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Plasma frequency in doped highly mismatched alloys
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Highly mismatched alloys (HMAs) have band structures strongly modified due to the introduction of the
alloying element. We consider HMAs where the isolated state of the alloying element is near the host conduction
band, which causes the conduction band to split into two bands. We determine the bulk plasma frequency
when the lower-energy band is partially occupied, as by doping, using a semianalytical method based on a
disorder-averaged Green’s function. We include the nontrivial effects of interband transitions to the higher-energy
band, which limit the plasma frequency to be less than an effective band gap. We show that the distribution of
states in the split bands causes plasmons in HMAs to behave differently than plasmons in standard metals and
semiconductors. The effective mass of the lower split band m∗ changes with alloy fraction, and we find that the
plasmon frequency with small carrier concentration n scales with

√
n/m∗ rather than the

√
n/m∗ that is expected

in standard materials. We suggest experiments to observe these phenomena. Considering the typical range of
material parameters in this group of alloys and taking a realistic example, we suggest that HMAs can serve as
highly tunable low-frequency plasmonic materials.

DOI: 10.1103/PhysRevB.103.035201

I. INTRODUCTION

Highly mismatched alloys (HMAs) are semiconductor
compounds in which atoms of significantly different elec-
tronegativity substitute the host atoms. They are characterized
by an unusually strong variation in their fundamental band
gap upon the introduction of a small fraction of substituting
elements. The band anticrossing (BAC) model was proposed
to explain this behavior [1]. In the BAC model, the highly mis-
matched substitute atoms form localized states with energy
Ed near the continuum of extended states of the host material,
Ek. The localized states strongly couple to the host’s extended
states, leading to the formation of two split bands, E± [see
Figs. 1(a) and 2(a)].

The dramatic band-gap drop, first observed in the 1990s
[2], soon found applications such as developing quantum well
laser diodes [3] and high-efficiency multijunction solar cells
[4]. Later, building on the BAC model of two split bands in
HMAs, they were used to implement intermediate-band solar
cells [5–11], which is another scheme for harvesting sub-
band-gap photons [12]. A collection of recent developments
in the study of this class of semiconductor alloys can be found
in Ref. [13].

The plasmonic properties of the split bands in HMAs have
not been studied. As with any band, the presence of mobile
charge carriers results in a negative dielectric function below
and near the resonant plasma frequency of the medium. The
interface of such a medium with a surrounding dielectric
supports localized surface modes that are the basis of plas-
monic phenomena such as the subwavelength walking waves

of surface plasmon polaritons [14] or the standing modes of
localized surface plasmons on nanoparticles [15]. The oper-
ating frequency range of these modes is determined by the
bulk plasma frequency ωp of the system. While the classic
plasmonic metals such as gold and silver have operating fre-
quencies in the visible and near-infrared range, there has been
a search for alternative plasmonic materials that operate in
lower frequency ranges, such as terahertz and mid-infrared,
which can offer technological advantages such as reducing the
size of electronic devices operating in these ranges [16].

While doping of HMA bands can be a challenge [17],
mobile charge in the E− band can provide tunable plasmonic
effects. We show that both the origins of that band and the
close proximity to the E+ band make these properties different
from standard doped semiconductor plasmonics [18]. As with
doped semiconductors, the carrier density in such a system is
low compared to noble metals, giving a lower frequency range
of plasmonic operation. The large tunability of both band
gaps and doping in HMAs makes them appealing platforms
for development of plasmonic structures in the mid-infrared
regime. These plasma oscillations may also be important for
recombination in HMA-based intermediate-band solar cells.
Moreover, since a gap separates the E− band from the E+
band, proper tuning could allow for minimizing loss, which
is a crucial favorable feature for plasmonic applications [19].

In this work, we study the long-wavelength limit of bulk
plasmons of a model for HMAs. In particular, we focus on
the important role of state distribution, which is beyond the
scope of the simpler BAC model. We show that since the state
distribution between the BAC bands and the effective mass of
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(a)

FIG. 1. (a) Band structure of a generic HMA with Ed > 0 and
(b) corresponding weighting factors. (a, left) Impurity level, Ed , and
conduction band of the host material, which is taken to be parabolic,
Ek = k2/2m. The k axes are normalized to kd , defined in Eq. (5)
and also indicated. The energy axis is normalized to |Ed |. (a, right)
The corresponding two split bands of the BAC, E±, according to
Eq. (2), for V 2x = E 2

d . Also, for the two different cases of Eq. (9),
two different levels of filling are shown by μ’s and kF ’s, with their
corresponding interband energy gaps, E×1 and E×2. (b) Weighting
factors a± for this realization, from Eq. (7).

