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Rydberg magnetoexcitons in Cu2O quantum wells
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We present a theoretical approach that allows for calculation of optical functions for a Cu2O quantum well
(QW) with Rydberg excitons, in an external magnetic field of an arbitrary strength. Both Faraday and Voigt
configurations are considered in the energetic region of p excitons. We use the real density matrix approach and
an effective electron-hole potential, which enable us to derive analytical expressions for the QW magneto-optical
functions. For both configurations, all three field regimes—weak, intermediate, and high field—are considered
and treated separately. With the help of the developed approximation method we are able to estimate the limits
between the field regimes. The obtained theoretical magnetoabsorption spectra show a good agreement with
available experimental data.
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I. INTRODUCTION

The discovery of Rydberg excitons (REs) in cuprous oxide,
first observed by Kazimierczuk et al. [1], initiated a large
number of studies on their spectroscopic and optical proper-
ties (see the review paper, Ref. [2], where an extensive list
of references can be found). In a majority of semiconductors,
the observation of high exciton states is typically prevented
by a small Rydberg energy of a few meV (e.g., 4.2 meV
in the generic semiconductor GaAs with n = 3 as the high-
est observed state). Cuprous oxide stands out in this respect
because it features a comparably large Rydberg energy of
90 meV, which together with narrow absorption lines pro-
vides well-suited conditions for exciting excitonic Rydberg
states. These states are characterized by small binding ener-
gies, which makes them very sensitive to external fields. A
lot of attention has been devoted to the interaction of REs
with an external electric and/or magnetic field [3–8] (Stark
and Zeeman effects), but most studies, both experimental and
theoretical, concentrate on bulk crystals or plane-parallel slabs
with dimensions much greater than the incident wave length
and the effective Bohr radius.

In low-dimensional systems, due to confinement effects,
the excitonic states have larger energies and oscillator
strengths as compared with the bulk. This is also true for
systems with REs; the states with a large main quantum
number gain additional energy, and therefore one can expect
that depending on the type of confinement, new states can
appear, originating from the overlapping of confinement states
with the Coulomb states and possibly resulting from Zeeman
splitting in an external magnetic field. Recently, Cu2O-based
nanostructures with REs have awoken the interest of several
groups [9–12], because one can expect interesting quantum
effects to arise from competition between the geometric con-
finement, the excitons’ motion, and their interaction with
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additional external fields. This interest is also motivated
by potential application benefits because quantum-confined
structures with REs might be of use in practice for a new
class of miniaturized, optoelectronic devices. From a practical
point of view, one has to mention that devices such as lasers,
photodetectors, modulators, and switches based on quantum
wells turned out to be significantly faster than conventional
electrical components, which is very desirable for telecom-
munication applications.

Similarly to the bulk case, the application of external
fields to nanostructures changes the spectra of REs [9].
The electro- and magneto-optical properties of the typically
studied cases such as GaAs-based nanostructures have been
explored for decades, recently touching new areas such as
magneto-optical properties of monolayer transition in metallic
dichalcogenides [13]. The discussion of Cu2O, when multi-
ple Rydberg exciton states must be taken into account, is at
its infancy. Here, we will consider the effect of an external
magnetic field on a quantum well with Rydberg excitons. The
effects of a geometric confinement are superimposed on REs’
interaction with external fields and manifest in an intrinsic
difference in magneto-optical spectra in terms of state ener-
gies, which in turn depend on field orientation. Inspired by
the recent developments in the area of REs, we aim to analyze
the magneto-optical properties of a Cu2O-based quantum well
(QW) in two different field orientations, namely, the Faraday
and Voigt configurations. Both cases have been investigated
experimentally for bulk Cu2O crystals with RE for weak mag-
netic field (up to 4 T), and the numerical excitonic spectra
were shown [3].

We will use the real density matrix approach (RDMA) to
calculate the optical functions of a single Cu2O QW with
REs. This approach turned out to be successful in describ-
ing the optical properties of Cu2O bulk crystals, including
effects of external fields (Ref. [8] and references therein). The
RDMA, adopted for bulk semiconductors by Stahl, Balslev,
and others [14], has been then extended to low-dimensional
systems (see Refs. [15–18]). In those works the attention was
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focused on nanostructures based on group II-VI [15,16,18]
and III-V [17] semiconductors, with a prevalent role of s
excitons affecting the optical properties. As has been shown
in our recent paper [9], it is possible to extend the RDMA
method to low-dimensional systems for Cu2O-based nanos-
tructures (in particular, quantum wells), where a different
symmetry due to p excitons and the multiplicity of Rydberg
exciton states must be taken into account. When describing the
magneto-optical properties of the systems with excitons, one
is confronted with well-known difficulties. The exciton, being
an analogy of a hydrogen atom, is created and maintained by
a Coulomb attraction, having a spherical symmetry. On the
other hand, in the case of a quantum well a magnetic field and
the confinement potentials have a cylindrical symmetry. These
geometrical discrepancies rule out an analytical solution of
the Schrödinger equation with the appropriate form of the
Hamiltonian for the problem. To circumvent such obstacles,
we have to use, as in the bulk case, various approximations,
which depend on the relation between the exciton binding
energy and the magnetic field energy. When the excitonic en-
ergies are larger than the magnetic field energies (the Landau
state energies), we use the so-called weak-field approxima-
tion. In the opposite case, when the Landau state energies are
greater than the excitonic state energies, we have to consider
a high-field approximation. Between these two regions, one
has to consider the intermediate-field case, when the excitonic
energies and Landau state energies are comparable. Moreover,
each magnetic field regime requires a different theoretical
approach, and there is a strong need for a versatile estimation
of how to designate the regime of the magnetic field; we
propose a method which allows us to discern these regimes.
When considering the magneto-optical properties of excitons
in a QW, one has to account for effects related to the direction
of the applied magnetic field. One distinguishes between the
Faraday configuration, when the magnetic field is directed
along the growth axis (the z axis, perpendicular to the planes
of the QW), and the Voigt configuration, when the magnetic
field is perpendicular to the z axis and parallel to the planes
of the QW. We will show below that all the abovementioned
effects can be described within the RDMA.

The paper is organized as follows. In Sec. II we recall the
basic equations of the RDMA, adapted to the case of QWs,
when external fields are applied. In Sec. III we explicitly
derive the formulas for magnetosusceptibility for Cu2O QWs
when the external magnetic field is applied in the Faraday
configuration. We separately discuss the cases of a weak field
(Sec. III A), a high field (Sec. III B), and an intermediate
magnetic field (Sec. III C). Then we also consider three dif-
ferent regimes of the magnetic field strength in the case of
the Voigt configuration (Secs. IV A–IV C). Section V contains
illustrative numerical results and the description of a simple
but effective method which allows for estimation of magnetic
field regimes, while a summary and the conclusions of our
paper are presented in Sec. VI. Appendixes A–D contain the
details of the analytical calculations.

