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Analytical solution for the steady states of the driven Hubbard model
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Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and
continuously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced
by certain symmetries can, however, prevent this and allow the system to dynamically form robust steady states
with off-diagonal long-range order. In this work, we take the Hubbard model on an arbitrary lattice with arbitrary
filling and, by simultaneously diagonalizing the two possible SU(2) symmetries of the system, we analytically
construct the correlated steady states for different symmetry classes of driving. This construction allows us to
make verifiable, quantitative predictions about the long-range particle-hole and spin-exchange correlations that
these states can possess. In the case when both SU(2) symmetries are preserved in the thermodynamic limit we
show how the driving can be used to form a unique condensate which simultaneously hosts particle-hole and
spin-wave order.
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I. INTRODUCTION

Coherent driving has established itself as a fundamental
tool for controlling and manipulating the states of quantum
systems, from implementing high fidelity gates in few-qubit
systems [1] to inducing phase transitions in many-body opti-
cal lattices [2]. Within this paradigm, recent experiments have
observed how intense laser pulses in the midinfrared regime
can transiently induce superconducting features—such as the
opening of a gap in the real part of the optical conductivity
and vanishing resistivity—when driving various solid state
materials out of equilibrium [3–11].

In order to understand seminal results such as these—and
more generally the role coherent driving plays in altering the
microscopic properties of many-body systems—significant
theoretical studies have been undertaken. Floquet theory can
be used to understand how periodic driving can modify the
parameters of the system and create additional terms on top
of the undriven Hamiltonian. This renormalization results in
an effective Hamiltonian which on transient scales can, for
example, favor superconducting prethermal states [12–25],
suppress wave-packet spreading and induce dynamical local-
ization in a many-body bosonic gas [26], control spin-charge
separation in a fermionic system [27], or stabilize exotic spin-
liquid states in frustrated systems [28].

It is inevitable, however, that due to Floquet heating a
generic periodically driven quantum system will continuously
absorb energy from the driving field. This heating competes
with any transient order established by the effective Hamil-
tonian, causing it to melt away and leading to the formation
of a featureless, infinite temperature state in the long-time
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limit [29,30]. As a result, engineering Floquet Hamiltonians
which are stable to heating on long timescales, allowing their
prethermal states to be transiently observable is a current
research endeavor attracting significant attention [31–38].

In contrast to these efforts to mitigate the effects of heating
in driven systems, recent theoretical work has shown how
the presence of SU(2) symmetries in the fermionic Hubbard
model can prevent featureless thermalization and result in the
formation of correlated, ordered states as the system heats
up [39,40]—a mechanism termed ‘heating-induced order.’
The phase space constraints induced by these symmetries
mean the system is forced to relax towards steady states
with off-diagonal long-range order as it absorbs energy from
an external source. Currently, however, this has only been
demonstrated numerically for the case when a single SU(2)
symmetry is preserved in small, finite-size instances of the
half-filled Hubbard chain [40].

In this work we go beyond this, taking the driven Hubbard
model on an arbitrary graph at arbitrary filling and analyt-
ically constructing the correlated steady states. We achieve
this construction by simultaneously diagonalizing the irre-
ducible representation of the two possible SU(2) symmetries
of the system, and through it we can analytically calculate
the steady state spin-exchange and particle-hole correlations,
at any distance. We verify our analytical results with exact
diagonalization calculations and analyze how the long-time
correlations depend on factors such as the filling, graph size,
initial state, and, crucially, the symmetries the driving pos-
sesses. Moreover, we provide the necessary conditions for the
steady state correlations to remain finite in the thermodynamic
limit. This leads us to show how, in cases where both SU(2)
symmetries are preserved, the driving can be used to merge
two independent condensates and create a unique spin-η con-
densate which hosts both spin-exchange and particle-hole
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off-diagonal long-range order. Finally, we discuss possible
experimental setups of the driven Hubbard model where the
requisite symmetries are preserved in order to observe the
formation of such unique, correlated states.

II. THEORY

As a starting point we consider the long-time states of a
quantum system, with Hamiltonian H , subject to continued
periodic driving under the modified Hamiltonian H + HD(t ),
where HD(t ) is the time-dependent periodic driving term
HD(t + T ) = HD(t ). We then assume that we can find a set
of X operators C = {C1,C2, ...,CX }, which form a linearly
independent, irreducible representation of the symmetries of
the system satisfying [Ci,Cj] = 0 ∀i, j. We note that while
this is not always possible in a general quantum system, for
the cases we consider in this work we are able to identify
the completely commuting set C. Being a representation of
the symmetries of the system we also clearly have that each
member of C satisfies

[H + HD(t ),Ci] = 0, i = 1, ..., X. (1)

Under the action of H + HD(t ) the system will continu-
ously absorb energy until, in the long-time limit, it reaches
a state of maximum entropy [29]. The system is, however,
under the constraint that its probability distribution over the
eigenspace of the operators in C must always be conserved.
Consequently, the long-time state of the system will effec-
tively have the form1

lim
t→∞ ρ(t ) = ρ∞ =

∑
α=(α1,α2,...αN )

