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We propose entangling operations based on the energy curvature couplings of encoded spin qubits to a
superconducting cavity, exploring the nonlinear qubit response to a gate voltage variation. For a two-qubit
(n-qubit) entangling gate we explore acquired geometric phases via a time-modulated longitudinal σz coupling,
offering gate times of tens of nanoseconds even when the qubits and the cavity are far detuned. No dipole
moment is necessary: the qubit transverse σx coupling to the resonator is zero at the full sweet spot of the
encoded spin qubit of interest (a triple quantum dot three-electron exchange-only qubit or a double quantum dot
singlet-triplet qubit). This approach allows always-on, exchange-only qubits, for example, to stay on their “sweet
spots” during gate operations, minimizing the charge noise and eliminating an always-on static longitudinal
qubit-qubit coupling. We calculate the main gate errors due to the (1) diffusion (Johnson) noise and (2) damping
of the resonator, the (3) 1/ f -charge noise qubit gate dephasing and 1/ f noise on the longitudinal coupling,
(4) qubit dephasing and AC-Stark frequency shifts via photon fluctuations in the resonator, and (5) spin-
dependent resonator frequency shifts (via a “dispersivelike” static curvature coupling), most of them associated
with the nonzero qubit energy curvature (quantum capacitance). Using spin-echo-like error suppression at
optimal regimes, gate infidelities of 10−2–10−3 can be achieved with experimentally existing parameters. The
proposed schemes seem suitable for remote spin-to-spin entanglement of two spin qubits or a cluster of spin
qubits: an important resource of quantum computing.
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I. INTRODUCTION

Electron spin qubits in semiconductors have made steady
progress in coherence times, gate operations, and quantum
measurements, towards the goal of a spin-based quantum
computer [1–11]. Despite the inherent protection of single QD
spin qubits by the nature of the single electron spin [12–14],
spin qubits in multielectron multi-QDs provide further ad-
vantages such as: (i) encoding the spin qubit in decoherence
free subspaces (DFS) [15,16], where qubit states can be par-
tially protected against charge (electric) and spin (magnetic)
global noises, e.g., in triple quantum dot (TQD) three-electron
qubits [3,11,17–22]; (ii) the potential to choose gate parameter
regimes, including the so-called sweet spots [23–27] (partial
or full sweet spots) where, e.g., the charge noise can be further
minimized, which was recently experimentally confirmed for
singlet-triplet (S-T) DQD qubits [28,29]; (iii) fast single-qubit
gates, based only on exchange interaction [3,19–22] (TQD
qubits with electric field control and no need of magnetic field
gradient), or using interdot magnetic field gradients [30,31]
(S-T qubits).

Exchange based two-qubit gates [4,26,32,33], however, are
locally operated and do not allow remote coupling of qubits,
e.g., at millimeter distances that are much larger than the qubit
size (of tens of nanometers). A solution would be to couple
spins via a superconducting (SC) GHz resonator using a trans-
verse dipole coupling [10,34–40] (already a resource for SC
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qubits [41–46]). Recently, studies of the resonant exchange
(RX) “always-on” qubit [23], based on a triple quantum dot
(TQD) three-electron system, offered strong spin-cavity cou-
pling, and showed that it can maintain a partial sweet spot to
gate detuning fluctuations (see also Refs. [24,47]).

The transverse (σx) coupling to a spin qubit [10,34–
36,38,48–50] requires a nonzero transition electric dipole mo-
ment (e.d.m.) d⊥ �= 0, leading to a Jaynes-Cummings (J-C)
interaction with the cavity [23,34]: Htr ∝ g⊥σx (â + â†) �
g⊥(σ−â† + σ+â), where â is the electric field cavity mode
annihilation operator and σ− ≡ |−〉〈+| is the qubit lowering
operator. It was predicted [34,48–50] and recently measured
[10,11,51] to be at the range from one to tens of MHz. In
a dispersive regime (i.e., avoiding direct excitations), where
the qubit-resonator detuning is large (� 	 g⊥), the leading

dispersive Hamiltonian Htr ∝ g2
⊥

�
â†âσz cannot couple directly

the qubits via photon exchange since it commutes with the
qubit Hamiltonian Hq. (It can entangle the qubits, however,
via geometric accumulated phases [52,53], without a net
exchange, though the expected entangling rate would be rel-

atively slow, ∼ g4
⊥

�2 , see below.) Higher order terms in the
J-C interaction can couple two qubits (∼σ

(1)
− σ

(2)
+ ) via virtual

photon exchange with a rate [34,47] ∼ g(1)
⊥ g(2)

⊥
�

, suppressed in the
dispersive limit. Reaching faster entangling gates, with a rate
∼g⊥, is possible using sideband transitions via strong resonant
driving of the qubit [47,54–56].

These approaches, however, come with several caveats for
encoded spin qubits, namely: (i) the necessity of strong trans-
verse coupling g⊥ will also imply much stronger sensitivity
to charge noise via gate voltage fluctuations; (ii) a strong
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transverse dipole coupling also would imply an increased
coupling to spurious TLS charge fluctuators (that is another
source of charge noise, see, e.g., Refs. [57–59]); (iii) the
effective entangling interaction will be generally worsened
by higher-order transitions in the qubit-resonator system [60]
since [Htr, Hq] �= 0 in higher orders of g⊥/�; and (iv) also
turning off this coupling via a larger detuning � may be
difficult for both spin and superconducting qubits (see, e.g.,
Ref. [61]).

In this paper we propose and fully analyze (including all
loss mechanisms) an alternative approach for remote spin-spin
entanglement by establishing longitudinal curvature coupling
∼g̃‖σz (â + â†) of encoded spin qubits to a superconducting
(SC) resonator, via simultaneous gate voltage modulation of
the qubits involved, even when the modulation frequency
ωm as well as the qubits frequencies ω

( j)
q are off-resonance.

The modulated qubits accumulate multispin phases compris-
ing spin-spin unitary gates, allowing entanglement of various
spin clusters, depending on the chosen subset of modulated
qubits. The qubits reside in their full sweet spot to gate volt-
age fluctuations [Figs. 1(a) and 1(b)], and at the same time
ensuring the absence of transverse coupling [62,63] g⊥ = 0,
thus minimizing qubits charge dephasing. In what follows,
we consider both the triple quantum dot (TQD) always-on
exchange only (AEON) qubit in the full sweet spot [26], and
the double quantum dot (DQD) singlet-triplet (S-T) qubit in its
symmetric operating point [28,29] (SOP) [Figs. 1(a) and 1(b)]
which are described in the same terms as to their curvature
coupling to a SC resonator [62].

The total Hamiltonian of the resonator plus a system of
n multi-QD spin qubits (here j = 1, . . . , n enumerates the
qubits) at their full sweet spots with a generic coupling to the
environment Henv reads (scf. Ref. [62])

Htot/h̄ = ωr â†â +
n∑

j=1

ω
( j)
q

2
σ ( j)

z + Henv

+
n∑

j=1

δω( j)σ ( j)
z

(
â†â + 1

2

)

+
n∑

j=1

[
g̃( j)

‖ σ ( j)
z + g̃( j)

0

]
cos(ωmt + ϕm)(â + â†)

+ 2εd cos(ωdt + ϕd ) (â + â†). (1)

Besides the system Hamiltonians, Eq. (1) at the full sweet
spot includes two curvature interactions: the “dispersivelike”
static interaction [second row in Eq. (1)] and the longitudinal
dynamical interaction (third row); while the former is always
on, the latter is on only when the relevant qubits are mod-
ulated simultaneously at a frequency ωm ∼ ωr and phase ϕm

(|ωm − ωr | 	 κ , with κ the resonator damping), see Figs. 1(a)
and 2. We also include the driving of the SC resonator with
frequency ωd and phase ϕd . Other possible interactions, such
as the static longitudinal [64] (gst

‖ σz + gst
0 )(â + â†) and trans-

verse g⊥ σx(â + â†) interaction, were shown to exactly cancel
at the full sweet spot [62] for each qubit since, e.g., gst,(j)

‖ ∝
∂E ( j)

q

∂Vm
= 0, while the transverse couplings are zeroed due to

FIG. 1. (a) A TQD exchange only qubit (solid, blue box) or
a DQD S-T qubit (dashed, red box) capacitively coupled to a SC
resonator (see experimental Refs. [39,40] for a similar layout).
The curvature couplings to a SC resonator arise via the resonator
quantized voltage drop V̂r = Vvac (â + â†) on the coupling (mid-
dle) dot, essentially as quantum capacitance couplings: these are
(i) the dynamical longitudinal coupling, Eq. (4), g̃‖ σz (â + â†) ∼
V̂r Vm(t ), that arises via additional qubit gate modulation and (ii)
the always-on dispersivelike (quantum capacitance) static coupling
δω â†â σz ∼ V̂ 2

r , Eq. (8). Both couplings can be expressed via the

qubit energy curvature Cq ≡ e2 ∂2Eq

∂ε2
m

∝ t2
c

U 3
charge

that can be significant,

�30 aF (see Ref. [62] and Table I), for typical dot charging energy
Ucharge � 0.4 meV and interdot tunnelings tc � 40 μeV, reachable
experimentally. For a TQD qubit the relevant voltage detuning is
εm ≡ e[(V3 + V1)/2 − V2] and for a DQD qubit it is εv ≡ e(V1 − V2).
(b) Full sweet spot regime of a TQD exchange only qubit (solid, red
circle). The energy splitting Eq(εv, εm ) as a function of the qubit gate
voltage detunings εv ≡ e(V3 − V1)/2 and εm (in units of the dots’
charging energy Uch). At the full sweet spot [26] where ∂Eq

∂εv
,

∂Eq

∂εm
= 0,

while its transverse dipole moment is also zero [62], the TQD qubit
is insensitive (in first order) to gate voltage fluctuations, and at the
same time qubit dephasing through phonon relaxation and coupling
to two-level fluctuators is also minimized as the transition dipole
moment is zero [62] as well. A similar sweet spot of the DQD qubit
(not shown) with respect to the detuning εv ≡ e(V1 − V2) will be
referred to as a symmetric operating point (SOP) [28,29].

exact cancellation of contributions to the transition dipole
moment of the qubit’s higher excited states [62].

The main focus in this paper will be on the two types
of curvature interactions that appear through the influence of
the resonator quantized voltage V̂r = Vvac (â + â†) [Fig. 1(a)]
on the QD qubit levels, see Refs. [62,63], where Vvac =
h̄ωr

e

√
Zr

h̄/e2 reflects the resonator vacuum voltage fluctuations

(here Zr � ωrLr is the resonator impedance, assuming a high
quality factor Q ≡ ωr Lr

Rr
	 1). In what follows, it is convenient
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FIG. 2. Two TQD spin qubits [or DQD S-T spin qubits, Fig. 1(a)]
can be entangled by modulating their respective dot gate volt-
ages V ( j)

2 by a modulation V ( j)
m (t ) = Ṽ ( j)

m cos (ωmt + ϕm ), for a finite
gate time tg = 2π/δ ≡ 2π/(ωr − ωm ), where δ ≡ ωr − ωm is the
frequency detuning. For a specially chosen detuning δ = δπ ≡
π

√
4Ng̃(1)

‖ g̃(2)
‖ , the accumulated geometric phases for each two-qubit

spin state amount to a controlled π -phase gate, see Eq. (23) and
Appendix A. The defining gate voltages for each qubit as well as the
coupling to the (high Q-factor) resonator can be different in general
(see text). The qubit frequencies can be different, and they can be
strongly detuned from the resonator (beyond the usual dispersive
limit).

to introduce the dimensionless ratios related to the qubits-
resonator coupling strength:

η( j)

h̄
≡ α( j)

c

√
Zr

h̄/e2
, (2)

where α
( j)
c � C( j)

c

C( j)
c +C( j)

d

are the QDs’ lever arms to the SC

resonator [Fig. 1(b)]. For a lever arm in the range αc �
0.2, ωr/2π = 10 GHz, and reachable resonator impedance of
Lr � 50 nH one can reach η

h̄ � 0.2.
First, one considers the dynamical longitudinal (curvature)

Hamiltonian in Eq. (1),

H ( j)
‖ = h̄

[
g̃( j)

‖ σ ( j)
z + g̃( j)

0

]
cos(ωmt + ϕm)(â + â†), (3)

implying the couplings [62,63]

g̃( j)
‖ = ωr

2

(
η( j)

h̄

)
∂2E ( j)

q
(
V 0

m

)
e ∂V 2

m

Ṽ ( j)
m , (4)

g̃( j)
0 = ωr

(
η( j)

h̄

)
∂2G( j)

q
(
V 0

m

)
e ∂V 2

m

Ṽ ( j)
m (5)

that appears under external voltage modulation of the energy
levels of each qubit with a strength Ṽ ( j)

m [here E ( j)
q ≡ E ( j)

+ −

E ( j)
− and G( j)

q ≡ (E ( j)
+ + E ( j)

− )/2 are the ( j)-qubit energy com-
binations].

We note that the spin-independent constants (∼g̃( j)
0 ) for

the qubits involved in the gate can be canceled at once by
synchronous resonator driving; the conditions for this are
the equal frequencies of driving and modulation, and special
choice of the resonator phase ϕd and driving amplitude εd :

ωd = ωm, ϕd = ϕm + π, εd = ε0
d ≡ 1

2

n∑
j=1

g̃( j)
0 . (6)

The always-on dispersivelike (curvature) Hamiltonian in
Eq. (1) appears as a second-order effect in V̂r ,

H ( j)
δω = h̄δω( j)σ ( j)

z

(
â+â + 1

2

)
, (7)

with

δω( j) = h̄ω2
r

2

(
η( j)

h̄

)2
∂2E ( j)

q

e2∂V 2
G

. (8)

Here the name dispersivelike is convenient since this coupling
coincides in its form with the dispersive limit of the J-C
transverse coupling, though it has nothing to do with the latter;
in fact the transverse coupling is zeroed at the full sweet
spot [62], gsweet spot

⊥ = 0. The dispersivelike interaction H ( j)
δω

causes a resonator frequency shift ±δω( j) depending on the
( j)th qubit spin state |↑,↓〉( j) that can be interpreted as due
to the spin-qubit quantum capacitance [62]. In fact, it exactly
coincides with an analogous expression for the quantum ca-
pacitance of a Cooper pair box see, e.g., Refs. [65–68].

Since the dynamical longitudinal coupling [Eq. (4)] is also

proportional to the energy curvature g̃‖ ∝ ∂2Eq

e2∂V 2
G

, it is a quan-
tum capacitance related coupling as well. We also note that
using a quantum capacitance approach here is justified for the
resonator/modulation frequency range

ωr, ωm � Ucharge, (9)

since at the sweet spot the qubit dipole coupling is zero, and
one needs to compare with an energy gap to the qubit higher
excited states which is of the order of the QD’s charging en-
ergy [62] Ucharge. For a typical Ucharge ≈ 0.4 meV ≈ 100 GHz
this implies ωr, ωm � 20 GHz.

With the curvature interactions in Eq. (1), there are two
scenarios to perform accumulated geometric phase gates on a
system of n qubits. In the first scenario we briefly consider
in the next section (Sec. I A), the geometric phase gate is
based solely on the always-on δω( j) couplings (we show the
entangling rate to be generally small). The second scenario
of a phase gate is realized via the longitudinal dynamical
coupling g̃( j)

‖ , that is the phase gate of interest in this paper,
see Secs. I B and II–V.

A. Multispin accumulated phase entangling gates via resonator
driving (no qubit gate modulation)

In the first scenario, the qubits are not modulated (g̃‖ =
0), and the always-on dispersivelike static curvature interac-
tions H ( j)

δω with the couplings δω( j) can be used to generate
spin-dependent geometric phases via direct driving of the SC
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resonator [52] at some detuned frequency ωd �= ωr , and using
a specially modulated spline microwave pulses εd (t ) eiωd t to
suppress the (remaining) qubit-resonator entanglement as a
possible source of gate infidelity [52]. At the TQD full sweet
spot [Fig. 1(b)], when the dispersive transverse couplings are
off, χ ( j) ≡ (g( j)

⊥ )2/�( j) = 0, one can use the dispersivelike
curvature couplings instead. Following the approach as in the
superconducting entangling proposal of Cross and Gambetta
[52,53], one is essentially replacing the dispersive couplings
χ ( j) by the dispersivelike contributions δω( j). Then we esti-
mated the entangling rate for two qubits to be

�
geom
ent,δω � |εd |2δω( j1 )δω( j2 )

(ωd − ωr )3
. (10)

It is worth comparing the result of Eq. (10) to a situation with a
transverse coupling [52,53], e.g., in a charge degeneracy point
(c.d.p.) [62], where the transition dipole moment is maximal,
and correspondingly gc.d.p.

⊥ ≈ ωr
2

η

h̄ . The entangling gate rate
via the dispersivelike coupling at zero dipole moment will be
slower than that based on the dispersive coupling at a c.d.p.,
by a factor of (δω/χ )2, where the coupling ratio of the two
cases is given by [62]

δω

χc.d.p.

= h̄�

e2/2Cq
. (11)

For a typical spin-qubit quantum capacitance of Cq ≈ 20 aF
(see Table I below), and qubit-resonator detuning � ≡ ωr −
ωq ≈ 5 GHz, this amounts to δωsweet spot

χc.d.p.
≈ 1/25. The suppres-

sion factor can be overcome, however, via increasing the TQD
quantum capacitance, e.g., by using higher interdot tunneling
rates tc, since Cq ∝ t2

c . Also, the dispersive coupling χ is
rapidly decreasing (since one is working out of the c.d.p. to
avoid large charge noise), and thus the two types of entangling
gates can be made comparable in speed.

Overall speed up of the entangling rate [Eq. (10)] can be
achieved by increasing the ratio η

h̄ in QD qubits, e.g., by using
high kinetic inductance (Lr � 200 nH) resonators [69,70],
higher QDs lever arm αc � 0.5, and higher resonator frequen-
cies ωr � 10 GHz, where ratio of η

h̄ ∼ 1 may be reached.
In the approach outlined above, contrary to the transverse

J-C coupling case in the dispersive limit [52,53], where higher
photon numbers in the resonator (higher driving amplitude εd )
involves infidelities via spurious photon transitions to higher
system states (see, e.g. Ref. [60]), here one is allowed to go
to higher photon numbers, since the higher-curvature Hamil-
tonian corrections [62] that arise for nphot � 1 still commute
with the qubit Hamiltonian. (The role of the higher-curvature
Hamiltonians will be investigated elsewhere.)

B. Accumulated phase entangling gates
via qubits’ longitudinal modulation

In this paper we concentrate on geometric entangling gates
obtained when suitable qubits’ gate voltages are modulated
with the same modulation frequency and phaseV ( j)

m (t ) =
Ṽ ( j)

m cos(ωmt + ϕm), for each qubit ( j) participating in the
entangling gate, see Fig. 2. The modulation of the qubits’
energy levels, in the presence of a capacitive coupling to
the resonator, leads to the longitudinal dynamical interactions

H ( j)
‖ with the (curvature) couplings g̃( j)

‖ , g̃( j)
0 of Eqs. (4) and

(5), where the spin-independent coupling g̃( j)
0 plays the role of

another channel of resonator driving [compare with Eq. (6)].
The longitudinal dynamical coupling H ( j)

‖ corresponds to a
periodic in time spin-dependent “force” exerted on the res-
onator (see Sec. II and Appendix A). A similar approach was
explored in ion traps [71–74], and recently it was proposed
by Kerman [61] and others [75–78] for superconducting de-
vices. (Similar approaches for encoded spin qubits were also
proposed [79,80], see Sec. IV.)