the lower E− band both depend on alloy fraction, the resulting
plasma frequency does not have the standard

√
4πne2/m∗

form, where n is carrier density, m∗ is effective mass, and
e is the fundamental charge, even in the dilute limit where
the E− band is well approximated as parabolic. In Sec. II
we formulate the calculation of the density susceptibility of
the system in the long-wavelength limit, which is required
for finding ωp of the system. Next, in Sec. III we set up an
equation for ωp of the system and analyze the behavior of
its solution, emphasizing the important qualitative features.
Finally in Sec. IV, we provide numerical values for ωp for
typical realistic parameters of previously studied HMAs and
conclude by commenting on experimental methods for ob-
serving the predicted phenomena.

II. SUSCEPTIBILITY OF HMA BANDS

In this section, we construct a formulation for calculating
the susceptibility that is needed to find the plasma frequency
of a HMA system. First we show how the state distribution
is described by the spectral density of the system, and then
we use it in the calculation of susceptibility χ . We show how
the formulation simplifies in the long-wavelength limit and
derive the limiting form to be used for our semianalytical
calculations.

(a)

(b)

FIG. 2. (a) Band structure of a generic HMA with Ed < 0 and
(b) corresponding weighting factors. (a, left) Impurity level, Ed , and
conduction band of the host material, which is taken to be parabolic.
The k axes are normalized to kd , defined in Eq. (5), and also in-
dicated. (a, right) The corresponding two split bands of BAC, E±,
according to Eq. (2), for V 2x = E 2

d . A chemical potential, μ, and its
corresponding kF are also shown, along with the interband energy
gap, E×, which is independent of filling when Ed < 0. (b) Weighting
factors a± for this realization, from Eq. (7).

A. The spectral density of HMAs

The BAC model considers only the localized impurity lev-
els with energy Ed and one set of extended states of the host
material, Ek, which we consider to be the conduction band
(CB) of the host material. The BAC model introduces a 2 × 2
Hamiltonian at each wave vector k [1],

HBAC =
[

Ek V
√

x

V
√

x Ed

]
, (1)

where V is the average coupling between localized and ex-
tended levels, and x is the fraction of impurity atoms. This
matrix can be diagonalized to give two split bands with ener-
gies

E±
k = 1

2

(
Ek + Ed ±

√
(Ek − Ed )2 + 4V 2x

)
. (2)

Measuring energy from the bottom of the CB of the host
material, we identify two cases: when the impurity level is
inside the CB, Ed > 0, as in Fig. 1(a), and when the impurity
level is below the band edge of the CB, Ed < 0, as in Fig. 2(a).

While this model provides a good description of the energy
spectrum of HMAs, it does not preserve the total number of
states, as it implies two k states for each extended k state
of the host material, which is incorrect for small x. Early
in the development of the BAC model, Wu et al., based on
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Anderson’s impurity model [20], proposed an average Green’s
function

G(E , k) =
[

E − Ek − V 2x

E − Ed + i�

]−1

, (3)

which does not suffer from this issue [21]. Here, k is still a
good quantum number in the ensemble average sense [22].
In this Green’s function, � is a broadening factor given by
πβV 2ρ0(Ed ), where ρ0(Ed ), which has dimensions of inverse
energy, is the unperturbed density of states in a unit cell at the
energy of the defect level, and β is a number of the order of 1.

As we show, the distribution of states with energy plays an
important role in the dynamics of bulk plasmons in HMAs.
The spectral density of a Green’s function properly describes
the distribution of states in a system. It is well known that the
spectral density (or spectral function) of a retarded Green’s
function is given by Ak(E ) = −Im[G(E , k)]/π , from which
the HMA spectral function is

Ak(E ) = 1

π

�V 2x

[(E − Ed )(E − Ek ) − V 2x]2 + �2(E − Ek )2
.

(4)
One can check that for each k, the integral of Ak(E ) in
Eq. (4) over energy equals 1; Ak(E ) describes how each k
is distributed among all energies due to hybridization of the
localized and propagating states. Note that when the broaden-
ing factor � is sufficiently small, the spectral density in Eq. (4)
has two sharp peaks near the split bands of the BAC model,
E±

k in Eq. (2), as they are the roots of the square bracket in
the denominator of Ak(E ). This relationship shows how the
Green’s function in Eq. (3) contains the BAC model.