Pα

Dα∑
β=1

|α, β〉〈α, β|, (2)

with
∑

α PαDα = 1 and the multi-index/quantum number α

running over the combinations of possible eigenvalues of the
operators in C. For a given α, the Dα vectors |α, β〉 form
the basis which simultaneously diagonalizes the operators
C1,C2, ...,CX , and Pα is the probability of finding the state in
this subspace. This probability must be preserved throughout
the dynamics and thus

Pα =
Dα∑

β=1

Tr(ρ(0)|α, β〉〈α, β|), (3)

where ρ(0) is the initial state of the system. If the complete
basis {|α, β〉} can be constructed and the corresponding prob-
abilities Pα calculated, then the long-time state of the system
is known.

The structure and properties of the set C has a signifi-
cant influence on the properties of the steady state ρ∞. For
example, consider the case of a many-body lattice with a
single U(1) symmetry such as the total particle number. The
corresponding total number operator is diagonal in the Fock

1While clearly in a closed system a pure state will always remain
pure, this mixed state ansatz is reasonable in a many-body system as
the energy of the driving will have scrambled the phases of the wave
function sufficiently to destroy any coherences between the |α, β〉
eigenstates [30].

basis and thus, by Eq. (2), so is ρ∞. All the states in the Fock
basis can be written as a product state over the different lattice
sites, making ρ∞ a featureless (outside of the well-defined
particle number), unentangled thermal state.

The same cannot be said, however, for more compli-
cated symmetries. In the case of an SU(n) symmetry for
a many-body lattice, one can form the set C by using the
generators to construct the n − 1 Casimir operators which are
fully independent of the lattice structure and thus completely
translationally symmetric. The basis which simultaneously
diagonalizes these Casimir operators is the basis in which ρ∞
is diagonal. These basis states cannot all be written as product
states over the different lattice sites and often contain corre-
lations in the form of excitations which are spread between
sites. Through Eq. (2) the long-time state will inherit these
properties, along with the complete translational invariance of
the Casimir operators, and thus possess correlations or excita-
tions which are independent of the lattice geometry, i.e., they
are completely uniform with distance. This induction of uni-
form, long-range correlations by heating an SU(n) symmetric
system up to its steady state has been termed ‘heating-induced
order’ and has been studied numerically on small, finite-sized
half-filled Hubbard lattices with a single preserved SU(2)
symmetry [39,40].

We note that the formation of these off-diagonal long-range
ordered states as t → ∞ does not exclude the possibility that,
due to the driving, one could also observe the emergence of
some transient, dynamical order on an intermediate timescale.
This would then be followed by the melting of this order and
the onset of our robust, steady state off-diagonal long-range
order (ODLRO) once sufficient heating has occurred. The
formation of transient, dynamical order is, however, usually
reliant on a careful choice of driving terms and parameters
[14,16,18,19,22–24]. Meanwhile, if the requisite symmetries
are satisfied, the emergence of steady state ODLRO is guaran-
teed due to the inevitability of Floquet heating under periodic
driving—giving us significant freedom in the driving fields
which can be used to observe heating-induced order.

A. The Hubbard model on an arbitrary graph

Here, we consider the Hubbard model on an arbitrary graph
with arbitrary filling and, by simultaneously diagonalizing the
dual SU(2) symmetries, analytically construct the long-time
states for the different symmetry classes of driving. We define
this graph as G = (V, E ) where V are the vertices (or sites)
and E the edges. The Hamiltonian can then be written as

H = −τ
∑
V,V ′

∑
σ=↑,↓

(c†
σ,V cσ,V ′ + H.c.) + U

∑
V

n↑,V n↓,V , (4)

where c†
σ,V and its adjoint are the usual creation and annihila-

tion operators for a fermion of spin σ on vertex V . The first
summation runs over all the edges in the graph, kinetically
coupling together the two sites V,V ′ residing at the ends of
each edge with strength τ . The second summation runs over
all the vertices in the graph and creates an energy penalty
U for vertices simultaneously occupied by both spin species.
Additionally, nσ,V is the number operator for a particle of spin
σ on site V , and we use the integer M to denote the number
of vertices on the graph. We also depict this Hamiltonian in
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FIG. 1. Fermionic Hubbard model on a graph G = G(V, E )
where V are the vertices and E are the edges. The M vertices form the
lattice sites on which the fermions reside and interact with strength
U while the edges form the nearest neighbor bonds over which the
fermions can hop with constant amplitude τ . The Hamiltonian is
defined in Eq. (4) and G1,G2, and G3 are the three different M = 10
vertex graphs we use for our numerics. The gray vs blue sites repre-
sent a bipartite splitting on the graphs G1 and G3.

Fig. 1, showing the three finite-size graphs we use for our
numerical results, which serve to benchmark our analytical
predictions. These analytical predictions, however, can be im-
mediately applied to any graph of any number of vertices.