An ideal multiqubit entangling gate arises when simulta-
neous periodic voltage modulation is applied to each qubit ( j)
of a chosen subset of n qubits, starting from a product state of
the qubits plus resonator:

|ψ (0)〉 =
(

2n∑
s=1

as|s〉
)

⊗ |0〉res, (12)

where

|s〉 ≡ |i1 · · · i j · · · in〉, i j = ±1 (13)

are the basis n-qubit product states of up (down) qubits.
The corresponding dynamical longitudinal couplings

g̃( j)
‖ (t ) = g̃( j)

‖ cos(ωmt + ϕm) (14)

will be equivalent to a periodic driving of the resonator with a
modulation frequency ωm and with an amplitude dependent on
the n-qubit spin state. (To get a nontrivial operation, of course,
one needs to prepare the n qubits to a state different from the
n-qubit ground state, which can be achieved, e.g., by local
qubits’ manipulations of their left and right tunnelings tl , tr .)
Thus, after a time of one full cycle, Tcycle = 2π/(ωr − ωm),
when the resonator returns to its initial state (in a rotating
frame with ωr), the qubits and the resonator become again
disentangled, leading to accumulation of nontrivial geometric
phases to the multiqubit state [Eq. (12)]. Various entangling
gates can be established by attaching/detaching to the res-
onator of some subset of qubits, by switching on/off particular
qubits’ modulations V ( j)

m (t ).
A substantial longitudinal (curvature) coupling exists

[62,63] both at the full sweet spot or far from it, e.g., in
the resonant-exchange (RX) qubit regime [3,23] [near the
charge degeneracy point, see Fig. 1(b)], where the transverse
coupling g⊥ is the largest. In fact, at the charge degeneracy
point (c.d.p.) the quantum capacitance Cq increases by a factor

of
U 3

charge

t3
c

≈ 102–103 with respect to the full sweet spot regime
(here we have used Ucharge = 0.5 meV and tc = 20–40 μeV
for the dot’s charging energy and interdot tunneling, respec-
tively). Since the longitudinal geometric entangling rate is
of the order of �

geom
ent,g̃‖ ∼ g̃‖ (Sec. II), a comparison with the

standard transverse entangling rate �g⊥ ∼ g2
⊥/� gives at the

c.d.p.:

�
geom
ent,g̃‖

�g⊥
∼ g̃‖

g2
⊥/�

∣∣∣∣
c.d.p.

= 2

(
η

h̄

)−1 C c.d.p.
q Ṽm

e

�

ωr
� 10. (15)

This demonstrates that the longitudinal geometric entangling
rate can be substantially larger at the c.d.p. (note, how-
ever, that this particular estimation implies adiabaticity: ωr �
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ωq ∼ tc
h̄ ). The drawback of the c.d.p. regime is obviously the

large charge noise, see, e.g., Ref. [9].
At the full spin-qubit sweet spot, referred to as symmetric

operating point (SOP) of a DQD-ST qubit, and as the always-
on exchange-only (AEON) regime [26] of a TQD qubit, the
electric dipole moment goes to zero [62,63], and the longitu-
dinal (curvature) coupling is the only remaining [62,63], while
the charge noise to the qubit is suppressed. Despite the much
smaller quantum capacitance at the sweet spot, a parameter
regime can be provided where fast entangling multispin gates
can be performed, while each of the qubits involved is residing
in its full sweet spot, with a gate time of few tens to a hundred
of nanoseconds.

C. Infidelities of the longitudinal entangling
geometric phase gate

In this paper we study various kinds of imperfections
that can deteriorate the accumulated phase gate performance.
One major imperfection may come from the presence of the
always-on dispersivelike couplings δω( j) [Eq. (7)] which leads
to a phase-gate infidelity since it leaves small qubit-resonator
entanglement at the end of each phase accumulation cycle.
This can be partially canceled applying an echolike technique
[61,74]. To suppress this infidelity one accumulates the nec-
essary phase in some even number N of cycles, where on each
next cycle the sign of the dynamical longitudinal coupling
is changed by proper change of the phase ϕm of the qubits’
gate modulation: g̃‖ → −g̃‖. This is, however, not sufficient
to reach very small infidelities (� 10−3) and one generally
requires the ratio of the two curvature couplings

δω

g̃‖
= η

h̄

h̄ωr

eṼm
(16)

to be small (that is reachable experimentally), implying
smaller ratio η

h̄ and smaller resonator frequencies. The small
ratio δω

g̃‖
provides the main restriction on the choice of parame-

ters when one is aiming to approach a high-fidelity phase gate.
Another type of phase-gate infidelity arises from the

resonator voltage noise (Johnson noise), which affects the res-
onator trajectory in the phase space, and thus, the accumulated
phases. The gate infidelity shows two distinct contributions:
(i) due to the fluctuations of the resonator field that scales with
the number of cycles as ∼√

N , and (ii) due to the fluctuations
of the associated accumulated phase with a scaling ∼1/

√
N .

The suppression of the Johnson noise infidelity requires low
enough temperatures and weak resonator coupling to envi-
ronment (i.e., resonator photon leakage κ much smaller than
resonator frequency ωr).

The resonator photon number fluctuations also cause
qubits’ dephasing and AC-Stark frequency shifts, mediated
via the qubit-resonator curvature interactions Hδω, H‖, lead-
ing to small phase gate infidelities that were estimated to be
negligible, see Table I.

Finally, we also estimate the phase-gate error due to qubit
dephasing via the qubit gate charge noises, which seems to
be the main obstacle to obtain a high-fidelity two spin-qubit
gate. While charge noise will be minimized at the qubit’s full
sweet spot due to zeroing of the linear QD voltage fluctuations

(e.g., ∼ ∂Eq

∂Vε,m
δVε,m = 0), there remain two other sources of gate

voltage noise: (i) quadratic effects∼ ∂2Eq

∂V 2
ε,m

δV 2
ε,m and (ii) tun-

neling gate voltage fluctuations∼ ∂Eq

∂tc
δtc, both leading to 1/ f

noise [24,25] that cannot be canceled by the simple echolike
procedure mentioned above. In the current experiment at the
SOP of a DQD qubit [28,29] a dephasing time of T ∗

2 � 1.5 μs
was measured. The estimated 1/ f -noise phase gate-infidelity
scales as ∼(tgate/T ∗

2 )2 and can reach � 10−2 for moderate
parameters; this can be improved by making the geometric
phase gate faster, e.g., by increasing the qubit quantum capac-
itance Cq (respectively, the longitudinal coupling g̃‖). While
this increases the quadratic noise effects, we show they are
still much smaller than the tunneling gate charge noise, which
gives a hope to make all the qubit phase gate infidelities to
reach the level of 10−3, Table I.

An additional effect of 1/ f -charge noise on the tunnelings
tl,r [Fig. 1(a)] leads to fluctuation of the longitudinal couplings
g̃( j)

‖ . The corresponding infidelity is shown to be negligible,
see Table I.

The remainder of the paper is organized as follows. In
Sec. II we consider briefly the ideal case of an n-qubit phase
gate, calculating the qubits’ phase gate matrix. Then we spe-
cialize on the two-qubit case, calculating the gate time for
a controlled π -phase gate [73]. In Sec. III the main results
for the various kind of phase gate infidelities are obtained
for the n-qubit case. Consequences for a two-qubit controlled
π -phase gate are considered. Calculated gate times and infi-
delities for experimentally reachable ranges of parameters are
summarized in Table I. In Sec. IV relevance to other works
is given. In Sec. V we provide discussion and summary of
the obtained results. Figures 1 through 10 sketch the idea of
the longitudinal multiqubit phase gates and present numerical
plots of the leading infidelities vs chosen range of parame-
ters. In the Appendixes A through E we described important
details of the derivations presented in the main text of the
paper.

II. SPIN-DEPENDENT FORCE: IDEAL n-QUBIT
ENTANGLING GEOMETRIC PHASE GATE

The time modulated longitudinal (curvature) interaction
in Eq. (1) for n qubits H‖ ≡ ∑

j h̄{g̃( j)
‖ σz + g̃( j)

0 } cos(ωmt +
ϕm)(â + â+) is generating a spin-dependent force: F̂ (t ) =
−∂H‖/∂ x̂, where x̂ ≡ �x0(â + â†) is the “position” operator,

with �x0 = e
√

h̄/e2

2ωr Lr
being the resonator zero point motion.

In a rotating frame with the resonator frequency ωr and in
a rotating wave approximation (RWA), F̂ (t ) will drive the
resonator at the difference frequency ωm − ωr with an ampli-
tude depending on the n-qubit state |s〉 [Eq. (13)]. The n-qubit
dependent resonator driving amplitude �‖,s is given by (see
Appendix A)

�‖,s ≡ 〈s|�̂‖|s〉 = 〈s| 1

2

n∑
j=1

[
g̃( j)

0 + g̃( j)
‖ σ ( j)

z

] |s〉. (17)

Starting with an arbitrary resonator coherent state |α(0)〉,
it evolves for finite time to |αid

s (t )〉, with the difference
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frequency δ ≡ ωm − ωr :

αid
s (t ) = α(0) −

(
�‖,s
δ

)
e−i ϕm (1 − e−itδ ) (18)

(here “id” stands for an ideal evolution). For an initial product
state of n qubits plus resonator, at intermediate times they
become entangled:

|�i〉 =
∑

s

as|s〉|α(0)〉 → |� f (t )〉 =
∑

s

ase
i�s (t )|s〉|αs(t )〉,

(19)
via the spin-dependent geometric phases �s(t ); the latter are
path dependent in the resonator phase space {Reα, Imα} and
for harmonic modulation read (independent from the initial
modulation phase ϕm)

�id
s (t ) = Im

[∫ αs (t )

α∗
s (t ′)dαs(t

′)
]

=
(

�‖,s
δ

)2

[δ t − sin δ t].

(20)
Using that �̂‖,s and �̂2

‖,s have the same eigenstates |s〉, one
also derives the general accumulated phase matrix for n qubits
[dropping the common phase, see Appendix A, Eq. (A11)]:

�̂(t ) = (sin δ t − δ t )

2δ2

×
⎡
⎣ n∑

j<k

g̃( j)
‖ g̃(k)

‖ σ ( j)
z ⊗ σ (k)

z +
n∑

j=1

g̃( j)
0

n∑
k=1

g̃(k)
‖ σ (k)

z

⎤
⎦,

(21)

where the second (double) sum amounts to single qubit op-
erations that can be canceled at once by the synchronous
resonator driving [Eq. (6)]. For a gate time of N com-
pleted cycles, tg = 2πN

δ
, the resonator returns to its initial

state |αs(tg)〉 = |α(0)〉, independent of the n-qubit spin con-
figuration. Thus, the qubits-resonator state again becomes
disentangled, while the n-qubit state [Eq. (19)] acquires the
phases �s(tg) = 2π (�‖,s/δ)2 that comprises an n-qubit entan-
gling gate.

Specializing for two qubits (and performing N cycles), the
spin-dependent accumulated phase matrix is

�̂N = −2πN

δ2

[
g̃(1)

‖ g̃(2)
‖ σ (1)

z ⊗ σ (2)
z

+ (
g̃(1)

0 + g̃(2)
0

)(
g̃(1)

‖ σ (1)
z + g̃(2)

‖ σ (2)
z

)]
, (22)

which comprises a two-qubit gate up to single-qubit rotations
(Appendix A). For the case of a TQD exchange-only qubit
these rotations can be performed for each qubit ( j) while
residing in their full sweet spot, by simply manipulating the
tunneling amplitudes t ( j)

l , t ( j)
r , see Refs. [26,62].

Using Eq. (22) for two particular qubits for the choice
of the frequency detuning δπ (N ), such that δ2

π = 4Ng̃(1)
‖ g̃(2)

‖ ,

one obtains an accumulated two-qubit phase matrix �̂π =
−π

4 σ (1)
z ⊗ σ (2)

z corresponding to a controlled π -phase gate
[61,73] (Appendix A). For this ideal situation to happen one
requires that the frequency detuning to be at least δπ (N ) 	 κ ,
with κ being the resonator damping rate, implying a high Q-
factor SC resonator (Q � 103–106). Other restrictions on the
resonator and qubit parameters will follow from minimization

FIG. 3. Gate time tπ of a two-qubit controlled π -phase gate for
TQD exchange only qubits [Eq. (23)] is plotted vs interdot tunneling
amplitude tl = tr and dots’ charging energy Uch, for fixed qubits’
modulation Ṽm = 0.1 mV, resonator frequency ωr � 6.3 GHz, res-
onator inductance Lr = 50 nH (impedance Zr � ωrLr � 1.85 k�;
compare, e.g., with Ref. [81]), and qubits’-resonator lever arm αc �
0.14 that amounts to a reachable coupling ratio of η/h̄ = αc

√
Zr

h̄/e2 �
0.1. The gate time tπ ranges from 15 to 150 ns for tl � [35, 110] μeV
and Uch ∈ [0.4, 0.5] meV, featuring relatively high tunneling am-
plitudes and relatively low dots’ charging energies. The scaling of
the gate time tπ ∼ 1/

√
Lr leads to a moderate increase for smaller

resonator inductances Lr . By reaching higher experimental values
for αc, ωr , and Ṽm one can bring the dots’ tunneling and charging
energy to experimentally more favorable ranges [9]. Since for a DQD
S-T qubit the scaling of the longitudinal coupling [Eq. (4)] with
parameters is exactly the same [62], one expects similar ranges for
these systems.

of the two-qubit gate infidelities. The entangling gate time
reads

tπ = 2πN

δπ

= π

√
N

g̃(1)
‖ g̃(2)

‖
(23)

and reaches 15–150 ns for the parameters of Fig. 3, see also
Table I.

III. QUBIT AND RESONATOR WITH DECOHERENCE
AND THE PHASE GATE ERRORS

The qubit entangling gate errors arise from several sources
(see Fig. 4), including (i) resonator damping κ , (ii) qubit-
induced spin-dependent resonator frequency shifts δωs via the
always-on dispersivelike curvature coupling, Eqs. (7) and (8),
(iii) resonator thermal (Johnson) noise, and qubit dephasing
due to (iv) photon number fluctuation in the resonator and due
to (v) charge 1/ f noise on the qubit defining gates; (vi) finally,
one also considers the effect charge 1/ f noise on the qubit’s
tunneling gates, causing additional resonator trajectory devia-
tions via a change of the curvature (longitudinal) coupling g̃‖.
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FIG. 4. The nonideal oscillator trajectories in the phase space
{Re[αs(t )], Im[αs(t )]} for two subsequent cycles, each of duration
tg = 2π/δ. The ideal evolution αid

s (t ) obtains deviations δαs(t ) (red
solid or dashed decaying circles) due to (i) resonator damping κ

[Eqs. (27) and (35)], and (ii) qubit-induced spin-dependent resonator
frequency shifts δωs [Eqs. (1), (27), and (35)] via the always-on dis-
persivelike curvature coupling [Eq. (7)]. By changing the modulation
phase for every odd cycle: ϕ′

m = ϕm + π , the spin-dependent res-
onator driving amplitude �‖,s flips sign (red, dashed decaying circle;
sf. also Fig. 10) that allows partial cancellation of the deviations, for
small κ , δωs. The (iii) resonator thermal (Johnson) noise is shown
schematically (black, solid line) as a noisy deviation from the ideal
trajectory αid

s (t ). The noisy trajectory is generated by a random force
Hamiltonian H f = −ξ f (t )x̂ [see Eq. (36) and Appendix D], which
is an unraveling of the diffusion term in the ensemble-averaged
evolution [Eq. (27)].

The effects (iv), (v), and (vi) of qubits’ defining gates charge
noise are considered latter on in Secs. III C and III D.

The first three effects, (i)–(iii), as well as (vi), cause (time-
dependent) deviations from the ideal resonator trajectory in
the phase space [Eqs. (18) and (20)], changing both the (spin-
dependent) resonator trajectories (Fig. 4)

αs(t ) = αid
s (t ) + δακ,δω

s + δαξ
s + δα

g̃‖,1/ f
s (24)

and the corresponding accumulated phases

�s(t ; [αs(t )]) = �id
s (t ) + δ�κ,δω

s + δ�ξ
s + δ�

g̃‖,1/ f
s , (25)

the latter causing path-dependent nonlocal in time errors. Cor-
respondingly, as compared to the ideal values, the change in
the final resonator state |αs(tg)〉 leaves some qubit-resonator
entanglement at the end of the phase gate accumulation cy-
cle, leading to qubits’ phase gate infidelity δεtraject. For small

deviations of the trajectory: δακ,δω
s , δαξ

s , δα
g̃‖,1/ f
s � 1 and

δ�κ,δω
s , δ�ξ

s , δ�
g̃‖,1/ f
s � 1, the infidelity splits into separate

terms (Appendix C 1):

δεtraject � δεκ,δω + δεξ + δεg̃‖,1/ f . (26)

The superconducting (SC) resonator-to-environment inter-
action at finite temperature is described via the Caldeira-
Leggett master equation (ME) [82,83] and includes damping

(κ) and diffusion (Kd ) contributions. The time evolution of the
qubit(s)-resonator density matrix reads

dρ

dt
= −i

[
H̃tot, ρ

]− i
κ

2h̄
[x̂, { p̂, ρ}+] − Kd

h̄2 [x̂, [x̂, ρ]], (27)

Kd ≡ h̄ωrLrκ

2
coth

h̄ωr

2kBTr
, (28)

where x̂ and p̂, are the “position” and “momentum” operators
[84] [Eq. (B2)], and { , }+ is an anticommutator. The last (dou-
ble commutator) term in Eq. (27) is governed by a temperature
dependent diffusion coefficient Kd , and Tr is the resonator
temperature [85]. (An analog of the Caldeira-Leggett ME (27)
is the quantum-optics ME [86]; the two master equations coin-
cide in the RWA and especially for Gaussian states considered
in this paper. We will use one or another form of the ME for
convenience, Appendix B.)

The qubit-resonator density matrix can be expanded in a
complete set of qubit operators |s〉〈s′| [87]:

ρ =
∑
s,s′

ρ̂s,s′ |s〉〈s′|, (29)

where the partial density matrices ρ̂s,s′ act only on the res-
onator subspace. Using Eq. (27), in a general rotating frame
with frequency ωr′ and in RWA, one gets the equation for the
spin-diagonal resonator density matrices (Appendix B 1):

d ρ̂ss

dt
= −iω̃r[a+a, ρ̂ss] − i�‖,s[X̂ϕm (t ), ρ̂ss]

− iεd [X̂ϕd (t ), ρ̂ss] − iδωs[a
+a, ρ̂ss]

− i
κ

2h̄
[x̂{p̂, ρ̂ss}+] − Kd

h̄2 [x̂[x̂, ρ̂ss]], (30)

where the modulating and driving terms X̂ϕm , X̂ϕd are given by
X̂ϕ (t ) ≡ [âei(δ̃t+ϕ) + â+e−i(δ̃t+ϕ)], and the detunings are

ω̃r = ωr − ωr′ , δ̃ = ωm − ωr′ . (31)

The resonator frequency shift for n qubits in the |s〉 state is
given by

δωs = 〈s|
∑

j

δω( j)σ ( j)
z |s〉, (32)

with the individual curvature frequency shifts δω( j) given
by Eq. (8). The spin-diagonal Eq. (30) can be reduced to
equations for the set of moments, e.g., the averages x̄s ≡
〈x̂〉s = Tr[x̂ρ̂s,s], p̄s ≡ 〈p̂〉s = Tr[ p̂ρ̂s,s], the variances, D(s)

x ≡
〈x̂2〉s − 〈x̂〉2

s , D(s)
p ≡ 〈p̂2〉s − 〈p̂〉2

s , D(s)
xp ≡ 〈 x̂ p̂+p̂x̂

2 〉s − 〈x̂〉s〈p̂〉s,
etc., see Appendix B 3. One obtains for the averages:

˙̄xs

�x0
= p̄s

�p0
(ω̃r − δωs) − 2�‖,s sin(δ̃t + ϕm), (33)

˙̄ps

�p0
= − x̄s

�x0
(ω̃r − δωs) − 2�‖,s cos(δ̃t + ϕm)

− 2εd e−i(δ̃t+ϕd ) − κ
p̄s

�p0
. (34)

We notice several important properties of Eqs. (33) and (34)
that coincide with the single resonator case [88]. First, for
zero temperature a coherent resonator state remains coher-
ent, while it is damped to the ground state |0〉 at long times
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t 	 1/κ (in particular, the state purity is preserved). Second,
the equations for the averages x̄, p̄ are not affected by the
diffusion term and decouple from the variances (Appendix
B 3). In addition, we show that the variances are not affected
by the longitudinal coupling modulation or by the resonator
driving (Appendix B 3).

The above statements are correct for any resonator state. In
what follows we consider solutions of Eq. (27) with Gaussian
density matrices since typical initial states are Gaussian (e.g.,
a coherent or a thermal state) and Gaussian states are pre-
served under the evolution of Eq. (27). They are also preserved
by continuous measurements (see Ref. [88] and references
therein). Thus, Eq. (30) reduces to equations for the set of five
Gaussian moments, since the higher moments are expressed
by the former.

