of two opposite-chirality nodes when time-reversal
symmetry is broken [33]. We demonstrate that bulk charge
oscillations induce an electric field that couples to the back-
ground pseudofields. This coupling leads to dynamical charge
pumping between the bulk and the surface, and vice versa
through the apparent nonconservation of local charge in the
bulk, i.e., ∂μJμ = e2

2π2 Ẽ(r, t ) · Bel . Hence, the AP mode is to
be distinguished from chiral plasmons and magneto plasmons
in that charge fluctuations do not occur between the nodes,
but between the bulk and the boundaries and are mediated
by the Fermi arcs. Adopting the framework of topological
Landau Fermi liquid theory including strain-induced pseudo-
electromagnetic fields, we derive the q-dependent plasmon
dispersion stemming from anomalous electronic transport
phenomena. Most importantly, this AP mode only carries a
charge current and therefore it is no longer a chiral mode. Note
that Weyl fermions in tilted Weyl semimetals that emerge at
the boundary between the electron and hole pockets (due to
the Lorentz symmetry breaking) are completely different from
standard type-I Weyl semimetals. Accordingly, the tilt effect
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on AP mode needs further discussion which is beyond the
scope of this paper.

In addition, the AP mode as a bosonic quasiparticle only
disperses along the pseudomagnetic field and may manifest
itself in an unusual thermal conductivity through the violation
of the Wiedemann-Franz law. The AP can lead to remarkable
thermodynamic phenomena, such as quantum oscillations in
the thermal conductivity due to the pseudomagnetic field,
which can be considered as a smoking gun.

This paper is organized as follows. We commence with a
description of the topological Fermi liquid theory in Sec. II,
followed by the details of the Berry curvature, the residual
short-range, and the long-range Coulomb interactions. The
comprehensive discussions on collective dynamics and ther-
mal properties of the system are reported. In conclusion, we
summarize our main findings in Sec. III.

II. TOPOLOGICAL FERMI LIQUID THEORY

We consider a system in which the low-energy effective
Hamiltonian in the continuum limit in the vicinity of the
nodal points is given by H = vF(q + χAel ) · σ, where χ = ±
labels the chirality of the nodal points. Such nodes are con-
nected by Fermi arc surface states and topologically stabilized
against any slight perturbations regardless of symmetry [34].
Since the pseudomagnetic field plays the same role as a real
magnetic field, it can modify the low-energy energy of Weyl
fermions by a term owing to the orbital magnetic moment mχ

k ,
i.e., εχ (k) = vFk − Bχ · mχ

(k) where mχ

(k) = −vFk�
χ

(k) [35].

Here, vF is the Fermi velocity, �χ = χ� = χ k̂/2|k|2 is the
isotropic Berry curvature, and Bχ = χBel is the elastic-in-
origin pseudomagnetic field that couples to the Weyl fermions
oppositely in the two nodes at b and −b. This orbital magnetic
moment stems from the self rotation of the Bloch wave packet
around its center [35].

The interaction-induced renormalized local quasiparticle
energy is given by ε̃χ (k, r, t ) = εχ (k) + δεχ (k, r, t ), where
εχ (k) = vFk(1 + Bχ · �χ ) is the fermionic energy dispersion.
It is worth mentioning that εχ (k) is modified by the contri-
butions due to all filled electronic states through the Berry
curvature. This is somewhat distinct from the Landau theory,
which involves quasiparticles within a small range of kBT
[8,9,36]. Remarkably, εχ (k) is independent of the specific na-
ture of interactions and carries information on the topological
characteristics of the band structure. The inhomogeneous part
of energy due to the presence of the collective mode and the
intrinsic interactions is given by

δεχ =
∑
χ ′

∫
dk′

(2π )3
D(k̂′ )[Fχχ ′ (k, k′) + vq]δ fχ ′ . (1)

It takes account of both Fχχ ′ (k, k′) and vq = e2/ε0q2 as a
residual short-range interaction between two fermions of type
χ , χ ′ and the long-range Coulomb interaction, respectively.
The electronic fluctuation of the distribution function in the
vicinity of chiral Fermi surfaces is given by δ fχ (k, r, t ) =
fχ (k, r, t ) − f (eq)

χ (k). We suppose quantum oscillations are
sought in the form of plane waves with frequency ω and
wave vector q, δ fχ (k, r, t ) = δ fχ (k)ei(q·r−ωt ). The equilibrium
distribution function f (eq)

χ (k) = [eβ(εχ

k −μχ ) + 1]−1, where β =

(kBT )−1 and μχ = μ(eq) + χμ5 is the effective chemical po-
tential for the right- and left-handed fermions. For k and k′

near the Fermi surface where εk = εk′ = εF , the interaction
term Fχχ ′ (k, k′) depends only on the angle between the di-
rection of k, k′ and on the chiralities χ and χ ′. The factor
D(k̂) = 1 − � · Bel ensures that the phase space modification
satisfies Liouville’s theorem [37].

