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We introduce the subsystem symmetry-preserving real-space entanglement renormalization group and apply
it to study bifurcating flows generated by linear and fractal subsystem symmetry-protected topological phases
in two spatial dimensions. We classify all bifurcating fixed points that are given by subsystem symmetric
cluster states with two qubits per unit cell. In particular, we find that the square lattice cluster state is a
quotient-bifurcating fixed point, while the cluster states derived from Yoshida’s first-order fractal spin liquid
models are self-bifurcating fixed points. We discuss the relevance of bifurcating subsystem symmetry-preserving
renormalization group fixed points for the classification and equivalence of subsystem symmetry-protected

topological phases.
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I. INTRODUCTION

The classification of all phases of matter is central to
condensed-matter physics. Over the past several decades,
the exploration of gapped quantum phases of matter at zero
temperature has led to new and exotic possibilities. This
progress has been driven in large part by the discovery of deep
connections between these phases and quantum codes and
computation [1]. Topological phases of matter [2] have given
rise to the field of topological quantum computation [3-5],
while symmetry-protected topological (SPT) phases of matter
[6] were found to underlie measurement-based quantum com-
putation (MBQC) in quantum wires [7—10]. The connection
has proven reciprocal, as unconventional topological quantum
codes [11-16] have led to the fascinatingly unexpected fracton
phases of matter [17,18], while universal MBQC resource
states [19,20] have motivated the study of related subsystem
symmetry-protected topological (SSPT) phases [21-28].

A leading approach to classifying quantum phases is via
stable fixed points of the entanglement renormalization group
(ERG) [29], a carefully controlled form of blocking real-space
renormalization designed to preserve zero temperature quan-
tum phases [30]. Recently, this picture has been challenged
by fracton phases that exhibit exotic bifurcating ERG flows
[30-32]. This has led to a generalization of the usual notion of
ERG fixed points to also allow self-bifurcating and quotient-
bifurcating fixed points, which define coarser equivalence
classes of fracton phases [31,32].

While there are no intrinsic topological phases in 1D spin
systems, there are nontrivial SPT phases that exhibit topo-
logical phenomena with respect to operations that commute
with a global symmetry [33,34]. These phases are classi-
fied by equivalence classes of symmetry-preserving ERG
fixed-points [33,35]. Analogously, while there are no frac-
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ton topological phases in 2D spin systems [36,37], there
are nontrivial SSPT phases that exhibit similar topological
phenomena with respect to subsystem symmetric operators
[22,23]. To date, the classification of these phases has gar-
nered significant interest and ample progress [38—41] but a
consensus has not been reached. This raises a natural question:
What is the nature of the flows generated by SSPTs under
subsystem symmetry-preserving ERG?

In this paper, we formulate and study the subsystem
symmetry-preserving entanglement renormalization group
(SSPERG) for both linear and fractal subsystem symmetries.
We uncover symmetric gapped self-bifurcating and quotient-
bifurcating fixed points directly in 2D, reminiscent of the
behavior exhibited by fracton models in 3D [30-32], thus
demonstrating nontrivial symmetric gapped bifurcating ERG
fixed points in less than 3D.

To find bifurcating fixed point solutions we utilize twist
phases, defined in Refs. [22,23,39], as invariants for the
SSPERG flows. These invariants provide key constraints on
the possible SSPERG flows that allow us to rule out certain
a priori possibilities, and in many cases, to find particular
bifurcating fixed point solutions. Following this approach, we
first show that the square lattice cluster state with linear sub-
system symmetries is a quotient-bifurcating fixed point under
the SSPERG. Second, we classify bifurcating fixed points
under fractal SSPERG that take the form of first-order fractal
SPT cluster states with two qubits per unit cell. These include
the 2D fractal SPTs defined by Yoshida’s first-order fractal
spin liquids [42] (FSLs), which we find to be self-bifurcating.

The paper is laid out as follows. In Sec. II, we review nec-
essary background topics: the entanglement renormalization
group (both in the absence and presence of global sym-
metry), subsystem symmetries, and SSPT phases. Next, in
Sec. III, we combine these topics and describe the subsystem
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symmetry-preserving ERG. In Sec. IV, we construct bifurcat-
ing SSPERG flows for two models: the square lattice cluster
state and a family of fractal SPT cluster states. Finally, in
Sec. V, we conclude and discuss further research directions.

In the Appendices, we provide more specific details about
the ERG flows in our examples. In Appendix A, we briefly
review Haah’s polynomial notation, which is useful for dis-
cussing the ERG. In Appendix B, we describe the square
lattice cluster state and, finally, in Appendix C, we discuss
fractal SSPTs. We also provide a Mathematica notebook [43]
which includes these examples.

II. BACKGROUND

In this section, we first review the ERG [29] with and with-
out symmetry [44,45]. We then review subsystem symmetries
and SSPT phases [22,23]. Next, we introduce cluster states
[46,47], which provide examples of SSPT phases [21-27].
Finally, we review the twist phase, a topological invariant that
can be used to classify SSPT phases [39].

A. Entanglement renormalization group

A powerful way to understand critical behavior and de-
fine phases of matter is through the renormalization group
[48,49], which allows for the study of a system at larger and
larger scales, removing any physics that is only present at
short range. The ERG is a class of renormalization group
transformations for systems on a lattice, which coarse grain
the lattice and remove short-range entanglement [29]. A wide
range of possibilities exist for ERG fixed points. Conventional
fixed points have been described that show self-similarity at
increasing scales [50-53] but more exotic possibilities, such
as self-bifurcation [54-56] and quotient-bifurcation [32], have
also been observed. For example, in phases that self-bifurcate,
such as those with fracton topological order [30-32], the sys-
tem splits into two or more copies of itself after each ERG
transformation.

The ERG has been utilized for both topologically ordered
phases [50-53] and symmetry protected phases [33,35,44,45].
For the latter, the class of RG transformations is restricted
to preserve a given symmetry group [35,44,45]. This restric-
tion creates a subdivision of the topologically ordered phase
equivalence relation [33-35]. In this section, we describe
both variants of the ERG, first considering its application to
topological phases without symmetry before moving on to the
symmetry-preserving case.

1. Entanglement renormalization for topological phases

We consider spin systems defined by local Hamiltonians
with a finite energy gap on a regular spatial lattice A as
follows:

H=Yh, M
ieA

where h; are supported on a local neighborhood contained
within a constant distance of site i. We also consider local
unitary circuits (LUCs) [53], defined by a series of unitaries

U =Uy...0U, where
Un = 1_[ On.i (2)

for unitaries O, ; that have local support, disjoint from one
another. The support of the O, ; and the depth of the circuit N
are independent of system size. The existence of a local uni-
tary circuit between two gapped, local Hamiltonians implies a
gapped adiabatic path between them and, therefore, that they
are in the same quantum phase of matter [53].

The ERG [29] is a particular class of real-space renor-
malization transformations generated by coarse-graining op-
erations that enlarge the scale of the lattice, LUCs, and the
decoupling of degrees of freedom that are in a trivial ten-
sor product state [30]. These operations are defined so as to
remain within a given quantum phase of matter. Here our
focus is on translation-invariant gapped commuting projector
Hamiltonians, and so the local unitary circuits are also taken
to be translation invariant. By coarse graining the lattice, we
are picking out a subgroup of translations that need to be
preserved and hence allowing for a larger set of local unitaries.

To describe a general transformation step of the ERG, we
start with a local, gapped Hamiltonian H(a) defined on a
lattice with lattice constant a. An ERG transformation can be
decomposed into three steps [32]:

(1) Coarse grain the lattice; in other words, redefine the
unit cell to be size ca, for ¢ an integer.

(2) Apply local unitary circuits to remove short-range en-
tanglement.

(3) Project out any trivial and disentangled degrees of
freedom.

After performing these steps, what is left is a set of one
or more disjoint local, gapped Hamiltonians defined on the
coarse-grained lattice. This may be written as

H(a) >~ H(ca) + Hy(ca) + - - - 3)

where =~ stands for quantum phase equivalence, which in-
cludes LUCs, decoupling trivial degrees of freedom, and
redefinitions of the local Hamiltonian terms that preserve the
ground space and the energy gap.

This process may then be repeated on each of the Hamil-
tonians H;(ca). By definition, the ERG preserves quantum
phases of matter, and can be used to demonstrate the equiv-
alence of phases on a lattice by coarse graining at larger and
larger scales.