Using the field variable αs ≡ 〈â〉s = 1
2 ( x̄s

�x0
+ i p̄s

�p0
),

Eqs. (33) and (34) are combined to

α̇s = −i(ω̃r − δωs) αs − i�‖,se−i(δ̃t+ϕm )

− iεd e−i(δ̃t+ϕd ) − κ

2
(αs − α∗

s ), (35)

where the difference from the quantum optics equation is the
last (contrarotating) term that can be neglected in a RWA.
Note that disregarding it will be equivalent to neglecting the
usual resonator frequency shift due to damping. Equation (35)
for αs does not include the thermal diffusion, the latter is
giving a contribution only to the equations for the variances
D(s)

x , D(s)
p , D(s)

xp , see Appendix B 3, that will contribute to the
variances of the field 〈|δαs(t )|2〉 and the accumulated phases
〈δ�s(t ) δ�s′ (t )〉, see Sec. III B.

Since the gate error is nonlocal in time [e.g., via the accu-
mulated phases �s(t ; [δαs(t )]) ∝ ∫

α∗
s (t ′)dαs(t ′), Eq. (20)], it

is useful to represent the thermal diffusion term as originating
from a stochastic time-dependent term (Appendix D)

H f = −ξ f (t )x̂, (36)

which represents a random force Hamiltonian; here ξ f (t ) is a
white noise “random force” with spectral density given by the
correlator 〈ξ f (t )ξ f (t ′)〉 = S f

2 δ(t − t ′). Then, the resulting fluc-
tuations of the (spin-dependent) resonator trajectory (Fig. 4)
will be integrated into the accumulated variances.

Thus, in Eq. (27) one is replacing the last (double com-
mutator) term by the random force Hamiltonian, Eq. (36).
As shown in Appendix D, the two representations are equiv-
alent. Indeed, by adding the random force Hamiltonian to
the equation of motion dρ

dt ∼ − i
h̄ [H f , ρ], and transforming

from Stratonovich form of the equations to its Itô form [88],
one reproduces the double commutator term in Eq. (27) if
the spectral density is chosen as S f = 4Kd . The “standard”
ensemble averaged evolution, Eq. (27), is then obtained by
averaging out the noise. In what follows, in Sec. III B, we will
use the random force Hamiltonian to calculate the diffusion
(Johnson) noise gate error, by averaging out the noise at the
end of the procedure. In the next section (Sec. III A) we first
consider the situation when the ideal evolution in the phase
space is disturbed only by resonator damping and n-qubit
spin-dependent detuning.

A. Damping and detuning gate errors for n qubits: Two-qubit
numerical study

For each n-qubit state |s〉, damping κ and spin-dependent
detuning δωs lead to shrinking and deviation of the ideal circle
in the phase space {Reα, Imα}, leaving the qubits and the
resonator entangled at the time of one cycle, tg = 2π/δ (see
Fig. 4) [since αs( 2π

δ
) �= 0], and disturbing the accumulation

phases. Starting from an initial product state of n qubits and
resonator |ψi〉 ≡ ∑

s as|s〉 |0〉 [we assume vacuum resonator
initial state, for simplicity], one ends up in the state

|ψ f 〉 =
∑

s

ase
i�s (t )|s〉 |αs(t )〉 |t= 2π

δ
, (37)

where αs(t ) = αid
s (t ) + δακ,δω

s (t ) and �s(t ) = �id
s (t ) +

δ�κ,δω
s (t ) differ from the ideal values [scf. Eqs. (A3) and

(A8)] by the small deviations δακ,δω
s (t ), δ�κ,δω

s (t ), due to
damping and detuning. Using the matrix element〈

ψ f

∣∣ψ id
f

〉 = ∑
s

|as|2e−iδ�s (t )〈αs(t )|0〉, (38)

one obtains for small deviations δακ,δω
s , δ�κ,δω

s , the gate error
(infidelity) for n qubits (Appendix C 1):

δε
n Qb
κ,δω � 1

2n

∑
s

|δαk,δω
s |2 + f (n)

12

2

∑
s<s′

(
δ�κ,δω

s − δ�κ,δω
s′

)2
,

(39)
where the averaging over the initial n-qubit state f (n)

1 = f (n)
s ≡

|as|2, f (n)
12 = f (n)

s,s′ ≡ 2|as|2|as′ |2 [using uniformity of the aver-
ages, see Eq. (C13) and Appendix C 2] results in

f (n)
s = f (n)

s,s′ = 1

2n + 22n−2n

2

. (40)

To lower the average gate infidelity δεκ,δωs , one needs to
suppress δαs and (δ�s − δ�s′ ) at the end of the cycle.

The simplest strategy (Appendix C 3) is to change the
sign of the driving amplitude �‖,s by changing the phase
of the qubits gates modulations ϕm → ϕm + π , see Eq. (35).
By performing a second cycle, with flipped sign of �‖,s an
opposite shrinking of the second cycle (Fig. 4) will (partially)
compensate the first one (scf. Refs. [61,89]). In the simple
case, when detunings are neglected, δωs = 0, at the end of
the second cycle one gets, starting at αs(0) = 0:

δαs

(
4π

δ

)
≡ α̃s

(
4π

δ

)
� −αs

(
2π

δ

)(
πκ

δ

)
, (41)

i.e., the α deviation for two cycles is suppressed by extra
power of κ/δ, for κ � δ. Here α̃s(t ) denotes a time evolution
via Eq. (35) with flipping sign of the modulation strength �‖,s
after each cycle. For the realistic case, when δωs 	 κ , one
solves Eq. (35) iteratively, for N cycles (N = 1, 2, 3, . . . ) with
every even cycle with the sign of �‖,s flipped, and obtains for
the deviation of the resonator variable δαs in Eq. (39):

δακ,δω
s ≡ α̃s

(
N

2π

δ

)
= αs

(
2π

δ

)
eb∗

s N 2π
δ − (−1)N

eb∗
s

2π
δ + 1

, (42)

where bs ≡ −i[δ − δωs] − κ
2 .
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FIG. 5. The infidelity δε
2 Qb
κ,δω( δω

g̃‖
, 0) [Eqs. (39) and (44)] is a

growing function of the ratio δω

g̃‖
= η

h̄
h̄ωr
eṼm

. The values of δω

g̃‖
=

0.035, 0.011 at which δεκ,δω = 0.01, 0.001, respectively, are cal-
culated for resonator driving and phase [Eq. (6)] at which the qubits’
spin-independent curvature couplings g̃( j)

0 are canceled, see Eq. (43).

The expressions for the calculation of |δαk,δω
s |2 and

(δ�κ,δω
s − δ�κ,δω

s′ )
2

are cumbersome and are presented in
Appendix C 3, by Eqs. (C31)–(C41). The n-qubit entangling
gate is essentially driven only by the spin-dependent longi-
tudinal couplings g̃( j)

‖ , see Eq. (21). The modulation of the
qubits gates creates, however, the spin-independent couplings
g̃( j)

0 , which affect the infidelity considerably. Aiming to cancel
the g̃( j)

0 couplings of the qubits involved into the entangling
gate, one is driving the resonator with the same frequency as
the modulation ωd = ωm, and with a phase ϕd = ϕm + π , see
Eq. (6). Then the quantities of interest are shown to depend on
a modified spin-dependent driving strength

�ε
‖,s ≡ �‖,s − εd , (43)

and benefit from the cancellation of the g̃( j)
0 , see Eqs. (C38)–

(C40). Numerically, for the choice of parameters of Figs. 3
and 5, and Table I, we have shown that the infidelity δεκ,δω

improves more than 30 times for the conditions of Eq. (6).
While δαs is effectively suppressed by increasing the num-

ber of (pair of) cycles, the accumulated phase deviations δ�s

may remain large for finite detunings [90] δωs, and can be
suppressed only by suitable choice of the parameters. In what
follows, we consider a two-qubit gate infidelity, taking iden-
tical curvature couplings δω(1) = δω(2) and g̃(1)

‖ = g̃(2)
‖ . From

dimensional considerations the infidelity δε
2 Qb
κ,δω, see Eq. (39),

is a function of two dimensionless ratios:

δεκ,δω = δεκ,δω

(
δω

g̃‖
,

κ

g̃‖

)
� δεκ,δω

(
δω

g̃‖
, 0

)
, (44)

FIG. 6. The infidelity δε
2 Qb
κ,δω(ωr, Ṽm ) for the range of resonator

frequency ωr ∈ [2, 10] GHz and qubits gate modulation voltage (am-
plitude) Ṽm ∈ [0.05, 0.25] mV. Contours where the infidelity reaches
the values of 0.1, 0.01, 0.001 are also shown. To keep δεκ,δω constant

requires keeping the ratio ω
3/2
r

Ṽm
constant (see text).

where for high Q � 105–106 the ratio κ
g̃‖

can be set to zero.

Since δω
g̃‖

= η

h̄
h̄ωr

eṼm
[Eq. (16)] the infidelity is independent of

the qubits’ energy curvature (quantum capacitance). In Fig. 5
is shown numerically the dependence of δε

2 Qb
κ,δω( δω

g̃‖
, 0), which

grows rapidly with δω
g̃‖

. For the values of δω
g̃‖

= 0.035, 0.011,
the infidelity δεκ,δω reaches the levels 0.01 or 0.001,
respectively.

In Fig. 6 is shown numerically the dependence of
δε

2 Qb
κ,δω(ωr, Ṽm) for the range of resonator frequency ωr ∈

[2, 10] GHz and qubits gate modulation voltage (amplitude)
Ṽm ∈ [0.05, 0.25] mV. Contours where the infidelity reaches
the values of 0.1, 0.01, 0.001 are also shown. To reach a
level of 10−3, this infidelity requires higher Ṽm � 2 mV, and
relatively low ωr � 6–10 GHz.

In what follows, for the calculation of the other infidelities
(Table I) our strategy is to fix the ratio δω

g̃‖
� 0.026 for which

the infidelity δε
2 Qb
κ,δω reaches � 5 × 10−3. For the chosen ra-

tio δω
g̃‖

, an experimentally reachable lever arm of αc � 0.14,
resonator inductance, Lr = 50 nH, and a voltage modulation
amplitude of Ṽm = 0.1 mV, one requires a resonator fre-
quency ωr/2π � 6.3 GHz, see Table I.

It will be beneficial to increase the voltage modulation
amplitude Ṽm in order to increase the longitudinal coupling
g̃‖ (e.g., to compensate the smallness of the lever arm αc,
respectively of η

h̄ ), reaching smaller gate times. Then, in order
to keep the infidelity δεκ,δω constant (Fig. 6) one will also need

a higher resonator frequency, so to keep the ratio ω
3/2
r

Ṽm
constant

[Eq. (16)]. Thus, for Ṽm = 0.1, 0.2, 0.3 mV one would obtain
ωr/2π � 6.3, 10., 13.1 GHz, which is beneficial for sup-
pressing the charge noise gate error, see Eq. (80) and Table I.

By increasing the modulation amplitude Ṽm, however, one
is increasing the relative contribution of the higher-curvature
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corrections [62] (for the sweet spot they are proportional to the

higher energy curvature ∂4Eq

∂V 4
m

). Some of these corrections [62]
just change g̃‖ and δωs (relative corrections are of the order of

∝ [ eṼm
Uch

]
2
), keeping their ratio nearly the same. In addition, the

higher-curvature corrections generate the nonlinear Hamilto-
nians [62] Hn̂2 = h̄(ζ0 + ζ‖ σz )n̂2, Hn̂â = h̄(ξ0 + ξ‖ σz )(n̂â +
â†n̂) cos(ωmt + ϕm), with a relative strength suppressed by

the factors 〈n̂〉 [ h̄ωr
Uch

]
2
[ η

h̄ ]2, which makes them of the order of
� 10−4 since the average photon number in the resonator is
of order of 〈n̂〉 � 1, see Table I and Eq. (B51), Appendix B 5.

B. Resonator (Johnson) noise phase gate error for n qubits:
Two-qubit numerics

Consider now the situation when one performs ideal evo-
lution in the phase space disturbed only via the random
force Hamiltonian H f , Eq. (36) and Fig. 4 (assuming small
noise deviations, Appendix C 1). The random force makes
the trajectory in the phase space noisy, by adding a new
term in the equation of motion, see Eq. (D13): dαs (t )

dt = · · · +
i ξ f (t )

2�p0
eiωr t . Correspondingly, as αs(t ) = αid

s (t ) + δαξ
s (t ) and

�s(t ) = �id
s (t ) + δ�ξ

s (t ), the noise affects the final resonator
state (for each n-qubit state |s〉), as well as the accumulated
phase, so that some qubit-resonator entanglement still remains
at the time of one cycle tg = 2π

δ
. Starting from an initial

product state of n qubits and resonator, one obtains the fidelity
F ≡ |〈� f |� id

f 〉|2, similar to Eq. (38), averaging on the n-qubit
initial states and on the noise. The average infidelity δεξ reads
(Appendix C 1)

δε
n Qb
ξ = 1 − ∣∣〈� f

∣∣� id
f

〉∣∣2〉
ξ

= 〈∣∣δαξ
s

∣∣2〉
ξ
+ f (n)

12

2

∑
s<s′

〈(
δ�ξ

s − δ�
ξ

s′
)2〉

ξ
, (45)

where we have used that the variance of δαξ
s (t ), and initial

state averages f (n)
s ≡ |as|2, f (n)

s,s′ ≡ 2|as|2|as′ |2 are spin inde-
pendent, see Eqs. (C12) and (C13), Appendix C 2.

To calculate the variances (Appendix D) one uses the noise
contribution δαs(t ) in rotating frame with ωr ,

δαs(t ) = i
�x0

h̄

∫ t

0
dt ′ξ f (t ′)eiωr t ′

(46)

and obtains a spin-independent variance of (otherwise spin-
dependent evolution of) αs(t ):

〈|δαs(t )|2〉ξ =
(

�x0

h̄

)2 ∫ t

0

∫ t

0
dt ′dt ′′eiωr (t ′−t ′′ )〈ξ f (t ′)ξ f (t ′′)〉ξ

= Kd

2(�p0)2
t ≡ C0 t (47)

that is linear in time t , as expected for a diffusion process.
To obtain the phase variance 〈δ�s(t )2〉ξ = 〈[Im δI�,s]2〉ξ

one considers the variation of the accumulated phase integral
[scf. Eq. (A8)], assuming small variations:

δI�,s(t ) �
∫ t

0
dt ′
[
δα∗

s (t ′)
dαid

s (t ′)
dt ′ + αid ∗

s (t ′)
dδαs(t ′)

dt ′

]
,

(48)

and averages over the noise, similar to Eq. (47).
Averaging over the noise, the variance of the accumulated

phase differences for N cycles, at t = 2πN
δ

, reads

〈[
δ�ξ

s (t ) − δ�
ξ

s′ (t )
]2〉

ξ
= 4C0

[
�ε

‖,s − �ε
‖,s′
]2

δ2

2πN

δ
. (49)

At arbitrary time t the corrections to Eq. (49) are of the order
of O( δ

ωd
) (some of them are zeroed at completed cycles), and

oscillate with frequencies δ, and 2δ, see Appendix D 2. Notice
that the variance 〈[δ�s(t ) − δ�s′ (t )]2〉ξ is linear in time units
of 2π

δ
for integer number of cycles N .

The n-qubit infidelity due to resonator (Johnson) noise for
N cycles is then obtained from Eq. (45):

δε
n Qb
ξ � 2πN

δ

κ

2
coth

(
h̄ωr

2kBTr

)

×
[

1 + 2 f (n)
12

∑
s<s′

[
�ε

‖,s − �ε
‖,s′
]2

δ2

]
, (50)

where f (n)
12 is given by Eq. (40) and in the modulation strength

difference the spin-independent terms ∼g̃( j)
0 and the driving εd

are separately canceled:

�ε
‖,s − �ε

‖,s′ = 1

2

∑
j

g̃( j)
‖
(〈s|σ ( j)

z |s〉 − 〈s′|σ ( j)
z |s′〉). (51)

For the two-qubit controlled π -phase gate considered
in this paper, the modulation-to-resonator detuning is cho-

sen such that δπ = 2
√

Ng̃(1)
‖ g̃(2)

‖ so that the variances of

interest scale differently with N : 〈|δαs|2〉 ∝ √
N , while

〈[δ�s(t ) − δ�s′ (t )]2〉ξ ∝ 1√
N

. The two-qubit gate error due to
resonator noise then reads

δε
2Qb
ξ � π

√
N√

g̃(1)
‖ g̃(2)

‖

κ

2
coth

(
h̄ωr

2kBTr

)

×
⎡
⎣1 + 4 f (2)

12

N

(
g̃(1)

‖
)2 + (

g̃(2)
‖
)2

g̃(1)
‖ g̃(2)

‖

⎤
⎦. (52)

For two qubits one is using the average over the initial state
f (2)
12 = 2|as|2|as′ |2 = 1/10 [Eq. (40) and Appendix C 2]. We

notice that both terms in Eq. (52) are important, especially for
small N . For equal couplings g̃(1)

‖ = g̃(2)
‖ the second term was

derived in Ref. [61]. It gives 40% of the first term for N = 2.
In what follows, higher N > 2 are not welcomed since both
the gate time and the error scales up as ∼√

N .
Taking, e.g., a temperature of Tr = 40 mK and ωr/2π ∈

[5, 10] GHz, notice that the two-qubit gate noise error (in-
fidelity) up to a factor of order 1 is given by δε

2Qb
ξ ≈ tπ

ωr
2Q .

In Fig. 7 is shown a density plot of δε
2Qb
ξ (tπ , log Q), for

the range of parameters that fixes the range of gate times
tπ ∈ [15, 150] ns (that implies N = 2, Ṽm = 0.1 mV, and
ωr/2π � 6.3 GHz, see also Fig. 3). One obtains ranges of
the resonator Q factor that provide a corresponding level of
the resonator noise two-qubit phase gate error: δε

2Qb
ξ � 0.1

for Q ∈ [3.4 × 103, 3.4 × 104], δε
2Qb
ξ � 0.01 for Q ∈ [3.4 ×
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FIG. 7. Density plot of the resonator (Johnson) noise infidelity
δεξ (tπ , log Q) for a resonator frequency ωr/2π � 6.3 GHz, range
of the two-qubit gate time tπ ∈ [15, 150] ns, and resonator Q factor
of Q ∈ [3.4 × 103, 3.4 × 106]. Contours where the infidelity reaches
the values of 0.1, 0.01, 0.001 are also shown.

104, 3.4 × 105], and δε
2Qb
ξ � 0.001 for Q ∈ [3.4 × 105, 3.4 ×

106].

C. Qubit charge noise phase gate errors

Due to qubits’ gate charge noise, the actual final state of n
qubits acquires the random phases �φs(t ):

|ψ f 〉 =
∑

s

ase
i�s (t ) e−iωst e−i �φs (t )|s〉|0〉, (53)

with the spin-dependent geometric phase �s(t ) and the regu-
lar qubits phase ωs t . The n-qubit random phase �φs(t ) is

�φs(t ) =
∑

j

〈s|�φ( j)(t )

2
σ ( j)

z |s〉,

�φ( j)(t ) ≡
∫ t

0
dt ′ δω( j)

q (t ′), (54)

where the random phase �φ( j)(t ) is accumulated via the ( j)th
qubit frequency fluctuation δω

( j)
q (t ). Averaging over the initial

qubits’ state and over the random phases �φs(t ) [assuming
Gaussian distributed �φs(t ), see Appendix E] one obtains the
n-qubit charge noise infidelity in general form:

δε
n Qb
φ = f (n)

12

∑
s<s′

1

2
〈[�φs(t ) − �φs′ (t )]2〉ξq . (55)

Essentially, the noise average 〈[�φs(t ) − �φs′ (t )]2〉ξq will
lead to n-qubit dephasing, and below we consider several
charge noise dephasing mechanisms.