A. Collective dynamics

The topologically modified semiclassical Boltzmann for-
malism can be embedded in the framework of chiral kinetic
theory. The collective dynamics of a pair of chiral Fermi
surfaces are described by the time evolution of quasiparticle
distribution function, which satisfies

∂t fχ (k, r, t ) + (ṙχ · ∇r + k̇χ · ∇k) fχ (k, r, t )

= I[δ f χ (k, r, t )]. (2)

Scattering processes are accounted for by the collision integral
on the right-hand side. The semiclassical equations of motion
in topological Fermi liquid theory in the absence of time
reversal symmetry read

D(k̂)k̇χ = Eχ − ∇rε̃(k, r, t ) + ∇kε̃(k, r, t ) × Bχ

−[∇r ε̃(k, r, t ) · Bχ ]�χ (k) − (Eχ · Bχ )�χ (k),

D(k̂)ṙχ = ∇kε̃(k, r, t ) − ∇rε̃(k, r, t ) × �χ (k)

+[∇kε̃(k, r, t ) · �χ (k)]Bχ − Eχ × �χ (k), (3)

where Eχ = χEel . The topological Landau Fermi liquid the-
ory is valid in the semiclassical regime, where vF

√
Bel �

τ−1 � μ. Here, τ is the quasiparticle lifetime. The semiclas-
sical limit ensures |μ| � En=1(k = 0), where En=1(k = 0) is
the dispersion of the first level generated by strain-induced
pseudomagnetic field [26,38]. As a result, many Landau
levels have been occupied and then we can ignore pseudo-
Landau-level quantization. It is worth mentioning that the
semiclassical regime dictates that only intraband transitions
have dominated the process, and any transitions with frequen-
cies lower than 2μ are prohibited due to the Pauli blocking.

The dynamical equation describing the quantum oscillation
of excited quasiparticle with (k, χ ) interacting with fermions
of type (k′, χ ′) is given by

−iωD(k̂)δ fχ (k) + iq · {vk + [vk · �χ (k)]Bχ } δ fχ (k)

+ (−∂ f (eq)/∂εk )vk ·
∑
χ ′,k′

�
χ,χ ′

(q,k,k′ ) + (vk × Bχ ) · ∇kδ fχ (k)

−vk · [Eχ + (Eχ · Bχ )�χ (k)] = D(k̂)I[δ fχ (k)], (4)

The modified interaction-induced drag force is

�
χ,χ ′

(q,k,k′ ) = iD(k̂′ )[Fχχ ′ (ξ ) + vq][q + (q · Bχ )�χ (k)]δ fχ ′ (k′).

We assume that steady state processes are accurately
described by the relaxation time approximation,
df χ (k, r, t )/dt = −[ fχ (k, r, t ) − f (eq)

χ (k)]/τ (k), valid for
elastic impurity-scattering process when the scattering
centers are homogeneously distributed and the linear response
regime is assumed [39,40]. We also consider, for simplicity,
a k-independent relaxation time, i.e., τ (k) → τ , since
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all processes occur close to the Fermi momentum, and
thus k-dependent relaxation time does not affect results.
Collision-induced quantum oscillation of particles could
be decomposed into a thermal relaxation time τth, an
internode relaxation time τc, and the relaxation time-scale
of the charge-density imbalance between the bulk and the
boundaries denoted by τa, and provided by the process
in which right-moving modes in the bulk scatter back
to the left-moving modes near the boundaries. If the
electrons have to travel the length L to reach the surface,
Na = (L/la)2 scattering events should occur to take the
route [26]. Here, la is the magnetic length, almost equal to
la �

√
h̄c/eBel � 0.8 μm for Bel � 1 mT. In samples with

L � la, it turns out that τa/τth � (L/la)2 � 1, so we assume
τth � τa [26]. Accordingly, we restrict our analysis to time
scales τth � τa and τth � τc, where the latter denotes the well
known chiral limit. Such a chiral limit has been considered in
other works [7,22]. In this limit, the scattering rate τ−1

th is fast
enough to relax any deviation of the Fermi surface, and then
establish thermal equilibrium in each chiral Fermi surface.

Having carried out the integration over k, Eq. (4) can be
correctly interpreted as the nonconservation of chiral charges
in the presence of both ordinary and pseudofields ∂tδnχ +
∇ · J χ = [χEel · Bel + Ẽ(r, t ) · Bel ]/4π2 (more details are
presented in Appendix A). Here, the intrinsic electric field
Ẽ(r, t ) induced by charge density oscillation, δn(r, t ) =∑

k,χ D(k̂)δ fχ (k, r, t ), has been extracted from Ẽ(r, t ) =
−e∇ϕ(r, t ), where ϕ(r, t ) represent the dynamical scalar po-
tential satisfying the Poisson equation q2ϕ(r, t ) = e

ε0
δn(r, t ).

As we prove in Appendix A, subtracting and adding the charge
and current associated with each node leads to the following
covariant form of the novel chiral anomaly and the noncon-
servation of local charge, respectively;

∂μJ μ

5 = e2

2π2
Eel · Bel , (5a)

∂μJ μ
(r,t ) = e2

2π2
Ẽ(r, t ) · Bel , (5b)

where we define J μ

5 = (J μ
+ − J μ

− ) and J μ = (J μ
+ + J μ

− ).
The coupling between ordinary intrinsic electric field to the
pseudomagnetic field leads to a local charge nonconservation
[Eq. (5b)], while the elastic pseudofields lead to a chiral
anomaly [Eq. (5a)]. The chiral anomaly in Eq. (5a) describes
the strain-induced charge pumping between the nodes with
opposite chirality, δn(1)

χ = χ e2τc
2π2 (Eel · Bel ). This leads to a

slight shift in chemical potential as δμ(1)
χ = χ (Eel · Bel )τc/2.