The broadening factor � is naturally much smaller than V ,
most obviously when Ed < 0, in which case � = 0. Consider
a parabolic host CB and define kd such that Ekd = |Ed |, as
illustrated in Figs. 1(a) and 2(a), giving

kd =
√

2m|Ed |
h̄

. (5)

Then in the Ed > 0 case, approximating the size of the unit
cell by k−3

BZ, where kBZ is the length of the Brillouin zone, we
have ρ0(Ed ) ≈ mkd k−3

BZ/(h̄π )2. We also introduce an equiva-
lent momentum for the coupling factor, kV = √

2mV /h̄, and
find �/V ≈ βkd k2

V /(2πk3
BZ). Then, since kd � kBZ and kV �

kBZ (since V is of the order of eV), we still have � � V . For
instance, Heyman et al. used � = 10−3V in modeling their
measurements of samples of GaNxPyAs1−y−x (see Table I in
Ref. [9]).

On this basis, we consider the limit � → 0, where the
spectral density in Eq. (4) turns into two weighted δ functions
centered at the split bands of the BAC model, E±

k in Eq. (2),
indicating the share of each one at a given k:

Ak(E ) = a−
k δ(E − E−

k ) + a+
k δ(E − E+

k ), (6)

where the weighting factors are given by

a±
k = V 2x

|E±
k − Ek|(E+

k − E−
k )

. (7)

One can check that at any given k the expressions in Eq. (7)
satisfy a−

k + a+
k = 1, as expected.

These weighting factors a±
k are shown in Figs. 1(b) and

2(b). Notice that a−
k has its maximum at k = 0 and that in the

case of Ed > 0, it is larger than a+
k for k < kd , while in the

case of Ed < 0, it is always smaller than a+
k .

B. Long-wavelength limit of the susceptibility

We use the Green’s function of Eq. (3) and the spectral
density in the limit of small �, Eq. (6), to construct the
susceptibility, dielectric function, and plasma frequency of an
HMA described by Eq. (3) at zero temperature. We consider
the case where doping ensures the chemical potential is in
the E− band. We assume the valence band lies far below the
chemical potential and can be ignored. In this model, Ek, Ed ,
and V are fixed parameters of the material. The alloy fraction,
x, can be tuned, and doping controls chemical potential μ.
Since the model is isotropic, we parametrize the chemical
potential using the Fermi momentum, kF . Two examples of
E± with Ed above and below zero are shown in Figs. 1 and 2.
Also shown is the effective interband energy gap, E×, which
is the smallest difference in energy between an E+ state and
an occupied E− state at the same k:

E× = min
k<kF

(E+
k − E−

k ). (8)

As shown in Fig. 2, when Ed < 0 we always have E× =√
E2

d + 4V 2x, regardless of the filling of E−, as the minimum
gap occurs at k = 0. For Ed > 0 however, as in Fig. 1, we have

E× =
{√

(Ed − EkF )2 + 4V 2x, kF < kd

2V
√

x, kF � kd ,
(9)

since the minimum value of (E+
k − E−

k ) occurs at k = kd .
Bulk plasmons of this system are rooted in the collective

density oscillations of free electrons due to electron-electron
interactions in the E− band. This resonant mode can be seen
as an instability when the real part of the dielectric function
ε equals zero. The plasma frequency ωp of the system is
the frequency associated to the long-wavelength limit of this
resonance. Therefore, to compute ωp we need a suitable ex-
pression for ε. The well-known random phase approximation
(RPA) allows consideration of electron-electron interactions.
The RPA is exact in the high-density limit and often qualita-
tively accurate even at relatively low carrier concentrations.
The standard RPA relation connects the density susceptibility
of a system χ to ε and is particularly suitable for a case where

FIG. 3. The bubble diagram representing the density susceptibil-
ity, χ (q, ω).
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the main dynamics are due to mobile electrons [23]:

ε(q, ω) = 1 − 4πe2

q2
χ (q, ω), (10)

where q and ω are the external wave vector and frequency,
respectively. Since we seek ε(0, ωp) = 0, this form reduces
the problem to finding the long-wavelength limit of χ .

Generally, χ can be expressed by a bubble diagram as in
Fig. 3, through the Green’s function of propagating particles
in the system, G(E , k) in Eq. (3), and the matrix element,
M = 〈k, E |eiq·r|k′, E ′〉, which is on the vertex. Expressing
G through its spectral density using Lehmann representation
[24], the bubble diagram represents the integral

χ (q, ω) = 2

V

∫
dE dE ′ ∑

kk′

Ak(E )Ak′ (E ′)|〈k, E |eiq·r|k′, E ′〉|2[ f (E ′ − μ) − f (E − μ)]

E ′ − E + ω + iη
, (11)

where V is the volume of the system, f is the Fermi distribution, and η is an infinitesimal positive energy. In writing Eq. (11),
h̄ is taken to be 1 and the factor of 2 accounts for spin degeneracy. In what follows, the denominator is always off resonance, so
we set η = 0.