An ERG fixed point occurs when the ERG repeats after
a constant number of steps. By repeating, we mean that the
result of each ERG step can be written using copies of the
Hamiltonians from the previous step but defined at larger and
larger lattice scales. In this paper, we focus on ERG fixed
points, or models that run to such fixed points in a finite
number of steps. It is worth noting that the ERG may also
be defined for generic models that only asymptotically reach
their fixed point, but this is beyond the scope of our current
paper, and likely requires the application of numerical tech-
niques [57].

The simplest type of fixed point is that of a single Hamil-
tonian conventional fixed point,

H(a) ~ H(ca), 4
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relevant for the case of conventional topological phases
[50-52,58,59]. Another important possibility is self-
bifurcation, where a Hamiltonian splits into multiple copies
of itself such as

H(a) = H,(ca) + H(ca), ()

with H|(ca) >~ H,(ca) >~ H(ca). More generally, it is possible
to have quotient bifurcation where, instead, H(ca) ~ H;(ca),
H(ca) 2 Hy(ca) and H,(ca) self-bifurcates. These latter pos-
sibilities are relevant for fracton topological phases [30-32].

2. Symmetry-preserving ERG

In the presence of symmetries, a restricted form of ERG
transformations that are symmetry preserving have previously
been considered [44,45]. Symmetry-enriched topological
phases (SETs) [60] are defined by symmetric Hamiltonians
under an equivalence relation that allows any gapped adiabatic
path that respects a given symmetry group G, with representa-
tion S(g) for g € G. The well-known subclass of SPT phases
are defined by further restricting to SETs that are equivalent
to the topologically trivial phase when all symmetry condi-
tions are dropped [33,34]. The symmetric phase equivalence
condition is ensured if we only consider symmetric Hamilto-
nians and modify definition Eq. (2) to require that each O, ;
commutes with all of the symmetry operators S(g;), for all
g; in G. In other words, every local unitary operator in the
LUC must respect the symmetries [53]. It follows that any
trivial states which are decoupled during the ERG must be
symmetric trivial states.

A simple example of a symmetric ERG fixed point is given
by the following Hamiltonian (known as the 1D cluster state
[46], (see Sec. II B 2 for more on cluster states):

H(a) =) ZiXZis. ©)

There are two symmetry generators, S; and S, consisting
of Pauli X operators on even and odd sites, respectively.
There exists a local circuit made up of controlled-Z (CZ)
gates on sets of four adjacent qubits (see Fig. 1), taking this
Hamiltonian to

H(Q2a) = Z Z4i_3X4iZsip1 + Z4iXaiv1 Zaita. @)

A

We refer to the second model as H (2a) because it is essentially
the same as H (a), except that it is only supported on half of
the qubits (see Fig. 1). Its unit cell is also four qubits instead of
two. It is easily verified that the local gates given by a product
of four CZ gates respect both symmetry generators. Therefore,
we have H(a) >~ H (2a), which recovers the well-known result
that the cluster state is a symmetric ERG fixed point.

A final point about this example is that we may turn the
Hamiltonian in Eq. (6) into a trivial, noninteracting model
by adding CZ gates between every pair of adjacent qubits.
This does not, however, mean that the original model is in a
trivial SPT phase; in fact, it is nontrivial. While such a circuit
does globally commute with both symmetries, it cannot be
decomposed into local operators O, ; that commute with the
symmetries individually. As this example shows, nontrivial
SPTs may be trivialized with a globally symmetric circuit

(@)

FIG. 1. (a) Symmetric LUC taking H(a) [Eq. (6)] to H(2a)
[Eq. (7)]. Each red line is a CZ gate. (b) Coarse-grained 1D cluster
Hamiltonian H(2a). The lines between qubits indicate there is a
local term containing both qubits. (c) Calculating twist phases in the
1D linear cluster state, with truncated symmetry S; (top) and local
operators that anticommute with it (bottom).

if we drop the local symmetry-preserving condition. More
generally, the classification of SETs represents a subdivision
of the classification of topological states without symmetries.

B. Subsystem symmetry

The Z; x Z, symmetry group of the Hamiltonian in
Eq. (6) is an example of a global symmetry: the symmetry
group does not change with system size. A more exotic possi-
bility is that the symmetry group is generated by subextensive
operators, and its cardinality grows with the system size. In
this case, it is called a subsystem symmetry [22,23].

Several classifications of subsystem symmetry protected
phases have been proposed [38—41]. Some of these classi-
fications have been based on the twist phase, a topological
invariant related to the projective representations of the sym-
metry group. We introduce the twist phase below, alongside
the definition of subsystem symmetries.

1. Subsystem symmetry groups

To give concrete examples of subsystem symmetry, we
follow the treatment of Ref. [61] and restrict to the case of
locally specified symmetry operators that consist of Pauli X
operators. This class of symmetries is defined as follows: Let
P, and Px be the subgroups of the Pauli group generated by
all Pauli Z and X operators, respectively. First, write down a
subgroup I' of Pz, consisting of local operators. This subgroup
is called the constraints. Then, take the symmetry group S to
be all products of Pauli X operators that commute with the
constraints or

S={sePx|sos=oVoeTl}. 8)

This generalizes the notion of a global spin flip symmetry,
which can be described in this formalism by choosing con-
straints that are generated by nearest-neighbor two-body Pauli
Z operators on a lattice. For example, on the square lattice,
these two-body operators are

I'=1{Z ;Zi+1,j, Zi ;Zi j+1, Vi, j}, )

where Z; ; acts as Pauli Z onsitex =i,y = j.
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FIG. 2. Schematic pictures of subsystem symmetry. Linear (left)
and fractal (right) symmetries on a square system.

Let Sjc be the subgroup of S generated by all local
operators in S. Next, consider the group Sy = S/Sioc. The
representatives of nonidentity elements of this group form a
minimal set of nonlocal elements of S, modulo local symme-
tries. Since this group is Abelian, we can decompose it as
S/Sie = ZX by choosing a set of generating elements. For
the discussion below, we assume we have chosen a set of
generators of S, with minimal support.

If the support of a nonlocal symmetry generator grows
extensively (at a rate linear in the system size), it is a global
symmetry. If it grows at a rate slower than linear, it is a
subsystem symmetry. If the system is translationally invariant,
the number of subsystem symmetry generators in S, grows
subextensively with the system size.

We now consider a few examples of subsystem symmetry
by specifying their local constraints I". In all cases, we as-
sume a square lattice. The first example is linear symmetry.
Consider the constraints

I'=1{Zi_1,jZi+1,jZi j-1Zi j+1, Vi, j}. (10)

The symmetries that commute with these constraints are Pauli
X operators acting on diagonal lines, x £y = ¢, through
the lattice. These symmetries are nonlocal and scale subex-
tensively in the system size, and are therefore subsystem
symmetries.

To count the number of independent symmetries, consider
a diamond of side length L (see Fig. 2). Then there are 2L — 1
independent symmetries, since the product of all symmetries
in one direction is equal to the product of all symmetries
in the perpendicular direction. The number of symmetries
therefore scales as the square root of the number of qubits,
again subextensive. This square root scaling is a general prop-
erty of translationally invariant two dimensional subsystem
symmetries [22].

A more exotic possibility is fractal subsystem symmetry
[23,62]. Consider the constraints

r={z775.250 0, 257525 0, vi g}, an
where A and B are two sublattices. The symmetries resulting
from these constraints have the form of discrete Sierpinski
fractals (see Fig. 2). These are again subsystem symmetries.
If we put a Sierpinski fractal on a square lattice of side length
2!, the support of the fractal scales as N'°2(3)/2 where N is
the number of lattice sites. This is one example of a larger
class of fractal symmetries, which we explore in more depth
in Sec. IV B.

Both Egs. (10) and (11) are examples of a more general
type of constraint, defined by a bipartite graph G = (V, E).

For such a graph, we may define

r:{ ]_[ ZW), VveV}, (12)

v'eN(v)

where N(v) are the neighbors of v according to the edges of
G. To reproduce the constraints in Eq. (10), we simply use the
nearest-neighbor graph of a square lattice. For Eq. (11), on the
other hand, we use a honeycomb lattice.

While Eq. (12) does not require a bipartite graph to be
defined, we generally restrict to this case. The reason is that
on a bipartite graph, the constraints may be split into two sets,
each acting entirely on one of the two vertex partitions. There-
fore, the symmetries may also be split into two disjoint sets as
well. This property is useful for constructing symmetric LUCs
(see Sec. III B below).