It is noted that this strain-induced chirality imbalance is inde-
pendent of the dynamics of collective excitations and stems
from the extrinsic elastic pseudofields. On the other hand, the
coupling between the pseudomagnetic field and the induced
electric field Ẽ(r, t ), owing to the charge dynamics, leads to
an unexpected local charge nonconservation, Eq. (5b), that
can be interpreted as a charge pumping between the bulk and
the boundaries of the system [12,26]. Although the result of
Eq. (5b) seems to be unphysical, considering both the bulk
and the surface contribution can restore the charge conser-
vation [12,41]. The violation of local charge conservation
in Weyl semimetals naturally arises from the fact that the
current conservation equation only includes the bulk region,

(b)

(a)

FIG. 1. (a) Colored disks represent the coherent breathing-like
fluctuation of the bulk Fermi surfaces for a single pair of Weyl nodes
owing to the anomaly-induced charge transfer between the bulk and
the surface. The dashed circles denote the equilibrium position of the
Fermi surfaces μ(eq)

χ = μ + χ |δμ(1)
χ |. (b) The blue and green lines

denote the charge density creation and annihilation when ψ sweep
along [0, 2π ] and δn(1)

χ represents the chirality imbalance between

two nodes due to the term ∝ Eel · Bel in the chiral anomaly equa-
tion. We define ψ = q · r − ωt as a quantum phase of the collective
motion of charges.

hence the excess charge is expected to come from the edge
of the system [26,27,31]. This nonconservation problem can
be circumvented by adding the so-called Bardeen-Zumino
polynomial, J μ → J μ + e2

2π2 Ael × Ẽ, to the electric current,
which renders the consistent version of the anomaly equation,
∂μJ μ = 0 [12,23,42]. The strain-induced local charge non-
conservation in Weyl semimetals, Eq. (5b), plays a key role in
driving a new collective mode. The charge density imbalance
induced between the bulk and the surface is

δn(2)
χ = e2τa

2π2
Ẽ · Bel ei(q·r−ωt ). (6)

The induced charge in the bulk is distributed among all the
empty states above εF and leads to a slight shift in the chemi-
cal potential δμ(2)

χ (r, t ) ≈ e2τa
μ2 Ẽ · Bel ei(q·r−ωt ), extracted from

the semiclassical formalism where pseudo-Landau level quan-
tization is unimportant [Appendix B]. The sign of the
anomaly-induced charge density in the bulk depends on the
phase of the charge fluctuation ψ = q · r − ωt , i.e., δn(2)

χ > 0
for ψ = π/2, δn(2)

χ < 0 for ψ = 3π/2, and δn(2)
χ = 0 for ψ =

0, π with respect to μ = μ0 + χ |δμ(1)|. Figure 1 demon-
strates contributions from both the chiral anomaly, δn(1)

χ ,
and the dynamics of collective excitation, δn(2)

χ (t ). The total
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charge density of a single node with chirality χ is given by
nχ (t ) = n0 + δnχ (t ), where n0 is the intrinsic charge density
and δnχ (t ) = δn(1)

χ + δn(2)
χ (t ) is the anomaly-induced charge

density above each Fermi surface. It means charges are
pumped from the bulk to the surface and vice versa through
δn(2)

χ (t ). It then gives rise to the coherent breathing-like fluc-
tuation on the bulk Fermi surface.

By making use of the modified anomaly equation ∂tδnχ +
∇ · J χ = (χEel · Bel )/4π2 incorporating the boundary con-
tributions and the current expressions, we investigate the
spectrum of AP excitations. For the sake of simplicity, we
consider Fχ,χ ′ (k̂, k̂′) = F0 as a constant and valid for small
Fermi surfaces, and also εk → εk + χ |δμ(1)

χ |. After straight-
forward calculations we obtain

δnχ =
(
F0 + e2

ε0q2

)∑
χ ′ χ ′δnχ ′

(ω + iτ−1) − χq · α/2π2

q · α

2π2
, (7)

where α = Bel/2k2
F . Assuming a finite frequency ω, vanish-

ingly small scattering rate, i.e., τ−1
c,a → 0, and small q · α we

get the following spectral equation for the collective mode

1 =
∑

χ

χk2
F q · α/2π2

ω − χq · α/2π2

(
F0 + e2

ε0q2

)

=
∑

χ

χk2
F q · α

2π2ω

(
1 + χq · α

ω
+ · · ·

)(
F0 + e2

ε0q2

)

� (a1 + a2|q|2)

(
q̂ · α

ω

)2

+ (a1 + a2|q|2)|q|2
(

q̂ · α

ω

)4

+ · · · , (8)

where a1 = e2k2
F /2ε0π

2 and a2 = F0k2
F /2π2. The corre-

sponding AP frequency in the long-wavelength limit would
be

ωAP(q) = |q̂ · α|
√

a1 + (1 + a2)|q|2. (9)

It is worth noting that this mode only disperses along the
pseudomagnetic field and is only tied to the local charge oscil-
lations, but the internode chiral fluctuations, on the other hand,
would be absent. The plasmon gap is obtained by keeping
terms up to the zeroth order of q:

ωAP
q→0 =

√
e2

2ε0π2

|q̂ · Bel |
2kF

. (10)

where the plasmon mode is proportional to 1/kF. To reliably
estimate the plasmon gap, we set vF = 2 × 105 m/s [43],
εF = 100 meV, and |Bel | = 1 mT, which gives ωAP

q→0 � 15
THz. Such a low pseudomagnetic field can be generated
by applying an infinitesimal in-plane lattice distortion with
a twist angle  = 1◦. In this case, the deviation of lattice
sites from their equilibrium positions is given by a vector
u =  z

L (ẑ × r), where r is the position vector of each site and
L is the crystal length. The corresponding induced pseudo-
magnetic field associated to elastic gauge field of the form
Ael � �0βui jbj would be Bel = β�0b3


4L ẑ, where the strain

tensor is defined as ui j = 1
2 (∂iu j + ∂ jui ). Recalling that β ≈

2 (Grüneisen parameter), �0 = h̄c/e ≈ 6.5 × 104 T Å2 and
b3 = 0.015 Å−1 (half of the node separation in TaAs with

lattice constant a = 3.45 Å [44,45]) and crystal length L =
1 μm, it turns out that Bel ∼ 1 mT. As mentioned before, such
a small pseudomagnetic field can induce the plasmon mode,
providing the building blocks for terahertz optical devices.