Using the sharp spectral density of Eq. (6), the E and E ′ integrals of Eq. (11) become trivial. In this case the bubble generates
four separate terms, corresponding to four possible pairings of a+

k and a−
k . Combining the cross terms together, we obtain three

distinct contributions to the susceptibility:

χ (q, ω) = χ−(q, ω) + χ+(q, ω) + χ×(q, ω). (12)

After standard manipulations to shift the origin of k, these terms can be written as

χ±(q, ω) = 4

V
∑
kk′

a±
k′a±

k |〈k′,±|eiq·r|k,±〉|2(E±
k′ − E±

k ) f (E±
k − μ)

ω2 − (E±
k′ − E±

k )2
, (13)

χ×(q, ω) = 4

V
∑
kk′

a+
k′a−

k |〈k′,+|eiq·r|k,−〉|2(E+
k′ − E−

k )[ f (E−
k − μ) − f (E+

k′ − μ)]

ω2 − (E+
k′ − E−

k )2
, (14)

where |k,±〉 is the state with wave vector k in the E+ or E− band. The χ± terms correspond to intraband transitions, while χ×
corresponds to interband transitions. We study the case where μ is in the E−

k band, so f (E+
k − μ) = 0 at low temperature, and

χ+ can be neglected.
To find ωp, we need the q → 0 limit of Eq. (12). In Appendix A, we use a tight-binding model to argue that the matrix

element 〈k,±|eiq·r|k′,±〉 ensures momentum conservation, k′ = k + q. We also consider the leading-order terms as q → 0 and
argue that for intraband transitions the leading term is simply 1, while in the case of interband transitions

lim
q→0

|〈k,−|eiq·r|k′,+〉|2 ≈ q2l2δk′,k+q (15)

for some length scale l . In principle, l could be k dependent, but for simplicity we consider the case where l is constant. In a
tight-binding framework, l is expected to be of the order of the lattice constant. We estimate the size of l by showing that it is
related to the matrix element in the interband absorption coefficient. We thus make an order-of-magnitude estimation of l from
transient absorption measurements on some HMAs [9]. That analysis is consistent with l being of the order of a lattice constant
for the host crystal.

Putting these results from Appendix A into Eqs. (13) and (14), for small q,

χ−(q, ω) = 4

V
∑

k

a−
k+qa−

k (E−
k+q − E−

k ) f (E−
k − μ)

ω2 − (E−
k+q − E−

k )2
+ O(q3), (16)

χ×(q, ω) = 4q2l2

V
∑

k

a+
k a−

k (E+
k − E−

k ) f (E−
k − μ)

ω2 − (E+
k − E−

k )2
+ O(q3). (17)

We use these expressions to compute ωp at low temperature
by solving for ε(0, ωp) = 0 in Eq. (10).

III. PLASMA FREQUENCY OF DOPED HMA

If we take a parabolic form for the host CB, Ek = k2/2m,
the small-q term in Eq. (16) can be calculated analytically.

Details of the derivation are in Appendix B, and the result is

4πe2χ−
q2

≈ ω2
p0

ω2

= 4e2k3
F

3πmω2

[
1

2

(
1 − EkF − Ed√

(EkF − Ed )2 + 4V 2x

)]3

,

(18)
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which defines ωp0, the plasma frequency when neglecting the
interband transitions, which manifest through χ×. Notice that
without the cubed bracket, ωp0 would be the famous plasma
frequency of an electron gas with Fermi momentum kF . One
can check that the bracket is in fact a−

k , given in Eq. (7), and as
we discuss further below, the presence of (a−

k )3 in ω2
p0 causes

a nontrivial modification in the scaling of ωp in HMAs.
Next, to represent the χ× contribution to the dielectric

function, it is useful to define

ε×(ω) = 1 − 4πe2χ×
q2

= 1 + 8e2l2V 2x

π

∫ kF

0

k2dk

(E+
k − E−

k )[(E+
k − E−

k )2 − ω2]
,

(19)

where the last equality uses the q → 0 limit of Eq. (17). While
the integral in Eq. (19) cannot be evaluated in closed form, we
see that it diverges if ω � E×, where E× is defined in Eq. (8).
Due to this divergence, the ω dependence of ε×(ω) is strongest
when ω is close to E×, and numerical evaluation shows that
for smaller ω, ε× is only weakly dependent on ω.