2. Examples of SSPTs

We can generate a short-range entangled Hamiltonian with
the symmetry group specified by Eq. (12), for any graph G =
(V, E), using a class of models called cluster states [46,47].
The Hamiltonian is given in terms of this graph by

H:ZXU ]‘[ Zy. (13)

veV v'eN(v)

We remark that the Hamiltonian in Eq. (6) is a simple example
of a cluster state. In that case, the graph G is just a 1D chain.
To see why the symmetry group of the cluster state Hamil-
tonian is given by Eq. (12), note that the Pauli Z part of the
local operators in Eq. (13) are the nearest neighbors of each
vertex, or exactly the generators of Eq. (12). To see why it is
short-range entangled, we construct the ground state,

10)erus = [ ] CZ(e)I+)®", (14)

ecE

Where CZ(e) denotes a CZ operator applied to both of the
qubits sharing edge e, and |[+) = \/L§(|0> + |1)). By applying a
CZ gate to each edge [as with the Hamiltonian in Eq. (6)], this
ground state simply becomes the product state |+)®V. There-
fore, as long as the edges of the graph have a finite maximum
length with respect to the spatial lattice, the Hamiltonian of
Eq. (14) is short-range entangled.

As an example of a cluster state with subsystem symmetry,
consider the nearest-neighbor graph on the square lattice. The
corresponding cluster state is

H = ZXijZi+1,jZi—l,jZi,j+1Zi,j—1- (15)
ij

Since this cluster state is defined on a square lattice, the
symmetries are precisely those given by Eq. (10). Using the
twist phase (introduced below), once can verify that this is
indeed a nontrivial SSPT phase [21,22]. The Sierpinski fractal
symmetries of the last section [Eq. (11)] may also be realized
on a cluster state but this time using a honeycomb lattice
[23,24] for graph G.

By utilizing cluster states, we can construct Hamiltoni-
ans with subsystem symmetries. However, we have not yet
discussed if, and why, these Hamiltonians lie in nontrivial
symmetry protected phases, for which there exists no smooth
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local symmetry-preserving adiabatic path to a product state.
To do so, we first need to introduce topological invariants of
SSPTs, such as the twist phase considered below.

3. Twist phases and classification of SSPTs

The twist phase is a function that takes two symmetry
group elements and returns a U (1) phase. It forms a topologi-
cal invariant that can be used to distinguish between trivial and
nontrivial SSPT phases or between different nontrivial phases.
We remark that the twist phase was originally introduced for
global symmetries [22,23].

To calculate twist phases, we first take any symmetry op-
erator S, and truncate it to an operator S; > that only acts
nontrivially inside a strip of finite width,

S )
Sl,} = {Hl

where x. is some finite value. Next, due to the locality of H,
and the local symmetry condition it obeys,

x € [0, xeud

elsewhere, (16)

SiHS > =V, V] HV,

0 7 Xeut Xeut

W, an

where Vy and V,, are unitaries that are exponentially local-
ized near x = 0 and x = xy, respectively (the above equation
holds strictly for the cluster state models we consider in this
paper, while for more general models it only holds in the
ground-state subspace). It can be shown that the operators
Vo and V,, form projective representations of the symmetry
group at each edge of the truncated symmetry, O and xc.
Finally, we can define the twist phase (S, S,) for S; and
Sh by

S2Vo = QW (S1, $2)VoS,. (18)

We can also define a separate set of twist phases, Q) by
cutting along the y direction. This definition does not depend
[22,23] on the placement of the cuts or the choice of localized
edge operators V. It only depends on the symmetries S; and
S>. The set of possible twist phases for a given symmetry
group G form a group under multiplication.

The group of twist phases can be characterized on a 1D or
quasi-1D geometry (such as a cylinder). On such a geometry,
the symmetry operators S(g) with local support (in the infinite
size limit) have trivial twist phases. It is clear that the ele-
ments of G corresponding to these symmetries form a normal
subgroup, which we call G¢.

It can then be shown that the group of twist phases un-
der multiplication is isomorphic to the second cohomology
group [39] of the symmetry group modulo local symmetries,
H?[G/Gc, U(1)]. Every Hamiltonian with symmetry group
G has twist phases corresponding to an element of this group,
which cannot change under symmetric adiabatic transforma-
tions [25,38]. Therefore, if a LUC is phase preserving, it must
preserve twist phases for all pairs of symmetries, along both
the x and y directions.

We remark that x or y twist phases alone may provide
incomplete information about subsystem symmetries. The
reason is that subsystem symmetry generators may be linelike
or compact in one direction and extended in the other. Such
generators only have nontrivial twist phases along one of the

directions. An example of this is the 2D linear cluster state,
whose twist phases are calculated in Appendix B.

As a warm-up, we calculate the twist phase associated to
the global symmetry group of the Hamiltonian in Eq. (6). We
first consider the truncated symmetry operator S; >,

icul/z
Sis =[] % (19)
i=0

Without loss of generality, we may assume iy, iS even.
This operator only anticommutes with two local operators
in the Hamiltonian in Eq. (6): Z_»,X_1Z and Z; X;  +1Zi 42
(Fig. 1). Another operator which anticommutes with the same
local operators is Z_;Z;,, +1. Since this operator is the product
of two local operators at each cut, we may write

Vo=2_1, Viu =Zi+1- (20

cut

Each of these edge operators anticommutes with S,, and
therefore €2(S;, S2) = —1. This shows that the Hamiltonian
in Eq. (6) is a nontrivial SPT under the global symmetry. Cal-
culations for SSPT twist phases in 2D are more complicated
and we have included detailed examples in Appendices B and
C for the interested reader. There we show that the examples
from the previous section have nonzero twist phases and are
therefore nontrivial SSPTs.

Twist phases have been shown to completely classify SPTs
in one spatial dimension [33,34]. To what extent this remains
true in higher dimensions, however, is an open question. Even
in light of this limitation, twist phases remain a useful tool for
the classification of SSPTs as they can be used to show that
two models are in inequivalent SSPT phases.

As a final point, all of the nontrivial SSPT models we
have discussed so far are, by their nature, trivial topological
phases when no symmetry is enforced. This follows from the
fact that a cluster state may be trivialized by placing a CZ
on every edge of the graph, as discussed in Sec. IIA 1. In
two dimensions, we expect that all nontrivial bifurcating sym-
metric ERG flows in gapped phases originate due to SSPTs.
This is because in 2D only conventional topological phases,
which contain unique fixed points, are possible [36,37], and
there are no nontrivial SSET phases beyond stacking an SSPT
with a decoupled topological order [63]. We remark that in
three or higher dimensions, it is possible to have nontrivial
gapped fracton topological phases that contain bifurcating
ERG fixed points [30-32]. It is also possible to enrich conven-
tional topological phases to form nontrivial SSET phases [63].
While we have focused on the simplest nontrivial setting of
two-dimensional phases in this paper, the bifurcating ERG of
subsystem symmetry-enriched phases presents an interesting
avenue for future study.

III. SUBSYSTEM SYMMETRY-PRESERVING ERG

In this section, we mention possibilities that arise when
we restrict the ERG to preserve subsystem symmetries, and
extend the definitions given in Sec. IIA 1 to account for
these possibilities. The key difference is that the subsystem
symmetry-preserving ERG must account for both the flow
of the Hamiltonians as well as that of the symmetries. We
also discuss specific procedures for finding symmetric local

035148-5



SAN MIGUEL, DUA, AND WILLIAMSON

PHYSICAL REVIEW B 103, 035148 (2021)

unitaries for cluster states on bipartite graphs, a family that
includes all of the examples considered in this paper.

A. Characterizing subsystem symmetry-preserving
entanglement renormalization

To define the subsystem symmetry-preserving ERG, as
before, we only allow symmetry-preserving local gates in the
decomposition of a LUC introduced in Eq. (2). This require-
ment does not depend on whether the symmetry group has
subsystem or global symmetries. The main difference is that
now, unlike in the case of global symmetry, we must consider
nontrivial flows for both the Hamiltonian and the symmetry
group.

To see what is meant by a flow of the symmetry group,
and why this is different in the case of subsystem symmetry,
we first discuss what happens to general symmetries under
coarse-graining. Consider a Hamiltonian H (a) that is symmet-
ric under the group G(a), and a symmetry-preserving LUC
that takes H(a) to Hi(ca) + H>(ca)+ --- . Each of these
coarse-grained Hamiltonians H;(ca) is supported on a disjoint
set of qubits Q;, and is symmetric under G [64].