In the chiral limit, i.e., τc � τth, any deviation of the Fermi
surface will be immediately washed out by a strong intranode
scattering process, therefore the only remaining collective
mode is the gapped AP mode, which propagates along
the pseudomagnetic field. The plasmon mode of 3D pristine
Weyl semimetals in the absence of real electromagnetic fields
is given by ωp{1 − 1

8μ2 q2[1 + F (2μ,ωp)]}, where ωp =√
8e2μ2/(3πε0), F (x, y) = (x4y2 − 3x6/5)/[y2(x2 − y2)2]

and μ = h̄vFkF is the chemical potential [17]. Consequently,
the strain-induced pseudomagnetic field drives plasmon
collective dynamics by generating charge fluctuations
between the bulk and the boundaries without a background
real magnetic field.

B. Thermal properties

The existence of an independent AP mode can be regarded
as a bosonic quasiparticle in the Weyl Fermi liquid system.
Such a strain-induced collective excitation may make a con-
tribution to the thermal properties such as the specific heat
and thermal conductivity. The total energy carried by the
collective mode is defined as U = ∑

q ωq G (0)(q, r, t ), where
G (0)(q, r, t ) = (eβωq − 1)−1 is the equilibrium Bose-Einstein
distribution function and ωq is the dispersion of the collective
mode. The specific heat, i.e., Cv = ∂U/∂t , can be obtained as

Cv (T ) = kB

∑
|q|<�

(βωq)2

4 sinh2(βωq/2)
, (11)

where we consider � as an ultraviolet cutoff for the wave
vector integrals. We estimate � ∼ 1/a where a is the lattice
parameter. We consider a pseudomagnetic field parallel to the
z axis, and the dependence of the specific heat with respect to
temperature is presented in Fig. 2(a).

The specific heat behavior in the two limits of sufficiently
low T � �AP and high temperatures T � �AP is given by

Cv =
{

kB�3

6(a2+1)3/2 B(a1, a2) T
�AP

T � �AP

kB�3

6π2 T � �AP

,

where �AP = α�/kB represents the correspond-
ing Debye temperature for APs and B(a1, a2) =√

(a2 + 1)(a1 + a2 + 1)/2− a1
2 ln |(√a2 + 1 +√

a1+a2 + 1)/
√

a1|. For more details see Appendix C.
The thermal conductivity κ th, on the other hand, is defined

via the heat current jth = κ th(−∇T ). The thermal current
associated with the unidirectional AP mode in terms of its
spectrum is

jth =
∑
|q|<�

ωq(∇qωq) δG(q, r, t ). (12)
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FIG. 2. (a) The renormalized specific heat C̃v = (4π 2(1 +
a2)3/2/kB�3)Cv as a function of temperature. The temperature is
plotted in the units of Debye temperature for �AP = α�/kB, where
α = Bel/2k2

F . The active presence of repulsive short-range interac-
tion F0 generates the specific heat to increase, especially in the
higher temperature regions. We set a1 = �2 and a2 = 0, 0.1 for the
blue and the green lines, respectively. (b) The renormalized ther-
mal conductivity κ̃ th

zz = [4π 2/kBτp�
3(1 + a2)1/2]κ th

zz as a function of
pseudomagnetic field Bel for temperatures T/�AP = 0.5, 1, 5, with
a1 = �2 and a2 = 1.

Here, δG(q, r, t ) represents the stationary solution of Boltz-
mann equation, ∂tG(q, r, t ) = 0, and is given by

δG(q, r, t ) = G(q, r, t ) − G (0)(q, r, t ) = −τp(T )ṙ · ∇rG (0)

= τp(T )
α2(1 + a2)kBβ2

4 sinh2(βωq/2)
|q|(−∇zT ), (13)

where τp(T ) is the relaxation time of the APs. Using Eqs. (12)
and (13), the thermal conductivity can be expressed as fol-
lows;

κ th
zz = τp(T )kB(1 + a2)2α4β2

∑
|q|<�

q2

4 sinh2(βωq/2)
. (14)

Figure 2(b) represents the thermal conductivity along the
direction of AP propagation. The thermal conductivity
for low temperatures, T � �AP, is proportional to κ th

zz ∝
(Bel )2(�AP/T ) and is temperature independent at T � �AP,
i.e., κ th

zz ∝ (Bel )2 [Appendix C]. The electronic conductivity,
on the other hand, displays a Drude-like response in the dc
regime [46], therefore the presence of the unidirectional AP
mode leads to an unusual and anisotropic thermal conductivity
which violates the Wiedemann-Franz law. Such a violation of
the Wiedemann-Franz law by the anomaly-induced chiral zero
sound (CZS) mode in Weyl semimetals also has been the-
oretically proposed [22] and experimentally confirmed [47]
recently.

Ultimately, it should be mentioned that, in principle, the
band bending effect may become important when the Fermi
level lies well above the Van Hove (VH) energy, i.e., μ � εV H

[48]. In this regime, two Weyl cones merge into an associ-
ated dispersion, and the notion of a chiral fermion is lost.
For a minimal Hamiltonian including band bending, the Van
Hove singularity happens around ∼0.5 eV for a typical Weyl
semimetal [49]. For chemical potentials much smaller than
εV H , which is compatible with our Weyl system, the band
bending effect is unimportant. Accordingly, the general con-

clusions do not change qualitatively under the assumption that
we are below the corresponding Van Hove singularity.