Setting ε = 0 in Eq. (10) and using Eqs. (18) and (19), we
find

ω2
p = ω2

p0

ε×(ωp)
. (20)

We now show how ωp and ωp0 change with alloy fraction
x and doping, parametrized by kF . Figure 4 shows ωp0 against
kF for selected values of V 2x. We normalize the kF axis using
the natural inverse length scale, kd , defined in Eq. (5). The
ωp0 axis is normalized to ωpd , which is the plasma frequency
of a free electron gas with effective mass m when the Fermi

momentum is equal to kd ; that is, ωpd =
√

4e2k3
d/3πm.

When Ed > 0 (Fig. 4 top), ωp0 decreases with x if kF <

kd , while for higher filling ωp0 increases with x. For k < kd ,
the lower band largely has the propagating character of the
unperturbed CB, while for k > kd , it is mostly made from the
localized impurities, as seen in Fig. 1(b); this crossover causes
the change in the behavior of ωp0 with kF .

When Ed < 0 (Fig. 4 bottom), the E− band has largely lo-
calized impurity state character for all k, as shown in Fig. 2(b).
In this case ωp0 increases with x for all levels of filling. Note
that in this case ωp0 is significantly smaller than ωpd even for
relatively large values of V 2x; the lower share of propagating
states in E− reduces the associated plasma frequency.

The plasma frequency including interband effects is given
by the solution of Eq. (20), which can be found numerically.
However, since the ω dependence of ε×(ω) is only strong near
E×, for ωp0 sufficiently smaller than E× we can approximate
the solution by ωp ≈ ωp0/

√
ε×(0). But if ωp0 is near or larger

than E×, then the diverging ε×(ω) keeps the solution below
E×. Therefore, ωp is always smaller than both ωp0 and E×.

To show how ωp is bounded by ωp0 and E×, Fig. 5 plots two
example solutions of Eq. (20) against V 2x/E2

d . The top panel
has Ed > 0 and the bottom has Ed < 0. The filling factor is
taken to be the same in both cases, kF = 3kd/4. In order to
make the bounding effects clearly visible, a rather large value
for ωpd has been chosen in the case of Ed < 0, corresponding

FIG. 4. Intraband plasma frequency ωp0(kF ) of the E− band,
according to Eq. (18) for selected values of V 2x/E 2

d . The top panel
has Ed > 0, and the bottom has Ed < 0. Increasing x increases ωp0

when Ed < 0 and for heavily doped bands with Ed > 0, kF > kd .
Contrastingly, increasing x in lightly doped bands (kF < kd ) with
Ed > 0 decreases ωp0.

to a case with Ed just below the CB minimum. For Ed > 0
(top), E× bounds ωp for small x, while for Ed < 0 (bottom), it
bounds ωp for larger x.

The differences between plasmons in HMAs and free elec-
tron gases can be seen in the low-density limit, when one
might expect recovery of the free-electron result with a mod-
ified effective mass. In the low-density limit, the filled part
of the E− band can be approximated by a parabolic band of
effective mass m−, given by

m

m−
= 1

2

⎛
⎝1 + Ed√

E2
d + 4V 2x

⎞
⎠. (21)

Also, for k � kd we find that a−
k in Eq. (7) becomes approx-

imately independent of k and approaches m/m−, which we
also call a−. Moreover, the electron density in the HMA is n =∫ kF

0 dka−
k /4π3, which means in this limit, n ≈ a−k3

F /3π2.
Then if ωp had the standard scaling

√
n/m∗, it would scale

as a−, since m− ∝ 1/a− and n ∝ a−. However, ωp in fact
scales as a3/2

− , which follows immediately from Eq. (18),
where the quantity in brackets is a−, as discussed previously.
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FIG. 5. Plasma frequency ωp (solid lines) from numerical so-
lution of Eq. (20) as a function of V 2x/E 2

d . The energy axis is
normalized to |Ed |. ωp is bounded below the intraband plasma fre-
quency ωp0 (dashed lines), defined in Eq. (18), and the smallest
interband gap E× (dotted lines), defined in Eq. (8). The filling factor
is kF = 3kd/4. Top: Ed > 0 with ωpd = 3Ed and l = 1/2kd . Bottom:
Ed < 0 with ωpd = 75|Ed |, and l = 1/10kd .