We define Gi(ca) to be the restriction of the symmetry
group to the subset of qubits Q;. To be precise, we first assume
on-site symmetry operators, which act as tensor products of
single-site operators (this holds for the cluster state examples
considered in this work). We write the action of the operator
S on qubit a as S|,. The action of G;(ca) is given by the
operators

acQ 1)

&@m={fﬂm o

where S(g) is a symmetry operator and g is any element
of G(a). For convenience, when defining G;(ca) we further
quotient out any group element that acts trivially on the whole
Q; sublattice, i.e., S(g)|, = I, forall a € Q,.

We now want to define an equivalence relation, ~, between
the symmetry groups at different scales, G;(ca) and G(a), that
is consistent with the equivalence relation on Hamiltonians.
For a self-bifurcating fixed-point our definition should satisfy
Gi(ca) =~ G(ca) for all i, for example.

To establish this definition, we first fix a surjective map
¢ from the original lattice to the coarse-grained sublattice
Q; by multiplying each of the original unit vectors by the
coarse-graining factor ¢ to obtain a set of coarse-grained unit
vectors that generate Q;. This identifies a qubit at site (x, y)
in the original coordinates with a qubit at the site (x,y) in
the coarse-grained coordinates. If there are multiple qubits per
site of the original lattice, we must also specify how ¢ acts on
these. For this, we take the mapping from the identification
of the Hamiltonians. For example, if H(a) bifurcates into a
copy of itself, H;(ca) = H(ca), then we require that H (a) has
the same action on qubit g as H(ca) has on ¢(q). If H(a)
bifurcates into some other Hamiltonian H'(ca) (with the same
size unit cell), we can perform a similar mapping by writing
H'(a) on the original lattice and identifying it with H'(ca) on
the coarse-grained lattice.

We then say that G;(ca) is equivalent to G(a), denoted
Gi(ca) ~ G(a), if there exist two sets of generators {g\/)} €

G(a) and {g\} € Gi(ca), such that

SEM)a = Si(g) o (22)

for all j and a. We remark that this relation is stronger than a
simple isomorphism of groups. It is a restriction on not only
the group structure, but the representations of the group as
well. This restrictive definition rules out general local uni-
taries, which are not symmetric, but still preserves the group
structure of the symmetries.

As an example, we consider this equivalence relation for
the 1D cluster state from Eq. (6). We first define ¢ based on
the identification of H(2a). In this case, the identification from
coarse graining by a factor of 2 is

(i) = 21, i even
P =12 41, iodd.

Under this map, it is easy to see that the operators S; and S, are
preserved and, therefore, G(2a) &~ G(a). In general, however,
the symmetry group after coarse graining may not always be
equivalent to the original symmetry group.

The main difference between subsystem and global sym-
metries appears at fixed points. In either case, coarse-graining
defines a homomorphism from G(a) to G;i(ca), specified by
Eq. (21). For global symmetries, since |G;(ca)| < |G(a)|, and
|G(a)] is fixed at all sizes, the only possible fixed point sym-
metry group is of the form encountered with the Hamiltonian
in Eq. (6), G;(2a) =~ G(a). For subsystem symmetries, how-
ever, not only is it possible to have G;(2a) % G(a), but this
can repeat indefinitely in the infinite size limit. This is due to
the subextensive scaling of the subsystem symmetry group,
which allows for homomorphisms with a nontrivial kernel at
all lattice scales.

We denote the flow of the symmetry group and the Hamil-
tonians together using ordered pairs, for example,

(H(a), G(a)) = (Hi(ca), Gi(ca)) + (Hy(ca), Gy(ca)) + - - -.
(24)

(23)

We now refine our definition of SSPERG fixed points as
follows: For the standard ERG, we required that once a fixed
point has been reached, the Hamiltonian at all subsequent
steps can be written as a disjoint set of H; that have ap-
peared at previous steps with smaller lattice scales. For an
SSPERG fixed point, however, we require that every pair
(H;(ca), Gi(ca)) has shown up at earlier steps at smaller lat-
tice scales, using the equivalence relation in Eq. (22) for the
symmetries. In particular, in a self-bifurcating fixed point, we
must have that each G;(ca) ~ G(a).

This definition is necessitated by the possibility that the
symmetry group changes under application of the ERG. If
a symmetry group acts differently on two Hamiltonians, the
standard definition of SPT phase equivalence cannot be di-
rectly applied to compare them. For an ERG flow to preserve
subsystem symmetric phases, we need a notion of equivalence
for both the the Hamiltonian and the symmetry group at each
level of coarse graining. The first is already provided in the
conventional ERG; the second is given by definition Eq. (22).

So far, we have discussed the possibility of the symmetry
group changing under the ERG flow, allowed due to subexten-
sive scaling. Another possible consequence of this scaling is
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FIG. 3. A schematic picture of a local symmetric gate. Blue and
red shaded areas represent symmetries on the A and B sublattices,
respectively. Dots represent qubits, and lines are CZ gates connecting
them.

bifurcation of the symmetry group. In particular, is it possible
that Eq. (21) can define more than one homomorphism (for
different /) with different kernels? In this paper, we find that
this is possible. Subsystem symmetry groups can bifurcate,
and in fact, do so generically. This can be seen with a simple
scaling argument.

For this argument, we put our system on a square of side
length L. The number of qubits then scales as L2, but the
number of symmetry generators scales as L. If we coarse grain
both dimensions by a factor of 2, we expect each G;(2a) to
have half the number of generators. However, to have all of
the symmetries act nontrivially, we need at least two of the
H;(2a) to be in nontrivial SPT phases. The homomorphisms
from G(a) to each G;(2a) must have different, nontrivial
kernels for this to be true. From this scaling, we expect that
bifurcation (though not necessarily self-bifurcation) is generic
in SSPTs. While we focus on the simplest nontrivial setting
of two dimensions in this paper, a similar scaling argument
applies in higher dimensions as well.

B. Symmetric local gates for cluster states

To perform each step of the ERG, we require symmetric
LUCs. The problem of finding symmetric LUCs for an arbi-
trary symmetry group may be difficult in general. For cluster
states defined on a bipartite graph, however, we have found a
simple algorithm to generate the relevant circuits.

For this algorithm, consider a cluster state defined on a
graph G = (V, E), with vertices partitioned into sets A and B.
As mentioned in Sec. II B 2, the symmetry group is generated
by Pauli X operators that act exclusively within either set A
or B.

The first step is to find two local sets of qubits, Q4 and
QOg, lying in A and B, respectively, with all symmetries acting
on an even number of qubits in each set. Next, add CZ gates
from every qubit in Q4 to every qubit in QOp. Such a circuit
necessarily preserves the symmetries, and, as long as Q4 and
Qg are local, is local itself. From Eq. (14), we can see that this
takes a cluster state to a new cluster state, defined by

G=V,E+E), (25)

where E’ is all of the edges between Q4 and Qp, and addition
is taken mod 2 over the edges. This type of symmetric circuit
is depicted schematically in Fig. 3. We have, in fact, already
given a simple example of such a circuit in Fig. 1.

By enumerating all possible Q4 and Qp, we may create
an infinite set (in the infinite size limit) of symmetric LUCs.
This set becomes finite modulo translations, however, if we
only consider unitary circuits with some fixed locality. By
fixed locality, we mean restricting the support of Q4 and Qp,
as well as the distance between them, to be less than some
fixed finite value. We may then search through these unitary
circuits to find gates that, when applied in a translationally
invariant manner, could implement an ERG flow; for example,
by disentangling certain degrees of freedom.

In practice, we find that it is easier to first limit the possible
ERG flows using the twist phase. For ¢ = 2, this limiting
procedure works as follows: First, search for models H;(2a)
such that ), H;(2a) has the same twist phases as H(a). To
simplify this stage, we attempt to find copies of the original
Hamiltonian, H;(2a) = H(2a). These copies of the original
Hamiltonian may not be sufficient to satisfy the twist phase
constraint. In this case, we are left with additional nonequiva-
lent Hamiltonians, for which we then repeat the same process
until a closed ERG is found. We remark that this decomposi-
tion may not be unique.

Next, we search for symmetric local circuits that take H (a)
to Y . H;(2a). To find these circuits, we first enumerate sets
of qubits Q4 and Qp, as defined in Sec. III B. However, we
are aided in this search by the locality of H;(2a). In all of
the examples in this paper, we have found that we only need
to consider gates with support no larger than the support of
the largest local terms in H;(2a). Such sets are easy to search
through by hand.

