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Modeling huge photoinduced spin polarons in intrinsic magnetic semiconductors
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In intrinsic magnetic semiconductors, the absorption of a single photon can generate a spin polaron, whose
magnetic moment reaches many thousands of Bohr magnetons. Here we investigate these huge photoinduced
spin polarons, using Monte Carlo simulations. In antiferromagnetic semiconductors, photoinduced spin polarons
are most efficiently generated in the whole temperature interval up to the phase transition, whereas in ferro-
magnetic semiconductors much larger spin polarons can be photoinduced, but only around the phase transition
temperature. Because Monte Carlo simulations are computationally expensive, we developed an analytical
model, based on Weiss field theory. Although the Weiss model does not provide as much information as a
Monte Carlo simulation, such as spin texture and fluctuations, it yields formulas that can be used to estimate
instantly the expected photoinduced spin polaron size in many intrinsic magnetic semiconductors.
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I. INTRODUCTION

Recently, it was experimentally demonstrated that in the
europium chalcogenide series EuX (X=O, S, Se, Te), a single
photon can generate a very large spin polaron (SP), reaching
many thousands of Bohr magnetons [1–7]. These extraordi-
narily large photogenerated SPs can be used to manipulate
the magnetization on the picosecond time scale [1], which is
a topic of vast current interest [8–10]. SPs are formed when
an incident photon generates an electron-hole pair, and in a
few tens of picoseconds the lattice surrounding the excited
electron becomes magnetized, due to the activation of the
exchange interaction between the photoexcited electron and
the lattice spins [11].

This paper proposes a theory on the temperature depen-
dence of size of very large photoinduced SPs in magnetic
semiconductors. The work developed here is based on an
effective mass self-consistent Hamiltonian describing the
photoinduced SP, which includes the kinetic energy of the
photogenerated band electron, its Coulomb interaction with
the hole, its exchange interaction with lattice spins, the
exchange interaction between lattice spins, and an applied
magnetic field [5]. The spin polarons induced by charge car-
riers can also be described by a Kondo Hamiltonian [12,13],
but this more complex approach is beyond the scope of this
paper, given that the simple effective mass Hamiltonian [5]
describes sufficiently well the temperature dependence of the
SP size analyzed in this work. We present results of Monte
Carlo (MC) simulations, which reproduce very well available
experimental data for all europium chalcogenides. However,
the Monte Carlo simulations are computationally intensive,
so we developed a simpler model, based on Weiss field (WF)
theory. The WF model, whose simplicity makes it accessible
to a wide audience, produces analytical formulas that give the
SP magnetic moment versus temperature in fair agreement

*andreh@if.usp.br

with the MC simulations. These formulas can be extended to
many other magnetic semiconductors. The analytical formulas
we obtained for the temperature dependence of the magnetic
moment of the SP, dependent on few basic material parame-
ters, are of crucial and practical value for researchers in this
field, both in fundamental as well as applied physics.

II. SPIN POLARON MODELING

SPs are formed due to the exchange interaction between an
electron in the photoexcited state state and the lattice spins.
This interaction is described by an effective magnetic field,
BXf , acting on the lattice spins, which at a distance r from the
electron is given by [5]

BXf (r) = JXf S

Nμ∗ �2(r), (1)

where X and f represent the excited electron and lattice spin,
respectively, JXf is their exchange interaction constant, N and
S are the volume density and magnetic quantum number of
lattice spins, respectively, μ∗ = gSμBS, gS is the Landé factor,
μB is the Bohr magneton, �(r) = e−r/aB√

πa3
B

is the Bohr wave

function of the photoexcited electron, and aB is the effective
Bohr radius. For EuX, gS = 2, S = 7/2, N = 4/a3, where
a is the face centered cubic lattice parameter. The photoex-
cited hole is strongly localized and immobile [14,15], which
renders negligible its exchange interaction with surrounding
lattice spins.