Note that in the low-doping regime, ωp ≈ ωp0 because ωp0 �
E× and kF is small enough that ε× ≈ 1.

This anomalous scaling can be observed in a set of HMAs
with varying x (which changes a− or equivalently m−) in
which doping ensures that n is held constant. If ωp with fixed
n obeyed the standard free-electron effective mass result, then
as x changes, ωp would scale as 1/

√
m− ∼ √

a−. Our theory
instead predicts that in this fixed-n case, ωp in fact scales with
1/m− ∼ a−.

The unexpected extra factor of
√

a− in our result is due to
the quadratic contribution of the weighting factor, a−

k , in the
density susceptibility. This nontrivial scaling feature can be
seen as a signature that reveals the density-density response
mechanism that underlies the collective mode of plasma os-
cillations. Therefore, the special state distribution in HMAs
carries a qualitative effect on their bulk plasma frequency all
the way to the low-density limit. Since low levels of doping
are most likely to be achievable in HMAs, we expect this
peculiar scaling to be the most prominent prediction of our
model to be checked by experiments.

TABLE I. Typical range of fixed parameters of BAC model for
HMAs, where me is the free electron mass.

Ed (eV) V (eV) m (me)

−0.6 to 0.4 1–3 0.02–0.15

IV. EXPERIMENTAL SIGNATURES

In typical HMAs, in particular when the localized state
couples to the CB of the host, the impurity level often falls
within a few hundred meV below or above the CB edge.
Considering that V is generally of the order of a few eV,
and with the typical light effective masses of the host CB
in III-V and II-VI materials, h̄ωp can be as large as a few
hundred meV. This scale suggests that a possible plasmonic
material made by doping HMAs would operate in the range of
mid-infrared or lower frequencies. Based on a limited review
of the literature [1,9,25–39], Table I shows the typical range
of the fixed parameters of the BAC model for III-V and II-VI
HMAs with CB anticrossings.

To examine a realistic and flexible case, we consider the
quaternary alloy GaNxPyAs1−y−x. For this HMA we consider
the nitrogen atoms to provide the localized states in a GaPAs
host material. By varying the concentration of phosphorus,
both positive and negative Ed are realizable [28]. Transient
absorption studies have been performed on two realizations of
this alloy [9], which allows us to extract an estimate of the
matrix element l (see Appendix A). From those results, we
estimate l to be between 8 and 11 Å, and pick l = 10 Å for
the following calculations. For the numerical values of Ed and
V , we rely on Ref. [28], and for the effective masses and the
host’s energy gaps we use Refs. [26,40]. For V and m, we
assume a linear interpolation with y. But for Ed , relying on
Ref. [40], we also take into account bowing, Ed (y) = (1 −
y)Ed |y=0 + yEd |y=1 + y(1 − y)C, with C = 0.19 eV. These
parameters are listed in Table II.

We consider moderately doped materials with fixed n =
1018 cm−3 and calculate ωp by numerically solving Eq. (20),
with results in Fig. 6 for all y and 10−3 < x < 10−1. At this
doping, h̄ωp is largest near the GaAs limit at small y (i.e.,
positive Ed ) and small x, approaching 120 meV. Here, E×
is always larger than 180 meV and hence does not have a
significant bounding effect on ωp. The phosphorus fraction y
at which Ed changes sign is marked on the plot. One can see
that ωp is generally smaller on the Ed < 0 side, where the E−
band is predominantly made of the localized levels, and a− is
generally small, similar to the results in Fig. 4.

Our simple two-band model for the dielectric function
takes ε∞ to be 1, which is not correct for most real materials.
Based on that consideration, one would expect to find smaller

TABLE II. Parameters of BAC model for GaNxPyAs1−y−x

[26,28,40], where me is the free electron mass.

Parameters y = 0 y = 1

Ed (eV) 0.22 −0.6
V (eV) 2.8 3.05
m (me) 0.067 0.13
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FIG. 6. Plasmon energy, h̄ωp, for GaNxPyAs1−y−x at fixed elec-
tron density, n = 1018 cm−3. The BAC parameters listed in Table II,
and explained in the text, are used for GaNxPyAs1−y−x , and a fixed
matrix element, l = 10Å, is assumed for the calculations. Plasma
frequencies are highest below the dashed line, where Ed is positive.

ωp in an experiment than what we report here. The predictive
nature of our model is in how ωp changes upon changing of x
and doping, not the quantitative values.