While the procedure outlined above has two steps, it is
worth noting that we have not found a case where simply
preserving the twist phases is insufficient. In other words, we
have not found H;(2a) such that )", H;(2a) has the same twist
phase as H(a), but there exists no symmetric LUC taking
H(a) to Y, H;(2a). It may be possible that twist phases are
complete invariants for SSPT phases but, as mentioned earlier,
this remains unproven beyond one spatial dimension.

IV. EXAMPLES OF SSPERG

In this section, we find ERG fixed points for two examples
of subsystem SPT phases: the linear cluster state from Eq. (15)
and the fractal SPTs (FSPTs), a class of Hamiltonians that
realize multiple phases with fractal symmetries. For fractal
SPTs, in particular, we find fixed points for all first-order
FSPT cluster states with two qubits per unit cell.

We first show that the linear cluster state splits into a copy
of itself and a second, self-bifurcating model. For the fractal
SPTs, meanwhile, we find three possible inequivalent fixed
points. Previously, fractal SPTs have been classified by the
twist phases [23]. We show that certain fractal SPT phases
may also be classified by their fixed points under the ERG.

A. Linear subsystem symmetry in two dimensions

We now discuss the 2D linear cluster state from Eq. (15),
reproduced below for convenience:

H= ZXijZiJrl,jZifl,jZi,jJrlZi,jfl~ (26)

ij
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FIG. 4. Linear cluster state symmetries (diagonal lines) and ex-
amples of sets Q4 and Qp, used to construct symmetric local
unitaries.

This model has been shown to be a nontrivial SSPT [38]; its
twist phases are given in Appendix B.

Upon coarse graining by a factor of 2, we find that the
2D linear cluster state splits into a copy of itself and an
inequivalent, self-bifurcating model, namely,

Hyin(a) >~ Hin(2a) + Hp(2a), 27

Hy(a) ~ Hp(2a) + Hp(2a). (28)

The definition of the Hamiltonian Hp is provided in
Appendix B. A simple set of symmetric gates may be used
to generate this ERG. As mentioned in Sec. III B, we need to
find sets of qubits Q4 and Qp; these consist of the vertices
of diamonds that have edges on diagonal lines, see Fig. 4.
The exact combination of these gates needed to implement
Eq. (27) is provided in Sec. 4 of the Mathematica notebook
[43].

It is worthwhile considering whether there are other pos-
sibilities for the ERG besides Eq. (27). First, could Hy,(a) =~
Hyin(2a), as with the 1D case? This turns out to be impossible.
In fact, the relation Hj;,(a) = H'(2a) can never be satisfied
for any H' that acts on one qubit per coarse-grained unit cell.
It can be shown that every symmetry in the linear cluster
state has a nontrivial twist phase with some other symmetry
(Appendix B). If we place H' on only one qubit per coarse-
grained unit cell (every fourth qubit of the square lattice),
however, there are always symmetries that don’t act on it at
all. These symmetries cannot have a nontrivial twist phase.
Therefore, Hy;, must bifurcate. This argument is simply a more
precise restatement of our scaling argument in Sec. IIT A.

In Appendix B, we show that the linear cluster state cannot
self-bifurcate, which means that any ERG fixed point requires
a second inequivalent B model. This is a simple example of a
quotient-bifurcating fixed point, where a Hamiltonian does not
self-bifurcate but still returns to itself modulo self-bifurcating
Hamiltonians under the ERG.

[ ] [ ] [ ]
o
° ® [ ] [ ] °
[ ] [ ] [ ]
[ ] [ ] [ ]
(] [ ]
[ ] [ ] [ ]
[ ] @ ®
y [ J
[ ] [ ]

FIG. 5. Top: Examples of fractal symmetry operators corre-
sponding to the polynomial f(x) =1+ x 4 1/x. One example acts
as X on the A sublattice (blue) and the other as X on B (red)
[Egs. (31)]. Bottom: Local operators in the cluster state Hamiltonian
in Eq. (29). Gray lines represent graph G on which the cluster state
is defined.

B. Fractal subsystem symmetry in two dimensions

Another class of models with subsystem symmetries are
fractal SPTs (FSPTs). In a FSPT, the symmetries are Pauli
X operators acting on fractals on two square sublattices, A
and B. These symmetries are determined by 1D cellular au-
tomata, where each row corresponds to a time step of a cellular
automaton [23]. An example of a nontrivial [23] SSPT with
fractal symmetry is given by

— (A) 7(B) ~(B) ~(B)>(B)
H= Z [Xi,jflzi,jflzi—l,jzi,j Zii
ij

X202 207N ) @)
This is also an example of a bipartite graph cluster state, with
A and B corresponding to the two partitions of the graph. The
symmetries and local operators of this model, which is called
the Fibonacci FSL, are depicted in Fig. 5. We remark that they
form a different symmetry group from the Sierpinski fractal
introduced in Sec. II B 1.

In this paper, we study first-order FSPTs in particular.
First-order fractal symmetries correspond to first-order linear
cellular automata, where each time step only depends on the
time step before it. The Hamiltonian in Eq. (29) is an example
of a first-order FSPT, as we show below.

To describe the class of first-order fractal SPTs, it is con-
venient to use polynomial notation. In this notation, we take
a polynomial whose coefficients are in [F,, and act on sites
corresponding to the exponents of each term with coeffi-
cient 1. For example, we define X (x'y/ 4+ x¥y! 4 -.-) to be
X;,jXk,1 % - -, and similarly for Z. Then, Eq. (29) becomes

H =Y XMy zB ey (14 y£(x))
ij

+XPYHZDEY A +y T a1, (30)
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with f(x) = 1 + x + 1/x. Its symmetry generators are

XD+ fy + Py +--0)),
XBA+ eyt + ey +)), 3D

for any i. Here, the coefficients of f"(x) are taken mod 2.
This mod 2 multiplication is the reason why the symmetries
in Eqgs. (31) are fractals. Since for any polynomial g(x) over
F,, g(x)* = g(x*"), the symmetries exhibit self-similarity on
regions with y length given by powers of 2. These symmetries
are first order since the polynomial in each row is equal to the
previous row multiplied by f(x).

It is now easy to describe the general class of first-order
fractal symmetries: simply take Egs. (31) and allow for any
Laurent polynomial f(x) over [, [65]. Every first-order FSPT
has the symmetry group in Egs. (31) corresponding to some
polynomial f(x). For example, the Sierpinski fractal from
Sec. IIB 1 is given by the polynomial f(x) = 1 + x. There
are many fractal SPT phases for the same symmetry group. A
classification of all of these phases, based on the twist phase,
was given in Ref. [39].

In this paper, we study a subclass of first-order FSPTs as
examples: cluster states with two qubits per unit cell. Since
there are two sublattices, the minimal unit cell under which
the symmetries can act nontrivially contains two qubits. For
the rest of the work, we use the somewhat more compact
terminology FSPT cluster state to refer to cluster states that
are first-order FSPTs with two qubits per unit cell. Clearly,
Eq. (29) is an example of an FSPT cluster state [66].

To find ERG fixed points for the FSPT cluster state mod-
els, we first find symmetric LUCs for general first-order
fractal symmetries. It is again convenient to utilize polyno-
mial notation. Recall that the sets Q4 and Qp, introduced
in Sec. III B to define symmetry-preserving LUCs, are lo-
cal. Hence, they can be written as finite-degree polynomials
Qa(x,y) and Qp(x,y). We find that these polynomials can
be further decomposed into Qa(x,y) = c(x, y)Ps(x,y) and
Op(x,y) =d(x,y)Pg(x,y), where ¢ and d are arbitrary finite
degree polynomials, and

Pa(r,y) =14y~ fG7), Pe(x,y) =1+yf(). (32)
With this general functional form of Q4 and Qp, we then
search for specific 4 and g to construct symmetric local cir-
cuits for the ERG flow. The exact forms of & and g used
for the FSPT cluster state models are given in Sec. 4 of the
Mathematica notebook [43].

Using Eqgs. (32), we find that there are only three unique
fixed points for all FSPT cluster states, for general polynomi-
als. The first fixed point, Hy is self-bifurcating, while the other
two, H, and H_ are quotient-bifurcating fixed points:

Hi(a) >~ Hi(2a) + Hy(2a), (33)

Hy(a) >~ Hy(2a) + Hy(2a). (34)

To define Hy, we simply generalize Eq. (30) to arbitrary
f(x). This model has been discussed before in the literature; it

is simply the first-order FSL from Ref. [42] with g(x) = 0, up
to a Hadamard operation on half the qubits. The Hamiltonians

FIG. 6. Local operators of the fixed points H, and H_ corre-
sponding to the polynomial 1 +x + 1/x.