1. Curvature couplings induced qubit dephasing via the resonator
shot noise

One mechanism is via the qubits curvature coupling to the
resonator. Weak leakage of photons from the resonator (shot
noise) will lead to an n-qubit dephasing with rates �shot

ss′ and
AC-Stark frequency shifts δωshot

ss′ . These are derived from the
Caldeira-Leggett master equation for the n-qubits plus res-
onator density matrix [Eq. (27)] at zero resonator temperature,
via tracing out the resonator. In a long-time limit t 	 1/κ , the
n-qubit density matrix acquires a dephasing term (Appendix
B 6)

ρ
q
ss′ (t ) = ρ

q
ss′ (0) e−�shot

φ,ss′ t ei δωshot
ss′ t . (56)

For the dephasing rates one obtains

�shot
φ,ss′ ≡ δγdisp,ss′ + δγlong,ss′ , (57)

δγdisp,ss′ = (2A−,ss′ )2(κ/2)(
δ2

s + κ2

4

)(
δ2

s′ + κ2

4

)�ε
‖,s �ε

‖,s′ , (58)

δγlong,ss′ = B−,ss′ (κ/2)

[
�ε

‖,s
δ2

s + κ2

4

− �ε
‖,s′

δ2
s′ + κ2

4

]
, (59)

and similarly, for the AC-Stark frequency shifts δωshot
ss′ ,

δωshot
ss′ ≡ δωdisp,ss′ + δωlong,ss′ , (60)

δωdisp,ss′ = −2A−,ss′

[
δsδs′ + κ2

4

]
�ε

‖,s �ε
‖,s′(

δ2
s + κ2

4

)(
δ2

s′ + κ2

4

) ,
(61)

δωlong,ss′ = B−,ss′

[
δs

�ε
‖,s

δ2
s + κ2

4

+ δs′
�ε

‖,s′

δ2
s′ + κ2

4

]
, (62)

where we have introduced the shortcomings

δs ≡ δ − δωs ≡ ωm − ωr − δωs, (63)

A−,ss′ ≡ δωs − δωs′

2
, B−,ss′ ≡ �ε

‖,s − �ε
‖,s′ , (64)

see Appendix B 1. The expressions Eqs. (57)–(62) are de-
rived with the effective spin-dependent driving strength �ε

‖,s
[Eq. (43) and Appendix B 6] and a proper choice of the res-
onator driving [Eq. (6)] can significantly decrease the gate
errors.

In the short-time limit of the geometric phase gates one
has typical timescales t∗ ∼ 1

δ
� 1

δωs
� 1

κ
, and the dephasing

factors differ from that of Eq. (56). In particular, for inter-
mediate times within the cycle, 0 < t < tg, the exponents are
nonlinear in time and oscillate with a period 2π

δ
changing

considerably (Appendix B 6). At time moments tg = 2πN
δ

one
is left, however, with linear in time (but modified) exponents
of Eq. (56) with dephasing rates and frequency shifts given by

�̃shot
φ,ss′ ≡ δγdisp,ss′ + 2 δγlong,ss′ , (65)

δω̃shot
ss′ ≡ δωdisp,ss′ + 2 δωlong,ss′ , (66)
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instead of Eqs. (57) and (60). In its turn, the frequency shifts
δω̃shot

ss′ can be represented as

δω̃shot
ss′ ≡

(
�ε

‖,s
)2 − (

�ε
‖,s′
)2

δ
+ δ ˜̃ωshot

ss′ , (67)

where the first term of the order of g̃‖ can be absorbed in the
redefinition of the n-qubit energy levels ωs, see Eqs. (B18)
and (B54) (essentially, because |s〉 are eigenstates of �̂2

‖). The

remaining frequency shifts δ ˜̃ωshot
ss′ ∼ δωs cause a quadratic in

time infidelity (Appendix E):

δε
n Qb
δω,shot = f (n)

12

2

∑
s<s′

(
δ ˜̃ωshot

ss′ tg
)2

. (68)

The explicit form of the n-qubit shot noise rates �̃shot
φ,ss′

cannot be expressed as a sum of individual qubit dephasings.
This is equivalent to say that the phase average in Eq. (55) is
represented via correlated qubits white noises, see Eq. (E8).
For small times tg � 1/�φ,ss′ , the n-qubit infidelity is linear in
the gate time tg and reads

δε
n Qb
φ,shot = f (n)

12

∑
s<s′

�̃shot
φ,ss′ tg, (69)

substituting in it the shot noise dephasings �̃shot
φ,ss′ , Eq. (65).

Using the expressions of Eqs. (68) and (69), one can show
that these infidelities are negligible for a reasonable set of
parameters, see Table I.

2. Uncorrelated white noise gate infidelity

A second charge noise dephasing mechanism is via the
voltage fluctuations of the qubit’s defining gates. For a TQD
qubit these are the gates defining the dots and the gates defin-
ing the interdot tunneling, see Fig. 1(a).

It is worth to mention that for a model with uncorrelated
white noises the n-qubit dephasings can be represented as
a sum of appropriate individual qubit dephasings, see Ap-
pendix E 2 and Fig. 8. Then, for equal qubits dephasings,
�

(1)
φ = �

(2)
φ ≡ �white

φ , the two-qubit infidelity is obtained from

Eq. (69) using f (2)
12 = 1/10 and a gate time tg given by

Eq. (23):

δε
2Qb
φ = 8

10

π
√

N �white
φ

g̃‖
, (70)

�white
φ =

∑
x=εv ,εm,tl ,tr

Sx

4h̄2

(
∂Eq

∂x

)2

(71)

that is minimized at a full sweet spot, where ∂Eq

∂εv
= ∂Eq

∂εm
= 0.

3. Uncorrelated 1/ f -noise phase gate infidelity

The dephasing measured in actual experiments, performed
for a DQD singlet-triplet qubit in its symmetric operating
point [28,29], shows that this model is unrealistic: the ex-
periment is featuring an 1/ f -charge noise spectrum of the
qubits’ gate noise, leading to a Gaussian (quadratic) dephasing
exponent:

e− 1
2 〈[�φs′ (t )−�φs′ (t )]2〉ξq = e−(�̃ss′ t )2

, (72)

FIG. 8. Schematic of the two-qubit energy levels and the associ-
ated charge noise dephasing rates. The individual qubit dephasings
are �̃

(1)
φ = �̃34 and �̃

(2)
φ = �̃24. For uncorrelated white noise �̃14 =

�̃
(1)
φ + �̃

(2)
φ , see Eq. (70) and Appendix E 2. For correlated white

noise and for uncorrelated 1/ f noise �̃14 �= �̃
(1)
φ + �̃

(2)
φ , see Eqs. (57)

and (76), respectively.

compare with Eq. (56). In the case of uncorrelated charge
noise to each of the qubits one obtains the relation

(�̃ss′ )
2 = 1

2

n∑
j=1

(�̃( j) )2 (1 − i j i′j ), (73)

where �̃( j) is the individual jth qubit 1/ f -noise
dephasing rate, Appendix E 3. For small fluctuations,
〈[�φs′ (t ) − �φs′ (t )]2〉ξq � 1, one obtains the n-qubit
infidelity:

δε
n Qb
φ,1/ f = f (n)

12

∑
s<s′

(�̃ss′ t )2, (74)

that is growing quadratically with time. Since one is assuming
t � 1/�̃ss′ , the quadratic dependence is beneficial for sup-
pressing the infidelity.

For the two-qubit case one gets from Eq. (73) the relations

�̃12 = �̃
(2)
φ , �̃13 = �̃

(1)
φ , (75)

�̃14 =
√(

�̃
(1)
φ

)2 + (
�̃

(2)
φ

)2
, etc. (76)

Note that as compared to the uncorrelated white noise case
[Eq. (E23)], here �̃14 �= �̃24 + �̃34 ≡ �̃

(1)
φ + �̃

(2)
φ , see Fig. 8.

One then obtains the two-qubit gate infidelity for a gate time
tg,

δε
2Qb
φ,1/ f = 4

10

[(
�̃

(1)
φ

)2 + (
�̃

(2)
φ

)2]
t2
g (77)

= 8

10
(�̃φ tg)2, (78)

where the second equality is for equal qubits’ dephasing
�̃

(1)
φ = �̃

(2)
φ ≡ �̃φ .

In Fig. 9 is shown a density plot of the 1/ f -
noise infidelity δε

2Qb
φ,1/ f (tπ , T ∗

2 ), Eq. (78), for a range of
gate times tπ ∈ [15, 150] ns, and qubit’s dephasing times
T ∗

2 ∈ [200, 1500] ns. The infidelity levels of δε
2Qb
φ,1/ f �

0.1, 0.01, 0.001 can be reached for gate times tπ �
0.354T ∗

2 , 0.112T ∗
2 , 0.0354T ∗

2 .
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FIG. 9. Density plot of the two-qubit controlled π -phase gate
1/ f charge noise infidelity δε

2Qb
φ,1/ f (tπ , T ∗

2 ), Eq. (78), for a resonator
frequency ωr/2π � 6.3 GHz, range of the two-qubit (π -phase)
gate time tπ ∈ [15, 150] ns, and qubit’s dephasing times T ∗

2 ∈
[200, 1500] ns, where T ∗

2 ≡ 1/�̃φ , Eq. (79). Contours where the
infidelity reaches the values of 0.1, 0.01, 0.001 are shown, which
corresponds to the relations tπ = 0.354T ∗

2 , 0.112T ∗
2 , 0.0354T ∗

2 ,
respectively.

In the symmetric case of a TQD (Appendix E 4), one ob-
tains for the single qubit 1/ f -noise dephasing rate

�̃φ � 1

h̄

√
log rc Stl

4tl
Uch

, (79)

where rc ≡ ωUV/ωIR is the ratio of the noise ultraviolet-to-
infrared frequency cutoffs [25], and Stl is the spectral density
constant of the 1/ f noise associated with the gates forming
the interdot tunnelings tl , tr .

The curvature contributions to �̃φ are shown to give a
negligible effect with respect to the noise from the tunneling
gates (Appendix E 4) that allows us to increase the quantum
capacitance, respectively, to decrease the gate time tπ without
additional 1/ f noise, see Table I and Appendix E 4.

The scaling of the two-qubit gate infidelity for 1/ f noise
with all relevant parameters is obtained as (Appendix E 4)

δε
2Qb
φ,1/ f = 4π2N

5h̄2

log(ωUV/ωIR) Stl

ω2
r (η/h̄)2 (eṼm)2

U 4
ch

t2
l

. (80)

It is worth to comment on the important features of this
expression:

(1) The smaller is the spectral density constant Stl of the
interdot tunneling tl the better. Here the spectral density of
the 1/ f noise is defined as S(ω) = Stl

|ω| . One can estimate the
spectral density constant from current experiments with DQD
singlet-triplet qubit at the symmetric operating point [28,29]
as Stl � 10−5 (μeV)2, see also Appendix E 5.

(2) The dot-to-resonator coupling ratio should be small,
η/h̄ ∼ 0.1, in order the make the infidelity δεκ,δω small, see
Appendix C 3. In order to compensate for this smallness one
needs to increase the gate voltage modulation amplitude Ṽm,
and simultaneously to increase the resonator frequency ωr , so

that to keep δεκ,δω fixed. The simultaneous increase of these
parameters is beneficial for the suppression of the charge noise
infidelity δεφ,1/ f .

(3) The charge noise infidelity is critically sensitive to the
dot’s charging energy Uch and the tunneling amplitude tl , fea-
turing relatively small Uch and relatively large tl , see Table I.

D. Infidelity via the charge fluctuations of the longitudinal
(curvature) coupling g̃‖

Charge noise fluctuations of the (TQD) qubit tunnelings
δt ( j)

l,r causes fluctuations of the longitudinal (curvature) cou-

plings δg̃( j)
‖ and, respectively, of the n-qubit spin-dependent

resonator driving strength δ�ε
‖,s, scf. Eqs. (17) and (43).

Averaging over the charge noise and assuming uncorrelated
fluctuations for the different qubits, one obtains for the corre-
lation function〈

δ�ε
‖,s(t

′) δ�ε
‖,s(t

′′)
〉
ξq

≡ Kss′ (t ′ − t ′′), (81)

Kss′ (t ′ − t ′′) =
n∑

j=1

[
g̃( j)

‖
t ( j)
l

]2

i j i′j
〈
δt ( j)

l (t ′) δt ( j)
l (t ′′)

〉
ξq
,

〈
δt ( j)

l (t ′) δt ( j)
l (t ′′)

〉
ξq

=
∫ +∞

−∞
dω eiω(t ′−t ′′ ) S( j)

tl (ω), (82)

where |s〉 ≡ |i1, . . . , i j, . . . , in〉, and S( j)
tl (ω) is the spectral

density of the tunneling fluctuations. While some of the results
below are correct for a general spectral density, for further

numerical estimations a 1/ f noise is assumed: S( j)
tl (ω) = S( j)

tl
|ω| ,

with the spectral density constants S( j)
tl extracted from the

experiment [28], see Appendix E 5.
The corresponding fluctuation in the resonator trajectory

δα
ξq
s ≡ δα

g̃‖,1/ f
s , scf. Eq. (24), then leads to an infidelity simi-

lar to the Johnson noise, Eq. (45), but with an averaging over
the charge noise ξq (see Appendix C 1):

δε
n Qb
g̃‖,1/ f = 1

2n

∑
s

〈∣∣δαξq
s

∣∣2〉
ξq

+ f (n)
12

2

∑
s<s′

〈(
δ�

ξq
s − δ�

ξq

s′
)2〉

ξq
.

(83)

The average of the trajectory fluctuation is spin-independent
and is obtained as

〈∣∣δαξq
s (t )

∣∣2〉
ξq

=
∫ t

0

∫ t

0
dt ′dt ′′ Kss(t

′ − t ′′) e−iδ(t ′−t ′′ )

= t2
n∑

j=1

[
g̃( j)

‖
t ( j)
l

]2 ∫ ∞

−∞
dω S( j)

tl (ω) fα

(
ωt

2
,
δt

2

)
,

(84)

fα (x, y) ≡ sinc2(x − y), (85)

where sinc(x) ≡ sin(x)
x .

For the contribution of the accumulated phase fluctua-
tions one proceeds similar to the Johnson noise case (see
Appendixes C 1 and D 2). The accumulated phase fluctuation
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average is then obtained as

〈δ�s(t ) δ�s′ (t )〉ξq = �ε
‖,s �ε

‖,s′
t4

4

n∑
j=1

[
g̃( j)

‖
t ( j)
l

]2

i j i′j

×
∫ ∞

−∞
dω S( j)

tl (ω) f�

(
ωt

2
,
δt

2

)
, (86)

f�(x, y) ≡ [xy cos x sin 2y + 2(x2 sin2 y − y2) sin x]2

x2y2(x2 − y2)2
(87)

[note that f�(x, y) is smooth at x = y]. Integrating over
frequencies ω (using infrared and ultraviolet cutoffs ωIR <

|ω| < ωUV, scf. Appendix E 4), one can show numerically
that the resulting functions in Eqs. (84) and (86) are de-
creasing (and oscillating) functions of δt

2 and of the order
of � 1 (also obtaining additional suppression at complete
cycles tg = 2πN

δ
). Since {�‖,s, δ} ∼ g̃‖, the order of magni-

tude of the contributions Eqs. (84) and (86) is given by the
ratio S( j)

tl /t2
l ∼ 10−5–10−9, for Stl � 10−2–10−5 (μeV)2 and

tl = 40–80 μeV, that is, the infidelity δε
2 Qb
g̃‖,1/ f is strongly

suppressed, Table I.

E. Switching off the modulation

After completing the n-qubit phase gate, when the (dis-
tant) qubits become entangled, the modulation is switched
off. Assuming no driving and modulation off, εd = 0, g̃‖ = 0,
g̃0 = 0, the dephasing is via the dispersivelike coupling Hδω

only, due to leakage of resonator thermal photons. Estimating
the single-qubit dephasing rate [91] �φ,th � κ n̄th, for T =
40 mK, one obtains �φ,th � 8π × 10−2 s−1, so pure thermal
dephasing is negligible.

At first glance the always-on dispersivelike coupling Hδω

may change the n-qubit entangled state via free evolution with
the qubits’ frequency shifts δω( j), see Eqs. (1) and (B18). For
the two-qubit system in an arbitrary state (pure or mixed) we
show that the state change can be corrected by a local rotation
of one of the qubits. Indeed, the two-spin resonator frequency
shifts δωs are opposite in sign for the relevant |s〉 states (here
s = 1, 2, 3, 4 ≡ ↓↓,↓↑,↑↓,↑↑), namely δω1 = −(δω(1) +
δω(2) ), δω2 = (−δω(1) + δω(2) ), δω3 = −δω2, δω4 = −δω1.
Then the phases acquired by the two-qubit state amplitudes
as,

|ψ〉 =
4∑
1

ase
−i δωs t |s〉 (88)

(assuming the qubits are disentangled from the resonator) can
be partially compensated via a σz rotation of the first qubit:

Uz1 =
(

e−i�ωz t 0
0 ei�ωz t

)
, (89)

with �ωz ≡ − δω1+δω2
2 . After this transformation, the state

amplitudes become transformed to

a′
s = as e(−1)si

(δω1−δω2 )
2 t , s = 1, . . . , 4, (90)

which is a pure gauge phase factor, i.e., the two-qubit density
matrix elements, see Eqs. (C20)–(C24), remain intact [92].

For the general case of n qubits (n > 2), one can pre-
serve the entangled n-qubit state by decreasing the tunnelings

t ( j)
l,r for each qubit, to decrease couplings to the resonator

[δω( j) ∝ (t ( j)
l,r )

2 → 0]. Another possibility to correct the ac-
quired phases in Eq. (88) is via a spin-echo technique: for
the phases acquired after a time interval �t � 1/κ , one per-
forms simultaneous π pulse on all qubits involved into the
phase gate (by manipulating the qubits’ interdot tunnelings
t ( j)
l,r , while still remaining in the sweet spot for each qubit,

see Refs. [26,62]). Then one waits for a second time interval
�t , and performs a π pulse again so that the effect of the
frequency shifts is canceled out.

IV. RELEVANCE TO OTHER WORK

Similar entangling proposals via a modulated longitudi-
nal coupling, based on a specially designed superconducting
qubits [78] or a double quantum dot singlet-triplet qubits [93],
have been proposed. While these works utilize essentially the
same dynamical longitudinal coupling g̃‖, Eq. (4), as we dis-
cussed previously [62,63,94,95], they have ignored the other
(curvature) dispersivelike coupling [62,63] δωs, which is es-
sential in the estimation of accumulated phase gate infidelities,
as shown in the present paper. Another missing ingredient in
their analysis is the spin-independent modulation coupling g̃0,
Eq. (5). Both these ingredients are important for the associated
infidelity δεκ,δω, Eq. (39). As we have shown, taking into
account the infidelity δεκ,δω essentially restricts the field of
available parameters.

It is also worthwhile to compare the (Johnson noise) in-
fidelity [Eq. (52)] with an analogous infidelity of Eq. (8) of
Ref. [93]. The latter consists of two terms that scale with
the number of cycles N as ∼√

N and ∼1/
√

N , respectively.
The first term ∼√

N exactly corresponds to an uncorrelated
white gate noise infidelity [94,95] described by Eq. (70);
this term should be zero in a sweet spot. The second term

∼1/
√

N exactly corresponds to our term ∼〈(δ�ξ
s − δ�

ξ

s′ )
2〉

ξ
,

scf. Eq. (45). However, the other (leading) term of Eq. (45),
which is proportional to the field variance 〈|δαξ

s |2〉ξ and also
scales as ∼√

N , is missing in the analysis of Ref. [93].
As to the 1/ f -charge noise dephasing infidelity, Eq. (80),

we have analyzed the situation of an encoded spin qubit re-
siding in its sweet spot, while Ref. [93] deals with a working
bias point that is generally not a sweet spot (not an SOP), scf.
Eq. (9) of Ref. [93]. While such a working point is eligible
to consider, it would imply in addition a nonzero (transverse)
dipole coupling that would be essential for the analysis, see,
e.g., Ref. [62]. It is also obvious (see Appendix E 4) that it
would be beneficial to work in an SOP[28,29], where the
charge noise is minimized and the 1/ f noise will originate
only from the fluctuations of the tunneling gate voltages that
are generally much weaker [28,29], as is considered in this
paper.

