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We propose a family of Abelian quantum Hall states termed the nondiagonal states, which arise at filling
factors ν = p/2q for bosonic systems and ν = p/(p + 2q) for fermionic systems, with p and q being two
coprime integers. Nondiagonal quantum Hall states are constructed in a coupled wire model, which shows
an intimate relation to the nondiagonal conformal field theory and has a constrained pattern of motion for
bulk quasiparticles, featuring a nontrivial interplay between charge symmetry and translation symmetry. The
nondiagonal state is established as a distinctive symmetry-enriched topological order. Aside from the usual U (1)
charge sector, there is an additional symmetry-enriched neutral sector described by the quantum double model
D(Zp), which relies on the presence of both the U (1) charge symmetry and the Z translation symmetry of the
wire model. Translation symmetry distinguishes nondiagonal states from Laughlin states, in a way similar to how
it distinguishes weak topological insulators from trivial band insulators. Moreover, the translation symmetry
in nondiagonal states can be associated with the e ↔ m anyonic symmetry in D(Zp), implying the role of
dislocations as twofold twist defects. The boundary theory of nondiagonal states is derived microscopically.
For the edge perpendicular to the direction of wires, the effective Hamiltonian has two components: a chiral
Luttinger liquid and a generalized p-state clock model. Importantly, translation symmetry in the bulk is realized
as self-duality on the edge. The symmetric edge is thus either gapless or gapped with spontaneously broken
symmetry. For p = 2, 3, the respective electron tunneling exponents are predicted for experimental probes.
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I. INTRODUCTION

The discoveries of integer and fractional quantum Hall
effects have initiated a revolution in the study of condensed
matter that highlights the interplay between topology and
physics [1–3]. In particular, fractional quantum Hall (FQH)
states are characterized by topological order, which transcends
Landau’s paradigm of spontaneous symmetry breaking [4].
Topologically ordered states host anyons, which are pointlike
quasiparticle excitations that obey neither the bosonic nor
fermionic exchange statistics. Rather, anyons have fractional
statistics, and depending on whether they have a single or
multiple fusion channels, they are classified as Abelian or
non-Abelian anyons, respectively. On practical grounds, there
have been many research efforts investigating non-Abelian
topological phases since certain types of non-Abelian anyons,
such as the Fibonacci anyon and the Ising anyon, can support
universal quantum computation [5–8]. By braiding Fibonacci
anyons, all possible unitary gates can be implemented with
intrinsic fault tolerance [9,10]. By braiding Ising anyons,
supplemented with a single-qubit phase gate and a two-
qubit measurement gate, universal quantum computation can
also be realized given rather mild error-correcting protocols
[11,12]. There are also proposals of using Abelian anyons for
quantum computations, with some but not all of the robustness
as provided by non-Abelian anyons [13–15].

On fundamental grounds, FQH states are prototypical plat-
forms exhibiting the bulk-boundary correspondence. The bulk
of a FQH state is gapped and characterized by a 2+1D
topological quantum field theory, in which gauge fluxes are

attached to quasiparticles [16–22]. The boundary theory is
gapless and described by a closely related 1+1D conformal
field theory (CFT), where the primary fields are associated
with the quasiparticle types [23–27]. The simplest example is
the Laughlin state at filling ν = 1/k, whose bulk is described
by the U (1)k Chern-Simon theory and the edge theory is the
circle CFT (a free boson compactified on a circle) with radius
R = 1/

√
k and chiral central charge c = 1.

The bulk-edge correspondence of a topological phase is
particularly manifest in a coupled-wire construction [28,29].
There are two central ingredients in a coupled-wire construc-
tion. First, each wire is a one-dimensional (1D) Luttinger
liquid consisting of two decoupled chiral and antichiral gap-
less modes. These decoupled modes are selected by tuning the
intrawire forward scattering appropriately. Second, an array of
wires interact together such that the chiral mode on one wire
is coupled to the antichiral mode on the next wire, leading
to a two-dimensional (2D) bulk that is completely gapped.
At the end, a pair of gapless chiral modes remain, which are
separated by the gapped bulk and localized at the boundary.
This is conceptually similar to what happens in the nontrivial
phase of the Su-Schrieffer-Heeger model [30], where intersite
couplings are engineered such that a physical electron can
“split” into two halves, each residing at a domain wall. In this
spirit, the coupled-wire construction has been applied to study
various Abelian and non-Abelian FQH states [28,29,31–35],
quantum spin liquid states [36–38], and higher-dimensional
topological phases [39,40].