H, and H_ are similar, given by

Hy =) XM aiyHzZ® (*lyI (1 + yf(x))
ij
+ X By HZB R FyI (1 + f(1/x) /Y], (35)

which correspond to shifted first-order FSLs. They are related
to Hy by shifting one of the sublattices by one site, either to
the left or the right. We remark that this operation is not an
allowed SSPT phase equivalence. Figure 6 gives an example
of H, for the polynomial 1 4+ x + 1/x discussed earlier. The
details of the ERG flow to reach these fixed points is provided
in Appendix C. Each of the Hamiltonians Hy, H,, H_ have
distinct twist phases, and hence are in inequivalent SSPT
phases [67]. In the Appendix, we further demonstrate that H
cannot self-bifurcate.

In Sec. Il A, we required that the symmetry group self-
bifurcates as well as the Hamiltonian. It may not be obvious
from Egs. (31) that this is the case; however, due to the
self-similarity of polynomials in [F,, this is true, as long as we
coarse-grain by a factor of 2 [42]. If we choose any one site
per coarse-grained unit cell, then G;(2a) acting on that site
is always equivalent to G(a). An example of this is shown in
Fig. 7. While individual generators are not always preserved,
the symmetry group restricted onto each sublattice is always
equivalent to the original group, as defined in Eq. (22).

The three fixed points we have described above allow
for a consolidation of the existing classification. We remark
that even if we restrict to a two-qubit unit cell, there ex-
ist an infinite number of phases corresponding to a given
polynomial [39]. These phases require increasingly nonlocal

FIG. 7. Coarse-graining a fractal symmetry operator for f(x) =
1 4+ x + 1/x. While individual symmetry operators are not always
preserved as in this case, the entire symmetry group is.
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Hamiltonians, in that they have local operators with larger and
larger support. However, using the ERG, these simply reduce
to copies of the three phases given in Egs. (30) and (35). The
locality of these phases (the spread of local operators on the
coarse-grained lattice) depends only on the polynomial f(x).
These results give us an alternate way to study fractal
phases: reducing them to a small set of highly local models.
While this does not yet give a complete ERG-based classifi-
cation for all FSPT phases, it should be possible to extend our
approach to more general fractal Hamiltonians in the future.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced the subsystem symmetry-
preserving ERG and found nontrivial symmetric gapped
bifurcating fixed points in two dimensions. We outlined an
approach for finding these fixed points within subsystem
SPT phases. Our approach utilized twist phases to con-
strain potential solutions combined with properties of cluster
state Hamiltonians on bipartite graphs to explicitly generate
symmetric LUCs. We applied this method to examples of
fractal and linear subsystem symmetry-protected phases in
two dimensions. In both cases, we found self- and quotient-
bifurcating fixed points, similar to those of fracton topological
orders.

For the linear cluster state, we found quotient bifurcation,
where the Hamiltonian splits into a copy of itself and a sep-
arate, self-bifurcating Hamiltonian. For the general class of
FSPT cluster states, we found three possible fixed points, all
of which are related to the FSPTs defined by Yoshida’s FSLs
[42] up to shifts of one of the two sublattices. These include
both self- and quotient-bifurcating fixed points.

Our paper has potential implications for the classification
of SSPT phases: First, we expect that SSPERG flows can be
applied to reduce the classification from Ref. [39] by remov-
ing the length scale at the cost of increasing the size of the
on-site symmetry group via coarse-graining. This could lead
to a classification that is finite for any fixed finite symmetry
group, without having to introduce a length scale cutoff, sim-
ilar to the known classifications of global SPTs [6].

Second, the discovery of self- and quotient-bifurcating
SSPTs in this paper inspires the definition of a looser quotient
equivalence relation on SSPT phases by taking the quotient by
self-bifurcating SSPTs, following a similar definition that has
been introduced for fracton phases [31,32]. The purpose of es-
tablishing this definition is that quotient-bifurcating SSPERG
fixed points provide representatives for quotient equivalence
classes of SSPT phases. This is a generalization of the
more familiar classification of SPT phases via representative
gapped fixed points under symmetry-preserving ERG [33,35].
In particular, under this definition, our linear SSPT example
and the fractal SSPT examples Hy are quotient-bifurcating
fixed point representatives of nontrivial equivalence classes,
while the FSL H,, which self-bifurcates, is in the trivial equiv-
alence class.

To date, there have been several attempts to define a looser
equivalence relation on linear SSPT phases that quotients
out phases given by decoupled 1D SPT layers [38—41]. This
is indeed achieved by our proposed definition of quotient
equivalence classes, as a stack of 1D SPTs is trivially a

self-bifurcating fixed-point. We remark, however, that certain
linear SSPTs with intersecting symmetries that act via the
same on-site operators cannot lead to B models that are trivial
decoupled 1D SPT layers under bifurcating SSPERG. In par-
ticular, the twist phases of the square lattice cluster model are
inconsistent with a B model consisting of decoupled 1D SPTs
under bifurcating SSPERG [38].

We note that symmetric locality-preserving unitaries that
are not local unitaries, such as partial translations, are not
included as a phase equivalence relation. In particular, these
can change, and even trivialize, nontrivial SSPT phases. This
is familiar from the study of 1D SPT phases, where a partial
translation can map a nontrivial SPT state to a trivial one.
For example consider a system consisting of pairs of spin-%
particles on each site s, labeled a;, by. Take the nontrivial SPT
state, under the tensor product action of SU(2) on each pair
of spins, given by maximally entangled singlet states between
by, asy1, on neighboring sites. Applying a partial translation
to the by spins results in a trivial SPT state, given by a tensor
product of singlet states on each site between spins ay, b.
It remains unclear whether a subclass of these more general
locality-preserving transformations can be included to allow
for looser phase equivalence without trivializing all SSPT
phases. In particular, a partial lattice translation relates the
H), fractal SSPT to the Hamiltonians H., which lie in distinct
SSPT phases.

During this work we ran across a number of interesting
unresolved questions:

(1) Are the twist phase invariants complete, or can they be
further refined?

(2) Can two states in the same SSPT phase, which
is technically defined by equivalence classes of gapped
symmetric Hamiltonians connected by adiabatic gapped
symmetry-preserving paths, be (approximately) related by a
symmetry-preserving local unitary transformation, up to the
addition of trivial symmetric degrees of freedom? (The con-
verse is obvious).

(3) To what extent are bifurcating SSPERG fixed points
unique? What is the appropriate equivalence relation between
them?

(4) How do our results on the bifurcating ERG behaviours
of SSPTs relate to their use as universal resources for MBQC?

We leave these questions to future work.
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APPENDIX A: POLYNOMIAL NOTATION

In this Appendix, we review the polynomial notation for
Pauli operators [68,69], a generalization of the notation we
used previously in Eq. (30). We also describe coarse graining
and the calculation of twist phases in this notation. We have
provided the code in [43] to perform these operations.
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FIG. 8. Labeling of qubits in the unit cell for the linear cluster
model. Left: Coordinates in Eq. (A3). Right: Coordinates after coarse
graining in x by a factor of 2 [Eq. (AS)].

In our previous notation, we could describe any Pauli op-
erator (up to a phase) via

XD NZOU 0, DX P yNZP(falx, y)) -
(A1)

Here, (a), (b), ... represent sites within a unit cell, and f;(x, y)
are Laurent polynomials in [F,. For example, in Eq. (30), there
are two sites, A and B, each with one qubit per cell. The sites
in the unit cell may correspond to the partition of the cluster
state graph G, as in that example, or they may be enumerated
according to some other scheme. Following previous work by
Haah [68,69], we now compress this notation into a single
vector:

Si(x, y)
f3(x7 )’)

£, y) (A2

Jalx,y)

The top entries of Eq. (A2) are the X operators on each lattice
site, and the bottom entries are the Z operators. We can use
this notation to write out an entire local Hamiltonian. We
write the Hamiltonian as a matrix, where each column is one
of the translationally invariant local terms, represented as in
Eq. (A2). As an example, consider the 2D linear cluster state
in Eq. (15), with lattice sites labeled as in Fig. 8. Then, the
Hamiltonian may be written

0 1
1 0
l+x+7+x3 0

0 1+x+

Hyy, = (A3)

y+Xy

For additional compactness, we have written x~ ! and y’1 as

X and J, respectively. We can write the symmetry group in a

similar way:

Sx) S 0 0

0 0 S&) SO _ 2
0 0 0 0

(A4)

Here, this notation means that the symmetry group is en-
tirely generated by translations of Eqgs. (A4). The operation
of coarse graining can also be written in this notation [30,69].
When we double the lattice spacing in one direction (say x),
we do two things. First, we enlarge the unit cell, which
doubles the indices of the vector in Eq. (A2). Second, each
translationally invariant operator becomes two translationally
invariant operators on the coarse-grained lattice, correspond-
ing to translations by even and odd amounts along x. We again
return to the example in Eq. (A3). Doubling the unit cell along
the x direction, this becomes

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
H= 145 x+xj 0 0 (AS)
1+5 1475 0 0
0 0 1+y 14y
0 0 E4+xy 1+y

The coarse-grained unit cell for this Hamiltonian is shown in
Fig. 8. In general, when we coarse grain along x, we simply
replace the variables in a vector with matrices:

_>0x _)yO
. 1 o) Y7o y)

We perform a similar transformation to coarse grain along y.
Note that both of these coarse-graining transformations are
just one possible labeling of the coarse-grained qubits. We
may, for example, permute rows and columns in Eqs. (A6)
for an equivalent, but different, labeling of the coarse-grained
qubits.