The Hamiltonian in Eq. (4) has a rich symmetry structure
comprised of either one or two SU(2) symmetries [41], which
are fundamental to our results. The first, permanent, SU(2)
symmetry can be introduced through the spin-raising operator
S+ = ∑

V c†
V,↑cV,↓, its conjugate S−, and the total magneti-

zation Sz = ∑
V n↑,V − n↓,V . These operators are conserved

over all graphs, i.e., [H, S±,z] = 0, ∀G and we refer to this
symmetry as the ‘spin’ symmetry with the corresponding
operators only acting nontrivially on the sites of the lattice
occupied by a single fermion (singlons).

The second of the SU(2) symmetries is introduced through
the η-raising operator η+ = ∑

V f (V )c†
V,↑c†

V,↓, its conjugate
η−, and the modified total number operator ηz = ∑

V (n↑,V +
n↓,V − 1). If the graph G is bipartite, i.e., the vertices can be
split into two sets with the edges of the graph only forming
connections between the two sets, then [H, η+η−] = 0 if we
set the function f (V ) to take the values ±1 depending on
whether the corresponding vertex is in the first or second
set. Moreover, we always have [H, ηz] = 0 ∀G and thus the
η operators form an SU(2) or U(1) symmetry depending on
whether the graph is bipartite or not. The corresponding oper-
ators only act nontrivially on the empty and full sites within
the lattice and these sites are often referred to as occupied by
a ‘hole’ or a ‘doublon’ quasiparticle, respectively.

In addition to this we note that there may be additional
symmetries that H possesses which will reflect the polygon
symmetries of the graph G. For example on an open boundary
1D chain the Hubbard model has a reflection symmetry about
the central site, while on more complex geometries there may
be multiple reflection and translational shift symmetries [41].

Our goal is to determine the long-time states reached un-
der continued periodic driving on top of the Hamiltonian in

Eq. (4). For simplicity, we will assume that the driving either
breaks any polygon symmetries in the system or that they can
be ignored due to their sufficiently small effect on the long-
time properties of the system. We will see this is a reasonable
assumption for the graphs we use and therefore the relevant
symmetries to consider in our system are the two possible
SU(2) symmetries of the lattice.

From here on we will also, without loss of generality, fix
the quantities N↑ and N↓ which correspond to the total number
of fermions of spin ↑ and spin ↓, respectively. Our results
in the full Hilbert space can be recovered by performing a
direct sum over all possible values of N↑ and N↓. To keep
the equations we derive more concise, we will restrict our-
selves to lattices with an even number of sites M and an
even total number of particles N = N↑ + N↓. For brevity we
will also introduce the integer quantities α = (M − N )/2 and
β = (N↑ − N↓)/2.

B. Simultaneously diagonalizing the Hubbard SU(2)
Casimir operators

In order to construct the long-time state for arbitrary
driving we must be able to diagonalize the irreducible repre-
sentation of the dual SU(2) symmetries. This representation,
i.e., our set C, consists of the two SU(2) Casimir operators
η2 = η+η− + η−η+ + (ηz )2 and S2 = S+S− + S−S+ + (Sz )2

and their corresponding ‘z’ operators ηz and Sz. By fixing the
particle numbers we have already removed the dependency on
ηz and Sz and this restriction also means that the eigenvectors
of the operator O+O− are also those of O−O+, where O is
either η or S. Hence, our problem is immediately simplified to
simultaneously diagonalizing S+S− and η+η−.

We can make progress with this problem by noticing that
both operators commute with the total doublon operator ND =∑

V n↑n↓. We can therefore simultaneously reduce them into
block matrices with the blocks indexed by i, the number of
doublons on the graph, which ranges from Max(0,−2α) to
Min(N↑, N↓). For a given value of i, we observe that there
must be M + i − N holes in the graph and so the remaining
vertices, or sites, will be occupied by N↑ − i and N↓ − i sin-
glons of spin ↑ and ↓, respectively.

We can use this knowledge to take any given block and ar-
range the sites of the lattice into two sets, with the first set (A)
containing M + 2i − N sites and the second set (B) containing
the remaining N − 2i sites. There are

( M
N−2i

)
different ways in

which the sites can be arranged in this manner and in A we
place all of the doublons and holes while in B we place all
of the singlons. If the operator S+

V S−
V ′ (η+

V η−
V ′) acts on a vertex

which is in set A (B) then it will immediately annihilate any
given basis state, and thus we can let

η+η− → (η+η−)′ =
∑

V,V ′∈A

η+
V η−

V ′ ,

S+S− → (S+S−)′ =
∑

V,V ′∈B

S+
V S−

V ′ , (5)

and ignore the other terms in these two operators. If we can
now construct a state |η〉, within A, which is an eigenvector of
(η+η−)′ with eigenvalue λA and a state |S〉 within B which is
an eigenvector of (S+S−)′ with eigenvalue λB then their ‘ten-
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TABLE I. Form of the probabilities Pk,m which characterize the steady state of the driven Hubbard model [see Eq. (9)]. The probabilities
are defined by their relationship to the initial state ρ(0) and the projectors Pη

k , PS
m, and PS,η

m,k , which are defined in Eq. (10). This relationship
changes depending on which of the two SU(2) symmetries are present during the systems evolution to the steady state.