Given that the plasmon resonance is expected to appear
in the mid-infrared range, dielectric permittivity measure-
ments such as ellipsometry [41] or Fourier-transform infrared
spectroscopy [42,43] are viable candidates to extract ωp in
these materials. If the HMA supports plasmonic propagat-
ing modes, then indirect techniques such as the proposal in
Ref. [44] can also give information on ωp.

The constraint that E× imposes on ωp could be important
in certain cases. One would expect that effect to appear when
x is low, especially when Ed is close to zero.

It is possible that ωp for these materials may be close to
their optical phonon resonance, especially in the low-doping
regimes and when Ed < 0, when ωp is small, as the typical
frequency range of optical phonons is in terahertz. In such
a case, one needs to be careful when extracting ωp from
permittivity measurements.

The great tunability of HMAs through both doping and
alloy fraction allows for optimization of their potential
plasmonic applications. In cases such as the quaternary
GaNxPyAs1−y−x, the relative location of the localized level
can also be tuned, providing even more handles for tuning.
Moreover, the gap between the E− and the E+ bands could
potentially allow for tuning the plasma frequency in a minimal
loss regime [19], a fact that suggests the potential use of some
well-tuned doped HMAs as low-loss plasmonic materials in
the mid-infrared region.

The calculations presented in this work assume an infinites-
imal broadening factor � and ignore the disorder effects of
the random alloy, which can allow violation of momentum
conservation. Future work exploring the implications of these
effects for plasmons may be important.
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APPENDIX A: LONG-WAVELENGTH LIMIT OF THE
MATRIX ELEMENTS

Tight-binding (TB) models have been used to describe
HMA band structure [28–30]. Here we use a TB model com-
bined with experimental results to justify the long-wavelength
approximation of the matrix element |〈k,−|eiq·r|k′,+〉|2 in
Eq. (15), including momentum conservation. In a TB model,
wave functions in band i are given by [45]

|k, i〉 = 1√
N

∑
R

eik·R∣∣φ(i)
k (r − R)

〉
, (A1)

where k is the crystal momentum, r is the position in the
real space, and the sum is over all lattice points R. N is
a normalization factor and, if we neglect overlaps between
different sites, it is equal to the number of lattice points, while
φ

(i)
k ’s are an orthonormal set of orbital wave functions given

by linear combinations of atomic (or molecular) orbitals of
each unit cell. Using the form in Eq. (A1) we have

〈k′, i|eiq·r|k, j〉

= 1

N

∑
R,R′

ei(k·R−k′ ·R′ )〈φ(i)
k′ (r − R′)

∣∣eiq·r∣∣φ( j)
k (r − R)

〉
.

(A2)

If we neglect the off-diagonal terms, R 
= R′, then multiply
and divide Eq. (A2) by eiq·R, and shift r − R → r in the
matrix elements, we get

〈k′, i
∣∣eiq·r|k, j

〉
≈ 〈

φ
(i)
k′ (r)

∣∣eiq·r∣∣φ( j)
k (r)

〉 1

N

∑
R

ei(k+q−k′ )·R

= 〈
φ

(i)
k′ (r)

∣∣eiq·r∣∣φ( j)
k (r)

〉
δk′,k+q, (A3)

which immediately implies momentum conservation.
In the long-wavelength limit, we have eiq·r ≈ 1 + iq · r,

and k′ ≈ k, due to momentum conservation. Therefore, the
orthonormality of φ

(i)
k ’s implies that the intraband matrix

element is |〈k′, i|eiq·r|k, i〉|2 ≈ δk′,k+q, while the interband
matrix elements are

〈k′, i
∣∣eiq·r|k, j

〉 ≈ iq · 〈
φ

(i)
k′ (r)

∣∣r∣∣φ( j)
k (r)

〉
δk′,k+q, (A4)

as the first term vanishes due to orthogonality of φ
(i)
k ’s. If

a TB model with localized orbitals is a suitable model for
describing the band structure of HMAs, then Eq. (A4) justifies
the form that we choose in Eq. (15), suggesting that l must be
a length scale of the order of the lattice parameter.

The interband matrix element in Eq. (15) is related to the
interband absorption, which permits an independent estimate
of its magnitude. If |s〉 is an eigenstate of a system with energy
Es, the absorption coefficient is [46]

α(E ) = 4π2e2

nh̄cEV
∑
ss′

∣∣∣∣
〈
s

∣∣∣∣ h̄P̂
me

∣∣∣∣s′
〉∣∣∣∣

2

δ(Es′ − Es − E )( fs − fs′ ),

(A5)
where n is the refractive index and P̂ is the momentum opera-
tor.