C. Anomalous plasmon mode in comparison with other
collective modes in Weyl semimetals

Since several collective modes of Weyl semimetals have
been reported in various situations, a proper comparison with
their results seems to be in order. We commence with describ-
ing the collective modes of 3D normal Fermi liquid systems.
In the presence of the long-range Coulomb interaction, charge
collective mode occurs in the system in the absence of any
external fields. The gapped mode behaves like ω = ω(3D)

p [1 +
9q2

10κ2
3
], where ω(3D)

p =
√

4πe2/m and κ3 = 3ω(3D)
p /v2

F. This
mode originates from the intranode fluctuations of the Fermi
surface and finite net charge density is propagated by the plas-
mons. In Fermi liquid systems, a zero sound mode [50], on the
other hand, emerges in the presence of the residual short-range
interaction. The zero sound disperses like ω = csq, where the
velocity is cs ∝ √

F0.
In the context of noninteracting Weyl semimetals, Gorsky

and Zayakin [18] showed that the anomalous term in the
current modifies the structure of the zero sound mode
in the presence of a magnetic field. Jeong and Kim [19] found
the zero sound mode of Fermi surface fluctuations in a resid-
ual interacting Weyl metal phase in the presence of external
electromagnetic fields. Gorbar et al. [23] proposed the chiral
plasma mode in Weyl materials in constant magnetic and
pseudomagnetic fields, taking into account the effects of dy-
namical electromagnetism. Stephanov et al. [24] showed that
the chiral magnetic wave emerges in the hydrodynamic regime
at frequencies smaller than the collision relaxation rate. More-
over, the chiral magnetic wave velocity is only determined
by thermodynamic properties. Chernodub and Vozmediano
[28] proposed the chiral sound wave in a strained wire of a
Weyl semimetal, which is a longitudinal charge density wave
analog to the chiral magnetic wave driven by an elastic axial
pseudomagnetic field.

In the context of interacting Weyl semimetals, on the
other hand, the plasmon dispersion is distinct from that of
conventional 3D metals [51] in the absence of external elec-
tromagnetic fields. Zhou et al. [17] investigated the chiral
anomaly effect on the charged plasmon mode within the
random phase approximation. The long-range Coulomb inter-
action between electrons was considered. Song and Dai [22]
proposed a chiral zero sound in Weyl semimetals under the
magnetic field and in the presence of a residual short-range
interaction. The sound velocity of chiral zero sound is propor-
tional to the field strength in the weak field limit, whereas it
oscillates dramatically in the strong field limit. The compre-
hensive results of the collective mode in Weyl semimetals are
summarized in Table I in Appendix D.

The conclusion of these detailed comparisons is that we
found an exotic anomalous plasmon mode in strained and
interacting Weyl semimetals, where quasiparticle interactions
are modeled by the long-range Coulomb interaction and the
residual short-range interaction. The new collective mode is
derived from the dynamical charge pumping between the bulk
and the surface, and behaves like k−1

F . This novel mode unidi-
rectionally disperses along the pseudomagnetic field.
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III. CONCLUSION

We have identified an anomalous plasmon mode as a
novel type of cooperative motion of Weyl fermions in a dis-
torted lattice as a unique signature of novel manifestation
of the anomaly equations. Topological Fermi liquid theory
with pseudofields is utilized to determine its exotic gapped
dispersion relation. The AP mode only propagates along
the pseudomagnetic field with a frequency of a few THz,
and vanishes in the absence of lattice distortion. This uni-
directional mode is characterized by an oscillation of the
charge density between the bulk and the boundaries trig-
gered by the strain-induced anomalous nonconservation of
local charge. The anomalous plasmon mode is completely

different from other collective modes proposed for Weyl
semimetals.

We have also shown the AP mode can lead to an unprece-
dented thermal conductivity along the pseudomagnetic field,
which does not satisfy the Wiedemann-Franz law. Such exotic
thermal transport may be considered as strong evidence in
experiments to confirm the existence of the AP mode.
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APPENDIX A: TOPOLOGICAL FERMI LIQUID THEORY AND ANOMALOUS PLASMON MODE

The time evolution of quasiparticle distribution function in the semiclassical limit is given by

∂t fχ (k, r, t ) + (k̇χ · ∇k + ṙχ · ∇r) fχ (k, r, t ) = I[δ f χ (k, r, t )]. (A1)

The equations of motion typically receive necessary modifications due to the topological band structure, i.e., nonzero Berry
curvature and the presence of pseudofields

D(k̂)k̇χ = Eχ − ∇rε̃(k, r, t ) + ∇kε̃(k, r, t ) × Bχ − [∇r ε̃(k, r, t ) · Bχ ]�χ (k) − (Eχ · Bχ )�χ (k),

D(k̂)ṙχ = ∇kε̃(k, r, t ) − ∇rε̃(k, r, t ) × �χ (k) + [∇kε̃(k, r, t ) · �χ (k)]Bχ − Eχ × �χ (k). (A2)

Having replaced Eq. (A2) into Eq. (A1), the dynamical equation of quasiparticles promptly becomes

−iωD(k̂)δ fχ (k) + iq · vkδ fχ (k) +
(

−∂ f (eq)

∂εk

)
iq · vk

∑
χ ′,k′

D(k̂′ )

[
Fχ,χ ′ (ξ ) + e2

ε0q2

]
fχ ′ (k′) + (vk × Bχ ) · ∇kδ fχ (k)