Since the effective exchange field, given by Eq. (1), is
nonzero for any r, one might naively assume that the pho-
toexcited electron always causes some spin polarization of
any lattice spin, no matter how distant the lattice spin is
from the SP center. In reality, the photoexcited electron only
polarizes lattice spins within a sphere of radius RPol, where its
exchange field wins the competition over other interactions
affecting spin orientation. Magnetic anisotropy, lattice spin
fluctuations, or an applied magnetic field are among sources
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TABLE I. Input parameters used in the Monte Carlo simulations. The parameter source is indicated. The values of B0 and L/a are discussed
in the main text.

aB/a RPol/a
EuX J1 (K) J2 (K) JXf S (eV) from Ref. [2] B0 (T) from Eq. (2) L/a

EuTe 0.043 [21] −0.15 [21] 0.29 [5] 1.84 0.1 4.2 10
EuSe 0.290 [1] −0.300 [1] 0.263 [1] 2.68 0.07 4.9 10
EuS 0.221 [22] −0.100 [22] 0.25 [2] 3.28 0.007 8.98 18
EuO 0.606 [23] 0.119 [23] 0.25 (this work) 8.91 0.007 11.0 22

of competing interactions that will limit the radius of the SP.
If we characterize the competing interactions by an effective
magnetic field B0, then BXf (r) � B0 delimits the SP sphere,
whose radius is found from equation (1):

RPol = aB

2
ln

(
JXf S

πa3
BNμ∗B0

)
. (2)

This equation shows that the greater the competing field B0,
the smaller the radius of the SP.

In EuTe, the magnetic anisotropy is described by a spin-
flop field of magnitude about 0.1 T [5,16], hence it is
reasonable to assume B0 = 0.1 T for EuTe. Using other EuTe
parameters, given in Table I, equation (2) gives RPol

a = 4.2, in
agreement with experimental measurements [4]. As shown in
Ref. [5], below saturation, RPol is nearly independent of the
applied magnetic field. This implies that RPol is also tem-
perature independent, because, as far as spin polarization is
concerned, an increase (a decrease) of temperature, at a fixed
field, is equivalent to a decrease (an increase) of the magnetic
field, at a fixed temperature.

For EuS, we took B0 = 0.007 T, which is the magnetic field
required to observe the SP experimentally [2], and the same B0

was taken for EuO. For EuSe, we took B0 = 0.07 T, because
it gives the best agreement between the experimentally mea-
sured peak SP magnetic moment and the one obtained from
Monte Carlo simulations in this work. The exact source of
B0 for EuSe is not clear, but it could be due to lattice spin
fluctuations that cause modulation of the exchange interaction
between lattice spins, in this strongly metamagnetic system
[17].

III. MONTE CARLO SIMULATIONS IN EuX

Monte Carlo simulations of SPs were done for EuX. The
Eu spins (S = 7/2), of effective magnetic moment μeff =
gSμB

√
S(S + 1) [18], were distributed on a face centered

cubic lattice. Born-Karmán periodic conditions were imposed
on a cube of edge L. The photoexcited hole was placed at an
Eu atom at the center of the cube. To assure that the SP was
fully contained in the cube, L was at least twice the radius of
the SP, i.e., L � 2RPol. The larger the cube, the lengthier the
MC simulation. In this work, EuO required the largest L (see
Table I), and the MC simulations extended over several days.

In the presence of a magnetic field, the outcome of the MC
simulations should be independent of the initial state of the
lattice spins. In the MC simulation for EuS, EuTe, and EuSe
shown here, the spins were initialized in different ways: anti-
ferromagnetic, ferromagnetic, in a random orientation, and all

converged to the same result. For a random initialization, the
azimuth angle of the spin vector ϕ was associated with a ran-
dom value between 0 and 2π , and the cosine of the polar angle
θ with a random value between −1 and +1. A randomly ori-
ented spin was obtained from two random numbers, q1 and q2,
between 0 and 1, giving ϕ = 2πq1 and θ = arccos(1 − 2q2).
To generate random numbers, we used the linear congruential
random number generator (routine ran0), from Ref. [19].