035201-7



HASSAN ALLAMI AND JACOB J. KRICH PHYSICAL REVIEW B 103, 035201 (2021)

It is also straightforward to see that if the only momentum
dependence of a single-particle Hamiltonian is the kinetic
part, P2/2me, as is the case for Hamiltonians describing band
structures of crystals, then we have

(Es′ − Es)〈s|r|s′〉 = ih̄

me
〈s|P|s′〉, (A6)

where r is the position operator. Equation (A6) shows how
the position matrix element, as in Eq. (A4), is related to the
momentum matrix element that is present in the expression of
α, Eq. (A5).

Assuming that P̂ also conserves momentum, the sum in
Eq. (A5) reduces to a single sum over k. Now consider that
an |s〉, |s′〉 pair in Eq. (A5) are |k,±〉, two eigenstates of the
Hamiltonian in the E+ and E− bands, respectively. Then the
length scale l is given by |〈k,+|r|k,−〉|2 = l2. Equation (A6)
then allows |〈s|h̄P/me|s′〉|2 in Eq. (A5) to be written as l2E2,
since the δ function enforces E+

k − E−
k = E .

With these considerations, and approximating that l is in-
dependent of k, for the E− → E+ absorption coefficient we
can write

α(E ) = 4π2e2El2

nh̄c
Dj (E ), (A7)

where Dj (E ) is the k-conserving joint density of states with
energy E .

In the transient absorption measurements of Ref. [9], pho-
toexcitation populates the E− levels, and a probe beam is used
to determine the absorption from these transiently populated
states. We consider sample S205B, whose transient absorption
spectrum 2 ps after photoexcitation is shown in their Fig. 3(a).
We consider the absorption at E = 0.8 eV. Assuming that the
absorption change is entirely due to the E− → E+ transitions,

and noting that the thickness of the absorptive layer is 0.5 μm,
we estimate α(0.8 eV) ≈ 700 cm−1.

Then, to use Eq. (A7) to estimate l , we need to estimate
Dj (E ). First we calculate Dj (E ) between the full bands E−
and E+ while taking the weighting factors, a±, into account.
We then need to reduce Dj (E ) to account for the partial
occupancy of E−. Since the transient absorption experiment
considers excitation from a photoexcited population in E− that
is not in equilibrium, and since the E− bandwidth is not very
wide, we consider the electrons to be uniformly distributed in
E−. We then reduce Dj (E ) by the ratio n−/nmax, where n− is
the electron density in E−, reported at 2 ps in Fig. 5 in Ref. [9]
to be approximately 2 × 1018 cm−3. For nmax, we consider two
limiting approximations: first, nmax ≈ 5.2 × 1019 cm−3 is the
concentration of electrons in a completely filled E−; second,
nmax ≈ 3.2 × 1019 cm−3 is the concentration of electrons in
the E− band if it is filled up to the point where E = 1.6
eV (the upper limit of the observed E− → E+ absorption
band) is accessible. Using n = 3.25 [47], these approxima-
tions produce a range for l between 8 and 11 Å. Since in
the particular case we are considering, interband transitions
do not have a significant effect on plasma frequency, ωp

changes by at most about 3%, as l varies between 8 and
11 Å. We use l = 10 Å in Fig. 6.

APPENDIX B: ANALYTIC CALCULATION OF ωp0

In order to find ωp0 in Eq. (18), one needs to expand the
χ− integral in Eq. (16) up to second order, for a parabolic
conduction band, Ek = k2/2m. Performing the angular part
of the integral, the first term in the expansion vanishes,
and the next terms, which are proportional to q2, have two
parts,

χ
(2)
− (q, ω) = q2

8π2mω2

{∫ kF

0
k2 [Ed − Ek +

√
(Ek − Ed )2 + 4V 2x]3

[(Ek − Ed )2 + 4V 2x]3/2
dk

−4V 2x

m

∫ kF

0
k4 [Ed − Ek +

√
(Ek − Ed )2 + 4V 2x]2

[(Ek − Ed )2 + 4V 2x]5/2
dk

}

= q2

8π2mω2
(I1 − I2), (B1)

where the last equation defines the integrals I1 and I2. Since Ek = k2/2m, the change of variables u = k2 allows integrating I1 by
parts to obtain

I1 = k3
F

3

[
1 − EkF − Ed√

(EkF − Ed )2 + 4V 2x

]3

+ I2. (B2)

Using this result in Eq. (B1) gives Eq. (18), which defines ωp0.
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