V. DISCUSSION AND SUMMARY

In this paper we have presented a careful study of the geo-
metric n-qubit (two-qubit) phase gates based on the modulated
longitudinal coupling ∼g̃‖σz(â + â†), including the phase gate
error mechanisms. The results for the various kinds of infideli-
ties presented in Table I imply that infidelities of the order
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TABLE I. The leading two-qubit controlled π -phase gate infidelities δεκ,δω, δεξ , δεφ,1/ f , δεφ,shot , δεδω,shot , and δεg̃‖,1/ f are calculated for a
range of parameters, see Eqs. (39), (52), (80), (69), (68), and (83), respectively. For an experimentally reachable [9,81] dot-resonator lever arm
αc ≡ Cc

Cc+Cd
� 0.14, resonator inductance Lr = 50 nH, and a Q-factor Q = 106, one chooses a dot charging energy Uch � 0.4 meV. By setting

the error δεκ,δω � 5 × 10−3, one sets the ratio δω

g̃‖
� 2.6 × 10−2, that is independent of the QD system quantum capacitance Cq ∝ t2

l,r

U 3
ch

. Since the

scaling of δω

g̃‖
∝ ω3/2

r /Ṽr , Eq. (16), the increase of Ṽr requires the moderate increase of ωr to keep the infidelity δεκ,δω constant in Table I, see also
Fig. 5. The scaling η/h̄ ∝ √

Lrω
3/2
r leads to the important scalings δεκ,δω ∝ Lrω

3
r , δεξ ∝ 1/(

√
Lrω

3/2
r ), δεφ,1/ f ∝ 1/(Lrω

3
r ), so that a decrease

of Lr can be compensated by a moderate increase of ωr . The Johnson noise error δεξ easily reaches a level � 10−3 for higher Cq (respectively,
higher tunneling tl ) and/or higher modulation voltage Ṽm. The main obstacle is the charge noise error δεφ,1/ f due to qubit gate 1/ f -charge noise
which scales with the gate time as ∝ �̃2

φ t2
π , Eq. (78). Generally, to reach an error level of δεφ,1/ f � 10−3 pushes the dots’-resonator parameters

towards relatively low charging energy Uch, relatively high interdot tunnelings tl,r , a smaller 1/ f -noise spectral density constant Stl and higher
resonator frequency ωr , and higher gate voltage modulation amplitude Ṽr , see Eq. (80). (We used Stl � 10−5 (μeV)2 that is taken from the
experiment [28], see Sec. III C 3 and Appendix E 5.) As an illustration, on the fourth group of rows of the Table we take ωr = 5 GHz while the
other parameters are as on the second group of rows. The above scaling of δεφ,1/ f with ωr leads to an order of magnitude error increase, which
can be compensated by an increase of the lever arm to 0.4 if lower ωr is needed.

tl Eq Cq η/h̄ δω g̃‖ Ṽm ωr δεκ,δω δεξ δεφ,1/ f δεφ,shot δεδω,shot δεg̃‖,1/ f tπ
(μeV) (GHz) (aF) (MHz) (MHz) (mV) (GHz) (ns)

40 3.9 32. 0.16 6.2 3.1 × 10−3 0.53 2.2 × 10−4 <10−9–10−10 113.6
60 8.7 72.1 0.1 0.36 14. 0.1 6.3 5.3 × 10−3 1.4 × 10−3 0.23 1 × 10−4 1.6 × 10−4 <10−9–10−10 50.5
80 15.5 128.2 0.64 24.9 7.8 × 10−4 0.13 5.6 × 10−5 <10−9–10−10 28.4

40 3.9 32. 0.64 24.9 1.2 × 10−3 3.3 × 10−2 8.9 × 10−5 <10−9–10−10 28.4
60 8.7 72.1 0.125 1.44 56 0.2 10 5.3 × 10−3 5.5 × 10−4 1.5 × 10−2 4 × 10−5 1.6 × 10−4 <10−9–10−10 12.6
80 15.5 128.2 2.57 99.6 3.1 × 10−4 8.2 × 10−3 2.2 × 10−5 <10−9–10−10 7.1

40 3.9 32. 1.44 56 7.2 × 10−4 6.5 × 10−3 5.2 × 10−5 <10−9–10−10 12.6
60 8.7 72.1 0.143 3.25 126.1 0.3 13.1 5.3 × 10−3 3.2 × 10−4 2.9 × 10−3 2.3 × 10−5 1.6 × 10−4 <10−9–10−10 5.6
80 15.5 128.2 5.77 224.2 1.8 × 10−4 1.6 × 10−3 1.3 × 10−5 <10−9–10−10 3.2

40 3.9 32. 0.08 8.8 1.8 × 10−3 0.26 1.3 × 10−4 <10−9–10−10 80.
60 8.7 72.1 0.088 0.18 19.9 0.2 5 6.6 × 10−4 7.9 × 10−4 0.12 5.5 × 10−5 2.1 × 10−5 <10−9–10−10 35.6
80 15.5 128.2 0.32 35.4 4.4 × 10−4 6.5 × 10−2 3.1 × 10−5 <10−9–10−10 20.

of ∼10−3 are reachable for a range of parameters, includ-
ing relatively small charging energy Ucharge � 0.4 meV (see,
e.g., Ref. [96]) and relatively high qubit interdot tunnelings
tl,r ∼ 40–80 μeV, e.g., giving a larger quantum capacitance

Cq ∝ ∂2Eq

∂V 2
m

.
Increasing the dynamical longitudinal coupling g̃‖ [Eq. (4)]

also suppresses the resonator (Johnson) noise infidelity δεξ

[Eq. (52)] while decreasing the gate time tπ [Eq. (23)].
The smallness of δεξ implies a resonator Q factor of Q �
104–106, see Fig. 7. Increasing the charging energy from
0.4 meV to currently available values ≈ 1 meV (see, e.g.,
Refs. [2,9,28,35,81,97]) will require a 4 times increase of the
tunneling rate to keep Cq constant. Such high tunneling rates
of ∼160 μeV were demonstrated recently for QDs filled with
three electrons [98].

At a full sweet spot one avoids dealing with the qubit’s
electric dipole moment, however, a static curvature interac-
tion appears even without qubit gate modulation, that is the
always-on dispersivelike (or quantum capacitance) interaction
Hδω [Eq. (7)]. While this interaction could be interesting for
entangling gates on its own, see Sec. I A, Hδω is an obstacle for
the accumulated phase gates discussed in this paper and need
to be suppressed, as no simple cancellation scheme exists for
the case of interest δωs 	 κ , see Appendix C 3.

In order to suppress the infidelity δεκ,δω [Eqs. (39) and
(44)], one requires a small ratio of δωs

g̃‖
≡ η

h̄
h̄ωr

eṼm
(effect of κ

is negligible for high Q-factor resonator), see Eq. (16), Figs. 5

and 6, and Table I. This implies a smaller coupling ratio η

h̄
[Eq. (2)], smaller resonator frequency ωr , and larger qubit gate
modulation amplitude Ṽm, while this infidelity is independent
of Cq. The smaller coupling ratio of η

h̄ , however, will generally
make the entangling gate slower, which can be compensated
only by larger modulation Ṽm.

The curvature interactions (dispersivelike and longitudi-
nal) also induce qubit dephasings and AC-Stark frequency
shifts via the resonator shot noise, implying the infidelities
δεφ,shot, δεδω,shot [Eqs. (69) and (68)]. In addition, an infidelity
δεg̃‖,1/ f [Eq. (83)] induced via charge noise fluctuation of the
longitudinal coupling g̃‖ is considered. All these infidelities
are shown to be of the order of 10−4–10−5 for a range of
parameters, Table I.

The largest infidelity δεφ,1/ f , see Table I, is due to
qubit gate 1/ f -charge noise which scales with the qubit
charge dephasing rate and gate time as δεφ,1/ f ∝ (�̃φtπ )2.
With the scalings of the charge noise infidelity with tl and
Ucharge, see Eq. (80), the increase of Ucharge by two times
(to ≈ 1 meV) will require an increase of tunneling by ≈ 6
times, which could be experimentally challenging. While the
charge noise infidelity is also quadratically suppressed by Ṽm,
Table I, too high modulation amplitude will require including
of higher-curvature corrections [62]. As mentioned at the end
of Sec. III A, these corrections are not harmful: on one hand
corrections to δωs and g̃‖ could be significant [62], however
the ratio δωs

g̃‖
will remain approximately the same; on the other

hand, the generated higher-order nonlinear Hamiltonians [62],
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in addition to the lowest-curvature one, Eqs. (3) and (7), brings
only small correction of the order of � 10−4.

In the estimation of the charge noise infidelity in Table I,
we have used for the 1/ f -noise spectral density constant a
value Stl � 10−5 (μeV)2, extracted from the experiment, see
Appendix E 5. Here the qubit defining gate voltages [as V1,2,3

and Vtl , Vtr in Fig. 1(a)] have a typical spectral density constant
SVgate � 1 (μeV)2 for Si heterostructures [99,100]. From a
simple biquadratic model of a DQD (see, e.g., Refs. [96,101])
one can relate SVgate to the spectral density constants of interest
Stl :

Stl =
(

tl
Ucharge

)2

SVgate . (91)

Thus, Stl can be decreased either by decreasing the ratio
tl/Ucharge or by decreasing SVgate . Recent experiment with holes
in a SiGe/Ge/SiGe heterostructure shows a 2–4 times im-
provement for SVgate with respect to a Si quantum well 2DEG
system [102]. This would make the realization of our proposal
for remote geometric phase gate entanglement of encoded spin
qubits via longitudinal couplings to a SC resonator possible
in the near future, with a proposed target infidelity of 10−3.

Longitudinal coupling of a TQD or DQD spin qubit to
a SC resonator is a viable route to medium distance range
(l ∼ 1 mm) quantum gates across/off chip. It offers a way to
couple always-on exchange-only TQD qubits while staying at
their charge dephasing sweet spot. All the above analysis is
applicable to DQD singlet-triplet qubits at the symmetric op-
erating point (see Ref. [62]). The modulation scheme allows
selectivity via a potentially large on/off coupling ratio (by set-
ting off the gate modulation of relevant qubits Ṽ ( j)

r → 0). In
addition, by setting relevant dots’ tunnelings to zero, t ( j)

l,r → 0,
one can switch off the curvature couplings and the tunnel-

ing gate charge noise, since Cq ≡ ∂2Eq

∂ε2
G

∝ t2
l,r , and Stl ∝ t2

l,r ,
respectively.

The longitudinal coupling rates of tens to hundred MHz
can be larger than the best transverse couplings for a similar
TQD system, where the latter needs a large electric dipole
moment, and therefore are subject to charge noise dephas-
ing. In addition, here the qubits can be of low frequency
(e.g., highly detuned from the resonator). Although entangling
via geometric phase, as studied in this paper, requires some
overhead in cycles and correction strategy, it may be useful
over a more simple circuit-QED like coupling scheme due to
potentially much lower values of the qubit gates’ charge noise.

In previous publications [62,63] we have shown how both
curvature couplings g̃‖, δωs can be used for a potentially
quantum-limited QND measurement of an encoded spin qubit,
while at the full qubit sweet spot. In a forthcoming work
we will consider n-qubit entanglement preparation via joint
qubits measurement (as discussed preliminary here [63])
that is based on an extension of previous “entanglement-by-
measurement” proposals [103–105].
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APPENDIX A: GEOMETRIC PHASES

1. Driving a resonator: Single resonator phase

The dynamical longitudinal Hamiltonian [Eq. (3)] is pro-
viding a spin-dependent force: F̂ = −∂H‖/∂ x̂, where x̂ ≡
�x0(â + â†) is the “position” operator, see Eqs. (B2) and (B3)
below.

To get an intuition, we first consider a constant force
F0 applied to the resonator: H = h̄ωr â†â − �x0(â + â†)F0.
Diagonalizing H by the transformation b̂ = â − �x0F0

h̄ωr
gives

the Hamiltonian H → H̃ = h̄ωr b̂†b̂. The new vacuum state
b̂|0′〉 = 0 is a coherent state: â|0′〉 = �x0F0

h̄ωr
|0′〉 = α0|α0〉, dis-

placed from the ground state of an unbiased resonator by
α0 ≡ �x0F0

h̄ωr
. This is represented via a displacement operator

D(α): |α0〉 ≡ D(α0)|0〉 ≡ exp(α0â† − α∗
0 â)|0〉.

For a force modulated in time, F (t ) = F0 cos(ωmt + ϕm),
the above Hamiltonian can be rewritten [73,106] in a rotating
frame (with ωr) and in a rotating wave approximation (RWA)
as

H̃m(t ) = h̄�(âei(δt+ϕm ) + â†e−i(δt+ϕm ) ), (A1)

where we defined h̄� ≡ −�x0F0
2 , and δ = ωm − ωr is the de-

tuning of the modulation frequency from the resonance. The
evolution due to H̃m(t ) for small time step dt is an infinitesi-
mal displacement

e−i H̃m (t )dt
h̄ = D[dα(t )] ≡ exp[dα(t )â† − dα∗(t )â], (A2)

with dα(t ) = −i �e−i(δt+ϕm )dt . Integrating for finite times
one gets the (ideal) evolution of a resonator under a driving
periodic force:

αid (t ) = α(0) −
(

�

δ

)
e−iϕm (1 − e−itδ ). (A3)

In the phase space of {Reα(t ), Imα(t )} this describes a clock-
wise rotating circle path starting at the origin [for α(0) = 0],
with radius R = �

δ
and center Om = �

δ
(− cos ϕm, sin ϕm):

Reα(t ) =
(

�

δ

)
[− cos ϕm + cos(δt + ϕm)], (A4)

Imα(t ) =
(

�

δ

)
[sin ϕm − sin(δt + ϕm)]. (A5)

For further reference, in Fig. 10 we show a full circle (for a
gate time tg = 2π

δ
) with an initial phase ϕm and a second circle

with ϕ′
m = ϕm + π .

Using the standard relation for displacement operators

D(α)D(β ) = D(α + β )ei Im(αβ∗ ) (A6)

one obtains the total displacement for a finite time in the form
[73,106]

Dtot = lim
n→∞ D[dα(tn)] · · · D[dα(0)] = D[α(t )] ei�(t ) (A7)
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FIG. 10. The ideal circular oscillator trajectories for two dif-
ferent initial phases: ϕm and ϕ′

m = ϕm + π (red, solid circles). The
radius of the circles is �

δ
and their centers lie on a circle with the

same radius put at the origin (black, dashed circle). Interchanging
the phase ϕm at each odd circle allows cancellation of small imper-
fections of the ideal evolution (see Fig. 4 and Appendix B).

substituting for an ideal accumulated (geometric) phase
�id (t ):

�id(t ) = Im

[∫ t

0
α∗(t ′)dα(t ′)

]
=
(

�

δ

)2

[sin δ t − δ t]. (A8)

For a gate time tg = 2π/δ, when α(t ) makes a full circle in
the phase space {Reα, Imα}, Fig. 10, the accumulated phase
is �g = 2π (�/δ)2 which is twice the encircled area of radius
�/δ and is independent of the initial phase ϕm.

2. Accumulated phases for resonator with n qubits

One considers the Hamiltonian of a resonator with n mod-
ulated qubits, Eq. (3),

H/h̄ = ωr â†â +
n∑

j=1

[
g̃( j)

‖ σ ( j)
z + g̃( j)

0

]
cos(ωmt + ϕm)(â + â†)

(A9)
for a chosen n-qubit spin state |s〉 ≡ |i1, i2, . . . , in〉 with |ik〉 =
|↑〉 or |↓〉 being the eigenstates of the kth qubit, σ (k)

z |ik〉 =
ik|ik〉. Since |s〉 are eigenstates of H‖, for each particular spin
state the driving strength of the resonator � in Eq. (A1) is
replaced by

�‖,s ≡ 〈s|�̂‖|s〉 ≡ 〈s| 1

2

n∑
k=1

[
g̃(k)

0 + g̃(k)
‖ σ (k)

z

] |s〉
= 1

2

n∑
k=1

[
g̃(k)

0 + g̃(k)
‖ ik

]
. (A10)

See also Eqs. (17)–(20) of the main text.
One can also derive the accumulated phase matrix for

n qubits, since �̂‖ and �̂2
‖ have the same eigenstates |s〉.

After little algebra and dropping the common phase, the

accumulated phase matrix for time t reads

�̂(t ) = (sin δ t − δ t )

2δ2

×
⎡
⎣ n∑

j<k

g̃( j)
‖ g̃(k)

‖ σ ( j)
z ⊗ σ (k)

z +
n∑

j=1

g̃( j)
0

n∑
k=1

g̃(k)
‖ σ (k)

z

⎤
⎦.

(A11)

For further applications one considers a gate time with N
cycles tg = 2πN

δ
. Up to single-qubit operations, the accumu-

lated phase for n qubits and for N cycles becomes

�̂N = −πN

δ2

n∑
j<k

g̃( j)
‖ g̃(k)

‖ σ ( j)
z ⊗ σ (k)

z . (A12)

3. Controlled π-phase gate for two qubits

For two qubits one requires the relation

πNg̃(1)
‖ g̃(2)

‖
δ2

= π

4
, (A13)

which sets the required frequency difference δ = 2
√

Ng̃(1)
‖ g̃(2)

‖
to obtain the phase matrix �̂N = −π

4 σ (1)
z ⊗ σ (2)

z . One can
show that this is equivalent to a controlled π -phase gate (up
to single-qubit operations)

|↑↑〉 → |↑↑〉,
|↑↓〉 → ei π

2 |↑↓〉,
|↓↑〉 → ei π

2 |↓↑〉,
|↓↓〉 → |↓↓〉 = e−i π

(
ei π

2 |↓1〉
) (

ei π
2 |↓2〉

)
. (A14)

APPENDIX B: EQUATIONS OF MOTION FOR THE
PARTIAL DENSITY MATRICES ρ̂ss(t ), ρ̂ss′(t ), AND

RESPECTIVE QUANTUM AVERAGES, SUCH AS αs(t ), ETC.

One starts from the Caldeira-Leggett master equation that
was derived [82,107] for superconducting Josephson circuits
in the context of searching for the macroscopic quantum
coherence. While the first derivation was only for the high
temperature limit, the result was later extended to zero tem-
peratures as well [83]. The time evolution of the n qubits plus
a SC resonator density matrix reads (H̃tot is in the rotating
frame with ωd )

dρ

dt
= −i

[
H̃tot, ρ

]− i
κ

2h̄
[x̂, { p̂, ρ}+] − Kd

h̄2 [x̂, [x̂, ρ]], (B1)

where { p̂, ρ}+ ≡ p̂ρ + ρ p̂ is an anticommutator,

x̂ ≡ �x0(â + â†), p̂ ≡ −i�p0(â − â†) (B2)

are the position and momentum operators, and the zero-point
fluctuations are given by

�x0 ≡
√

h̄

2ωrLr
, �p0 ≡

√
h̄ωrLr

2
(B3)

(�x0�p0 = h̄
2 ). Note, that as inductance plays the role of a

mass, �x0 has dimension of charge [84]. Using Eq. (B2) one
can show that Eq. (B1) coincides with the analogous equation
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of the quantum optics [86] in the RWA. Namely, the damping
and diffusion term can be reduced in the RWA to the familiar
quantum optics decoherence terms expressed via â, â†:

−i
κ

2h̄
[x̂, { p̂, ρ}+] − Kd

h̄2 [x̂, [x̂, ρ]]

� κ

2
(nth + 1) (2âρâ† − â†âρ − ρâ†â)

+ κ

2
nth (2â†ρâ − ââ†ρ − ρââ†), (B4)

where nth ≡ 1
2 (coth h̄ωr

2Tr
− 1). In what follows we will use both

the Caldeira-Leggett and the quantum optics forms depending
on the case of study.

1. Evolution for the partial density matrices ρ̂ss(t ), ρ̂ss′(t )

By expanding the qubit-resonator density matrix in the
complete set of qubit operators |s〉〈s′| [87]:

ρ =
∑
s,s′

ρ̂s,s′ |s〉〈s′| (B5)

one is to obtain equations for the partial density matrices
ρ̂s,s′ by substituting into Eq. (B1) and finding the respective
(anti)commutators.