However, a ferromagnetic initialization is closer to an SP
than a random one, hence ferromagnetic initialization speeds
up the convergence of the MC simulations. For this reason, in
our MC simulations for EuO, the lattice spins were initialized
in the ferromagnetic order. The MC cube in EuO is much
larger than in the other EuX, while the effective exchange
field, BXf (r) of equation (1), is much smaller, due to a much
larger SP volume (see Table I). These two factors lead to an
unacceptably large computing time to achieve convergence
for random spin initialization in EuO, while ferromagnetic
initialization brings the convergence time down to a feasible
level.

The energy of the ith spin in the lattice, Ei, for a fixed
orientation of all other lattice spins, was calculated by adding
its exchange interaction energy with its first and second neigh-
bors (described by constants J1 and J2, respectively) to its
Zeeman energy [5]. The input parameters used in the MC
simulations are given in Table I.

The spin reorientation at each lattice site was done itera-
tively, using the Metropolis algorithm [19,20]. A new random
orientation was considered for a lattice site i, and the corre-
sponding energy E ′

i was calculated. According to Boltzmann
statistics, the probability that the ith spin switches to the new
orientation, at a given temperature, is given by

p = e−(E ′
i −Ei )/kBT

1 + e−(E ′
i −Ei )/kBT

, (3)

where kB is the Boltzmann constant. To reject or accept the
new orientation, a random number q between 0 and 1 was
generated. When q > p, the new orientation was accepted,
otherwise it was rejected. This spin reorientation procedure
was done for all lattice sites contained in the MC cube, and
repeated 3000 times over the whole cube.

At the end of the MC simulation, the magnetic moment
of a sphere of radius RPol was computed in two situations:
one in which the exchange interaction between the pho-
toexcited electron and the lattice spins was switched on
(i.e., BXf was switched on) and another in which it was
switched off (BXf was switched off). The difference between
the two magnetic moments yields the net magnetic moment
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FIG. 1. (a) Results of the Monte Carlo simulations. Experimental
results for EuTe (squares), EuSe (circles), and EuS (triangles) are
also shown, from Refs. [7], [1], and [2], respectively. The inset shows
a contour plot of the spin polarization projection onto the spin of
the photoexcited electron - assumed in direction [001] - in a plane
going through the center of the spin polaron, in EuSe, at 6.2 K. The
displacements are given in units of the lattice parameter. (b) Results
of the Weiss field model.

of the SP. The final temperature dependence of SP magnetic
moment was obtained from the average of 50 calculated
MC curves.

Figure 1(a) depicts the SP magnetic moment for all EuX,
obtained by the above described Monte Carlo simulations.
The inset in Fig. 1(a) shows the spin texture of the polaron in
EuSe in the proximity of the Néel temperature, obtained from
the Monte Carlo simulations. Available experimental data,
taken from Refs. [6], [1], and [2] for EuTe, EuSe, and EuS,
respectively, is also depicted in Fig. 1(a). For EuO, experi-
mental data is not yet available. Excellent agreement (within
experimental error) of theory and experiment is achieved in
the absolute maximum value of the SP size. The small differ-

TABLE II. Critical temperatures used in the Weiss field model.

EuX TC (K) TN (K)

EuO 69 [23]
EuS 16 [21]
EuSe 4.8 [1]
EuTe 9.6 [22]

ence between the theoretical and experimental temperature of
the maximum is attributed to the specifics of the investigated
samples, which were thin epitaxial layers, in which case resid-
ual strain may cause the critical temperature to differ slightly
from the bulk [24,25]. Inaccuracies in the bulk values of J1

and J2 (Table I) may also be at fault.
For the ferromagnetic members EuO and EuS, μPol ex-

hibits a very sharp peak at the Curie temperature, and the
maximum μPol value is two orders of magnitude greater than
in antiferromagnetic EuTe, whose μPol does not show a sharp
maximum but a plateau instead. The μPol temperature de-
pendence for EuSe shows the same sharp maximum at the
critical temperature, seen for ferromagnetic EuO and EuS.
EuSe is often categorized as antiferromagnetic [17,26], how-
ever, applying a very small magnetic field at low temperatures
changes the order to ferromagnetic [17]. The effective ex-
change magnetic field produced by the photoexcited electron
is sufficient to induce a ferromagnetic phase in the interior of
the SP [1], which is the region probed by the MC simulations.
This is why EuSe displays the behavior characteristic of the
ferromagnetic members of the EuX series.