As an exactly solvable model, the wire construction also
allows one to study the motion of quasiparticles explicitly.
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Quasiparticles correspond to kink excitations defined on a link
between two wires, and they can move around by acting local
operators on individual wires. Thus, the theory of a single
wire, which is a full nonchiral CFT, contains important infor-
mation about the scattering pattern of quasiparticles. The way
that chiral and antichiral sectors are sewed together defines the
allowed physical operators that can act on a single wire and
subsequently defines the allowed operators that scatter quasi-
particles in the wire model [29]. When the wire is described by
a diagonal CFT, which is the case for a Laughlin state, a local
operator is given by a diagonal combination of chiral and an-
tichiral fields, implying that all quasiparticles can be scattered
across a single wire, having essentially unconstrained motion
in the bulk. The purpose of this work is to introduce a simple
but nontrivial twist to the Laughlin state, where a single wire is
described by a nondiagonal circle CFT. The resulting Abelian
FQH state, termed the nondiagonal state, has an interesting
and constrained pattern of quasiparticle motion, which has
significant physical consequences that we investigate below.

In this paper, we propose a family of nondiagonal QH
states using a coupled wire construction. The bosonic non-
diagonal states arise at filling fraction ν = p/2q, and the
fermionic nondiagonal states arise at ν = p/(p + 2q), with
p and q being two coprime integers. For p = 1, our con-
struction produces the well-known Laughlin states, but there
are interesting physics to be unveiled for p > 1. Importantly,
the nondiagonal QH states serve to highlight not only the
interplay between topology and physics, but also the interplay
between symmetry and topological order. As we will see, in
the absence of either the U (1) charge symmetry or the Z trans-
lation symmetry of the wire model, a nondiagonal state cannot
be distinguished from a Laughlin state of charge-pe particles,
which is also known as a strongly clustered state [31,33].
Nondiagonal states thus share the same intrinsic topological
order with strongly clustered states. With charge conservation
alone, they are both characterized by a U (1) charge sector
and possess a chiral Luttinger liquid on the boundary. How-
ever, in the presence of both charge symmetry and discrete
translation symmetry, the nondiagonal states possess a distinct
symmetry-enriched topological (SET) order [41–45]. There is
an additional symmetry-enriched neutral sector characterized
by the quantum double model D(Zp), which has a Zp topo-
logical order.

Earlier, the Zp topological order has been realized in
spin/rotor models such as Kitaev’s toric code [7,46,47] and
Wen’s plaquette model [48,49], and in this work, the nondiag-
onal QH state is introduced as a platform for realizing D(Zp)
in an electronic setting. Similar to the lattice models with
spins, the translation symmetry in the coupled wire model
also plays the role of the e ↔ m anyonic symmetry of the
Zp topological order. In fact, the constrained motion of quasi-
particles in the nondiagonal states distinguishes quasiparticles
excited on the even links from those on the odd links, and as
we will see, excitations on even and odd links can be respec-
tively associated with the e-type and m-type anyons in D(Zp).
Translation by a wire then interchanges even and odd links,
thus acting as an anyon-relabeling transformation. A similar
mechanism has been featured in the work by Hong and Fu
[50], where a fermionic Z4 topological order is realized on the
surface of topological crystalline insulators. Consequently, a

dislocation in our wire model, which corresponds to a sudden
termination of a wire inside the bulk, acts as a twofold twist
defect that interchanges e and m anyons [47]. We expect the
proposed nondiagonal QH states to be a concrete test bed for
the general theory of anyonic symmetry [51–53]. Moreover, it
may be interesting for future studies to explore the possibility
of experimentally realizing the nondiagonal states in twisted-
bilayer materials, as an array of quasi-1D subsystems could be
engineered there, with the required translation symmetry built
in [54].

The rest of the paper is organized as follows. In Sec. II
we present a detailed study of the coupled-wire construction
for the nondiagonal quantum Hall states. The existence of
nondiagonal states is established in Sec. II A, followed by
a discussion that explains the relation to nondiagonal CFTs
in Sec. II B. In Secs. II C and II D, we analyze the scatter-
ing pattern of quasiparticles for both bosonic and fermionic
nondiagonal states by explicitly constructing physical opera-
tors that move the quasiparticles around. The analysis allows
us to appreciate the importance of charge conservation in
constraining the motion of quasiparticles. We also provide
an analog of nondiagonal QH states in the context of weak
topological superconductors, which contains a similarly con-
strained motion of vortex excitations that can be understood
using the fractional Josephson effect. In Sec. III we study the
nondiagonal states from the “symmetry-enriched” perspec-
tive. We first establish a bulk neutral sector described by the
D(Zp) quantum double model with a calculation of braiding
statistics (Sec. III A) and discuss several concrete examples of
nondiagonal states (Sec. III B). We then clarify the importance
of the U (1) charge symmetry and the Z translation symmetry
in giving rise to the D(Zp) neutral sector (Sec. III C), thus
establishing the nondiagonal state as possessing an SET or-
der distinctive from the strongly clustered Laughlin state. In
Sec. IV we present a detailed study of the boundary theory.
We focus on the edge running perpendicular to the direction of
wire, which is capable of realizing the translation symmetry.
The corresponding effective Hamiltonian is found to consist
of a chiral Luttinger liquid (Sec. IV A) and a generalized
p-state clock model (Sec. IV B). Our discussion here cor-
roborates and elaborates on some earlier works on critical
parafermion chains [55] and twist-defect chains [56]. Trans-
lation symmetry in the bulk is realized as self-duality on the
edge. The symmetric edge for p = 2, 3 is completely gapless,
allowing for tunneling of a single electron into the edge, say,
from a Fermi liquid. Tunneling exponents are calculated in
Sec. IV C, which hopefully serve as an experimental probe for
the nondiagonal states. Some complexities for the edge struc-
ture for p � 4 are addressed in Sec. IV D, which supplement
the results in earlier works [55,56]. We conclude with outlook
in Sec. V.