II. BASIC EQUATIONS

We will use the real density matrix approach, applied to
a single quantum well with Rydberg states, similarly as was

done for low-dimensional structures in Ref. [9]. In this ap-
proach the optical properties are described by an equation for
the two-point correlation function Y12 (also called the coherent
amplitude) of the electron-hole pair of coordinates r1 = rh

and r2 = re, which for a pair of conduction and valence bands
reads

−i(h̄∂t + �)Y12 + HehY12 = ME, (1)

where E is the electric vector of the electromagnetic wave
propagating in QW, � is a phenomenological damping coef-
ficient, and M(r) is a smeared-out transition dipole density
which depends on the coherence radius r0 = [(2μ/h̄2)Eg]

−1/2

(Eg is the fundamental gap; μ is the reduced effective mass
of the electron-hole pair, and r is the relative electron-hole
distance) [19]. Specific forms of M(r) will be defined in
subsequent sections.

The RDMA is a mesoscopic approach, which in the lowest
order neglects all effects from the multiband semiconductor
structure, so that the exciton Hamiltonian becomes identical
to the two-band effective mass Hamiltonian Heh, which in the
case when external fields are applied includes the electron and
hole kinetic energy, the electron-hole interaction potential,
the terms related to the external fields, and the confinement
potentials [20]. As a consequence, the Hamiltonian H is given
by

H = Eg + 1

2me

(
pe − e

re × B
2

)2

+ 1

2mh

(
ph + e

rh × B
2

)2

z

+ 1

2mh

(
ph + e

rh × B
2

)2

‖
+ eF · (re − rh)

+Vconf (re, rh) − e2

4πε0εb|re − rh| , (2)

where B is the magnetic field vector, F is the vector of
the external electric field, Vconf are the surface potentials for
electrons and holes, εb is the background dielectric constant,
mhz, mh‖ are the components of the hole effective mass tensor,
and the electron mass is assumed to be isotropic. The total po-
larization of the medium is related to the coherent amplitude
by

P(R) = 2 Re
∫

d3r M(r)Y (R, r), (3)

where R is the center-of-mass coordinate. This, in turn, is used
in Maxwell’s field equation

c2∇2E(R) − εbË = 1

ε0
P̈(R). (4)

Equations (1), (3), and (4) form a system of coupled in-
tegrodifferential equations. In the bulk limits, they can be
transformed into Fredholm integral equations of the second
kind, with certain nonlocal integral kernels. Their solution is a
nontrivial task. The problem becomes simpler in the quantum
well limit. With the help of the long-wave approximation, one
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arrives at the mean effective quantum well susceptibility

χ = 1

L

∫ L/2

−L/2

P(Z )

ε0E (Z )
dZ. (5)

From the Maxwell equation (4), one can calculate the mean
effective dielectric function ε = εb + χ and the absorption
coefficient

α = 2
h̄ω

h̄c
Im

√
εb + χ. (6)

The detailed form of the Hamiltonian for both Faraday and
Voigt configurations will be applied in the following sections.
The detailed calculations are presented in the Appendixes and
Ref. [21].

III. THE FARADAY CONFIGURATION

When the magnetic field B is applied to a QW in the growth
direction, which we identify with the z axis, we deal with the
Faraday configuration.

A. Weak-field limit

In this configuration we will consider the optical response
of a QW with thickness L to a normally incident electro-
magnetic wave. The QW is located in the x-y plane, with
the surfaces at z = ±L/2. We can separate the motion in the
z direction (where the particles are treated separately) from
the in-plane motion where we use the relative and exciton
center-of-mass coordinates. In the case of F = 0 we transform
the Hamiltonian (2) into the form

H = Eg − h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

+ p2
‖

2μ
+ P2

‖
2M‖

+ 1

8
μω2

c r2
‖ + e

2μ′ BLz

− e

M‖
P‖ · (r‖ × B) + Vconf (re, rh), (7)

where ωc = eB/μ‖ is the cyclotron frequency and the reduced
mass μ′ is defined as

1

μ′ = 1

me
− 1

mh
. (8)

The operator Lz is the z component of the angular momentum
operator.

We assume a parabolic confinement in the z direction,

Vconf = 1
2 meω

2
ezz

2
e + 1

2 mhω
2
hzz

2
h. (9)

The quasiparticles (electron and hole) move independently
in such a potential and have different confinement energies.
When the confinement parameters ωez, ωhz are equal, the sum
of their energies represents the exciton center-of-mass quan-
tized states.

Using the notation

H (1D)
m,ω (z) = p2

z

2m
+ 1

2
mω2z2, (10)

the QW Hamiltonian can be written in the form

HQW = Eg + H (1D)
me,ωez

(ze) + H (1D)
mh,ωhz

(zh)

− h̄2

2M‖
∇(2D)2

R‖ − h̄2

2μ
∇(2D)2

r

− μ

μ′ iγ R∗∂φ + R∗

4a∗2
γ 2 r2 + Veh, (11)

where Veh is the electron-hole Coulomb interaction potential,
a∗ is the exciton Bohr radius and R∗ the exciton Rydberg
energy, ∇(2D)2

R‖ ,∇(2D)2
r denote two-dimensional nabla opera-

tors, and r =
√

x2 + y2. The dimensionless strength of the
magnetic field γ is defined as

γ = h̄ωc/2R∗. (12)

In the weak-magnetic-field limit, excitons play a dominant
role in determining the optical response, and the magnetic
field can be treated as a perturbation [8]; we use the two-
dimensional Coulomb potential

Veh = − e2

4πε0εbr
. (13)

We consider the two-dimensional approximation with the
following justification. First, we are more interested in the
magnetic field effects than in the accuracy of eigenvalues. Sec-
ond, we want to account for higher excitonic states where, for
p symmetry, the spatial extension of the exciton wave func-
tion increases approximately as j2. The extension of higher
states can be larger (or even much larger) than the quantum
well thickness L, thus satisfying the condition for narrow
QWs. In addition, the energy values for higher excitonic states
differ only slightly from those of a three-dimensional sys-
tem, and the difference between two- and three-dimensional
calculations affects mostly the oscillator strengths. The two-
dimensional potential allows for analytical calculations with
inclusion of arbitrary high exciton states (which is the key
point for Rydberg excitons), whereas more accurate calcula-
tions (for example, variational) can be performed only for the
lowest or the lowest few exciton states. For these reasons we
use the two-dimensional Coulomb potential (13).

With respect to the above assumptions, the left-hand-side
operator in Eq. (11) includes two one-dimensional harmonic-
oscillator Hamiltonians and the two-dimensional Coulomb
Hamiltonian

H (2D)
Coul = − h̄2

2μ
∇(2D)2

r − e2

4πε0εbr
. (14)

We also neglect the terms related to the in-plane center-of-
mass motion. Therefore the solution for the amplitude Y can
be expressed in terms of eigenfunctions of the abovemen-
tioned Hamiltonians

YjmNeNh =
∑

Ne,Nh, j,m

c jmNeNhψ
(1D)
αez,Ne

(ze)ψ (1D)
αhz,Nh

(zh)ψ jm(r, φ),

(15)
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where ψ
(1D)
αz,N

(z) (Ne, Nh = 0, 1, . . .) are the quantum oscillator
eigenfunctions for electron and hole, respectively.

ψ
(1D)
αz,Ne,h

(z) = π−1/4

√
αz

2N
e,hNe,h!

HN (αzz)e− α2
z
2 z2

,

αz =
√

me,hωz

h̄
, (16)

HN (x) are Hermite polynomials (Ne,h = 0, 1, . . .),
me,h are the electron (hole) effective masses, and
ψ jm(ρ, φ) are the eigenfunctions of the two-dimensional
Hamiltonian (14)

ψ jm(ρ, φ) = Rjm(ρ)
eimφ

√
2π

,

Rjm = Ajme−2λρ (4λρ)|m|L|2m|
j (4λρ),

λ = 1

1 + 2( j + |m|) ,

Ajm = 4

(2 j + 2|m| + 1)3/2

[
j!