+iq · Bχ

(
−∂ f (eq)

∂εk

) ∑
χ ′,k′

D(k̂′ )

[
Fχ,χ ′ (ξ ) + e2

ε0q2

]
vk · �χ (k)δ fχ ′ (k′) + iq · Bχ [vk · �χ (k)]δ fχ (k) − vk · Eχ

−(Eχ · Bχ )[vk · �χ (k)] = D(k̂)I[δ fχ (k)] (A3)

It should be noted that terms of the form Eχδ f (k) are neglected due to the linear response consideration of δ f (k). Having
carefully carried out the integration over k and using the fact that

∫
d3k(vk × Bχ ) · ∇kδ fχ (k) = 0,

∫
d3k(vk · Eχ ) = 0, the

above equation can be arranged and simplified in the following way;

−iωδnχ + iq · [
J (0)

χ + J (1)
χ + J (2)

χ + J (3)
χ

] = −iq · Bel e2

4π2ε0q2

∑
χ ′,k′

D(k̂′ )δ fχ ′ (k′, r, t ) +
∫

d3k

(2π )3
(Eχ · Bχ )(vk · �χ (k))

+
∫

d3k

(2π )3
D(k̂)

(
−δ fχ (k)

τ

)
, (A4)

where we have reasonably assumed the relaxation time approximation for the collision process, i.e., I[δ fχ (k)] = [− δ fχ (k)
τ

], and
the charge density and current contributions associated to chirality χ are defined as bellow (We here set vF = h̄ = 1)

δnχ (r, t ) =
∫

d3k

(2π )3
D(k̂′ )δ fχ (k, r, t ) (A5)

J (0)
χ (r, t ) =

∫
d3k

(2π )3
vkδ fχ (k, r, t ) (A6)

J (1)
χ (r, t ) = k2

F

∫
d�

(2π )3
k̂

[∑
χ ′,k′

D(k̂′ )Fχχ ′ (k̂, k̂′)δ fχ ′ (k′, r, t ) + e2

ε0q2
δn(r, t )

]
(A7)

J (2)
χ (r, t ) = Bel

2

∫
d�

(2π )3

∑
χ ′,k′

D(k̂′ )Fχχ ′ (k̂, k̂′)δ fχ ′ (k′, r, t ) (A8)
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J (3)
χ (r, t ) =

∫
d3k

(2π )3

Bel

2|k|2 δ fχ (k, r, t ) = Bel

4π2
δμχ (r, t ). (A9)

We assume that charge density oscillation δn(r, t ) satisfies the Poisson equation, ∇2ϕ(r, t ) = − e
ε0

δn(r, t ), by defining ϕ(r, t ) as
a dynamical scalar potential. The first term on the RHS of Eq. (A4) can be expressed in terms of ϕ(r, t ) by using δn(r, t ) =
ε0q2

e ϕ(r, t ). By making use of ϕ∇ · Bel = ∇ · (Belϕ) − Bel · ∇ϕ, we have

−iq · Bel e2

4π2ε0q2
δn(r, t ) = −i

eq · Bel

4π2
ϕ(r, t ) = e2Ẽ(r, t ) · Bel

4π2
− ∇ ·

[
Bel e2

4π2ε0q2
δn(r, t )

]
, (A10)

where we have properly used Ẽ(r, t ) = −e∇ϕ(r, t ) or Ẽ(r, t ) = −ieqϕ(r, t ). Therefore, Eq. (A4) can be simplified as

−i(ω + iτ−1)δnχ + iq · J χ + iq · J (4)
χ = (χEel · Bel + Ẽ(r, t ) · Bel )/4π2, (A11)

or in the form of the following continuity equation;

∂tδnχ + ∇ · J χ + ∇ · J (4)
χ = (χEel · Bel + Ẽ(r, t ) · Bel )/4π2, (A12)

where

J (4)
χ (r, t ) = Bel

2

∫
d�

(2π )3

∑
χ ′,k′

D(k̂′ )

(
e2

ε0q2

)
δ fχ ′ (k′, r, t ) = Bel e2

4π2ε0q2
δn(r, t ). (A13)

Subtracting and adding the charge and current associated to each node leads to the following covariant form of the novel
chiral anomaly and the nonconservation of local charge

∂μJ μ

5 = e2

2π2
Eel · Bel , (A14a)

∂μJ μ(r, t ) = e2

2π2
Ẽ(r, t ) · Bel , (A14b)

where J (r, t ) = J (0)(r, t ) + J (1)(r, t ) + J (2)(r, t ) + J (3)(r, t ) + J (4)(r, t ).
The chiral anomaly in Eq. (A14a) describes the strain-induced charge pumping between the nodes with opposite chirality

leads to the chemical potential imbalance between two nodes. Equation (A14b), on the other hand, represents the violation of
charge conservation. This nonconservation problem can be released by adding the so-called Bardeen-Zumino polynomial to the
electric currant

j → j + δ j where δ j = e2

2π2
Ael × Ẽ(r, t ) −→ ∂μ(δ j) = e2

2π2
Ẽ (r,t ) · Bel . (A15)

The modification of Eq. (A14b) renders the consistent version of the anomaly equation, ∂μJ μ = 0.
The Bardeen-Zumino polynomial, which restores the nonconservation of local charge, can be interpreted as the anomalous

current term which propagates from the bulk to the boundaries, and vice versa, through the Fermi arcs. The single node anomaly
equation after applying the Bardeen correction would be

∂tδnχ + ∇ · J χ = (χEel · Bel )/4π2. (A16)