Spin Symmetry η Symmetry No Yes

No Pm,k = const. Pm,k = PmPk, Pk = Tr(ρ(0)Pη

k ) Pm = const.

Yes Pm,k = PmPk, Pk = const., Pm = Tr(ρ(0)PS
m ) Pm,k = Tr(ρ(0)PS,η

m,k )

sor product’ |η〉⊗̃|S〉 will simultaneously be an eigenvector
of both η+η− and S+S− on the full graph with eigenvalues λA

and λB, respectively. The tilde on the tensor product means we
will take into account the way the sets A and B were formed
and reorder the vertices of the graph back to their original
order.

We now need to determine the eigenspectrum of (η+η−)′
and (S+S−)′. Crucially, we know that (η+η−)′ and (S+S−)′
correspond to the SU(2) Casimir operators in a, respectively,
M + 2i − N and N − 2i-fold tensor product representation of
the fundamental representation of SU(2) [42,43]. By exploit-
ing the ‘ladder’ structure of SU(2) representations we can
determine the eigenvalues of (η+η−)′ and (S+S−)′ as

λη(k) = k(k + 1) − α(α + 1), k = |α|, ...α + i

λs(m) = m(m + 1) − β(β + 1), m = |β|, ..., N/2 − i.
(6)

These eigenvalues have the following degeneracies

Dη(k) = C(α + i + k, α + i − k − δk ),

DS (m) = C(N/2 − i + m, N/2 − i − m − δm), (7)

where δa is the Kronecker delta function and C(x, y) ≡ Cx
y is

the Catalan triangle number [44]

Cx
y =

{ (x+y)!(x−y+1)
y!(x+1)! x, y > 0,

1 otherwise.
(8)

With this knowledge we can denote |ηk,l〉 and |Sm,n〉 as the
eigenvectors of (η+η−)′ and (S+S−)′ where k and m index
the respective eigenvalues and l and n run through the de-
generate eigenvectors for a given k and m. The state |ψ〉 =
|ηk,l〉⊗̃|Sm,n〉 is then an eigenvector of η+η− and S+S− on
the full graph G. The relevant indices to specify the state |ψ〉
are then |ψi, j,k,l,m,n〉 where i is the number of doublons, j
indexes the

( L
N−2i

)
ways in which the lattice can be split into

the two aforementioned sets, and k and l index the degener-
ate eigenvectors of (η+η−)′ while m and n do the same for
(S+S−)′. The states |ψ〉 form a complete, orthonormal basis
which diagonalize η+η− and S+S− for the given filling.

C. Steady states of the driven Hubbard model

We can now combine the basis we have constructed with
the general result of Eq. (2) and write down the steady state
ρ∞ of the periodically driven Hubbard model on an arbitrary
graph with arbitrary filling as

ρ∞ = 1

Z

Min(N↑,N↓ )∑
i=Max(0,−2α)

α+i∑
k=|α|

N/2−i∑
m=|β|

Pk,m

Cα+i+k
α+i−k−δk∑

l=1

CN/2−i+m
N/2−i−m−δm∑

n=1

( L
N−2i)∑
j=1

|ψi, j,k,l,m,n〉〈ψi, j,k,l,m,n|, (9)

where Z is the partition function and the values Pk,m are a
series of probabilities [analogous to the Pα in Eq. (2)] which
are dependent on both the initial state as well as which, if
any, of the SU(2) symmetries are present in the system. This
dependency is encapsulated by Table I, where we have also
introduced the following projectors

Pη

k =
∑

i, j,m,n,l

|ψi, j,k,l,m,n〉〈ψi, j,k,l,m,n|,

PS
m =

∑
i, j,k,n,l

|ψi, j,k,l,m,n〉〈ψi, j,k,l,m,n|,

PS,η

m,k =
∑

i, j,n,l

|ψi, j,k,l,m,n〉〈ψi, j,k,l,m,n|, (10)

with the indices used all retaining their original meaning and
ranges from Eq. (9).

Table I, alongside Eq. (9), allows us to classify and write
down the steady states of the driven Hubbard model on an
arbitrary graph. This classification is based on which of the

SU(2) symmetries are present during the time evolution and—
due to the excited, entangled nature of the eigenstates of the
SU(2) Casimir operators—the long-time state will contain
long-range correlations in the channels corresponding to the
preserved symmetries. Meanwhile, in the channels where the
underlying symmetry was not present the constant nature of
the probabilities means all excitations are equally likely and
they will destructively interfere with each other to ensure there
is no long-range order in that channel.