The MC simulations show that above the critical tempera-
ture, μPol decreases for all EuX, because the SP is destroyed
by thermal agitation of the lattice spins. When the interior
of the SP is ferromagnetic, ferromagnetic alignment sets on
at T < TC, therefore the photoexcited electron can increase
the magnetization no further, and μPol vanishes. In contrast,
when the interior of the SP is antiferromagnetic, μPol shows
a plateau below TN, at a value much less than the peak seen
for a ferromagnet. These differences are rooted in the antifer-
romagnetic exchange interaction between lattice spins, which
prevents full spin polarization within the SP sphere.

The number of lattice spins involved in forming the SP in-
creases with the cube of the ratio between the Bohr radius and
the lattice parameter. From the Bohr radii given in Table I, in
EuO the number of Eu spins contained in the SP is two orders
of magnitude larger than in EuS. This makes it tempting to
conclude that SPs in EuO could be much larger than in EuS
[2]. However, the MC simulations indicate that the SP size
in EuO and EuS is quite similar. This is because the Curie
temperature of EuO is almost five times greater than for EuS
(see Table II). Consequently, at the Curie temperature thermal
quenching of lattice spin polarization works against the SP
size much more efficiently in EuO than in EuS. Moreover,
for a larger Bohr radius, due to the normalization of the wave
function, the effective exchange magnetic field acting on an
individual lattice spin becomes smaller, which reduces the
radius of the SP sphere. As result, the maximum size SP
that can be photogenerated in EuO and EuS ends up being
of similar size.
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IV. WEISS FIELD MODEL

In this section, the Weiss field (WF) applied to the descrip-
tion of photoinduced SPs is described separately for ferro-
and antiferromagnetic semiconductors (Secs. IV A and IV B,
respectively). An application of the WF model to EuX and a
comparison of the WF and MC models is left for Sec. IV C.

In the Weiss field model, the spin vectors in every magnetic
sublattice are substituted by their mean. This approach allows
us to describe the Heisenberg exchange interaction by an ef-
fective magnetic field, the so-called molecular field, or Weiss
field [27]. Because the interaction between individual spins is
substituted by an average, spin fluctuations are not accounted
for in the WF model. Nevertheless, the WF model de-
scribes remarkably well the main features of magnetism [27]
(pp. 433–434).

A. Ferromagnetic case

In the ferromagnetic case, the average spin points in the
direction of the magnetization, therefore the Weiss field as-
sociated with the Heisenberg exchange interaction becomes
proportional to the magnetization. Then, the magnetization of
the ferromagnet at a temperature T , and under an applied field
B, can be obtained from the transcendental equation

M(T ) = MSATBS

(
μ∗ |B + λM|

kBT

)
, (4)

where BS represents the Brillouin function of order S, and
MSAT = Nμ∗ is the saturation magnetization [18]. The term
λM in equation (4) represents the Weiss field, where λ de-
scribes the exchange interaction between lattice spins. By
approximating the Brillouin function BS(x) = αSx, where
αS = S+1

3S in (4), λ is found to be connected to the Curie
temperature of the ferromagnet, λ = kBTC

αSMSATμ∗ [28]. The vector
associated with BXf (r) is parallel to the applied magnetic field
[29], hence the argument of Eq. (4) becomes a scalar, giving:

M(r, T ) = MSATBS

(
μ∗ BXf (r) + B + λM

kBT

)
. (5)

The magnetic moment of the SP was calculated as follows.
Equation (5) was solved numerically for M(r, T ), using the
Newton-Raphson method in one dimension (Ref. [19], Sec.
9.4). M(r, T ) was integrated in the SP sphere, of radius RPol

defined by equation (1), to give the total magnetic moment of
the SP sphere. As in the MC simulations, the net magnetic
moment of the SP was found by subtracting the magnetic
moment of the same sphere calculated with BXf = 0.