Having utilized the above definition of current expression J χ (r, t ) and charge density fluctuation δnχ (r, t ), we can simply obtain
Eq. (A16) in its Fourier form

(ω + iτ−1)δnχ − χ
q · Bel

4π2k2
F

δnχ = q · Bel

4π2

(
F0 + e2

ε0q2

)∑
χ ′

χ ′δnχ ′ , (A17)

where the dynamics of charges are defined from the energy level χ |δμ(1)
χ | in each node correspond to a shift εk → εk + χ |δμ(1)

χ |
in energy levels of charge fluctuations. The above dynamical equation can be written in a more compact form

δnχ =
(
F0 + e2

ε0q2

)∑
χ ′ χ ′δnχ ′

(ω + iτ−1) − χq · α/2π2

q · α

2π2
, (A18)

where α = Bel/2k2
F . Applying summation

∑
χ χ to both sides, and expanding the denominator by assuming small q · α and

finite frequency ω, we reach the following polynomial equation

1 =
∑

χ

χk2
F q · α/2π2

ω − χq · α/2π2

(
F0 + e2

ε0q2

)
=

∑
χ

χk2
F q · α

2π2ω

(
1 + χq · α

ω
+ · · ·

)(
F0 + e2

ε0q2

)
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� (a1 + a2|q|2)

(
q̂ · α

ω

)2

+ (a1 + a2|q|2)|q|2
(

q̂ · α

ω

)4

+ · · · . (A19)

where a1 = e2k2
F /2ε0π

2 and a2 = F0k2
F /2π2. Keeping terms up to order ( q̂·α

ω
)
4

and solving the quadratic equation, the dispersion
relation is obtained as

ωAP(q) = |q̂ · α|
√

a1 + (1 + a2)|q|2. (A20)

APPENDIX B: DYNAMICAL CHEMICAL POTENTIAL IMBALANCE

The dynamical charge imbalance between the bulk and the boundaries is given by

dñ(r, t )

dt
= e2

2π2
Ẽ(r, t ) · Bel , (B1)

which leads to

ñ(r, t ) = e2

2π2
τaẼ(r, t ) · Bel . (B2)

Using the 3D electron density, i.e. n = μ3

3h̄v3
F

= n0 + ñ(r, t ), the shift in the chemical potential would be

μ3 = μ3
0 + μ̃3

(r,t ) −→ μ = μ0

[
1 +

(
μ̃(r,t )

μ0

)3]1/3

, (B3)

where

μ̃(r, t ) =
[

3e2

2
τaẼ(r, t ) · Bel

]1/3

. (B4)

Assuming μ(r, t ) � μ0, the shift in the chemical potential is simplified

δμ(2)(r, t ) = μ − μ0 � e2

2μ2
τaẼ(r, t ) · Bel = e2

2μ2
τaẼ · Bel ei(q·r−ωt ). (B5)

The distribution function is defined as δ fχ (k, r, t ) = (− ∂ f (eq)

∂εk
)δμ(2)(r, t ), which satisfies δñ(r, t ) = ∑

k D(k̂)δ fχ (k, r, t ) =
e2

2π2 τaẼ(r, t ) · Bel up to the linear order of Bel .

APPENDIX C: THERMAL PROPERTIES

The total energy carried by the collective mode would be

U =
∑

q

ωq G (0)(q, r, t ), (C1)

where G (0)(q, r, t ) = (eβωq − 1)−1 is the equilibrium Bose-Einstein distribution function and ωq = |q̂ · α|
√

a1 + (1 + a2)|q|2
represents the dispersion of the collective mode. The specific heat, i.e. Cv = ∂U/∂t , can be obtained as

Cv (T ) = ∂

∂T

∑
|q|<�

ωq

eβωq − 1
= kB

∑
|q|<�

β2ω2
q

4 sinh2(βωq/2)
, (C2)

where � is an ultraviolet cutoff for the wave vector integrals. We assume that the pseudomagnetic field is parallel to the z
axis. The plasmon dispersion in the spherical coordinate is obtained as ωq = α cos θ

√
a1 + (1 + a2)|q|2, where θ is the angle

between ẑ and q. With change of variables x =
√

a1 + (1 + a2)|q|2 and u = cos θ , the renormalized specific heat in the spherical
coordinate would be

C̃v = 4π2(1 + a2)3/2

kB�3
Cv =

(
θAP

T

)2 ∫ 1

−1
u2du

∫ ξ

√
a1

dx
x3

√
x2 − a1(

e(θAP/T )xu − 1
)2 e(θAP/T )xu, (C3)

where ξ = √
a1 + a2 + 1 and θAP = α�/kB is the corresponding Debye temperature for APs with α = Bel/2k2

F . Therefore, the
specific heat behavior in terms of temperature can be obtained by numerical solution of the above integral.

To investigate the low temperature behavior (T � θAP) of specific heat, let us initially consider this integral

A =
∫ 1

−1
u2du

e(θAP/T )xu(
e(θAP/T )xu − 1

)2 = 1

(bx)3

∫ bx

−bx
dt

t2et

(et − 1)2
, (C4)
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with b = θAP/T and t = bxu. In the low temperature limit the variable b goes to infinity (b → +∞), then the above integral
becomes

AT →0 � 1

(bx)3

∫ +∞

−∞
dt

t2et

(et − 1)2
= 1

(bx)3

2π

3
(C5)

Substituting into Eq. (C3) leads to

C̃v = 2π

3
B(a1, a2)

T

θAP
for T � θAP, (C6)

where B(a1, a2) = ∫ √
a1+a2+1√

a1

√
x2 − a1dx = √

(a2 + 1)(a1 + a2 + 1)/2 − a1
2 ln |(√a2 + 1 + √

a1 + a2 + 1)/
√

a1|.
In the high temperature limit, on the other hand, we use e(θAP/T )xu = 1 + (θAP/T )xu + ... in Eq. (C3), which gives