Given the probabilities Pk,m we can calculate a number
of properties of the state in Eq. (9). For example we can
immediately deduce the moments of the doublon number Nd

〈
Nα

d

〉 = 1

Z

∑
i

iα f (i),

f (i) =
∑
k,m

Pk,mCα+i+k
α+i−k−δk

CN/2−i+m
N/2−i−m−δm

(
M

N − 2i

)
. (11)
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These equations are useful because we can take advantage of
the distance invariance of correlations in the long-time state
and use the first moment of the doublon number (α = 1),
along with the initial values 〈η+η−〉 and 〈S+S−〉, to directly
extract values for the off-diagonal spin-exchange and particle-
hole order parameters 〈S+

V S−
V ′ 〉 and 〈η+

V η−
V ′ 〉. Specifically, we

know that

〈η+η−〉 = 〈
N1

d

〉 + M(M − 1)〈η+
V η−

V ′ 〉, (12)

and

〈S+S−〉 = N↑ − 〈
N1

d

〉 + M(M − 1)〈S+
V S−

V ′ 〉, (13)

where V 
= V ′. Moreover, higher moments of the doublon
number α > 1 provide access to multipoint correlators in the
η and spin symmetry sectors (for example, we can show that
〈n↑,V n↓,V n↑,V ′n↓,V ′ 〉 ∝ 〈N2

d 〉 − 〈N1
d 〉).

In principle, however, in order to calculate the moments of
the doublon number we need to know the exact values of the
Pk,ms which, in some cases, could be quite complicated and
would involve taking a number of projective measurements
on the initial state. We find from our equations, however, that
the first moment of the doublon number is only dependent on
the probabilities Pk,m through its relationship to 〈η+η−〉 and
〈S+S−〉 and thus knowledge of these two values, and the graph
size and filling, is enough to calculate 〈N1

d 〉. The steady state
off-diagonal order parameters 〈η+

V η−
V ′ 〉 and 〈S+

V S−
V ′ 〉 then fol-

low immediately from Eq. (12) and the corresponding ‘spin’
version.

These quantities are particularly important because when
finite in the thermodynamic limit and completely uniform
with distance, the latter of which is automatically satisfied by
ρ∞, they describe the existence of a spin-wave or η conden-
sate. These condensates are underpinned by excitations which
are completely spread out in space and in an η condensate the
long-range finite value of 〈η+

V η−
V ′ 〉 directly implies supercon-

ductivity as the Meissner effect and flux quantization can be
observed [45,46].

III. RESULTS: HUBBARD MODEL UNDER GENERIC
DRIVING

We now demonstrate the results we have derived explicitly,
first focusing on the case where a single SU(2) symmetry is
preserved and then moving on to the case where both SU(2)
symmetries are preserved. We note that the scenario where
both symmetries are not preserved needs no attention as it
is trivial and the long-time state will simply be a featureless
thermal state with a fixed particle number.

A. Single symmetry preservation

We consider a setup in which the spin SU(2) symmetry is
present while the η SU(2) symmetry is not. These results are
immediately analogous to the case where the spin symmetry
is not present and the η symmetry is, which was studied in
Ref. [40] but only for a small, half-filled chain. We introduce
the graph measure d (V,V ′) which is the minimum number of
edges that must be traversed to move between the vertices V
and V ′. With this measure we can then define the correlation

FIG. 2. (a) Spin-exchange correlations versus distance δ, see
Eq. (14), for the periodically driven graph G1 pictured in Fig. 1, with
the site index V running from 1 to 10, starting at V = 1 for the bottom
left site and increasing in an anticlockwise manner. The driving
term we use is of the form HD = A cos(�t )

∑
V V nV and the gray

vs blue markers/lines correspond to the fillings N↑ = N↓ = 5 and
N↑ = N↓ = 3, respectively. At time tτ = 0 the system is initialized in
the ground state of the undriven Hamiltonian H with U = 0.5τ and
then evolved under the Hamiltonian H + HD with U = τ , A = 6.0τ ,
and � = 1.0τ . The solid lines vs markers indicate the correlations
at tτ = 0 and tτ = 100, respectively. The black-dotted lines give the
exact results in the long-time limit. (b) Off-diagonal spin-exchange
order as a function of the numbers of ↑ and ↓ fermions in the steady
state of a driven, arbitrary, M = 100 vertex Hubbard graph where
the spin SU(2) symmetry is preserved while the η SU(2) symmetry
is not. The system is initialized with 〈S+S−〉 = 0.

function

O(δ) = 1

N
∑

〈V,V ′〉
d (V,V ′ ) = δ

〈O+
V O−

V ′ 〉, (14)

where O is either S or η, the summation is over all pairs of
vertices where d (V,V ′) = δ, and N is the number of pairs of
vertices which satisfy d (V,V ′) = δ. Hence, O(δ) measures the
average of the spin-exchange or particle-hole correlations at a
distance δ for any given graph, and we can introduce |O(δ)|δ>l
as the average magnitude of these correlations at distances
greater than l .