Starting with the unitary evolution ∝ [H̃tot, ρ], the Hamil-
tonian H̃tot [Eq. (1)] contains the linear form Â(â, â†) ≡
âei(δ̃t+ϕd ) + â†e−i(δ̃t+ϕd ) and the higher operators

n̂ ≡ â†â, (B6)

X̂ϕ �̂‖ ≡ [âei (δ̃t+ϕ) + â†e−i (δ̃t+ϕ)] �̂‖, (B7)

δω̂ â†â. (B8)

Here and below, the frequency differences are in general ro-
tating frame with ωr′ and we assume ωd = ωm, Eq. (6),

ω̃r = ωr − ωr′ , δ̃ = ωm − ωr′ . (B9)

The n-qubit operators and their eigenvalues are denoted as

�̂‖ ≡ 1

2

∑
j

[
g̃( j)

0 + g̃( j)
‖ σ ( j)

z

]
, �̂‖|s〉 = �‖,s|s〉, (B10)

δω̂ ≡
∑

j

δω( j)σ ( j)
z , δω̂|s〉 = δωs|s〉. (B11)

The essential commutators are calculated as

[Â(â, â†), ρ̂s,s′ |s〉〈s′|] = [Â(â, â†), ρ̂s,s′ ] |s〉〈s′|, (B12)

[δω̂ â†â, ρ̂s,s′ |s〉〈s′|] = (n̂ ρ̂s,s′ δωs − ρ̂s,s′ n̂ δωs′ ) |s〉〈s′|,
(B13)

[X̂ϕm �̂‖, ρ̂s,s′ |s〉〈s′|]
= (â ρ̂s,s′ �‖,s − ρ̂s,s′ â �‖,s′ ) |s〉〈s′|ei (δ̃t+ϕm )

+ (δ̃ → −δ̃, ϕm → −ϕm, â → â†). (B14)

By introducing the shortcomings

B±,ss′ ≡ �‖,s ± �‖,s′ , A±,ss′ ≡ δωs ± δωs′

2
(B15)

one obtains the following equation of motion for ρ̂ss′ (t ) in a
rotating frame with ωr′ :

d ρ̂ss′

dt
= −i ω̃r[n̂, ρ̂s,s′ ]

− i

2
B+,ss′ [X̂ϕm , ρ̂s,s′ ] − i

2
B−,ss′ {X̂ϕm , ρ̂s,s′ }+

− i A+,ss′ [n̂, ρ̂s,s′ ] + i A−,ss′ {n̂, ρ̂s,s′ }+
− i εd [X̂ϕd , ρ̂s,s′ ] + {qubits evolution}

− i
κ

2h̄
[x̂, { p̂, ρ̂ss′ }+] − Kd

h̄2 [x̂, [x̂, ρ̂ss′ ]]. (B16)

For s = s′ one recovers the evolution of the diagonal partial
density matrix ρ̂ss(t ), Eq. (30) of the main text.

2. Uncorrelated T1, T2 processes

The term {qubits evolution} contains the collection of

qubits Hamiltonians Hq

h̄ = ∑n
j=1

ω
( j)
q

2 σ
( j)
z and qubits relax-

ation and dephasing. Using the notation for the n-qubits spin
states,

|s〉 ≡ |i1 · · · i j · · · in〉, |s′〉 ≡ |i′1 · · · i′j · · · i′n〉 (i j, i′j = ±1)

(B17)

one obtains for the s, s′ term in the expansion of Eq. (B5):

〈s| (−i)

h̄
[Hq, ρ]|s′〉 = ρ̂s,s′

∑
j

(−i)
ω

( j)
q

2
(i j − i′j ), (B18)

〈s|
∑

j

γ
( j)

1 D[σ ( j)
− ]ρ|s′〉, (B19)

〈s|
∑

j

γ
( j)
φ

2
D
[
σ ( j)

z

]
ρ|s′〉 = −ρ̂s,s′

∑
j⊂{i j �=i′j }

γ
( j)
φ . (B20)

Equation (B19) is the contribution generated by the qubits re-
laxation (T1 process), which we will not show explicitly here.
Nevertheless, it is worth mentioning that the dephasing of the
s, s′ subspace generated by the relaxations can be calculated
via the following mnemonic rule: “For each population that
leaves the state s or the state s′ with rate γ

( j)
1 ≡ 1/T ( j)

1 one

obtains the dephasing contribution − γ
( j)
1
2 ρq,ss′” summed up

over all such cases:

dρq,ss′

dt
∝ −

∑
j⊂{subset}

γ
( j)

1

2
ρq,ss′ . (B21)

The above relaxation and dephasing contributions are given
here for further reference. In a full sweet spot for each of the
qubits involved, both relaxation γ

( j)
1 and charge dephasing

γ
( j)
φ arising via the transverse and longitudinal dipole mo-

ments vanish in this regime.

3. Degression on the equations of motion for averages
and variances: Gaussian resonator states

For each partial density matrix ρ̂s,s′ one can derive equa-
tions for the averages and variances of the position and
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momentum operators [88]. One defines the averages and the
variances (here σ ≡ {s, s′} is a compound index):

x̄σ ≡ 〈x̂〉σ = Tr[x̂ρ̂σ ], p̄σ ≡ 〈p̂〉σ = Tr[p̂ρ̂σ ], (B22)

D(σ )
x ≡ 〈x̂2〉σ − 〈x̂〉2

σ , (B23)

D(σ )
p ≡ 〈p̂2〉σ − 〈p̂〉2

σ , (B24)

D(σ )
xp ≡ 〈x̂ p̂ + p̂x̂〉σ

2
− 〈x̂〉σ 〈p̂〉σ . (B25)

Below we consider only the diagonal density matrices and
replace {s, s′} → s (the nondiagonal case can be calculated
similarly). In a general rotating frame with the frequency
ωr′ one gets for the evolution equations for the averages
and variances, the latter are made dimensionless via the
zero-point fluctuations �x0, �p0: d (s)

x ≡ D(s)
x /(�x0)2, d (s)

p ≡
D(s)

p /(�p0)2, d (s)
xp ≡ D(s)

xp/(�x0�p0):

˙̄xs

�x0
= p̄s

�p0
(ω̃r − δωs) − 2�‖,s sin(δ̃t + ϕm), (B26)

˙̄ps

�p0
= − x̄s

�x0
(ω̃r − δωs) − 2�‖,s cos(δ̃t + ϕm)

−2εd e−i(δ̃t+ϕd ) − κ
p̄s

�p0
, (B27)

˙d (s)
x = (ω̃r − δωs) 2d (s)

xp , (B28)

˙d (s)
p = −(ω̃r − δωs) 2d (s)

xp − 2κ d (s)
p + 2

Kd

(�p0)2
, (B29)

˙d (s)
xp = (ω̃r − δωs)

{
d (s)

p − d (s)
x

}− κ d (s)
xp . (B30)

Equations (B26)–(B30) are correct for any density matrix and
the derivation is straightforward from Eq. (B16): one is just
using the commutation relations (e.g., [x̂, p̂] = ih̄, etc.) and
the cyclic property of the trace.

For a Gaussian density matrix the higher moments are
expressed via the five moments, Eqs. (B22)–(B25), and the
evolution of the state is completely described by them. It
is important to mention that Eq. (B16) as well as Eq. (B1)
preserves the Gaussianity of the state. Moreover, under con-
tinuous quantum measurement of a resonator a non-Gaussian
state rapidly goes to a Gaussian state (see, e.g., Ref. [88]).

It is worth mentioning that Eqs. (B26) and (B27) are ex-
actly the classical Hamilton equations of a damped driven
oscillator. By combining them, we reproduce the more fa-
miliar equation of motion for the field variable αs ≡ 〈â〉s =
1
2 ( x̄s

�x0
+ i p̄s

�p0
):

α̇s = −i(ω̃r − δωs) αs − i�‖,se−i(δ̃t+ϕm )

− iεd e−i(δ̃t+ϕd ) − κ

2
(αs − α∗

s ), (B31)

where the difference from the quantum optics equation is the
last (contrarotating) term that can be neglected in a RWA.
For a coherent state |α〉 (defined via â|α〉 = α|α〉) its den-
sity matrix has minimal variances dx = dp = 1, dxp = 0. This
property is preserved by Eqs. (B28)–(B30) at zero resonator
temperature Tr = 0. The variances are not affected by the
resonator driving (∼εd ) and qubit modulation ∼�‖,s.

Also one mentions that the diffusion term ∼Kd [x̂, [x̂, ρ̂ss′ ]]
enters only in the equations for the variances. This last
property will be used below to calculate the resonator noise
induced n-qubit phase gate error (see Appendix D).

4. Positive P(+) representation and the derivation of the partial
dephasing rates �s,s′ for an n-qubit system coupled to a

resonator at Tr = 0

For the derivation of the dephasing rates we will assume
zero resonator temperature Tr = 0 as a good approximation
(since h̄ωr 	 kBTr for a 5–10 GHz resonator and typical SC
resonator temperatures Tr of 20–50 mK).

The partial density matrices [87] ρ̂s,s′ of the expansion
Eq. (B5) can be represented using the positive P(+) represen-
tation [108]

ρ̂ss′ (t ) =
∫

d2α d2β
|α〉〈β∗|
〈β∗|α〉 Pss′ (α, β, t ), (B32)

where |α〉 is a coherent state.
From the definition of coherent states one gets the relations

â |α〉 = α |α〉, (B33)

â† |α〉 =
(

∂

∂α
+ α∗

2

)
|α〉. (B34)

One then derives useful correspondences between various
terms of the equation of motion, Eq. (B16), and the corre-
sponding P(+)-representation kernels:

d ρ̂ss′

dt
→ dPss′ (α, β, t )

dt
, (B35)

[â†â, ρ̂ss′ ] →
(

β
∂

∂β
− α

∂

∂α

)
Pss′ (α, β ), (B36)

{â†â, ρ̂ss′ }+ →
[

2αβ − ∂

∂α
(α ·) − ∂

∂β
(β ·)

]
Pss′ (α, β ),

(B37)

[(â† + â), ρ̂ss′ ] →
(

∂

∂β
− ∂

∂α

)
Pss′ (α, β ), (B38)

[X̂ϕ, ρ̂ss′ ] →
(

ei ϕ ∂

∂β
− e−i ϕ ∂

∂α

)
Pss′ (α, β ), (B39)

{X̂ϕ, ρ̂ss′ }+
→

(
2αei ϕ + 2βe−i ϕ − ei ϕ ∂

∂β
− e−i ϕ ∂

∂α

)
Pss′ (α, β ),

(B40)

D[â]ρ̂ss′ → 1

2

[
∂

∂α
(α ·) + ∂

∂β
(β ·)

]
Pss′ (α, β ). (B41)

Substituting Eqs. (B35)–(B41) into Eq. (B16) one derives
equation for the positive kernel Pss′ (α, β ):
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dPss′ (α, β )

dt
= i ∂

∂α

[(
(ω̃r+δωs)α+ε̃d + �‖,s e−i (δ̃t+ϕm )−i

κα

2

)
Pss′

]
− i ∂

∂β

[(
(ω̃r + δωs′ )β + ε̃∗

d + �‖,s′ ei (δ̃t+ϕm ) + i
κβ

2

)
Pss′

]

− i B−,ss′ (α ei (δ̃t+ϕm ) + β e−i (δ̃t+ϕm ) ) Pss′ − i A−,ss′ 2αβ Pss′ ; (B42)

here ε̃d ≡ εd e−i(δ̃t+ϕd ) and A−,ss′ , B−,ss′ are from Eq. (B15).
For the diagonal kernel Pss(α, β ) one then obtains

dPss(α, β )

dt
= i ∂

∂α

[(
(ω̃r+δωs)α + ε̃d + �‖,s e−i (δ̃t+ϕm ) − i

κα

2

)
Pss

]
− i ∂

∂β

[(
(ω̃r + δωs)β + ε̃∗

d + �‖,s ei (δ̃t+ϕm ) + i
κβ

2

)
Pss

]
.

(B43)

5. Coherent state ansatz for Pss′ (α, β) and solutions of the
equations of motion

For Tr = 0 we consider coherent (pure Gaussian) states and
Eqs. (B42) and (B43) can be solved via coherent state ansatz
[109]

Pss′ (α, β ) = ρ
q
ss′ (t )δ(2)[α − αs(t )] δ(2)[β − α∗

s′ (t )]. (B44)

In this case, by substituting into Eq. (B32) one obtains

ρ̂s,s′ =
∫

d2α d2β
|α〉〈β∗|
〈β∗|α〉 ρ

q
ss′ (t )

× δ(2)[α − αs(t )] δ(2)[β − α∗
s′ (t )]

= ρ
q
ss′ (t )

|αs(t )〉〈αs′ (t )|
〈αs′ (t )|αs(t )〉 , (B45)

and the total qubits-resonator density matrix becomes

ρ =
∑
s,s′

ρ̂s,s′ |s〉〈s′| =
∑
s,s′

ρ
q
ss′ (t )

|αs(t )〉〈αs′ (t )|
〈αs′ (t )|αs(t )〉 |s〉〈s′|.

(B46)
It is straightforward to obtain from this representation the
reduced density matrix of the n qubits or of the resonator by
tracing out the other degrees of freedom:

ρqb = Trres[ρ] =
∑
s,s′

ρ
q
ss′ (t ) |s〉〈s′|, (B47)

ρres = Trqb[ρ] =
∑

s

ρq
ss(t ) |αs(t )〉〈αs(t )|, (B48)

where for the trace over the resonator we have used
Trres[· · · ] = 1

π

∫
d2α1〈α1| · · · |α1〉. It is interesting to note that

the reduced resonator density matrix ρres is a mixed state with
weights being the diagonal qubits density matrix elements
ρ

q
ss(t ). Note, however, that |αs(t )〉 states are not orthogonal

in general: 〈αs′ (t )|αs(t )〉 �= 0.
From Eq. (B43) for Ṗss(α, β ) one obtains for the quantum

average of the field αs(t ) ≡ 〈αs(t )|â|αs(t )〉, the equations in
RWA (in a rotating frame with ωr′ ):

α̇s = −i

(
ω̃r+δωs−i

κ

2

)
αs − iεd e−i(δ̃t+ϕd ) − i�‖,se−i(δ̃t+ϕm ),

(B49)
where ω̃r ≡ ωr − ωr′ , δ̃ ≡ ωm − ωr′ . As expected, Eq. (B49)
that is derived for coherent states (Tr = 0), coincides with the
general Eq. (B31), the latter being true for general Gaussian
or non-Gaussian states at any Tr �= 0. For the sake of further

reference we write here the general solution of Eq. (B49),

αs(t ) =
(

αs(0) − �‖,s e−i ϕm + εd e−i ϕd

δ̃ − os

)
e−iost

+
(

�‖,s e−i ϕm + εd e−i ϕd

δ̃ − os

)
e−iδ̃t , (B50)

where os ≡ ω̃r − δωs − i κ
2 .

With this solution the average photon number in the res-
onator can be calculated for times t � 2π

δ
[assuming αs(0) =

0]:

〈n̂〉 = |αs(t )|2 � 2

(
�ε

‖,s
δ

)2

(1 − cos δt ) � 4

(
�ε

‖,s
δ

)2

,

(B51)
where we have used that in the parameter regime of interest,
see Table I, δ ∼ g̃‖ 	 δωs 	 κ . For a two-qubit controlled
π -phase gate one gets 〈n̂〉 � 1

2 .
From Eq. (B42) for Ṗss′ (α, β ), and using the solution of

Eq. (B49) for αs(t ), one obtains an equation for the reduced
density matrix of the n qubits:

dρ
q
ss′ (t )

dt
= −i[ωq,ss′ − iγ2,ss′ ] ρ

q
ss′ − 2iA−,ss′αs(t ) α∗

s′ (t ) ρ
q
ss′

− iB−,ss′ (αs(t ) ei(δ̃t+ϕm ) + α∗
s′ (t ) e−i(δ̃t+ϕm ) ) ρ

q
ss′ .

(B52)

In the derivation of the equation of motion we have used a
relation for the Dirac delta function:

x
∂δ(x − x0)

∂x
= x0

∂δ(x − x0)

∂x
− δ(x − x0). (B53)

In Eq. (B52) the first term includes the s, s′-transition fre-
quency, Eq. (B18),

ωq,ss′ =
∑

j

ω
( j)
q

2
(i j − i′j ), (B54)

and the linear s, s′ dephasing is arising as a particular sum of
all qubits internal dephasings, Eqs. (B20) and (B21):

γ2,ss′ =
∑

j⊂{i j �=i′j }
γ

( j)
φ +

∑
j⊂{subset}

γ
( j)

1

2
. (B55)
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6. n-qubit dephasing rates and frequency shifts mediated
by the resonator photon shot noise

The second and third term of Eq. (B52) will provide the
qubits dephasing due to resonator leakage (photon shot noise)
mediated by the curvature (quantum capacitance) interactions
with the resonator. Indeed, by integrating Eq. (B52) one ob-
tains the solution

ρ
q
ss′ (t ) = ρ

q
ss′ (0) e−i[ωq,ss′ −iγ2,ss′ ] t e−2iA−,ss′

∫ t
0 dt ′αs (t ′ ) α∗

s′ (t
′ )

× e−iB−,ss′
∫ t

0 dt ′(αs (t ′ ) ei(δ̃t ′+ϕm )+α∗
s′ (t

′ ) e−i(δ̃t ′+ϕm ) ). (B56)
For the accumulated phase gates of this paper we consider
the equal modulation and driving frequencies ωm = ωd in
order to fulfill the cancellation of the spin-independent cur-
vature couplings g̃( j)

0 , see Eq. (6). For a rotating frame with
ωr , δ̃ ≡ ωm − ωr ≡ δ and ω̃r = 0. Using then the solution of
Eq. (B49) for t 	 1/κ ,

αt	
s = �‖,s e−i ϕm + εd e−i ϕd

δ − δωs − i κ
2

e−iδt ≡ αst
s e−iδt , (B57)

one obtains the qubit nondiagonal density matrix evolution in
the long-time limit of Eq. (B56):

ρ
q
ss′ (t ) = ρ

q
ss′ (0) e−i[ωq,ss′+δωshot

ss′ ]t e−[γ2,ss′+�shot
φ,ss′ ]t

, (B58)
where the resonator induced shot noise qubits dephasings and
qubits frequency shifts (via curvature coupling) are given by
�shot

φ,ss′ ≡ −2A−,ss′ Im
[
αst

s αst∗
s′
]−B−,ss′ Im

[
αst

s eiϕm + αst∗
s′ e−iϕm

]
(B59)

and
δωshot

ss′ ≡ −2A−,ss′Re
[
αst

s αst∗
s′
]−B−,ss′Re

[
αst

s eiϕm+αst∗
s′ e−iϕm

]
,

(B60)
respectively. By choosing in the above equations ϕm = 0 and
ϕd = ϕm + π , one arrives at the long-time dephasing rates and
frequency shifts of Eqs. (57)–(62) of the main text.

In the short-time limit, where t � tg = 2π
δ

� 1
δωs

� 1
κ

, one
explicitly integrates Eq. (B56) to obtain for the first time
integral in the exponent:

−i
∫ t

0
dt ′αs(t

′) α∗
s′ (t ′) � −2

(
t − sin δt

δ

)
fs fs′

×
{

κ

2
(δωs − δωs′ ) + i

[
(δ − δωs)(δ − δωs′ ) + κ2

4

]}
,

(B61)

where we denote fs ≡ �ε
‖,s

(δ−δωs )2+ κ2
4

. For the second time inte-

gral in the exponent in Eq. (B56) one obtains (ϕm = 0)

−i
∫ t

0
dt ′(αs(t

′) eiδt ′ + α∗
s′ (t ′) e−iδt ′) �

{(
t − sin δt

δ

)

×
[

− κ

2
( fs − fs′ ) − i[ fs(δ − δωs) + fs′ (δ − δωs′ )]

]

+ cos δt − 1

δ

×
[

[ fs(δ − δωs) − fs′ (δ − δωs′ )] − i
κ

2
( fs + fs′ )

]}
.

(B62)

The linear in time expressions in Eqs. (B61) and (B62) that
survive for t = tg = 2πN

δ
contribute to the effective dephasing

rates �̃shot
φ,ss′ of Eq. (65), and AC-Stark shifts δ ˜̃ωshot

ss′ of Eq. (67)
of the main text.

APPENDIX C: GATE INFIDELITY DUE TO RESONATOR
DAMPING, ALWAYS-ON CURVATURE DISPERSIVELIKE

COUPLING, AND DUE TO RESONATOR NOISE

1. Combined gate infidelity

For n qubits plus resonator one starts with an initial product
state |ψi〉 ≡ ∑

s as|s〉 |0〉 [we assume vacuum resonator initial
state |αs(0)〉 = |0〉 for simplicity]. For an ideal evolution, per-
forming complete N cycles at a gate time tg = 2πN

δ
, Fig. 10,

one ends up in a product state:∣∣ψ id
f

〉 = ∑
s

ase
i�id

s (t )|s〉 |αid
s (t )〉 |t= 2πN

δ
(C1)

since αid
s ( 2πN

δ
) = 0 and �id

s ( 2πN
δ

) = 2πN (
�ε

‖,s
δ

)
2

is the ideal
phase given by Eq. (20).