( j + 2|m|)!
]1/2

, (17)

where Lα
n (x) are the Laguerre polynomials, for which we use

the definition

Lα
n (x) =

(
n + α

n

)
M(−n, α + 1; x),

with the Kummer function M(a, b, z) (the confluent hyper-
geometric function) [22], and ρ = r/a∗ is the scaled space
variable. Here, we use the transition dipole density in the
form [8]

M(ρ, ze, zh) = M0

2ρ3
0

ρ e−ρ/ρ0
eiφ

√
2π

δ(ze − zh), (18)

with the integrated strength M0 and the coherence radius

ρ0 = r0/a∗, where r0 =
√

h̄2

2μEg
. The coefficient M0 and the

coherence radius ρ0 are connected through the longitudinal-
transversal energy �LT [19]

(M0ρ0)2 = 4

3

h̄2

2μ
ε0εba∗ �LT

R∗ e−4ρ0 . (19)

The calculation of the QW susceptibility, from which other
optical functions can be determined, consists of several steps.
First, we assume that the incident electromagnetic wave is
linearly polarized with the electric vector E having a compo-
nent in the direction α and an amplitude E ; the dipole density
vector M has a component M in the form (18) in the same
direction. Then, with the help of Eqs. (3) and (5), applying
the long-wave approximation, we calculate the mean QW
susceptibility from the formula

χ = 2

ε0E
1

L

∫ L/2

−L/2
dzedzh

∫ ∞

0
dρ ρ

∫ 2π

0
dφ M(ρ, ze, zh)

×Y (ρ, ze, zh). (20)

The first step to calculate χ is to determine the exciton ampli-
tude Y . Finally, we use Eq. (1) with the Hamiltonian given by
Eq. (11). Inserting the expansion (15) into Eq. (1) and making
use of the dipole density in the form (18), one obtains a set

of linear algebraic equations for the expansion coefficients
c jmNeNh

jmax∑
�=0

a j�mNeNh c�mNeNh = b j1δNeNhE,

a j�mNeNh = δ j�κ
2
jmNeNh

+ Vj�m,

κ2
jmNeNh

= 1

R∗

(
Eg − h̄ω − i� + ε jmR∗ + WeNe

+WhNh + μ

μ′ mγ R∗
)

,

ε jm = − 4λ2
jm,

λ jm = 1

2 j + 2|m| + 1
,

b j|m|NeNh = b j1NeNh

=
√

( j + 1)( j + 2)

( j + 3/2)5
(1 + 2ρ0λ j1)−4

× F

(
− j, 4; 3;

1

s

)

s = 1 + 2ρ0λ jm

4ρ0λ jm
,

j, � = 0, 1, 2, . . . , jmax, m = ±1,

Ne, Nh = 0, 1, 2, . . . , (21)

where F (α, β; γ ; z) is a hypergeometric series. Vj�m are matrix
elements

Vj�m = 1
4γ 2〈Rjm(ρ)|ρ2|R�m(ρ)〉, (22)

and their detailed form is given by Eq. (A4) in Appendix A.
The z-confinement energies WeNe ,WhNh and the parameters α

are defined as follows:

αe =
√

me

μ

√
We0

R∗ ,

αh =
√

mh

μ

√
Wh0

R∗ ,

p = 1

2

(
α2

ez + α2
hz

)
,

We0 =
(

πa∗
e

L

)2

R∗
e ,

Wh0 =
(

πa∗
h

L

)2

R∗
h,

We1 = 3We0,

Wh1 = 3Wh0.
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For the case αe = αh = αF = π/L the specific values of these
parameters are

p = 1,

We0 =
(

πa∗
e

L

)2

R∗
e ,

Wh0 =
(

πa∗
h

L

)2

R∗
h,

We0 + Wh0

R∗ =
(

πa∗

L

)2

=:
Weh0

R∗ ,

We1 + Wh1

R∗ = 3Weh0

R∗ ,

WeN + WhN

R∗ = (2N + 1)Weh0

R∗ .

With the above definitions, taking Ne = Nh = N with com-
puted c coefficients, we use them in the expansion (15), which
is in turn inserted into Eq. (20), from which we calculate the
mean QW magnetosusceptibility for the Faraday configura-
tion

χF (ω) = 48εb
�LT

R∗

(
a∗

L

) N∑
j=0

b j1[〈�00〉L(c j100 + c j−100)

+〈�11〉L(c j111 + c j−111) + · · · 〈�NN 〉L

× (c j1NN + c j−1NN )]〈�NN 〉L

= 1

2N N!

2√
π

∫ αL/2

0
e−t2

H2
N (t )dt . (23)

B. High-field limit

In the high-field limit, the magnetic energy contributions
to the Hamiltonian are much greater than the Coulomb one,
and the energies of Landau states are larger than the absolute
value of the lowest exciton state. Therefore we seek solutions
for the exciton amplitude Y in terms of the eigenfunctions of
the “kinetic + magnetic + confinement” part of the Hamilto-
nian (11).

Y =
∑

nmNeNh

cnmNeNh Rnm(ρ)
eimφ

√
2π

�NeNh (ze, zh), (24)

where

Rnm(ρ) = √
γ

√
n!

(n + |m|)!
(

γ ρ2

2

)|m|/2

e−γ ρ2/4L|m|
n

(
γ ρ2

2

)
,

(25)

n = 0, 1, . . . and m characterize Landau states, and L|m|
n are

associated Laguerre polynomials. Similarly as in the case of
weak magnetic fields, we insert the expansion (24) into Eq. (1)
with an appropriate form of the Hamiltonian H , to obtain the
expansion coefficients c, which are calculated from the set of

linear equations∑
nmNeNh

an�mNeNh cnmNeNh = d�mδNeNh ,

an�mNeNh = δn�κ
2
nmNeNh

+ Vn�m,

Vn�m = 〈Rnm|
(

− 2

ρ

)
|R�m〉,

dnm = 〈Rnm
eimφ

√
2π

|M(ρ, φ)〉

= (M0ρ0)
2γ√
π

√
n + 1

(
1 − γ ρ2

0
2

)n

(
1 + γ ρ2

0
2

)n+2 ,

(26)

where

κ2
nmNeNh

= 2μ

h̄2 a∗2(Eg − h̄ω − i�)

+Unm/R∗ + WeNe + WhNh

R∗ ,

Unm/R∗ = γ

(
2n + sgn(B)m

μ

μ′ + |m| + 1

)
. (27)

The detailed form of the matrix elements Vn�m is given by
Eq. (A5) in Appendix A. With the help of the coefficients c
one can get the exciton amplitude Y , which is then substituted
into Eq. (20), from which the mean magnetosusceptibility for
the case of high magnetic fields can be determined. Restricting
the considerations to the lowest confinement state in the z
direction and denoting κnm00 = κnm, the magnetosusceptibility
for the Faraday configuration for the high field is given by the
following formula:

χF = 16

3π
εbγ

2

(
a∗

L

)
�LT

R∗ e4ρ0
αeαh

p

×erf

(
L
√

p

2

) N∑
n=0

∑
m

cnmdn1,

dn1 = √
n + 1 exp

[
2ρ0 − (n + 1)γ ρ2

0

] =
nmax∑
n=0

an� mcnm.