In Fig. 2(a) we demonstrate agreement, for two different
particle fillings, between the equations in the previous section
and exact diagonalization code which reaches the long-time
limit of the graph G1 from Fig. 1. As the driving explic-
itly breaks η symmetry the long-time prediction from these
equations is independent of the lattice structure and whether
it is bipartite or not. Figure 2 shows that when driving the
ground state out of equilibrium, the preservation of 〈S+S−〉
under driving causes the establishment of completely uniform,
long-range spin-wave order in the long-time limit, with a
significant enhancement of the long-range correlations. This
long-range order is largest at the higher filling and, more
generally, our equations show that the steady state order will
always be maximized when the system is closest to zero
total magnetization and half filling, where the largest number
of spin-exchange excitations are available. In Fig. 2(b) we
show this result explicitly, observing significant order around
this half-filled nonmagnetic point which then decays to zero
as either of the filling numbers, N↑ and N↓, approach their
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FIG. 3. Scaling of the steady state off-diagonal spin-exchange
correlations with the number of vertices and initial value of
〈S+S−〉 = Tr(ρ(0)S+S−) for the half-filled Hubbard model on an
arbitrary graph. The system is time evolved under driving which
preserves the spin SU(2) symmetry and breaks the η symmetry.
(a) Scaling versus both system size and m where m = (−1 +√

1 + 4〈S+S−〉)/2. (b) Scaling with system size for various initial
states. The solid lines correspond to the initial values 〈S+S−〉 =
Mα/20 for varying α while the dashed line is for 〈S+S−〉 = 0.

maximal or minimal values (where it is not possible to per-
form a spin-exchange S+

V S−
V ′ without annihilating the state of

the system).
We then concentrate on the nonmagnetic half-filled point,

where the order is maximized, and in Fig. 3 plot the magnitude
of the long-time spin-exchange order for a large range of
system sizes and initial values Tr(ρ(0)S+S−). These results
apply to any driven Hubbard graph where the spin SU(2)
symmetry is preserved and the η symmetry is not, which could
be a result of the driving or the underlying lattice structure.

Notably, as system size increases there is a growing space
of initial values where there is significant spin-wave order
in the long-time limit. In fact we can easily argue that the
spin-wave order will be finite in the thermodynamic limit of
any graph if, and only if, the initial state satisfies 〈S+S−〉 ∝
M2, with Fig. 3(b) showing this explicitly. Such states are
already likely to have finite long-range spin correlations to
satisfy this requirement, however the driving will still act
to renormalize these correlations and make them completely
uniform with distance, stabilizing the spin-wave order. Mean-
while, for simulations which start in the ground state (where
〈S+S−〉 ≡ 0) the spin order asymptotically tends to 0 as 1/M
but remains finite for any finite-size system—with the dynam-
ics underpinned by a drastic amplification of the long-range
correlations at the expense of the short-range ones.

Interestingly, in Ref. [12], a type of spin preserving pe-
riodic driving was studied for the 1D Hubbard chain in the
thermodynamic limit. There it was shown how driving the
ground state can renormalize the exchange parameters in the
system and transiently enhance long-range singlet pairing.
Even though the long-time spin order will be 0, our results
here suggest this transient response could be a result of
the preservation of 〈S+S−〉. Under driving, this preservation
forces a drastic reorganization of the spin degrees of freedom,
which will involve a transient enhancement of the long-range
correlations at the expense of the shorter ones, before they
mutually decay away to 0 in the long-time limit.

Despite the ground state of hypercubic Hubbard lattices
possessing the smallest possible value of 〈S+S−〉, our equa-
tions show that the magnitude of the induced off-diagonal
spin order |〈S+

V S−
V ′ 〉| under driving which preserves the SU(2)

spin symmetry is larger than that for any initial states which
have finite 〈S+S−〉 < (M − 1)/2. This is because the steady
state spin order 〈S+

V S−
V ′ 〉 is a monotonic function of 〈S+S−〉

but is negative for finite M and 〈S+S−〉 < M/4, at which
point it changes sign. Hence, the ground state spin order is
the most negative and it can be shown from our equations
that the magnitude of this order is larger than that of any
other states in the range 0 < 〈S+S−〉 < (M − 1)/2. On a half-
filled hypercubic lattice, this range includes all initial states
in thermal equilibrium ρ(0) ∝ e−βH as the value of 〈S+S−〉
for these states monotonically increases from 0 to M/4 as
the inverse temperature β decreases from ∞ to 0. Hence,
for these thermal initial states on a finite sized lattice, the
magnitude of the steady state spin order is maximized for
the ground state and remains finite for any finite temperature
initial state—asymptotically tending to 0 as the temperature
of the initial state approaches ∞ where 〈S+S−〉 = M/4.

Outside of hypercubic lattices it is harder to make state-
ments about the long-time order which will form from an
initial state in thermal equilibrium. This is because the rela-
tionship between the expectation value of the SU(2) Casimir
operator (which determines the amplitude of the long-time or-
der) and β is likely to be more complex. This could, however,
lead to the exciting possibility of heating ρ(0) ∝ e−βH under
certain symmetries and forming a state with uniform, finite,
off-diagonal order even in the thermodynamic limit dynam-
ically transforming a system in thermodynamic equilibrium
into a ‘hot’ condensate.

It is worth emphasizing that in this paper we have taken
the hopping strength τ to be homogeneous across all edges of
the lattice. The spin SU(2) symmetry of the Hubbard model
is, however, preserved even in the case of an inhomogeneous
hopping strength and so our results in this section immediately
apply to this more general scenario.