Finally, we may use the polynomial notation to compactly
write the twist phases. An Lx L SSPT has order L symmetries
and thus L? twist phases. However, most of these symmetries
are just translations of each other. By writing out the symme-
try group as in Eqs. (A4), we define a local symmetry group
on each unit cell. We label this local group S, §@, ..., §®.
Then, we may write any member of the entire symmetry group
as S®(x’y/). This notation means we take the kth element of
the local group and translate by i in the x direction and j in
the y direction.

We can now define the twist phase matrix W™ . W& is a

nxn matrix where Wi;") =>4 C;({ij)yk and

(A6)

0, QWEVEH,sV(1) =1
L Q0E00h, s91) = —1,

o) = (A7)

where QW is the twist phase calculated along an x cut, defined
in Eq. (18). We also define a twist phase matrix W for cuts
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made along the y direction, with Wi;y) =3 b;:j )%k, and Eq. (A3). Two of Fhese syn?met.ries are lines in the x direction
and two are lines in the y direction.

If we make cuts along constant y, then the x-type symme-

tries are not truncated at all, and therefore have no twist phases

(SO (k () —
pih) — 0, QUEVEH,sP(1) =1 (A8) with other symmetries. Meanwhile, the y-type symmetries
k 1, QOSSO sUV(1)) = —1. only have nontrivial twist phases with their nearest neighbors:
0 0 0 0
0 0 0 1+4x
.. . ” —
Notice that, in either case, the polynomials »# and ¢!/ are W= 1y 0 0 0 (A9)
only polynomials in one variable. This is because there are 0 1+x O 0
not extensively many subsystem symmetries; in other words, Similarl h
each operator in our local basis only gives an independent set tmuiarly, we can show
of operators if translated along one direction. We may then 0 0 143y 0
choose a basis such that each twist phase matrix is only a 0 0 0 0
. . W = (A10)
function of one variable. “l1+y O 0 0
As a final example, we calculate the twist phases for the 0 0 0 0

symmetries defined in Eqs. (A4) and the Hamiltonian in
|
APPENDIX B: ERG FOR THE LINEAR CLUSTER STATE

Using the tools and definitions of the previous section, we now study the ERG of the 2D linear cluster state. As previously
mentioned, the linear cluster Hamiltonian [Eq. (A3)] has twist phase matrices given by Egs. (A9) and (A10). After coarse
graining, first along y and then along x, the symmetries may be written

Sx) 0 SGp) 0 0 0 0 0
0 Sx) SO» O 0 0 0 0
Sx) 0 0 S» O 0 0 0
0 Sx) 0 SO» 0 0 0 0
0 0 0 0 Sx) 0 S» 0
0 0 0 0 0 Sx) S» O (B1)
0 0 0 0 Sx) 0 0 SO
0 0 0 0 0 Sx) 0 SO
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Notice that we have dropped half of the columns that appear when carrying out the transformations in Eq. (A6). This is
because S(y) and S(x) are unchanged by translations by y and x, respectively. Therefore, some columns (symmetry operators)
are redundant due to equivalence under translation. This reduction during coarse graining is a general property of subsystem
symmetries.

In the basis given in Eq. (B1), the twist phases are

W = (B2)

[=NeleNeNe Nl

SO DODODODODO O
SO OO ODOO O
—_—_ 0 oo oo o
SO oo oo O
SO DODDODODOO O
SO OO xR —mOO
SO OoOoO R, OO

ikl

and

W = (B3)

OO —mOOO O
SO == OO Oo O

[N eleloloNeNo Nl
[eNeoloNoNoNoNeNel
[eleololoNoNel s
eleoloNeoNeNel
[eleololoNeoNeoNeRal
SO oo oo OoC
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Now, consider the following model on the coarse-grained unit cell:

0 o 0 o0
0 o 0 0

0 o 0 0

0 o 0 o0

0 1 0o 0

0 0 1 0

1 o 0 0

0 0 0 1

H, = 0 0 14y 1+
l+x+54x5 0 0 0

0 1+% %+y 1+

0 1+% 1+% 0

0 o 0 0

0 o 0 0

0 o 0 0

0 o 0 o0

H, can be split into two Hamiltonians with disjoint support.
The first Hamiltonian is supported on the second and the
seventh qubits, and is a copy of the original Hamiltonian,
[Eq. (A3)]. This is Hjjy(2a). The second, Hg(2a), has support
on the other six qubits. The combination of both of these
models, Eq. (B4), satisfies the twist phases in Eq. (B2), as
shown in Sec. 3 of the Mathematica notebook [43]. In the
notebook, we further show that Hg(2a) is self-bifurcating, and
write the local circuits required to achieve bifurcation for both
models.

We now give an argument that self-bifurcation of Hy, is
impossible. We assume the contrary and suppose that we have
two copies of Hjj,(2a) and that these, combined, satisfy the
twist phases in Eq. (B2). Then, we consider one of these
copies on the original lattice, and make a cut at constant y
(Fig. 9). A given truncated vertical symmetry anticommutes
with two local terms in the copy, each two lattice spacings
apart in the x direction. An edge operator with the same action
is two Z operators, also two lattice spacings apart in x. The
other copy has similar edge operators, and the product of these

S, S,
ﬁ X Act with Z here
Y - . /
(X)
(] (2]

S(

FIG. 9. Calculating twist phase for one copy of the linear cluster
state on a coarse-grained lattice. We start with a truncated symmetry,
Si. It anticommutes with two local terms in Hj;,(2a) (one of these
is pictured). To get the same action, we apply a Pauli Z operator to
two sites, which anticommutes with the symmetries S, and S3. These
symmetries are always two sites apart on the original lattice.

<

<

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 (B4)

0 0 0 0

0 0 0 0

0 0 0 0

0 1+x 14+x 0
I+y x+y 1+4x 0

0 0 0 l4+x+y+xy
145 145 0 0

(

operators defines the twist phases. However, since both copies
give Z operators that are two lattice spacings apart, we cannot
get twist phases between only a symmetry and its immediate
neighbors, simply as a consequence of parity. Therefore, the
linear cluster state cannot self-bifurcate.

APPENDIX C: ERG FOR FRACTAL SPT CLUSTER STATES

In this Appendix, we write down the most general form for
FSPT cluster states, as defined in Sec. IV B, and then describe
their flow under ERG. Finally, we show that two of our fixed
points, Hy [Eq. (35)], cannot self-bifurcate.

To write down the general FSPT form, it is important to
mention some facts about boundary conditions that we have
previously avoided in the main text.

The symmetries in Egs. (31) are, strictly speaking, only
symmetries of Eq. (30) under certain periodic boundary con-
ditions and with certain polynomials. In particular, under
periodic boundary conditions, we set x** = y2* = 1, for some
I, and I,. Then, Eqgs. (31) requires that f (x2") = 1 to be well-
defined. This is not a particularly restrictive condition, as we
can satisfy it by setting [, > [, and using any f(x) such that
f(1) = 1. Any polynomial with an odd number of terms, such
as our example 1 4+ x + 1/x works.