(28)

C. Intermediate fields

For intermediate magnetic fields, the exciton energies and
the Landau states’ energies are comparable, and therefore we
must include both the contributions of Coulomb interaction
and the magnetic field on the same footing. In Ref. [8] we
developed a method for such calculations, and here we will re-
call its fundamental points. Equation (1) has to be transformed
into the Lippmann-Schwinger equation in the scalar form for
one dimension

Hkin+B+confineY = ME − VY, (29)

where V is the two-dimensional Coulomb electron-hole (e-h)
interaction potential, and Hkin+B+confine is the “kinetic + mag-
netic + confinement” part of the Hamiltonian (7). The above
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equation can be solved by means of the appropriate Green’s
function [23]

Y = GME − GVY. (30)

The Green’s function has the form [23]

G(ρ, ρ ′; φ, φ′; ze, z′
e; zh, z′

h)

= 1

2π

∑
Ne.Nh

∞∑
n=0

∑
m

eim(φ−φ′ )ψ
(1D)
αh,Nh

(zh)ψ (1D)
αh,Nh

(z′
h)

×ψ
(1D)
αe,Ne

(ze)ψ (1D)
αe,Neh(z′

e)
Rnm(ρ)Rnm(ρ ′)

κ2
nmNeNh

,

where Rnm(ρ) are given in Eq. (25) and κ2
nmNeNh

is given by
Eq. (27).

The Lippmann-Schwinger equation (29) is an integral
equation for the unknown function Y . There are several meth-
ods to solve such equations. We choose the method of a trial
function Y , which we take in the form

Y = �00R01(ρ)

[ ∑
m=±1

Y0m,00 exp(−κ0m00ρ)
eimφ

√
2π

]

+
∞∑

n=1

∑
Ne,Nh�1

∑
m

eimφ

√
2π

YnmNeNh Rnm(ρ)�NeNh , (31)

where YnmNeNh are coefficients to be determined and

�NeNh = ψ
(1D)
αe,Ne

(ze)ψ (1D)
αh,Nh

(zh). (32)

The exciton amplitude Y , and thus the magnetosusceptibil-
ity, is known once the parameters YnmNeNh are calculated,
which is done in Appendix B. With Y0±1,00 given by (B2)
substituted into Eqs. (31) and (20), we obtain the mean
QW magnetosusceptibility in the Faraday configuration and
intermediate-magnetic-field regime in the form

χ = 16

3π
εbγ

2

(
a∗

L

)
�LT

R∗ e4ρ0
αeαh

p
erf

(
L
√

p

2

)

×
∑

m=±1

{
3d0m exp

(
u2

4

)
D−4(u)

exp(z2/4)
[
3κ2

0mD−4(z) − 2
√

γ D−3(z)
]

+
N∑

n=1

d2
nm

κ2
nm

}
, (33)

dnm = dn|m| = √
n + 1

(
1 − γ ρ2

0/2
)n

(
1 + γ ρ2

0/2
)n+2

≈ √
n + 1 e−(n+1)γ ρ2

0 ,

u = κ0±1

s
, s = 1

ρ0

(
1 + γ ρ2

0

2

)1/2

, z = κ0±1√
γ

.

IV. THE VOIGT CONFIGURATION

In the Voigt configuration, the magnetic field is perpendic-
ular to the wave vector of the propagating electromagnetic
wave and, in the QW geometry, parallel to the QW planes.
As in the case of the Faraday configuration, we will discuss
the three regimes—the weak, intermediate, and high magnetic

field—with the proper form of the Hamiltonian for each of
them.

A. Weak-field regime

We choose the magnetic field B parallel to the x axis,
which corresponds to the vector potential A = B

2 (0,−z, y).
With this potential and the confinement potentials (9), the QW
Hamiltonian (2) in the weak-field limit takes the form

HV
QW = Eg + H (2D)

Coul + H (1D)
me,�ez

(ze) + H (1D)
mh,�hz

(zh) + H ′,

H ′ = 1

8μ
e2B2M2

Y + 1

8μ
e2B2y2q + 1

4μ′ e
2B2MY y,

q = m2
h − mhme + m2

e

M2
, (34)

where the relative and the center-of-mass coordinates y, MY in
the y direction are introduced

MY = meye + mhyh

M
, y = ye − yh, M = me + mh.

We will proceed in a similar way as in the case of a weak field
in the Faraday configuration. Treating the magnetic part H ′ as
a perturbation, we assume the solution for Y in the form (15),
with the eigenfunctions appropriate for the Hamiltonian (34).
This leads to the system of equations (21) for the expansion
coefficients c, where now the matrix elements are given by

V Voigt
jkm = 1

2 q V Faraday
jkm , (35)

with V Faraday
jkm defined in Eq. (A4).

The susceptibility is obtained in the form (23), where

〈�NN 〉L = 1

2N N!

2√
π

∫ αV L/2

0
e−t2

H2
N (t )dt,

αV
e = αV

h =: αV = 1

a∗

[
γ 2

4
+

(
πa∗

L

)4]1/4

,

W V
e0

R∗ + W V
h0

R∗ = W V
eh0

R∗ =
[
γ 2

4
+

(
πa∗

L

)4]1/2

, (36)

and for Ne = Nh = N , the confinement energies are now de-
fined as

W V
eN + W V

hN = WNN = (2N + 1)W V
eh0,

N = 0, 1, 2, . . . , Nmax,

W V
eh0 =

[
γ 2

4
+

(
πa∗

L

)4]1/2

R∗. (37)

B. High-field regime

In the high-field limit for the Voigt configuration the e-h
Coulomb interaction is considered as a perturbation, so the
unperturbed QW Hamiltonian has the form

HV
QW = p2

x

2μ
+ H (1D)

μ,�y
(y) + H (1D)

me,�ez(ze) + Hmh,�hz (zh),

h̄�y

2R∗ = γ

2
√

q, (38)
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with q defined in Eq. (34). We apply the method of the so-
called adiabatic potentials (Ref. [8] and references therein).
The exciton amplitude Y will be assumed in the form

Y (x, y, ze, zh) =
∑

NxNyNeNh

cNxNyNeNhψNx (x)ψ (1D)
β,�y

(y)�NeNh (ze, zh),

(39)

where

ψ
(1D)
β,Ny

= π−1/4

√
β

2Ny Ny!
HNy (βy)e−β2y2/2,

β = 1

a∗

√
h̄�y

2R∗ = 1

a∗ q1/4

√
γ

2
= 1

a∗ β̃,

�NeNh (ze, zh) = ψ
(1D)
αV

e ,Ne
(ze)ψ (1D)

αV
h ,Ne

(zh), (40)

and ψNx (x) are eigenfunctions of the operator

Hx = p2
x

2μ
+ VNyN ′

y
(x), (41)

where

VNyN ′
y
(x) = −2

∫ ∞

−∞
dy

ψ
(1D)
β,Ny

(y)ψ (1D)
β,N ′

y
(y)√

x2 + y2
. (42)

We restrict the discussion to the diagonal terms VNyNy and
approximate expression (42) by

VNy = − 2

aNy + |x| . (43)