B. Both SU(2) symmetries preserved

We now move to the case where the driving preserves both
SU(2) symmetries and in order for this preservation to also
be true for the full Hamiltonian H + HD(t ) we require the
underlying graph to be bipartite, which we will assume in our
analytical calculations. For our numerics, the graphs G1 and G3

are bipartite while G2 is not, and so we shall see that this leads
to distinctly different dynamics when they are driven. We fix
ourselves to symmetric half filling (N↑ = N↓ = M/2) where
the long-time order will be maximal due to the maximum
availability of both particle-hole and spin-exchange excita-
tions. In Figs. 4(a) and 4(b) we start in a thermal state and
apply driving which preserves both SU(2) symmetries to the
three different lattice structures G1,G2, and G3, calculating
the average amplitude of the correlations between all pairs of
sites not connected by an edge. In the particle-hole channel,
we observe a pronounced increase in this average, with the
large value of U having suppressed them in the initial thermal
state. The average in the spin-exchange sector instead remains
relatively constant, but the inset in Fig. 4(c) shows that the
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FIG. 4. (a),(b) Off-diagonal spin and η correlations versus time and distance for three different half-filled Hubbard lattices with driving
of the form HD = δU cos(ωt )

∑
i n↑,in↓,i and the bare Hamiltonian H as defined in Eq. (4) with U = 4.0τ . The system is initialized, at

time tτ = 0, in the thermal state ρ ∝ exp(−βH ) with βτ = 5 and then time evolved under H with U = 4.0τ , δU = 1.5τ , and ω = 1.0τ .
Black-dotted lines represent the long-time analytical predictions for the three respective graphs. (Inset) Spin correlations versus distance at
times tτ = 0 and tτ = 100 for the lattice G2. (c) Map of the doublon/ spin order of long-time states of the Hubbard model on a 100 vertex
bipartite graph with driving which preserves both SU(2) symmetries. The indices m and k are dependent on the initial values of the spin
and η symmetry via m = (−1 + √

1 + 4〈S+S−〉)/2 and k = (−1 + √
1 + 4〈η+η−〉)/2. The two maps are related via a reflection over the

black-dotted line. (Insets) Doublon (solid line) and spin (dashed line) order for the long-time state at the circled point on the map.

driving has still reordered these correlations to be completely
uniform with distance. We find our predictions from Eq. (11)
are in perfect quantitative agreement with the long-time order
observed in these states and, as we expect, the nonbipartite
graph G2 cannot support particle-hole order as it lacks the
requisite symmetry.

In Fig. 4(c) we present maps of the long-time off-diagonal
particle-hole and spin-exchange order as a function of the η

and spin eigenvalues of the initial state for a bipartite graph
with M = 100 sites. There is a whole manifold of states
with significant, co-existing, particle-hole and spin-exchange
order, and we present an example state in the inset of each
map. Here, we can also show that, similar to the single sym-
metry case, when starting in the ground state the off-diagonal
spin and η order always remains finite for finite systems but
asymptotically decays to 0 as 1/M.

In fact, in the thermodynamic limit, the condition
〈η+η−〉 ∝ M2 or 〈S+S−〉 ∝ M2 is necessary to observe finite
ODLRO in the η and spin sectors, respectively. These two
conditions are not mutually exclusive, allowing us to exploit
the driving to form a unique spin-η condensate. Specifically,
consider a bipartite M site lattice which hosts the initial state
(S+)M/4|χ1〉 ⊗ (η+)M/4|χ2〉, where |χ1〉 = | ↓,↓, ...,↓〉 on
M/2 of the sites and |χ2〉 is the vacuum state on the other M/2
sites. This state consists of two independent condensates—
a spin-wave and particle-hole condensate—each confined to
one half of the lattice. Under driving which preserves both
SU(2) symmetries, and a Hubbard Hamiltonian H over the full
lattice, the dynamics will involve the system heating up while
conserving the values of 〈S+S−〉 and 〈η+η−〉—forcing the
condensates to merge and phase lock into a larger, single con-
densate which, remarkably, hosts ODLRO in the particle-hole
and spin-exchange sectors simultaneously. Specifically, our
equations tell us limM→∞ |η(δ)|δ>0 = limM→∞ |S(δ)|δ>0 =
0.0625, i.e., there is completely ODLRO in both symmetry
sectors. The interplay between heating induced by the driving
and the preservation of SU(2) symmetries has therefore led to
the formation of a unique state of matter which is simultane-
ously a superconductor and a spin-wave condensate.

In Fig. 5 we picture this process of merging two conden-
sates for a Hubbard chain. The actual lattice structure is not
important and such a process could be performed by driving
condensates which are initialized on two halves of any bipar-
tite lattice. Moreover, this process could also be used to merge
two condensates of the same type, such as states of the form
(S+)M/4|χ1〉 ⊗ (S+)M/4|χ1〉 or (η+)M/4|χ2〉 ⊗ (η+)M/4|χ2〉. In
this case the driving only needs to preserve the relevant SU(2)
symmetry in order to phase lock and merge the two conden-
sates into a larger one.