The WF model can be used to produce a formula for the
magnetization dependence on a magnetic field at the Curie
temperature in ferromagnets (see, for instance, Ref. [18],
p. 90). Here the same approach is used to find an ana-
lytical expression for the SP magnetic moment of the SP
polaron at T = TC. Expanding the Brillouin function in (4)
in a power series, BS(x) = αSx − βSx3, where αS = S+1

3S and

βS = (S+1)2+S2

90S3 (S + 1), and substituting λ = kBTC

αSNμ∗2 , equation
(4) can be resolved for the magnetization at T = TC, at a

field B:

M(TC) = MSAT

(
α4

Sμ
∗ B

βSkBTC

)1/3

. (6)

Substituting B in (6) by BXf (r), as given by equation (1), and
integrating (6) in the SP sphere of radius RPol, we obtain μPol

at T = TC:

μPol = 27 A μ∗(Na3
B

)2/3
(

π2α4
S

βS

)1/3(JXf S

kBTC

)1/3

, (7)

where

A = 1 −
(

x2
0

2
+ x0 + 1

)
e−x0 , (8)

and x0 = 2RPol
3aB

.

B. Antiferromagnetic case

Here the photoinduced SP magnetic moment is derived
analytically for an antiferromagnetic semiconductor at any
temperature. We will approximate the antiferromagnetic sys-
tem by dividing it into two magnetic sublattices, M+ and M−,
respectively, of equal magnitude, but generally pointing in
different directions. For simplicity, only the exchange interac-
tion between spins in different sublattices was included. The
exchange interaction between spins on the same sublattice can
be easily added, but has no significant effect [30] and it is
therefore ignored here. In this case, the sublattice magnetiza-
tions, M+ and M−, will obey the equation

|M±| = 1

2
MSAT BS

(
μ∗ |B − λM∓|

kBT

)
, (9)

where the factor 1
2 accounts for the saturation magnetization

of each sublattice to be only half of the total.
Below the Néel temperature TN, in zero magnetic field,

each sublattice becomes spontaneously magnetized, although
the total magnetic moment of the sample remains zero, since
M− = −M+. Then from Eq. (9) with B = 0, proceeding as
in Sec. IV A, λ in equation (9) can be written in terms of the
Néel temperature:

λ = 2kBTN

αSMSATμ∗ . (10)

If a magnetic field greater than the spin-flop field is applied,
the sublattice magnetization vectors, M+ and M−, tilt towards
the magnetic field direction, by the same angle θ , so that the
sample magnetization becomes

M(T � TN) = 2|M±| cos θ. (11)

A simple analysis shows that for fields below saturation (see,
for instance, Ref. [30])

cos θ = B

2λ|M±| , (12)

therefore from Eq. (11), for T � TN the magnetization de-
pends linearly on on the applied magnetic field, irrespective
of the temperature:

M(T � TN) = B

λ
. (13)
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For T > TN, |M±| → 0, and for any applied field B, we can
approximate M+ = M−, and M± parallel to B. Then, using
(9), the transcendental equation for the absolute value of M±
becomes

M± = 1

2
MSATBS

(
μ∗ B − λM±

kBT

)
. (14)

Using the linear approximation for the Brillouin function,
which is valid for small arguments, we obtain |M±| = TN

T +TN

B
λ

.
Therefore the total magnetization for T � TN becomes

M(T � TN) = 2TN

T + TN

B

λ
. (15)

From equation (12), the saturation magnetic field BSAT, which
is required to impose complete ferromagnetic alignment at
T = 0 K, is given by

BSAT = λMSAT. (16)

With this in mind, equations (13) and (15) can be united into
a single expression, valid in fields below the saturation value:

M(T ) = MSAT
B

BSAT

{
1 if T � TN

2TN
T +TN

if T � TN
. (17)

Substituting B by BXf (r) in equation (17), and integrating
in the SP sphere, i.e., r � RPol, and using equations (10)
and (16), we find an analytical expression for the magnetic
moment of a photoinduced SP in an antiferromagnet, as a
function of temperature:

μPol

μB
= 3JXf S

2kBTN
D

{
1 if T � TN

2TN
T +TN

if T � TN
, (18)

where D = 1 − ( u2
0

2 + u0 + 1)e−u0 , and u0 = 2RPol/aB. This
result is independent of B, as long as the saturation field is
never reached within the SP sphere.

C. The Weiss field model applied to SPs in EuX

In contrast to the Monte Carlo approach, using the Weiss
field model to describe SPs, requires deciding a priori whether
the material within the SP sphere is ferro- or antiferromag-
netic. The europium chalcogenides EuO and EuS are natural
ferromagnets, while EuSe and EuTe are antiferromagnets.
However, for EuSe, a small magnetic field at low temperatures
can induce a transition into the ferromagnetic phase [17]. In
our WF model for the SP, we treat EuSe using the ferromag-
netic picture, because the exchange field is sufficient to make
the interior of the SP ferromagnetic, as discussed in Sec. III.

To calculate the SP magnetic moment in the WF approx-
imation, we used as input parameters JXf S , aB, and RPol,
given in Table I. In addition to these three parameters, the
WF model requires the critical temperature TC or TN, totaling
four input parameters. The values of critical temperatures are
listed in Table II. We used TC = 4.8 K for EuSe, which is
the temperature at which the measured SP magnetic moment
displays a maximum [1].

Figure 1(b) shows the WF model results for all EuX mem-
bers. As can be observed in a comparison of the top and
bottom panels of Fig. 1, the WF model reproduces the same
qualitative behavior obtained by MC simulations. Quantita-
tively, the SP maximum values obtained by the WF model are
about 10% larger than those found from MC simulations. This
small difference can be attributed to the complete absence
of fluctuations in the WF model, which naturally contributes
to enhancing the SP size. Minor differences in the critical
temperatures can be attributed to uncertainties in the input
parameters.

V. CONCLUSIONS

In conclusion, we advanced a theory for the photoinduced
SP magnetic moment dependence on temperature in magnetic
semiconductors. The Monte Carlo simulations indicate that
the SPs are most efficiently induced in ferromagnetic semi-
conductors, but only around the critical temperature, whereas
in antiferromagnetic ones, SPs are efficiently induced at any
temperature below the critical one.

Because the MC simulations are very demanding compu-
tationally, we developed a much simpler alternative model
based on the Weiss field theory, which reproduces the MC
simulations very well. The simplicity of the WF model makes
it accessible to a wide audience. The success of the highly
simplified WF model, which is based on a simplified effective
mass Hamiltonian, at all temperatures and in a whole family
of materials, is quite remarkable, given that an SP is a com-
plex many-body system, which involves many thousands of
interacting particles.

The WF model produces analytical formulas that can be
extended to other magnetic semiconductors. The much in-
vestigated GdN can be used as an example. Stoichiometric
GdN is reportedly antiferromagnetic [31], hence from formula
(18), the maximum SP that can be induced in GdN is equal
to 3μBJXf S /2kBTN. The Néel temperature of stoichiometric
GdN is in the range 20–30 K [31]. The band-lattice exchange
interaction JXf S has been estimated to be 0.35 eV in Ref. [31],
but a value as large as 1.24 eV has also been reported [32].
Substituting these parameters in (18), the expected maximum
photoinduced SP size in stoichiometric GdN is found to be in
the range μPol/μB ∼ 170–1200. This large range of values is
due to the uncertainty in the material parameters. Thus, even
for the much studied magnetic semiconductor GdN, there
is still insufficient knowledge for an accurate prediction of
photoinduced SP size, using the WF model developed in this
work.
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