The coefficients aNy , for odd-parity eigenfunctions ψ
(1D)
β,Ny

,
Ny = 2n + 1, are calculated in Appendix C. In this approx-
imation the Schrödinger equation with the operator (41)
becomes (

p2
x

2μ
− 2

aNy + |x|
)

ψ = Eψ, (44)

which gives the eigenfunctions

ψ jn(x) =
√

2

j + 1
e−(|x|+a2n+1 )/( j+1)L1

j

2(|x| + a2n+1)

j + 1
, (45)

j = 0, 1, . . . , and eigenvalues Ej = − R∗
( j+1)2 . With the above

functions we calculate the expansion coefficients in Eq. (39)
and thus the exciton amplitude Y , and finally, we calculate the
mean QW magnetosusceptibility for the Voigt configuration
in the limit of high magnetic fields

χV = 4
√

π

3
εb�LT e4ρ0

Nxmax∑
j=0

Nymax∑
n=0

Nzmax∑
N=0

2

( j + 1)2

× e− 2a2n+1
j+1

[
L(1)

j

(
2 a2n+1

j + 1

)]2

×
(

2β̃

1 + β̃2ρ2
0

)3
(2n + 1)!

22n+1(n!)2

(
1 − β̃2ρ2

0

1 + β̃2ρ2
0

)2n

×
[

Eg − h̄ω − R∗

( j + 1)2
+

(
2n + 3

2

)
h̄�y + WNN

]−1

,

(46)

where 〈�NN 〉L are defined in Eq. (36) and the confinement
energies WNN are defined in Eq. (37).

C. Intermediate fields

We calculate the mean magnetosusceptibility for the Voigt
configuration and in the regime of intermediate magnetic
fields by the Green’s function method described above for the
case of Faraday configuration. Again, we use the Lippmann-
Schwinger equation (30) to calculate the exciton amplitude
Y , which is then used to obtain the magnetosusceptibility.
The Green’s function in Eq. (30) satisfies, by definition, the
equation

HV G(x, x′; y, y′; ze, z′
e; zh, z′

h)

= −δ(x − x′)δ(y − y′)δ(ze − z′
e)δ(zh − z′

h),

where the operator HV has the form (38). Expressing the
Green’s function in terms of eigenfunctions of the operators
contained in HV , one obtains

G = 2μ

h̄2

∑
n,Ne,Nh

1

2π

∫ ∞

−∞
dk eik(x−x′ )ψ

(1D)
β,n (y)ψ (1D)

β,n (y′)

×
ψ

(1D)
αV

e ,Ne
(ze)ψ (1D)

αV
e ,Ne

(z′
e)ψ (1D)

αV
h ,Nh

(zh)ψ (1D)
αV

h ,Nh
(z′

h)

k2 + κ2
nNeNh

, (47)

with

κ2
nNeNh

= 2μ

h̄2

[
(Eg − h̄ω − i�) +

(
2n + 3

2

)
h̄�y

+
(

Ne + 1

2

)
h̄�ez +

(
Nh + 1

2

)
h̄�hz

]
. (48)

The functions ψ
(1D)
β,n (y) are defined in Eq. (40). For further

calculations we must specify a trial function Y . Accounting
only for the lowest confinement state, we use the following
trial function:

Y = Y0�00ψ
(1D)
1,β (y)e−κ0

√
x2+y2 +

∞∑
n=1

∑
NeNh�1

ψ
(1D)
2n+1,β (y)

×�NeNh

1

2π

∫ ∞

−∞
dk YnNeNh (k)eikx, (49)

where κ2
0 = κ2

000 and �NeNh is defined in Eq. (40); the
detailed calculations of Y0 are presented in Appendix D.
Then, similarly as in Sec. III C, one can calculate the
mean magnetosusceptibility for the Voigt configuration in the
intermediate-field regime, arriving at the formula

χ intermV = 4

3

�LT

R∗ εb

(
a∗

L

)
〈�00〉L

{
1√
πκ0

ρ3
0

(
2β

1 + β2ρ2
0

)3

× exp

[
κ2

0 ρ2
0

4
(
1 + β2ρ2

0

)]
D−3

⎛
⎝ κ0ρ0√

1 + β2ρ2
0

⎞
⎠

×
[

23/2

√
π

eκ2
0 /8β2

D−3

(
κ0

β
√

2

)
− F (κ0, β )

]−1
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TABLE I. Band parameter values for Cu2O. Masses are given
in units of free-electron mass m0. R∗ was calculated from (μ/ε2

b ) ×
13 600 meV. R∗

e,h = (me,h/μ)R∗, and a∗
e,h = (μ/me,h )a∗.

Parameter Value Units Ref.

Eg 2172.08 meV [1]
R∗ 87.78 meV
�LT 1.25 × 10−3 meV [24]
me 0.99 m0 [10]
mh 0.58 m0 [10]
μ 0.363 m0

Mtot 1.56 m0

a∗ 1.1 nm [1]
r0 0.22 nm [19]
εb 7.5 [1]
R∗

e 239.4 meV
R∗

h 140.25 meV
a∗

e 0.4 nm
a∗

h 0.69 nm
� j 3.88/ j3 meV [1]

+
∑

n�1,N�1

{
〈�NN 〉L

1

22n

(
β̃

1 + β̃2ρ2
0

)3
(2n + 1)!

(n!)2

×
(

β̃2ρ2
0 − 1

β̃2ρ2
0 + 1

)2n
π

κnN
w(iβ κnN )

}
, (50)

where Wκ,μ(z) is a Whittaker function of the second kind,
w(z) is the complex error function [22], and F (κ0, β ) is de-
fined in Eq. (D1).

V. RESULTS

We have calculated the QW magnetoabsorption from the
imaginary part of the magnetosusceptibilities, given for the
Faraday configuration in Eqs. (23), (28), and (33) and for
the Voigt configuration in Eqs. (23) (with appropriate change
of parameters), (46), and (50). The parameters used in the
calculations are collected in Table I. We assume that the QW
band parameters (for example, effective masses) are equal to
their bulk values. Since the quantum well thickness under
consideration is L � 20 nm, it is much larger than the exciton
(1.1 nm for n = 1; see Ref. [1]), and the choice of bulk effec-
tive masses is justified. The calculations have been performed
for the whole spectrum of magnetic field strength, including
the weak-, intermediate-, and high-field regimes.

A. Estimation of regime boundaries

The problem of delimiting boundaries of magnetic field
regimes requires a specific analysis for each material. Below
we will present simple reasoning which allows for a rough
estimation of those limits. The lowest Landau energies for
a p exciton (including the Zeeman splitting) given by [see
Eq. (27)]

U0,±1 =
( B

Bcr

)(
2 ± μ

μ′

)
R∗ (51)

are compared with the two-dimensional hydrogen energy,
which for n = 1, m = ±1 is equal to |4R∗/25|; thus for j = 1
the equation defines the parameter γcr

B

Bcr
= 4

25
(
2 ± μ

μ′
) = γcr . (52)

This parameter determines the limit of the field: For B <

γcrBcr , one deals with a weak field; B � γcrBcr indicates the
intermediate-field regime. For the Cu2O data from Table I,
depending on the quantum number m, we obtain the lim-
iting values 26.8 and 29.2 T. The upper value corresponds
to m = −1, and the lower one corresponds to m = 1. The
limiting values of the field decrease with increasing Landau
state number n.