For arbitrary polynomials, we can use open boundary con-
ditions to get well-defined models, but we do not discuss this
possibility in this work. Instead, we define fractal symmetries
to be

Fx,y) 0
0 F(x,9)
0 0 ’ (€h
0 0
where
2” . A
FEy) =) yfx). (C2)
i=0
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We now write down an arbitrary FSPT cluster state. For a
given polynomial f(x), such an SPT can be written

0 1
H = ! 0 C3
= | Ywe)a +yro) 0 ()
0 Fw@) (1 + yf (X))

where w(x) is an arbitrary polynomial and / is an arbitrary
integer. Our three fixed points all correspond to Eq. (C3) with
[ = 0 and different values of w(x). In H4, w(x) =1 and in
Hy, w(x) = xT!.

As an important aside, these fixed point Hamiltonians can
also be written in the K-matrix notation used in the twist-
phase classification of Ref. [39]. In this notation, the twist

phases are calculated using the local basis:

F(x,y) 0
0 Y F(X,5)
0 0 (4
0 0

Note the factor of y/ here. The twist phase classification
uses a basis of matrices K™ to describe every possible set
of twist phases. The matrices K> correspond to all of the
translationally invariant models which we study in this paper.
More precisely, in our notation, K% corresponds to Wg ) =
x™ and WY = W3’ = 0. As we show below by calculating

twist phases, Hy corresponds to K®? and H.. corresponds to
KO£

J

F@y)  yfOFGy)
JEF&,y)  FG2,y)
0 0
0 0
0 0
0 0
0 0
0 0
Now, periodic boundary conditions imply that

yf(x*)F(x%, y) = F(x?,y). This in turn implies that only
two of the columns in are independent. This, of course,
is due to fractal symmetries being subsystem symmetries.
Because of this, we drop the second and fourth symmetries
from Eq. (C7). In this basis, the twist phases are again given
by Eq. (C5). We may then coarse grain along x, which
gives us

0 0 u(x) vx)
. 0 0 xv(x)  ux)
W= & @ 0 0 (C8)
v(X) u(x) 0 0

In Sec. 2 of the Mathematica notebook [43], we show that
these twist phases can be satisfied by four copies of the orig-
inal model [Eq. (C3)], with different values of w(x). Two
copies have w(x) = u(x), a third has w(x) = xv(x), and the
last has w(x) = v(x).

We now calculate the y twist phases of Eq. (C3). First, we
solve the / = 0 case. The [ # 0 case does not add significant
complications; if / # 0, the factor y’ effectively shifts one of
the sublattices by [ cells in the y direction. We can remove it
by shifting it back with a unitary operator, call it P~/. P~/ is
not a LUC; however, P'UP~! is, as long as U is a LUC. We
can therefore solve the / = 0 case and then shift our result.

In the I = O case, the y twist phases of Eq. (C3) are given

by
0 w(x)
wo = (w()"c) 0 )

In the fractal SPT, only the y twist phases are needed. The
reason is due to subsystem symmetry: Translations of the
fractals along the x and y direction are not independent. It
can be shown that this results in the x and y twist phases
also not being independent [39]. We choose to calculate the
y twist phases because cutting the symmetries along y does
not depend on our choice of polynomial f(x).

We now coarse grain, first along y, and then along x. Gen-
eral polynomials, such as w(x) and f(x), have both even and
odd terms, which behave differently under coarse graining.
For any polynomial, we may write

xv(x)
ulx) )’

u(x)

w(x) — (v(x)
Using the fact that F(x,y) = (1 +yf(x)).7-"(x2, y2), we can
coarse grain Eq. (C1) along y:

(C5)

(C6)

0 0
0 0
F(x,5) FERFE,y)
JIEFEy)  FE&5) (C7)
0 0
0 0
0 0
0 0

The bifurcation of the fractal SPT is given by the coarse-
graining of the polynomial w(x) [Eq. (C6)]. Because this is
coarse-graining, the degree of w(x) decreases every ERG step.
Eventually, we are left with only three possibilities: w(x) = 1,
x, or X. The first corresponds to H4 and the latter two are H.

Next, we return to the y shift in one of the sublattices
for general fractal SPTs. For an ERG step with any /, we
can shift by —/, perform the step as above for / =0, and
shift back. Because we are now on the coarse-grained unit
cell, however, the [’s on our bifurcated models are smaller
than before. Again, this means that we only need to consider
I =1,—1, and 0. The I = 0 case has already been done. The
| = %1 cases introduce new potential fixed points, which we
label H(jl +._)» Where the superscript indicates the value of /.
We find, however, that these are not fixed points:

H{'(a) ~ Hy(2a) + H(2a), (C9)

HE'(a) = Hi(2a) + Hy(2a). (C10)
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In other words, [ being £1 does not affect the ERG. The local
gates and twist phases are not the same as the / = 0 case,
however. In particular, when [ = %1, the bifurcated copies
are placed on different qubits within the unit cell than in the
I = 0 ERG. Alternatively, this can be thought of as locally
relabeling the lattice, which (unlike global sublattice shifts) is
allowed in the ERG. The details of this process are in Sec. 2
of the Mathematica notebook [43].

It is relatively simple to describe the local gates required
to reach these fixed points. As mentioned in Sec. IV B, the
sets 04 and Qp are given by Qs (x,y) = c(x, y)Ps(x,y) and
Op(x,y) =d(x,y)Pg(x,y), with ¢ and d arbitrary polynomi-
als, and

Pax,y) =1+73f(x), Pplx,y)=1+yf(x). (ClD)
In Sec. 4 of the Mathematica notebook [43], we show how to
arrange these gates to bifurcate Hy.

What about general fractals? These may be deduced from
the bifurcation of Hy, as follows. First, if w(x) is a monomial,
then for any /, Eq. (C3) is just Hy, but with one of the sublat-
tices shifted by some y'x*.

Now, we have a set of circuits each labeled by (Q4, Op),
which split H4 into two copies of itself. If instead, we take
(Qa, y'x*Qp), our monomial model with w(x) = x* then bi-
furcates into models of the form

0 1
1 0

YA +yfe) 0 - CB
0 FRA+5f(E)

where the parameters I’ and k' correspond to shifts of one
sublattice by / and k, but in the coarse-grained coordinates.
In other words, a monomial w(x) leads to bifurcation into two
other monomials.

We now extend this to general polynomials w(x). First,
notice that the bipartite graph corresponding to such a model
can be made by taking the edges of a set of monomial models
and adding them mod 2. This set of monomial models is
given by the terms in w(x). Next, consider the set of symmet-
ric circuits given by (Q4, y'w(x)Qg). These polynomials can
also be made by adding individual polynomials of the form
(Qa, y'x*Qp) mod 2, which is equivalent to multiplying the
circuits since CZ = CZ~'. We then see that doing the ERG on
the polynomial model with gates given by (Q4, y'w(x)Qp), is
the same as doing the ERG on each monomial model with
gates (Q4,y'x*Qp), and then adding the cluster state graphs
mod 2. Therefore, the flow of a cluster FSPT with general
polynomial w(x) is simply determined by the flow for each

| ; A s Act with Z here
[ |

Y R R ) > i i Rl Ml

S

1

FIG. 10. Calculation of twist phases for one copy of H,. The
truncated symmetry S; anticommutes with only one local term
[represented schematically for an arbitrary polynomial f(x)]. An
equivalent action on H, (2a) is a single Pauli Z gate. This anticom-
mutes with one symmetry, S,. For the same commutation relation,
we place a Z operator on the row where the symmetry only acts on
one qubit. On the coarse-grained lattice (grid lines), the Z operator is
always on a different lattice site.

of the monomial terms in w(x). The result is the bifurcation
given in Eq. (C6).

We have shown that there are only three fixed points. It is
obvious from Egs. (C6) and (C8) that Hy is self-bifurcating,
but it is not clear that H4 cannot self-bifurcate. We now show
that this cannot happen for H, (H_ is similar). This argument
is also similar to the one we used to show the linear cluster
state does not self-bifurcate.

First, from Eq. (C8), the twist phases of H, are

0 0 0 1
T L R
1 0 0 O

The important detail is that Wl(j') = 1, which means that the
first and fourth symmetries, S and S®, only anticommute
if they are on the same lattice site [using the basis we defined
previously by coarse-graining Eq. (C1)]. However, this is im-
possible with only copies of H;. To see this, we cut along
y = 0. All of the symmetries act on this line at only a single
point. Because of this, they only anticommute with a single lo-
cal term of any copy of H,. (Fig. 10). This means we can write
the action along the cut as a single Pauli Z operator acting on
an adjacent coarse-grained lattice site. Therefore, symmetries
cannot have nontrivial twist phases with symmetries acting
on the same site. If we allow for a copy of Hy, however, this
problem is resolved, as the local terms for H allow for Pauli
Z’s on the same lattice site.
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