C. Experimental implementation of SU(2) symmetry
preservation

Finally, it is important to discuss how driving which pre-
serves the SU(2) symmetries of the Hubbard model can be
achieved experimentally. If we consider an optical lattice
implementation of the Hubbard model [47–49] we can take
advantage of the fact the Hubbard interaction and hopping
strengths have a well defined relationship with the depth and
separation of the potential minima which form the optical
lattice sites. These quantities can be directly controlled, and
made to oscillate, by modulating the standing-wave inter-
ference pattern which generates the potential landscape—a
process which has already led to the experimental realization
of a Hubbard Hamiltonian with time-dependent parameters
[50] and could be used to realize the unique states we have ob-
served here, including the exotic η-spin condensate in Fig. 5.

Moreover, in a quantum materials setting, a recent
experiment has shown how laser excitation of the vi-
brational modes of the organic charge transfer salt
κ − (BEDT − TTF)2Cu[N(CN)2]Br, whose conducting lay-
ers can be described by a triangular Hubbard model, leads
to the formation of transient superconducting features [11].
Density functional theory modeling of the material has shown
that the laser excitation induces a periodic time dependence in
the parameters of the triangular Hubbard Hamiltonian which,
in combination with the irregular geometry of the system,
leads to the system transiently establishing particle-hole order
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FIG. 5. Merging of two condensates under long-time driving. The Hubbard model on a 1D chain is split into two independent halves
which contain an η and spin-wave condensate, respectively. The system is then time evolved under generic driving which respects both SU(2)
symmetries of the model, causing the condensates to merge into a single hybrid spin-η condensate. (Left) Pictorial depiction of the process.
(Right) Matrices of η and spin-exchange correlations for the whole lattice in the thermodynamic limit (M → ∞) at times t = 0 and t = ∞; i
and j index the different sites of the chain.

as it absorbs energy from the driving field [51]. The numerical
calculations in Ref. [51] thus provide a possible connection
between the mechanism of heating-induced order and this
recent experiment.

It is also worth mentioning that, in this work, we have
considered the situation where the relevant SU(2) symmetries
are completely preserved and so the correlated states
we observe will form in the long-time limit and persist
indefinitely, i.e., they are not prethermal states but are exact
steady states of the system. In a realistic experimental
setup, however, these SU(2) symmetries will never be
perfectly preserved due to the presence of thermal effects and
lattice imperfections. In this case, assuming these unwanted
mechanisms are sufficiently small in magnitude compared
to the driving strength, then we expect the correlated states
to instead form transiently and be observable on some
intermediate timescale, prior to the system eventually heating
up to a featureless infinite temperature states.

IV. CONCLUSION

In this paper we have simultaneously diagonalized the
dual SU(2) symmetries of the Hubbard model on an arbitrary
graph. This diagonalization has allowed us to construct the
long-time states of the driven model and classify and predict
their properties under various symmetry classes of driving.
The preservation of either, or both, of the SU(2) symmetries
leads to a significant dynamical reordering of the long-range
correlations of the system, resulting in states with off-diagonal
long-range correlations in the corresponding symmetry sec-
tors. We have analyzed how these correlations scale with the
relevant initial state properties, lattice filling, and the graph
size. This analysis led us to identify a mechanism by which a
unique condensate in the thermodynamic limit—hosting both
spin-exchange and particle-hole order simultaneously—can
be formed.

Here, we have focused directly on the case of periodic
driving, where a many-body system will generically undergo
the desired heating for most nontrivial driving terms and

experimental implementations are possible with current tech-
nologies. We emphasize, however, that this mechanism of
‘heating-induced order’ can occur in any quantum system
which continuously absorbs energy from an external source
while the requisite symmetries are preserved. For example,
coupling the system to an energetic Markovian external source
which introduces decoherence through local, hermitian jump
operators has been shown to cause the desired heating [40,52],
and driving in the form of strong kicking or nonmonochro-
matic pulses [51,53,54] is likely to also provide a route to
inducing these correlated states.

Alongside this, our work opens up several further ques-
tions. Firstly, we have not quantified the effect of the polygon
symmetries of the Hubbard lattice on the long-time states
reached under periodic driving. While there is a minimal
effect on the geometries we consider, more complicated struc-
tures could significantly alter the pairing landscape of the
system, revealing exotic states which have preferential direc-
tions for the flow of supercurrents within the lattice structure.

Furthermore we emphasize that this intuition of
symmetry-constrained relaxation to ordered states is not
limited to the single-band Hubbard model. For example, the n
species Hubbard model is SU(n) symmetric [55] and driving
terms which preserve this symmetry would lead to a unique
state which possesses off-diagonal long-range spin-exchange
correlations between each distinct pair of fermionic
species. Moreover, a number of other systems, such as
the SU(n) Heisenberg model [56] or multiband/multiorbital
Hubbard models [57,58], possess special unitary/orthogonal
symmetries which could be exploited to realize similar exotic
correlated states under heating.
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