For a nonideal evolution, at the end of the gate cycle the
resonator trajectory in the phase space obtains nonzero contri-
butions from the resonator noise ξ f (t ), the resonator damping
κ , and from the spin-dependent frequency shift δωs, Eq. (32),
denoted as

δαs(t ) = δαξ
s (t ) + δαk,δω

s (t ), (C2)

δ�s(t ; [αs(t )]) = δ�ξ
s (t ) + δ�k,δω

s (t ), (C3)

the latter being path-dependent functionals of αs(t ). These
contributions at gate time tg lead to |αs(tg)〉 �= |0〉, and thus
leave some qubit-resonator entanglement leading to qubits’
gate infidelity. Also, there appear nonlocal in time errors via
the accumulated phases.

The fidelity of the actual final state with respect to the ideal
final state is then expressed for a particular trajectory αs(t ),∣∣〈� f

∣∣� id
f

〉∣∣2
=
∑

s

|as|4 e−|δαs (t )|2 +
∑
s<s′

2|as|2|as′ |2 e− 1
2 (|δαs|2+|δαs′ |2 )

× cos(δ�s − δ�s′ ). (C4)

Averaging over all initial n-qubit states leads to the re-
placements |as|4 → |as|4 ≡ f1, 2|as|2|as′ |2 → 2|as|2|as′ |2 ≡
f12, with f1 = f12 given by Eq. (C13), Appendix C 2.

Averaging over the noise is using the concavity of the
exponent 〈eA〉 � e〈A〉, the relation (for small fluctuations)

〈eA cos B〉ξ � 〈eAe− B2

2 〉ξ > e〈A〉ξ e−〈B2〉ξ /2, and the zero noise
averages 〈δαξ

s 〉ξ = 0, 〈δ�ξ
s 〉ξ = 0. Thus, for the combined

average fidelity one obtains

Fξ,κ,δω ≡ 〈|〈� f |� id
f 〉|2〉ξ � f1

∑
s

e−(〈|δαξ
s |2〉ξ +|δαk,δω

s |2 )

+ f12

∑
s<s′

e− 1
2 (〈|δαξ

s |2〉ξ +|δαk,δω
s |2+〈|δαξ

s′ |2〉ξ +|δαk,δω

s′ |2 )

× e−
〈
(δ�

ξ
s −δ�

ξ

s′ )
2 〉

ξ

2 e− (δ�
κ,δω
s −δ�

κ,δω

s′ )2

2 . (C5)
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For small fluctuations 〈|δαξ
s |2〉ξ , |δαk,δω

s |2 � 1 and
〈|δ�ξ

s |2〉ξ , |δ�k,δω
s |2 � 1 the infidelity δε ≡ 1 − F splits

into two independent contributions:

δεξ,κ,δω = 1 − Fξ,κ,δω
∼= δεκ,δω + δεξ , (C6)

δεκ,δω = 1

2n

∑
s

∣∣δαk,δω
s

∣∣2 + f (n)
12

2

∑
s<s′

(
δ�κ,δω

s − δ�κ,δω
s′

)2
,

(C7)

δεξ = 1

2n

∑
s

〈∣∣δαξ
s

∣∣2〉
ξ
+ f (n)

12

2

∑
s<s′

〈(
δ�ξ

s − δ�
ξ

s′
)2〉

ξ
.

(C8)

Here Eq. (C7) for δεκ,δω and Eq. (C8) for δεξ reproduce
Eqs. (39) and (45) of the main text, respectively. In Eq. (C7)
we have used that f (n)

1 + f (n)
12

2n−1
2 = 1

2n , which follows from
Eq. (C12).

Similarly, one can consider the deviations of the resonator
trajectory due to charge (ξq) noise fluctuations of the qubit
tunnelings δtl,r (t ). The corresponding infidelity is calculated
in Sec. III D, similar to the Johnson noise, Eq. (C8), see
Appendix D 2.

2. Averaging over the n-qubit initial state

With the initial state

|�i〉 =
∑

s

as|s〉 (C9)

one needs to find the averages

fs ≡ |as|4, fs,s′ ≡ 2|as|2|a′
s|2, (C10)

where (· · · ) denotes averaging on the initial n-qubit state.
Since the averages are invariant under any unitary transfor-
mation of the basis states |s〉, one can argue that the averages
are s, s′ independent and we denote f (n)

1 = f (n)
s , f (n)

s,s′ = f (n)
12

for any s, s′. Moreover, we will conjecture the uniformity
condition

f (n)
1 = f (n)

12 (C11)

(for the one-qubit and two-qubit case see derivations below).
Starting with the normalization condition

∑
s |as|2 = 1 one

obtains

1 =
(∑

s

|as|2
)2

=
m∑

s=1

|as|4 +
m∑

s<s′
2|as|2|a′

s|2

= m f (n)
1 + m2 − m

2
f (n)
12 , (C12)

where m ≡ 2n is the n-qubit space dimension. Assuming the
uniformity condition one obtains

f (n)
1 = f (n)

s = f (n)
12 = f (n)

s,s′ = 1

2n + 22n−2n

2

. (C13)

a. One-qubit and two-qubit cases

Equation (C13) can be confirmed for the one-qubit and
two-qubit cases by explicit averaging over the corresponding
Bloch sphere.

Indeed, for the one-qubit (pure state) density matrix one is
using S2 Bloch sphere representation (in 3D) with the ampli-
tudes of |�i〉 = ∑

s as|s〉 = a1|↑〉 + a2|↓〉, obtaining

x0 = cos φ0 = |a1|2 − |a2|2, (C14)

x1 = sin φ0 cos φ1 = 2Re(a1a∗
2 ), (C15)

x2 = sin φ0 sin φ1 = 2Im(a1a∗
2 ),

φ0 ∈ [0, π ], φ1 ∈ [0, 2π ), (C16)

with the S2 area element dS2 = dφ0dφ1 sin φ0, and the to-

tal area of S2 = 4π . Noting that |a1|4 = 1+x2
0+2x0

4 , |a2|4 =
1+x2

0−2x0

4 , and 2|a1|2|a2|2 = x2
1+x2

2
2 , one obtains the averages

|a1|4 = |a2|4 = 1 + x2
0

4
= 1

3
, (C17)

2|a1|2|a2|2 = x2
1 + x2

2

2
= 1

3
, (C18)

where the averaging over the S2 sphere is represented by

(· · · ) = 1

S2

∫
dS2 (· · · ). (C19)

The result of Eqs. (C17) and (C18) is in agreement with
Eq. (C13) for n = 1. (More comprehensive one-qubit averages
can be found in Ref. [110]).

For the two-qubit (pure state) |�i〉 = a1|↑↑〉 + a2|↑↓〉 +
a3|↓↑〉 + a4|↓↓〉 one is using the S4-Bloch sphere coordinates
(in 5D), related to the density matrix elements (see, e.g.,
Ref. [111])

x0 = cos φ0 = |a1|2 + |a2|2 − |a3|2 − |a4|2, (C20)

x1 = sin φ0 cos φ1 = 2Re(a∗
1a3 + a∗

2a4), (C21)

x2 = sin φ0 sin φ1 cos φ2 = 2Im(a∗
1a3 + a∗

2a4), (C22)

x3 = sin φ0 sin φ1 sin φ2 cos φ3 = 2Re(a1a4 − a2a3),

(C23)

x4 = sin φ0 sin φ1 sin φ2 sin φ3 = 2Im(a1a4 − a2a3),

φ0, φ1, φ2,∈ [0, π ], φ3 ∈ [0, 2π ). (C24)

The area element is dS4 = dφ0dφ1dφ2dφ3 sin3 φ0 sin2 φ1

sin φ2 and the total area of the S4-Bloch sphere is S4 = 8π2

3 .
Using the 5D Bloch sphere representation, it is straightfor-
ward to show that

fs ≡ |as|4 = fs,s′ ≡ 2|as|2|a′
s|2 = 1

10 , ∀ s, s′ = 1, 2, 3, 4,

(C25)
in agreement with Eq. (C13) for n = 2.

b. The n-qubit case

In the general n-qubit case an explicit averaging may be
cumbersome. Instead, one can use symmetry arguments. In-
deed, the n-qubit density matrix ρ = ∑

s,s′ asa∗
s′ |s〉〈s′| can be

expanded in the 22n − 1 basis operators (Kronecker products
of Pauli matrices: here σ0 ≡ I2, σ1,2,3 ≡ σx,y,z), f̂l = σμ1 ⊗
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· · · ⊗ σμn , μi = 0, 1, 2, 3, ∀i:

ρ = 1

2n

(
1 +

22n−1∑
l=1

wl f̂l

)
. (C26)

This expansion can be performed by writing the operators
|s〉〈s′| as Kronecker products

|s〉〈s′|≡|i1, . . . , in〉〈i′1, . . . , i′n| = |i1〉〈i′1| ⊗ · · · ⊗ |in〉〈i′n|,
(C27)

and mentioning that (k enumerates the qubits)

|ik〉〈i′k| = 1
2

(
σ

(k)
0 ± σ

(k)
3

)
for ik = i′k, (C28)

|ik〉〈i′k| = 1
2

(
σ

(k)
1 ± i σ (k)

2

)
for ik �= i′k. (C29)

Using symmetry arguments along the line of Ref. [112], one
can show that averaging over the n-qubit initial state for the
expansion coefficients wk leads to

wl = 0, w2
l = 1

1 + 2n
. (C30)

On the other hand, w2
l can be re-expanded as linear combi-

nations of |as|4 and 2|as|2|as′ |2, s, s′ ∈ {1, . . . , 2n}. Solving
these equations one can re-establish the uniformity condition,
Eq. (C13), for the n-qubit case.

3. The infidelity δεκ,δω in a simple strategy

In this section we perform exact calculations of the in-
fidelity δεκ,δω in a simple strategy when the modulation
amplitude �‖,s changes sign on each subsequent cycle, see
Fig. 4. This can be achieved by changing the phase of the
qubits gate modulations, ϕm → ϕm + π , and simultaneously
changing the phase of the resonator driving, ϕd → ϕd + π ,
while keeping the relation ϕd = ϕm + π , see Eq. (6). In
Sec. III A of the main text we have shown that this simple
strategy works well when the energy curvature resonator shift
δωs, Eq. (32), is small or can be neglected with respect to
resonator damping κ . In general, one deals with the opposite
case of δωs 	 κ .

For the n-qubit state |s〉 one uses the general solution for
the αs(t ), Eq. (B50), with ωd = ωm and ϕd = ϕm + π in a
rotating frame with ωr (see Appendix A) to obtain

αs(t ) = αs(0) e−i(δωs−i κ
2 ) t − �ε

‖,s e−i ϕm

[δ − δωs] + i κ
2

× [
e−i (δωs−i κ

2 ) t − e−iδ t
]

≡ As(t ) + Bs(t ), (C31)

where δ = ωm − ωr and �ε
‖,s is defined in Eq. (43). We note

that by changing the modulation phase ϕm → ϕm + π after

each cycle the sign of �ε
‖,s flips, allowing for essential can-

cellation of the effects of damping κ and energy curvature
detuning δωs, see Fig. 4.

Starting with αs(0) = 0, the deviation from zero after one
cycle is

αs

(
2π

δ

)
= −i�ε

‖,s
b∗

s

[
eb∗

s
2π
δ − 1

]
, (C32)

where we denoted bs ≡ −i[δ − δωs] − κ
2 , For the deviation of

αs(t ) accumulated after the N th cycle (N = 1, 2, 3, . . .) one
then obtains, using recurrences (the deviation at the end of
each cycle is an initial condition for the next cycle)

δα̃s

(
N

2π

δ

)
= αs

(
2π

δ

)
eb∗

s N 2π
δ − (−1)N

eb∗
s

2π
δ + 1

. (C33)

Here α̃s(t ) denotes a time evolution with flipping sign of the
modulation strength �ε

‖,s. The quantity of interest that enters
the gate error δεκ,δω is then given by

∣∣δακ,δω
s

∣∣2 ≡
∣∣∣∣δα̃s

(
N

2π

δ

)∣∣∣∣
2

=
(
�ε

‖,s
)2

|bs|2
[
cosh

(
πκ
δ

)− cos
( 2πδωs

δ

)]
[
cosh

(
πκ
δ

)+ cos
( 2πδωs

δ

)] e− Nπκ
δ

×
[

cosh
(Nπκ

δ

)
− (−1)N cos

(
N2πδωs

δ

)]
.

(C34)

For the accumulated phases one uses the equation
α̇s = −i(δωs − i κ

2 ) αs(t ) − i�ε
‖,s e−i ϕm e−iδ t and its solution,

Eq. (C31). Thus, for the accumulated phase integral one ob-
tains three contributions for the time of the n1 cycle:

I�,s =
∫ t2

t1

dt ′α∗
s (t ′)α̇s(t

′) (C35)

=
∫ t2

t1

dt ′
{

− i

(
δωs − i

κ

2

)
|As(t

′) + Bs(t
′)|2

−iA∗
s (t ′) �ε

‖,s e−i ϕm e−iδ t ′

−iB∗
s (t ′) �ε

‖,s e−i ϕm e−iδ t ′
}

(C36)

≡ I (1)
�,s + I (2)

�,s + I (3)
�,s, (C37)

where t1 = (n1 − 1) 2π
δ

and t2 = n1
2π
δ

, and �t ≡ t2 − t1 =
2π
δ

. For the sake of further use we write down the result of
the integration:

I (1)
�,s = −i

(
δωs − i

κ

2

) ∫ t2

t1

dt ′ |As(t
′) + Bs(t

′)|2

= −i

(
δωs − i

κ

2

){
|αs(0)|2 2π

δ
+
(
�ε

‖,s
)2

|bs|2
[
�t+ 1

bs
ebst1

(
1 − ebs�t

)+ 1

b∗
s

eb∗
s t1
(
1 − eb∗

s �t
)+ 1

bs + b∗
s

e(bs+b∗
s )t1
(
e(bs+b∗

s )�t − 1
)]

+ iαs(0)�ε
‖,s

bs

[
1

bs + b∗
s

e(bs+b∗
s )t1
(
e(bs+b∗

s )�t − 1
)− 1

b∗
s

eb∗
s t1 (eb∗

s �t − 1)

]
+ c.c.

}
, (C38)
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I (2)
�,s = −i�ε

‖,s e−i ϕm

∫ t2

t1

dt ′ A∗
s (t ′) e−iδ t ′ = −iαs(0)∗�ε

‖,s
bs

ebst1 (ebs�t − 1), (C39)

I (3)
�,s = −i�ε

‖,s e−i ϕm

∫ t2

t1

dt ′ B∗
s (t ′) e−iδ t ′ =

(
�ε

‖,s
)2

bs

[
1

bs
ebst1 (ebs�t − 1) − �t

]
. (C40)

The accumulated phase error δ�κδω
s is then given by

δ�κ,δω
s = ImI�,s − ImI�,s

∣∣∣
κ=0,δωs=0

. (C41)

APPENDIX D: MULTIQUBIT PHASE GATE INFIDELITY
DUE TO RESONATOR (JOHNSON) NOISE

1. Diffusion term in the Caldeira-Leggett master equation as
generated via a random force Hamiltonian

Here we show that the random force Hamiltonian H f =
−ξ f (t )x̂, Eq. (36), is an unraveling of the diffusion term in the
ensemble-averaged Caldeira-Leggett Eq. (27). By definition,
the (single-sided) spectral density S f is defined by the corre-
lator

〈ξ f (t )ξ f (t ′)〉ξ = S f

2
δ(t − t ′), (D1)

where 〈· · · 〉ξ denotes averaging over realizations of the noise
process. It will be useful to work in the position representa-
tion, so that the generic density matrix element is ρ(x, x′) ≡
ρxx′ , with the position being a continuous index. By adding
the random force Hamiltonian in the Stratonovich form of the
equations of motion (as for any physical interaction, see, e.g.,
Refs. [87,113]) one obtains

dρxx′

dt
= − i

h̄
[Htot, ρ]xx′ − i

h̄
[H f , ρ]xx′

≡ GStrat (ρxx′ ) + F (ρxx′ ) ξ f (t ), (D2)

where G(ρxx′ ) and F (ρxx′ ) ξ f (t ) are the regular and the noise
part, respectively. The noise part is calculated from the com-
mutator [x̂, ρ]xx′ = (x − x′) ρxx′ :

F (ρxx′ ) = i

h̄
(x − x′)ρxx′ . (D3)

The transition to the Itô form of the equation of motion
follows the prescription of Refs. [114,115] for a system of
differential equations, however with the replacing of a discrete
index “i” (that enumerates the number of equations) with the
continuous index (x, x′), and by replacing the partial deriva-
tives ∂Fi

∂ρk
with a functional derivative (let x < x′):

δF [ρ(x, x′)]
δρ(x1, x2)

= i

h̄
(x − x′) δ(x − x1) δ(x′ − x2), (D4)

with δ(x) being the Dirac delta function. Thus, the regular part
in the Itô form is given by (see also Ref. [88])

GIto(ρxx′ ) = GStrat (ρxx′ ) + S f

4

∫ ∞

−∞

∫ x2

−∞
dx1dx2

× δF [ρ(x, x′)]
δρ(x1, x2)

F [ρ(x1, x2)] (D5)

= GStrat (ρxx′ ) − S f

4h̄2 (x − x′)2 ρxx′ (D6)

and the equation of motion for the density matrix in Itô form
is given by

dρxx′ = − i

h̄
[Htot, ρ]xx′ − S f

4h̄2 (x − x′)2 ρxx′ dt

+ i

h̄
(x − x′)ρxx′ ξ f (t ) dt . (D7)

Averaging over the noise in Eq. (D7) (by simply dropping the
noise term) one can identify the second term in Eq. (D7) with
the diffusion term in Eq. (27) by choosing the noise spectral
density as

S f = 4Kd ≡ 2h̄ωrLr κ coth
h̄ωr

2kBT
(D8)

and by noting that the double commutator in position repre-
sentation is given by

[x̂, [x̂, ρ]]xx′ = (x − x′)2 ρxx′ . (D9)

By using the random force Hamiltonian one calculates its
contribution to the equations of motion for the average posi-
tion and momentum via Eq. (D7). (Below we have dropped
the index “s” enumerating different n-qubit states.)

dx̄ = Tr[x̂ dρ] =
∫

dx x dρxx =
∫

dx x
(
− i

h̄

)
[Htot, ρ]xx dt

= − i

h̄
Tr(x̂ [Htot, ρ])dt, (D10)

d p̄ = − i

h̄
Tr[ p̂ dρ] = Tr( p̂ [Htot, ρ])dt + ξ f (t ) dt, (D11)

where we have used the momentum operator in position
representation:

( p̂)xx̃ = [−ih̄δ(x − x̃)]
∂

∂ x̃
. (D12)

Using Eqs. (D10) and (D11) one obtains an additional
noise term in the equation of motion of the field variable
αs ≡ 〈â〉s = 1

2 ( x̄s
�x0

+ i p̄s

�p0
). Notice, that for the averages (first

moments), Itô and Stratonovich forms of the equations coin-
cide, and by going to the rotating frame with ωr′ one obtains

α̇s = −i(ω̃r − δωs) αs − i�‖,se−i(δ̃t+ϕm ) − iεd e−i(δ̃t+ϕd )

− κ

2
(αs − α∗

s ) + i
ξ f (t )

2�p0
eiωr′ t , (D13)

to be compared with Eq. (35). The noisy evolution of αs(t ) due
to the last stochastic term is shown schematically in Fig. 4. [It
cannot be neglected in a rotating wave approximation since
the white noise ξ f (t ) contains a frequency component that
eliminates the fast rotating factor.]
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2. The variances 〈|δαs|2〉ξ and 〈δ�s δ�s′ 〉ξ

Calculation of infidelity caused by the resonator (Johnson)
noise requires the knowledge of the variances 〈|δαs|2〉ξ and
〈δ�s δ�s′ 〉ξ , see Eq. (45) or (C8). The resonator trajectory in
the phase space αs(t ) obtains a fluctuating term δαs(t ), see
Fig. 4 and Eq. (D13), with a zero average over the realizations
of the noise process 〈δαs(t )〉ξ = 0. Similarly, the average of
the accumulated phase fluctuation is zero over the realizations
〈δ�s(t )〉ξ = 0, see below. The fluctuation at time t is obtained
by integration of the last term in Eq. (D13) thus obtaining
Eq. (46) of the main text (we have used that the vacuum
fluctuations satisfy �x0 �p0 = h̄/2). From Eq. (D13) and in
rotation frame with ωr the variance of αs(t ) is

〈|δαs(t )|2〉ξ

=
(

�x0

h̄

)2 ∫ t

0

∫ t

0
dt ′dt ′′eiωr (t ′−t ′′ )〈ξ f (t ′)ξ f (t ′′)〉ξ

(D14)

that is spin independent. By introducing the shortcoming for
the noise r(t ) ≡ −ξ f (t )�x0/h̄ one writes the white noise
average:

〈r(t ′) r(t ′′)〉ξ = S f (�x0)2

2h̄2 δ(t ′ − t ′′) ≡ C0 δ(t ′ − t ′′), (D15)

C0 ≡ κ

2
coth

(
h̄ωr

2kBT

)
, (D16)

also using the relations (B2) and (D8).
The accumulated phase variance 〈δ�s(t )2〉ξ =

〈[Im δI�,s]2〉ξ is obtained via the fluctuations of the
accumulated phase integral [scf. Eq. (A8)], assuming small
variations δαs(t ). Expanding I�,s(t ) to first order one obtains

δI�,s(t ) �
∫ t

0
dt ′
[
δα∗

s (t ′)
dαid

s (t ′)
dt ′ + αid ∗

s (t ′)
dδαs(t ′)

dt ′

]
(D17)

≡ δA1,s + δA2,s, (D18)

A1s ≡
∫ t

0
dt ′δα∗

s (t ′)
dαid

s (t ′)
dt ′ ,

(D19)

A2s ≡
∫ t

0
dt ′αid ∗

s (t ′)
dδαs(t ′)

dt ′ ,

where the ideal resonator evolution is given by Eq. (18) or
(A3), see Fig. 10, i.e., here we do not take into account
higher corrections due to the resonator damping κ and the
always-on curvature dispersivelike resonator frequency shifts
δω given by Eq. (7). Indeed, the error of such approximation
is of second order in the small resonator trajectory deviations,
e.g., ∼δαξ

s δακ,δω
s . Thus, the s dependence of the accumulated

phase variation will come only through the modulation driving
strength �‖,s, see Eq. (17) or (B10).