C̃v = 2

3
(a2 + 1)3/2 for T � θAP, (C7)

The thermal conductivity, κ th, is defined as a coefficient of the heat current jth = κ th(−∇T ). The thermal current associated
to the unidirectional AP mode in terms of its spectrum is provided by

jth =
∑
|q|<�

ωq(∇qωq) δG(q, r, t ), (C8)

where δG(q, r, t ) is the deviation of distribution function due to the temperature gradient. The Boltzmann equation of bosonic
distribution function with momentum q would be

∂tG(q, r, t ) + q̇ · ∇qG(q, r, t ) + ṙ · ∇rG(q, r, t ) = −G(q, r, t ) − G0(q, r, t )

τp(T )
. (C9)

Using the stationary condition, i.e. ∂tG(q, r, t ) = 0, and q̇ = 0 we have

δG(q, r, t ) = G(q, r, t ) − G0(q, r, t ) = −τp(T )ṙ · ∇rG(q, r, t ). (C10)

It is straightforward to derive the following expressions;

ṙ = ∇qωq = ∂

∂q
[α

√
a1 + (1 + a2)|q|2] = α2(1 + a2)

ωq
|q|, (C11)

and

∇rG(q, r, t ) = ∇T
∂G(q, r, t )

∂T
. (C12)

Substituting into Eq. (C10), we may write

δG(q, r, t ) = −τp(T )
α2(1 + a2)kBβ2

4 sinh2(βωq/2)
|q|∇T . (C13)

Hence, the thermal current is given by

jth = τp(T )kB(1 + a2)2α4β2
∑
|q|<�

q2
z

4 sinh2(βωq/2)
(−∇T ). (C14)

The renormalized thermal conductivity in the spherical coordinate is given by the following integral;

κ̃ th = 4π2

τpkB(1 + a2)1/2�3
κ th = α2b2

∫ ξ

√
a1

x(x2 − a1)3/2dx
∫ 1

−1

exub

(exub − 1)2
du

= α2b
∫ ξ

√
a1

dx

[
(x2 − a1)3/2

e−xb − 1
− (x2 − a1)3/2

exb − 1

]
(C15)

In the low temperature limit or b → +∞ we have

κ̃ th = α2b C(a1, a2)|
√

a1+a2+1√
a1

(C16)

where C(a1, a2) = 1
8

√
x2 − a1(5a1x − 2x3) − 3

8 a2
1 ln(x +

√
x2 − a1). Therefore, the low temperature behavior of κ̃ th is propor-

tional to κ̃ th ∝ (Bel )2(θAP/T ). It is straightforward to prove that the thermal conductivity in the high temperature limit becomes
temperature independent and proportional to (Bel )2, i.e. κ th ∝ (Bel )2.
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APPENDIX D: ANOMALY INDUCED COLLECTIVE EXCITATIONS IN WEYL SEMIMETALS

We would like to compare our proposed collective mode with those results reported in literature. Since different systems
with different physical situations are considered the existence or absence of the Coulomb interaction in the presence of a
real electromagnetic or pseudomagnetic fields, our comprehensive comparisons are based on those parameters. Therefore, the
following table demonstrates the physical interpretation of various collective modes in a Weyl semimetal.

TABLE I. The physical interpretation of various collective modes in a Weyl semimetal in the presence and absence of external fields.

Collective mode Coulomb interaction External fields Physical interpretation

Anomalous zero sound [18] off B Linear dispersion: ω = c±
s q, c±

s ∝ ±B,
√

F0.
Magnetic field lifts the degeneracy of normal zero

sound into two + and − branches.
Zero sound [19] off E Topological effect changes the instability conditions of

normal zero sound.
B It leads to the Landau damping even in the region where

normal zero sound is undamped.
Chiral magnetic plasmon [23] off Bel Its origin is the fluctuations of both charge and

chiral current densities.
B The plasma frequency is decomposed into

two branches under a magnetic field.
Chiral magnetic wave [24] off B Linear dispersion: ω = vBq, vB ∝ χB.

Its velocity does not depends on the detail of ε(p) or the
collision process.

Chiral sound wave [28] off Eel Linear dispersion: ω = vsq, vs ∝ q̂ · Bel .
Bel It propagates along the Bel and origins from the chiral

anomaly with pseudofields.
It modifies the standard acoustic phonon dispersion.

Plasmon mode [17] on E Its origin is the fluctuations of both the charge and chiral
current densities.

B The chiral anomaly induces a Lifshitz transition to
the plasmon frequency.

Chiral zero sound [22] on B Linear dispersion: ω = csq, cs ∝ q̂ · B.
It emerges in a Weyl semimetal with at least two pairs of

Weyl points and propagates along the magnetic field.
It is also manifested to the unidirectional and unusual

thermal conductivity [22,47].
Chiral plasmon mode [22] on B Its origin is the inter-node fluctuations in the chiral limit.

The plasmon gap is proportional to the magnetic field,
ω(q → 0) ∝ q̂ · B and propagates along the B.

Anomalous plasmon mode on Eel It propagates along the Bel and origins from the
local charge fluctuations between the bulk and the boundaries.

Bel The plasmon gap is proportional to the pseudomagnetic field,
ω(q → 0) ∝ q̂ · Bel .

It leads to the unprecedented thermal conductivity along
the Bel which violates the Widemann-Franz law.
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