The limits of the high-field regime in the Faraday config-
uration can be estimated using the matrix elements given in
Eq. (26). Recalling the parameter γ given by Eq. (12) and
comparing the Landau energy [see Eq. (52)] with the value of
the matrix elements

W11 ≈ 4γ , |V11| = 1.097
√

γ ,

we obtain the critical value γcr = 0.075, which corresponds to
a field strength B of about 60 T. Note that this evaluation can
be interpreted only as a rough estimation; the real positions of
resonances are obtained by solving systems of equations.

In the Voigt configuration, the limits of the weak and
intermediate fields can be derived in the same manner as
in the Faraday configuration. For a weak field we use the
expression (42) and compare with the unperturbed energy
values. The Voigt matrix elements are smaller than those for
the Faraday one for two reasons. First, in this configuration
the magnetic field influences only one degree of freedom [17].
Additionally, the factor q [Eq. (34)], depending on the effec-
tive electron and hole masses v = me/mh, plays an important
role. The function q(v) attains a value of 1 for v → 0, v → ∞
and attains its minimal value for v = 1 (as in the “positronium
model”). For Cu2O (v = 1.429) the parameter q = 0.273 ap-
proaches that of positronium, so taking the Landau state n = 1
and the matrix element V11, one obtains the limiting value
γcr corresponding to the field strength B = 56 T. Comparing
this value with the above-indicated limiting values for the
Faraday configuration, we see that the limiting values defining
the weak-field regime are about twice as large for the Voigt
configuration than in the Faraday case. Another related phys-
ical effect is that the field-induced blue shift of resonances
in the Voigt configuration is much smaller than that in the
Faraday configuration; this effect has been experimentally
observed [25,26].

The high-field limit for the Voigt configuration will be
obtained from the comparison of the Landau energies, which
now have the form

EV
n =

(
2n + 3

2

)
h̄�y,

h̄�y

2R∗ = γ

2
√

q = 0.261γ , h̄�y = 0.523 γ R∗,

with the two-dimensional excitonic energies. For the lowest
exciton energy | − 4R∗/9| we obtain critical magnetic field
strengths above 180 T.
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FIG. 1. Imaginary part of the susceptibility (gray scale) of a
quantum well in the Faraday configuration, calculated in three field
regimes. The lower limits of the intermediate- and high-field regimes
are 28 and 75 T, respectively.

As was mentioned above, we are aware that the presented
method enables only quantitative estimations, but as will be
shown below, the use of parameter γ evaluated in such a
way gives a good agreement with available experimental data.
Having made all the above comments, we present the obtained
results.

B. Discussion of numerical calculations

Figure 1 depicts the absorption spectrum of a Cu2O quan-
tum well in the Faraday configuration calculated for a range
of field strengths B = 0–100 T and thickness L = 10 nm.
The boundaries between weak-, intermediate-, and high-field
regimes are estimated at 28 and 75 T, which is a close match
to the initial estimation of 26.8 (29.2) and 74.49 (81.36) T for
m = +1 (m = −1), respectively. For such values, there is a
very good correspondence between solutions [Eqs. (23), (33),

and (28), respectively]. The lines appear in pairs, correspond-
ing to m = ±1, and exhibit a roughly quadratic energy shift
with increasing B in a weak-field limit. Such a tendency has
also been observed in bulk samples both experimentally and
theoretically [3,7]. Due to the fact that the energy shift of all
lines is almost linear for B > 10 T, the fit is not sensitive
to the changes in low-, medium-, and high-field boundaries,
so that even the rough estimations presented above are suffi-
cient to obtain a smooth transition between regimes. It should
be pointed out that the mismatch between the j = 1 lines
originates from the fact that for the lowest state, the two-
dimensional Coulomb potential (13) is not a well-justified
approximation. However, even for the j = 2 state the exci-
tonic wave function is large enough to provide a good match
to the results.

Figure 2 depicts the low-field solution calculated for a
wide range of quantum numbers [N, j, m], which are given
in brackets. It is worth stressing that for QW with REs in a
magnetic field those indices describe three types of of states
and three origins of resonances; N arises from the confine-
ment in the z direction, the number j enumerating excitons is
connected with e-h Coulomb interaction, and m refers to an in-
teraction with the magnetic field resulting in Zeeman splitting
with lines shifting towards higher energy with increasing field
strength. One can observe several interesting tendencies. By
increasing N , one introduces an almost constant energy shift
(series of blue lines for j = 2, orange lines for j = 3). On the
other hand, the lines coming from higher excitonic states (red
series) exhibit a stronger energy shift with increasing B due
to stronger sensitivity of higher states to the external field.
Finally, the splitting with respect to m = ±1 is weaker for
higher- j lines. This has to do with an intricate situation of
interplay between Coulomb and magnetic interactions.

In Fig. 3, one can observe the dependence of the energy
shift on the well thickness L. As one would expect, the con-
finement effect is more pronounced for narrow QWs. The
states with various N (blue lines) split from the respective
j state and diverge as L → 0, with the higher-N states ap-
proaching E → ∞ faster due to their lower binding energy
and larger physical size, which makes them more affected
by finite well size. Higher-N states are more affected by

FIG. 2. The same as in Fig. 1, calculated for L = 20 nm. The brackets denote quantum numbers [N, j, m].
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FIG. 3. The same as in Fig. 1, calculated for B = 50 T. The brackets denote quantum numbers [N, j, m].

the potential barrier at the quantum well edges. One can
observe that the lines with different j (red series) react to
the confinement in the same manner—the distance between
them remains almost constant up to L ∼ 5 nm, where the
well thickness becomes comparable to the exciton size. The
large distance between the j = 2 and j = 3 states is a re-
sult of the high magnetic field (B = 50 T); as mentioned
before, lines with different j exhibit different energy shifts
depending on B, which results in increasing distances between
them.

The absorption spectrum in the Voigt configuration appears
to have a more complicated structure. Figure 4 shows the ab-
sorption coefficient calculated from Eq. (23) with Eq. (36) for
the weak regime, from Eq. (50) for the intermediate regime,
and from Eq. (46) for the strong-field regime. The boundaries
between regimes are set to 55 and 140 T. The lower-field limit
is equal to the initial estimation, and the high-field limit is

FIG. 4. Imaginary part of susceptibility of a quantum well in the
Voigt configuration calculated for a range of magnetic field strengths
and L = 10 nm.

somewhat lower than the initial estimation (180 T), but its
exact location is very flexible due to the fact that energy shifts
in both intermediate- and strong-field solutions are linear.
Again, as in the case of the Faraday configuration, the fit
between the two regimes is the best for higher-energy states,
which indicates that the presented calculations are particularly
suitable for Rydberg excitons. The most striking feature of
the spectrum is the grouping of lines corresponding to the
same value of N , which has the largest contribution to the
state energy, especially in the high-field regime. The energy
shift depending on other quantum numbers (m and j) is less
pronounced, so that there are groups of lines centered around
the specific value of N . In the low-field regime, strong line
mixing due to all quantum numbers is visible.