For the resonator driving conditions of Eq. (6), one is
replacing the modulation strength by �ε

‖,s, Eq. (43), and the
phase of the modulation is chosen as ϕm = 0. The ideal evo-
lution (neglecting the κ and δωs terms) is recast to α̇id

s =
−i�ε

‖,se
−iδt .

The fluctuation of the accumulated phase is then

δ�s = Im(δI�s ) ≡ Im(A1s) + Im(A2s), (D20)

Im(A1s) = −�ε
‖,s

∫ t

0
dt ′

∫ t ′

0
dt ′′r(t ′′) sin(δt ′ + ωrt

′′),

(D21)

Im(A2s) = �ε
‖,s
δ

∫ t

0
dt ′r(t ′)[cos(ωrt

′) − cos(ωmt ′)]. (D22)

The variance of the accumulated phase 〈δ�s δ�s′ 〉ξ is ob-
tained via explicit time integration with Eqs. (D21) and (D22),
using Eq. (D15) for the noise average:

〈Im(A1s) Im(A1s′ )〉ξ � (
�ε

‖,s�
ε
‖,s′
)
C0 (D23)

×
[

t

δ2
− sin(δt )

δ3

]
, (D24)

〈Im(A1s)Im(A2s′ )〉ξ � −
(

�ε
‖,s

�ε
‖,s′

δ

)
C0

{
t

2δ
[1 + cos(δt )]

}
,

〈Im(A2s) Im(A2s′ )〉ξ �
(

�ε
‖,s�

ε
‖,s′

δ2

)
C0

[
t − 4 sin(δt )

δ

]
,

(D25)

where only leading contributions are shown, with corrections
of the order of O( δ

ωr
). One can see that these averages,

Eqs. (D23)–(D25), oscillate in time, as expected for variances
of a modulating resonator. For a complete number of cycles,
δ t = 2πN, N = 2, 4, . . . some of these are zeroed or mini-
mized, and the average of interest is obtained:

〈[δ�s(t ) − δ�s′ (t )]2〉ξ = 4C0

[
�ε

‖,s − �ε
‖,s′
]2

δ2

2πN

δ
, (D26)

as is Eq. (49) of the main text. The variance of the accumu-
lated phase fluctuations is linear in time units of t = 2πN

δ
.

APPENDIX E: INFIDELITY OF n-QUBIT PHASE GATE
DUE TO QUBITS’ CHARGE NOISE

For an initial product state of n-qubits plus resonator the
ideal final state after one cycle t = 2π

δ
is defined by the ac-

cumulated (geometric) phases and the frequency ωs of the |s〉
state: |ψ id

f 〉 = ∑
s asei�s (t ) e−iωst |s〉|0〉, where

ωs =
∑

j

〈s|ω
( j)
q

2
σ ( j)

z |s〉 (E1)

is the frequency of the |s〉 state. Since the qubit energy
defining parameters (voltage gates) fluctuate, an additional
fluctuating phase is accumulated. Thus, for the ( j)th qubit
with a fluctuation, ω( j)

q + δω
( j)
q (t ) one obtains the phase factor

e−iω( j)
q t e−i�φ( j) (t ), �φ( j)(t ) ≡

∫ t

0
dt ′ δω( j)

q (t ′) (E2)

(we consider only longitudinal noise, see, e.g., Ref. [24]). The
accumulated phase noise of the |s〉 state is then expressed via
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individual qubit noises

�φs(t ) =
∑

j

〈s|�φ( j)(t )

2
σ ( j)

z |s〉, (E3)

and the actual final state acquires noisy phases |ψ f 〉 =∑
s asei�s (t ) e−iωst e−i�φs (t )|s〉|0〉. The fidelity of a single real-

ization of the noise process is obtained as

F = ∣∣〈ψ id
f

∣∣ψ f
〉∣∣2 =

∑
s

|as|4

+
∑
s<s′

2|as|2|as′ |2e−i[�φs (t )−�φs′ (t )] cos δ ˜̃ωss′ t, (E4)

where the deterministic qubit evolutions is due to possibly
induced AC-Stark shifts, see Eq. (67), and Appendix B 6,
Eq. (B62). One then averages over the initial n-qubit state and
over the noise realizations to get

〈F 〉ξq
= 2n f (n)

1 + f (n)
12

∑
s<s′

〈
e−i[�φs (t )−�φs′ (t )]

〉
ξq

cos δ ˜̃ωss′ t .

(E5)

Here f1 ≡ |as|4 = f12 ≡ 2|as|2|as′ |2 are the averages over the
initial qubit states, given by Eq. (C13).

One calculates the dephasing factor assuming that the ran-
dom variable Xss′ ≡ [�φs(t ) − �φs′ (t )] has zero mean and is
Gaussian distributed and obtains〈

e−i[�φs (t )−�φs′ (t )]
〉
ξq

= e− 1
2 〈[�φs (t )−�φs′ (t )]2〉ξq . (E6)

Assuming small variances and using Eq. (C12) one obtains
the n-qubit infidelity due to charge noise in a general form:

δε
n Qb
φ ≡ 1 − 〈F 〉ξq

= f (n)
12

∑
s<s′

1

2
〈[�φs(t ) − �φs′ (t )]2〉ξq .

(E7)

1. Correlated white noises

If the noises impinged on the qubits are white noise corre-
lated (with correlation matrix Ajk)〈

δω( j)
q (t ′) δω( j)

q (t ′′)
〉 = Ajkδ(t ′ − t ′′), (E8)

the correlation of interest in Eq. (E7) can be represented as

1
2 〈[�φs(t ) − �φs′ (t )]2〉ξq = �φ,ss′ t . (E9)

To see this, one rewrites the random variable �φs(t ) −
�φs′ (t ) as

�φs(t ) − �φs′ (t ) =
∫ t

0
dt ′ ∑

j

δω
( j)
q (t ′)
2

(i j − i′j ), (E10)

|s〉 ≡ |i1, . . . , in〉, |s′〉 ≡ |i′1, . . . , i′n〉, (E11)

〈s|σ ( j)
z |s〉 = i j, 〈s′|σ ( j)

z |s′〉 = i′j, (E12)

and obtain the average via the δ correlation, Eq. (E8):

1

2
〈[�φs(t ) − �φs′ (t )]2〉 =

∑
j,k

(i j − i′j ) (ik − i′k )
Ajk

8
t . (E13)

Thus, one obtains the n-qubit dephasing rates for correlated
white noise:

�
n Qb
φ,ss′ =

∑
j,k

(i j − i′j ) (ik − i′k )
Ajk

8
. (E14)

The dephasing rates cannot be represented as a sum of individ-
ual qubit rates (for uncorrelated white noises see next section).
This is, e.g., the case of collective qubits dephasing due to
resonator shot noise, considered in Appendix B 6.

The infidelity [Eq. (E7)] is recast to

δε
n Qb
φ,shot = f (n)

12

∑
s<s′

�̃shot
φ,ss′ t . (E15)

From Eq. (E5) one gets additional infidelity at small t due to
the AC-Stark shifts:

δε
n Qb
δω,shot = f (n)

12

2

∑
s<s′

(
δ ˜̃ωshot

ss′ t
)2

. (E16)

The dephasing rates �̃shot
φ,ss′ and frequency shifts δ ˜̃ωshot

ss′ for
whole time periods t = tg = 2πN

δ
are given by Eqs. (65) and

(67), respectively, see also Appendix B 6.

2. Uncorrelated white noises

For uncorrelated white noise impinged on the qubits fre-
quencies one gets the relation〈

δω( j)
q (t ′) δω( j)

q (t ′′)
〉
ξq

= Aj δ
jk δ(t ′ − t ′′), (E17)

where the constants Aj can be represented via the spectral
densities Sx( j) of the gate voltages of the ( j)th qubit:

Aj =
∑

x

Sx( j)

2h̄2

(
∂E ( j)

q

∂x( j)

)2

. (E18)

Here we have used that the frequency fluctuations are ex-
pressed via the qubit’s gate voltage fluctuations δω

( j)
q (t ′) =

1
h̄

∑
x

∂E ( j)
q

∂x( j) δx( j), with x( j) = {ε( j)
v , ε

( j)
m , t ( j)

l , t ( j)
r } being the

qubit’s defining gate voltage differences and interdot tunnel-
ing amplitudes (for a TQD qubit). We assumed for simplicity
that these variables are mutually uncorrelated, while each is
white noise correlated

〈δx( j)(t ′)δx( j)(t ′′)〉ξq = Sx( j)

2
δ(t ′ − t ′′), (E19)

where Sx( j) are the (single-sided) white noise spectral densities
for each of the variables of the ( j)th qubit.

The resulting n-qubit dephasing rates are then given by

�φ,ss′ =
∑

j

A j

4
(1 − i j i

′
j ), (E20)

which allows us to express the n-qubit dephasing rates via the
single-qubit one. The n-qubit infidelity δε

n Qb
φ is expressed by

the same Eq. (E15).
The single-qubit dephasing rate is then a sum of contribu-

tions,

�white
φ = A1

2
=

∑
x=εv ,εm,tl ,tr

Sx

4h̄2

(
∂Eq

∂x

)2

, (E21)

and is minimized, as ∂Eq

∂εv
= ∂Eq

∂εm
= 0 at a full sweet spot.
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For two-qubit states, |1〉 = |↓↓〉, |2〉 = |↓↑〉|3〉 = |↑↓〉,
|4〉 = |↑↑〉, one renders via Eq. (E20) the two-qubit rates
expressed via the single-qubit one:

�φ,12 = A2

2
= �

(2)
φ , �φ,13 = A1

2
= �

(1)
φ , (E22)

�φ,14 = A1

2
+ A2

2
= �

(1)
φ + �

(2)
φ , etc. (E23)

which is also illustrated in Fig. 9. The two-qubit infi-
delity in this case is expressed via the sum

∑
s<s′ �ss′ t =

4[�(1)
φ + �

(2)
φ ] t . For equal qubit dephasings, �

(1)
φ = �

(2)
φ =

�white
φ , one obtains

δε
2Qb
φ = 8

10
�white

φ t, (E24)

where t = tg = 2πN
δ

is the gate time. The result of Eq. (E24)
was first presented at the QCPR in August 2016, and also at
the 2017 APS March meeting.

3. Phase gate infidelity in the case of uncorrelated 1/ f -charge
noise

One is assuming that the accumulated random phases of
individual qubits are uncorrelated:

〈�φ( j)(t ) �φ(k)(t )〉ξq ∝ δ jk (E25)

[that is more general than Eq. (E17)]. Using the representation
of the n-qubit states, |s〉 = |i1, . . . , in〉, Eq. (E11), one obtains
from Eq. (E25)

〈[�φs(t ) − �φs′ (t )]2〉ξq
= 1

2

n∑
j=1

〈(�φ( j)(t ))2〉ξq (1 − i j i′j ),

(E26)
which allows us to express the n-qubit dephasing rates via the
single-qubit one.

For noise fluctuations subject to 1/ f -noise spectrum the
dephasing factor in Eq. (E6) has a Gaussian time dependence

e− 1
2 〈[�φs′ (t )−�φs′ (t )]2〉ξq = e−(�̃ss′ t )2

. (E27)

(Here �̃ denotes an 1/ f -noise dephasing rate.) In the case
of uncorrelated charge noise to each of the qubits, applying
Eq. (E26), one obtains the relation

(�̃ss′ t )2 = 1

4

n∑
j=1

〈(�φ( j)(t ))2〉 (1 − i j i′j )

= 1

2

n∑
j=1

(�̃( j) t )2 (1 − i j i′j ), (E28)

where �̃( j) is the single-qubit 1/ f -noise dephasing rate (for
the jth qubit). The n-qubit infidelity is then obtained:

δε
n Qb
φ,1/ f = f (n)

12

∑
s<s′

(�̃ss′ t )2. (E29)

For the two-qubit case, analogous to Eq. (E23), one gets
the relations

�̃12 = �̃
(2)
φ , �̃13 = �̃

(1)
φ , (E30)

�̃14 =
√(

�̃
(1)
φ

)2 + (
�̃

(2)
φ

)2
, etc. (E31)

Assuming equal qubits’ dephasing, �̃(1)
φ = �̃

(2)
φ ≡ �̃φ , one ob-

tains the two-qubit infidelity

δε
2Qb
φ,1/ f = 8

10 (�̃φ t )2. (E32)

4. 1/ f dephasing: Scaling of parameters

For the discussion here we use the expression for the
single-qubit dephasing �̃φ calculated in Refs. [24,25] (see also
Refs. [116,117]):

�̃φ = 1

h̄
[I + II + III + IV ]1/2, (E33)

I ≡ 1

2

∑
k

(
∂Eq

∂εk

)2

Sεk log rc, (E34)

II ≡ 1

4

∑
k

(
∂2Eq

∂ε2
k

)2

S2
εk

log2 rc, (E35)

III ≡ 1

2

∑
k �=l

(
∂2Eq

∂εk∂εl

)2

Sεk Sεl log2 rc, (E36)

IV ≡ 1

8

∑
k �=l

(
∂2Eq

∂ε2
k

)(
∂2Eq

∂ε2
l

)
Sεk Sεl , (E37)

where εk = εv, εm are the TQD qubit energy detunings εv ≡
e(V1 − V3) and εm ≡ e[(V1 + V3)/2 − V2], and εk = tl , tr are
the left and right tunneling amplitudes. The ratio rc ≡ ωUV

ωIR
includes the ultraviolet and infrared frequency cutoffs needed
to deal with 1/ f -noise spectral density. The spectral density
of the 1/ f noise is defined as S(ω) = Sεk

|ω| , where the spectral
density constants Sεk are subject to experimental determina-
tion [28,29]. For illustration purposes we will assume Sεv

≈
Sεm and Sεv

, Sεm 	 Stl , Str (see below). For rc = 106 one can
safely neglect the term IV . Below we argue that II and III
contributes only small corrections of the order of 10−3 to the
leading term I .

At the full sweet spot the term I is minimized since
∂Eq

∂εv
,

∂Eq

∂εm
= 0. Despite that log rc � log2 rc and the smallness

of the spectral density constants Stl , Str � Sεv
Sεm (see below)

it turns out that for typical parameters I 	 II ∼ III . To see
this it is useful to write down the corresponding first deriva-
tives and second derivatives (energy curvatures) for the TQD
qubit at the full sweet spot [62]. By using the expressions for
a TQD qubit energy [62] Eq(εv, εm, tl , tr ) one obtains at the
full sweet spot:

Eq = 8t2
l

al

√
1 − r + r2, r ≡ t2

r al

t2
l ar

, (E38)

∂Eq

∂tl
= 16tl

al

1 − r/2√
1 − r + r2

, (E39)

∂2Eq

∂ε2
v

= ∂2Eq

∂ε2
m

= 64t2
l

a3
l

{
1 − r

2

(
1 + a2

l
a2

r

)+ r2 a2
l

a2
r

}
√

1 − r + r2
, (E40)

∂2Eq

∂εv∂εm
= 64t2

l

a3
l

{− 1 + r
2

(
1 − a2

l
a2

r

)+ r2 a2
l

a2
r

}
√

1 − r + r2
, (E41)
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∂2Eq

∂t2
l

= 8

al

(2 − 3r + 6r2 − r3)

(1 − r + r2)3/2
, (E42)

∂2Eq

∂tl∂tr
= −24

al

tl
tr

r2

(1 − r + r2)3/2
. (E43)

Here and in the following, al ≡ Ũ1 + Ũ ′
2 and ar ≡ Ũ2 + Ũ3

are the combinations of the charging energy costs Ũi to fill
the ith dot with 2 electrons starting from the (1, 1, 1) config-
uration [62]. In this TQD model some of the curvatures are
zero always, e.g., ∂2Eq

∂εv∂tr
= ∂2Eq

∂εm∂tr
= 0, while ∂2Eq

∂εv∂εm
= 0 in the

symmetric case al = ar and r ≡ t2
r al

t2
l ar

= 1. By taking the ratios

of the surviving terms at the full sweet spot one obtains the
important scalings:

II ′

I
=

1
2

( ∂2Eq

∂ε2
v

)2
S2

εv
log rc( ∂Eq

∂tl

)2
Stl

= log rc

2

S2
εv

t2
l

Stl a
4
l

≈ 10−3, (E44)

II ′′

I
=

1
2

( ∂2Eq

∂t2
l

)2
S2

tl log rc( ∂Eq

∂tl

)2
Stl

= 8 log rc
Stl

t2
l

≈ 10−3, (E45)

III

I
=
( ∂2Eq

∂tl ∂tr

)2
Stl Str log rc( ∂Eq

∂tl

)2
Stl

= 9 log rc
Str

t2
r

≈ 10−3. (E46)

In these estimations we have used tunnelings tl,r = 40 μeV,
a dot charging energy, Uch ≈ Ũi ≈ 0.4 meV, Sεv

= Sεm =
(1 μeV)2, and Stl = Str = 10−2Sεv

. By increasing tunneling
[98,118] to tl,r = 160 μeV and Uch = 0.8 meV, which is
beneficial for larger quantum capacitance (see below), the
smallness of these ratios remains a fact. Thus, to a very good

approximation one can write for the 1/ f -dephasing rate

�̃φ � 1

h̄

√
I (E47)

= 1

h̄

{
log rc

2

[(
∂Eq

∂tl

)2

Stl +
(

∂Eq

∂tr

)2

Str

]}1/2

(E48)

� 16

h̄

{
log rc Stl

2(1 − r + r2)

×
[( tl

al

)2(
1 − r

2

)2
+
( tr

ar

)2
(

r − 1

2

)2]}1/2

.

(E49)

In the symmetric case, al = ar and r ≡ t2
r al

t2
l ar

= 1, one obtains

for the single-qubit 1/ f -dephasing rate, Eq. (79) of the main
text. Using Eqs. (E32) and (79) one obtains the two-qubit infi-
delity for 1/ f noise expressed through all relevant parameters,
see Eq. (80) of the main text.

5. Spectral density constant of tunnelings from the experiment

The spectral density constant Stl can be extracted from
the experiment [28]. To this end one uses typical tunneling
tl = 10–20 μeV, dot charging energy Uch = 0.6–2.4 meV,
and ratio rc ≡ ωUV

ωIR
= 106. These parameters fit Eqs. (E38)

and (79) with the experimental values for qubit splitting
Eq � 160 MHz, and measured dephasing time (Rabi oscil-
lations) of the current experiment [28] (DQD singlet-triplet
qubit at the symmetric operating point), which assumes Stl �
10−4–10−5 (μeV)2.
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