To better discern these states, one can assign the quantum
numbers [N, j, m] to them, as shown in Fig. 5. The base
state, marked by a red line, is [0,2,0], and the other states
are created by changing one quantum number. An increase
in j (blue lines) yields a typical, excitonic ∼1/ j2 energy shift,
approaching E = Eg at B = 0. In our model, the distance be-
tween excitonic states is independent of B. On the other hand,
the energy shift with B depends strongly on N and m. Every
confinement state N undergoes Zeeman splitting; one can see
that the energy of N = 0 states with various m (red lines)
changes linearly with B and those lines start from a common
origin at B = 0. The energy shift for higher N (orange lines)
is quadratic in the weak-field regime and then turns into linear
at B ∼ 50 T.

The dependence on the well thickness, shown in Fig. 6,
is also interesting. One can see that similar to the Faraday
configuration, the energies diverge at the very low L limit,
with the exact location of the asymptote dependent on the
quantum numbers N and j due to the fact that the physical size
of an exciton of a given j affects the energy and the magnetic
moment of a bound state, which also depends on the quantum
number N .

We have also performed a comparison of our theoreti-
cal results with the available experimental data to verify the
accuracy and applicability of our theoretical approach and
estimations.
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FIG. 5. The same as Fig. 4, with states identified by their quantum numbers [N, j, m].

Figure 7 shows a comparison between the energy of the
first confinement s state measured in a GaAlAs quantum dot
in the Faraday configuration [25] and the results of our cal-
culations for a Cu2O quantum well, obtained for an s exciton
with m = 0. For an effective evaluation of two very different
systems, relying on the data presented by Wang et al. [25], we
use the dimensionless parameter γ with appropriate Rydberg
energies. Furthermore, the significant difference in energy
necessitates two y axes to overlap the data. This way, one can
observe several similarities. In both systems, the magnetic-
field-induced shift is quadratic in the weak-field regime and
turns into linear at γ ∼ 0.08, which is consistent with our
estimations. It should be stressed that the results are accurate
up to a constant; apart from the difference of band gaps and
Rydberg energies, the data for GaAlAs are for quantum dots,
and our calculations assume cylindrical symmetry. However,
as pointed out in Refs. [25] and [9], a proper adjustment of
quantum well size allows for an approximation of a quan-
tum dot, which is sufficient for the sake of the presented
comparison.

The results for the Voigt configuration are compared with
InAlAs in Fig. 8. Again, the estimated boundary between
weak- and strong-field regimes provides a good match to the
experimental data.

Finally, we use the experimental results of Jeon et al. [27]
to study the effect of well thickness on the energy, marked by
�E = E (B) − E (0) (see Fig. 9). One can observe an increase
in the confinement energy with thickness L. For any fixed
value of B, a reduction in L increases the energy (see Fig. 6);
however, confinement states in a larger quantum well exhibit a
stronger reaction to the magnetic field, which results in higher
energy overall.

VI. CONCLUSIONS

In this paper, we have studied the magneto-optical func-
tions for Cu2O quantum wells with Rydberg excitons at two
different orientations of the magnetic field. Theoretical solu-
tions that model absorption spectra due to excitons of Cu2O
in a quantum well in a wide range of magnetic fields are

FIG. 6. The same as Fig. 4, calculated for B = 50 T and a range of L values, with states identified by their quantum numbers [N, j, m].
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FIG. 7. Comparison of the calculated line shape and experimen-
tal results by Wang et al. [25] for GaAlAs.

presented, with a separate treatment of weak-, intermediate-,
and high-field regimes. The theoretical analysis is performed
for both Faraday and Voigt external field configurations,
including Zeeman splitting. We observe a considerable in-
terlevel mixing and splitting caused by differences in energy
shifts of various excitonic states caused by the confinement
and the magnetic field. The key characteristics of Cu2O
excitons—an unusually high Rydberg energy, an exception-
ally large size of higher states, and a unique ratio of electron
mass to hole mass—play a crucial role in forming rich
magnetic absorption spectra. We conclude that in QW the
difference between the spectra obtained in both configurations
depends on degrees of freedom involved in the interaction be-
tween the excitons and the magnetic field. Because of that and
because of an effective electron-mass-to-hole-mass ratio we

FIG. 8. Comparison of the calculated line shape and experimen-
tal results by Wang et al. [25] for InAlAs.

FIG. 9. Comparison of the calculated line shape and experimen-
tal results by Jeon et al. [27] for a GaAs/AlGaAs quantum well.

observe that the boundaries of the intermediate- and high-field
regimes are significantly higher for the Voigt configuration.

Finally, we introduce a field-dependent parameter γ which
is a versatile tool for qualitative separation of the magnetic
field regimes. Due to its universal nature, it can be employed
to compare the calculation results with experimental spectra
measured in other semiconductors, serving as a benchmark of
this paper.
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APPENDIX A: MATRIX ELEMENTS

We calculate the matrix elements (22) using the eigenfunc-
tions (17). First, we calculate the diagonal elements

Vj j = γ 2

4
〈Rj1(ρ)|ρ2|Rj1(ρ)〉

= γ 2

4
16λ3

[
j!

( j + 2|m|)!
] ∫ ∞

0
ρ dρe−4λρ (4λρ)2ρ2

× [
L2

j (4λρ)
]2

= γ 2

64λ( j + 1)( j + 2)

∫ ∞

0
dx e−xx4

[
xL2

j (x)
]
L2

j (x). (A1)

The integral in the above equation is known [28], and we
obtain the expression

Vj j1 = γ 2( j + 2)!

64λ( j + 1)( j + 2)
4!

{
(2 j + 3)( j + 2)!

[
1

j!2!

]2

+ ( j + 3)!

[ j!]2 3!
+ ( j + 1)( j + 2)

( j − 1)!3!

}
. (A2)
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The off-diagonal elements can be obtained using Rodrigues’s
formula

Lα
j (x) =

j∑
�=0

(−1)�
(

j + α

j − �

)
x�

�!
. (A3)

Performing the integration, we obtain the matrix elements in
the form

Vi j1 = γ 2

4

∫ ∞

0
ρ dρRi1(ρ) ρ2 Rj1(ρ)

= 43γ 2(λiλ j )
5/2

[(
i!

(i + 2)!

)(
j!

( j + 2)!

)]1/2

×
i∑

r=0

j∑
s=0

{(
i + 2

i − r

)(
j + 2

j − s

)
(−1)r+s

r!s!

×(4λi )
r (4λ j )

s (5 + r + s)!

[2(λi + λ j )]5+r+s+1

}
. (A4)

Using formula (A3) above, we calculated the matrix elements
Vn�m for the high-field limit (26). After simple transfor-
mations, for the case |m| = 1, they can be put into the
form

Vjk1 = − 2
√

2γ√
( j + 1)(k + 1)

∫ ∞

0
dx e−x2

x2 L1
j (x

2)L1
k (x2),

from which one obtains the formula

Vjk1 = − 1√
( j + 1)(k + 1)

√
πγ

2

j∑
r=0

k∑
s=0

(
j + 1

j − r

)

×
(

k + 1

k − s

)
(−1)r+s

r!s!

(2r + 2s + 1)!!

2r+s
. (A5)

APPENDIX B: INTERMEDIATE FIELDS, FARADAY CONFIGURATION

Substituting the trial function (31) into the Eq. (29), with V = −2/ρ, one obtains the following integral equation:

�00R01(ρ)

[ ∑
m=±1

Y0m,00 exp(−κ0m00ρ)
eimφ

√
2π

]
+

∞∑
n=1

∑
NeNh�1

∑
m

eimφ

√
2π

YnmNeNh Rnm(ρ)�NeNh

= 2μ

h̄2a∗

[
(M0ρ0)

2γ√
π

]
eiφ

√
2π

∞∑
n=0

Rn1(ρ)
dn1

κ2
n1;NeNh

+ 2μ

h̄2a∗

[
(M0ρ0)

2γ√
π

]
e−iφ

√
2π

∞∑
n=0

Rn1(ρ)
dn1

κ2
n,−1;NeNh

+
∫ ∞

0
ρ ′dρ ′

∫ 2π

0
dφ′

×
∫ ∞

−∞
dz′

e

∫ ∞

−∞
dz′

h

{
G(ρ, ρ ′; φ, φ′; ze, z′

e; zh, z′
h)

2

ρ ′ R01(ρ ′)�00(z′
e, z′

h)

[ ∑
m=±1

Y0m;00
exp(−κ0m;00ρ

′)
κ2

nm;NeNh

eimφ′

√
2π

]}
. (B1)

From various methods of solving integral equations we choose the method of projection on an orthonormal basis
unm(ρ, φ), �NeNh (ze, zh). We can use the functions ψnm(ρ) exp(imφ)/

√
2π to obtain

Y0m,00
〈
R2

01

∣∣e−κ0m;00ρ = 2μ

h̄2a∗

[
(M0ρ0)

2γ√
π

]
E d01

κ2
0m;00

+ 2
∑

m=±1

Y0m,00

∫ ∞

0
dρ ′ e

−κ0m;00ρ
′

κ2
0m;00

R2
01(ρ ′). (B2)

From the above equation the parameters Y0m,00 and Ynm,00 were obtained.

APPENDIX C: THE COEFFICIENTS FOR THE ADIABATIC POTENTIALS

The coefficients a2n+1 are defined from the relations

〈
ψ

(1D)
β,Ny

(y)
∣∣ 2√

x2 + y2

∣∣ψ (1D)
β,Ny

(y)
〉 = 2

|x| + aNy

,
1

aNy

= 〈
ψ

(1D)
β,Ny

(y)
∣∣ 2√

x2 + y2

∣∣ψ (1D)
β,Ny

(y)
〉∣∣∣∣

x=0

.

For odd-parity eigenfunctions, Ny = 2n + 1, and we use the relation between Hermite polynomials and the confluent hypergeo-
metric function

ψ
(1D)
2n+1,β (y) = A2n+1H2n+1(βy)e−β2y2/2

= A2n+1(−1)n 2
(2n + 1)!

n!
βy M

(
−n,

3

2
, β2y2

)
e−β2y2/2, (C1)
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with the normalization factor A2n+1. The coefficients a2n+1 are obtained from the following calculations:

1

a2n+1
= 2

∫ ∞

0

[
ψ

(1D)
2n+1,β

]2 1

y
dy

= 2[A2n+1]2
∫ ∞

0

[
(2n + 1)!

n!

]2

4

[
M

(
−n,

3

2
, β2y2

)]2

e−β2y2
β2y dy

= π−1/2 β (2n + 1)!

22n+1(n!)2
4

∫ ∞

0
e−z

[
M

(
−n,

3

2
, z

)]2

dz

= π−1/2 β (2n + 1)!

22n−1(n!)2
Jn

1 . (C2)

We use the integral [29]

Jn
ν =

∫ ∞

0
e−kzzν−1[M(−n, γ , kz)]2dz.

For n = 0,

J0
ν = 1

kν
�(ν).

For n = 1, 2, . . .,

Jn
ν = �(ν)n!

kνγ (γ + 1) · · · (γ + n − 1)

{
1 + n(γ − ν − 1)(γ − ν)

12 · γ
+ n(n − 1)(γ − ν − 2)(γ − ν − 1)(γ − ν)(γ − ν + 1)

12 · 22 · γ (γ + 1)
+ · · ·

+n(n − 1) · · · 1(γ − ν − n) · · · (γ − ν + n − 1)

12 · · · n2 · γ (γ + 1) · · · (γ + n − 1)

}
.

In our case we set k = 1, ν = 1, γ = 3
2 . For the lowest values of n, one obtains

n = 0, J0
1 = 1,

1

a1
= π−1/2 · 2β, a1 = 1

2

√
πβ−1,

n = 1, J1
1 = 5

9
,

1

a3
= π−1/2 · 5β

3
, a3 = 3

5

√
πβ−1,

n = 2, J2
1 = 2

5
,

1

a5
= π−1/2 · 3

2
β, a5 = 2

3

√
πβ−1.

APPENDIX D: DETERMINATION OF PARAMETERS FOR INTERMEDIATE FIELDS IN THE VOIGT CONFIGURATION

Inserting the trial function (49) into Eq. (30) and using the Green’s function (47), one obtains an equation from which,
retaining the lowest expansion term in GVY , one obtains the following expression:

Y0�00(ze, zh)ψ (1D)
1,β (y)e−κ0

√
x2+y2 +

∞∑
n=1

∑
NeNh�1

ψ
(1D)
2n+1,β (y)�NeNh (ze, zh)

1

2π

∫ ∞

−∞
dk YnNeNh (k)eikx

= 2μ

h̄2a∗ E
(M0ρ0)√

2π

∑
n

∑
Ne

∑
Nh

g2n+1ψ
(1D)
2n+1,β (y)�NeNh (ze, zh)δNeNh

∫ ∞

−∞

dk eikx e−k2ρ2
0 /2

k2 + κ2
nNeNh

+ 4Y0

∑
n,Ne,Nh

∫ ∞

−∞
dz′

e

∫ ∞

−∞
dz′

h

1

2π

∫ ∞

0
dx′

∫ ∞

−∞
dy′

∫ ∞

−∞
dk eikx cos kx′ ψ (1D)

β,n (y)ψ (1D)
β,n (y′)

×
ψ

(1D)
αV

e ,Ne
(ze)ψ (1D)

αV
e ,Ne

(z′
e)ψ (1D)

αV
h ,Nh

(zh)ψ (1D)
αV

h ,Nh
(z′

h)

k2 + κ2
nNeNh

exp(−κ0

√
x′2 + y′2)√

x′2 + y′2 ψ
(1D)
β,1 (y′)�00(z′

ez′
h).
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A similar equation was obtained in Appendix B, and it was solved by making projections on an orthonormal set of functions.
Here, we choose the functions {ψ (1D)

β,n (y)}, �NeNh , set x = 0, and obtain

Y0 = 2μ

h̄2a∗ E
(M0ρ0)√

π

g1

κ0

[
23/2

√
π

eκ2
0 /8β2

D−3

(
κ0

β
√

2

)
− F (κ0, β )

]−1

,

F (κ0, β ) = β√
π

∫ ∞

−∞
dk

e−k2ρ2
0 /2

(k2 + κ2
0 )3/2

exp

(
k2 + κ2

0

8β2

)
W−1,0

(
k2 + κ2

0

4β2

)
,

1

2π
YnN (k) = 2μ

h̄2a∗ E
M0ρ0√

2π
g2n+1

e−k2ρ2
0

k2 + κ2
nN

.

The above quantities, substituted into Eq. (49), determine the exciton amplitude Y , which, inserted into Eq. (20), gives the
magnetosusceptibility (50).
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