II. WIRE MODEL

First, let us describe a coupled wire construction for a
sequence of c = 1 Abelian FQH states, which bear an intimate
relation to the nondiagonal series of circle CFT. They would
thus be referred to as the “nondiagonal” states. Though our
construction may look similar to earlier formulations of the
coupled-wire model [28,29], it sets the stage for exploring a
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FIG. 1. (a) Schematic of the coupled wire model. (b) Pictorial
representation of the interwire coupling.

subtlety that has been overlooked. One important consequence
lies in the pattern of quasiparticle scattering, which will be
investigated explicitly in our wire model. Bulk quasiparticles
in general have a constrained motion, which reflects a non-
trivial interplay between charge conservation and translation
symmetry in the nondiagonal states. The discussion in this
section sets the stage for identifying a hidden neutral sector
as the Zp toric code, as to be explained in Sec. III.

For the simplicity of exposition, the coupled wire con-
struction is done for bosonic electrons in this section. The
fermionic nondiagonal states can be constructed in a similar
manner, with the details presented in the Appendix. While
the relation to nondiagonal CFT is more transparent for the
bosonic case, both bosonic and fermionic nondiagonal states
share similar properties which we discuss in Sec. II D.

A. Interwire coupling

We consider a 2D system consisting of an array of M 1D
wires of bosons, as depicted in Fig. 1(a). A perpendicular
magnetic field is applied, and the 1D (along wire) flux density
is denoted as b. The low-energy description of this system
is provided by “bosonizing the bosons,” such that each wire
is characterized by two slowly varying bosonic fields: the
phase variable ϕ(x) and the density variable θ (x) [57,58].
They form a conjugate pair, satisfying the following canonical
commutation relation:

[∂xθ j (x), ϕ j′ (x
′)] = iπδ j j′δ(x − x′), (2.1)

with j, j′ = 1, 2, . . . , M labeling the wires and x, x′ being the
coordinate along the quantum wires. The operator that anni-
hilates an (bosonic) electron on the jth wire is then expressed
as

ψ j (x) ∝ eiϕ j (x). (2.2)

The operators associated with density fluctuation are ex-
pressed as

ρn
j ∝ ei2n[πρ̄x+θ j (x)], (2.3)

with n ∈ Z and ρ̄ being the 1D average density. This describes
an intrawire back scattering at wave vector k ∼ 2nπρ̄.

A crucial ingredient of a wire construction is the inter-
wire coupling, which involves tunneling of electrons across
neighboring wires. Ultimately, it determines how the bulk
is gapped to give rise to a quantum Hall state, as well as
what kind of gapless edge is left at the boundary. For our
purpose, the tunneling interaction is characterized by a pair
of coprime integers (p, q), which describes the interwire tun-
neling of p electrons between two nearest wires, accompanied
by intrawire backscattering at wave vector k ∼ 2qπρ̄. A pic-
torial representation of this tunneling interaction is provided
in Fig. 1(b). The interwire coupling term, defined for each
link 
 = j + 1/2 between wires j and j + 1, then takes the
following expression:

V (p,q)

 = (ψ†

j+1ψ je
−ibx )pρ

q
j+1ρ

q
j + H.c.

= ei(4πρ̄q−pb)xei�
 + H.c., (2.4)

with the following link variable defined:

�
 = p(ϕ j − ϕ j+1) + 2q(θ j + θ j+1). (2.5)

Notice that the Lorentz force provides an impulse to each
tunneled electron, which is accounted for by the e−ibx factor
attached above. The oscillatory factor in Eq. (2.4) describes
the net momentum of the tunneling operator V (p,q)


 . Demand-
ing momentum conservation, we obtain the filling fraction for
the bosonic FQH state under consideration,

ν ≡ 2πρ̄

b
= p

2q
. (2.6)

Next, we proceed to demonstrate how the interwire cou-
pling gaps out the bulk, and then examine the gapless chiral
modes left at the boundary. To that end, it is convenient to
introduce a set of chiral bosonic fields,

φR
j = pϕ j + 2qθ j, (2.7a)

φL
j = pϕ j − 2qθ j, (2.7b)

which can be checked to have the following commutation
relation:[

∂xφ
r̃
j (x), φ r̃′

j′ (x
′)
] = 4iπ pqr̃δr̃r̃′δ j j′δ(x − x′), (2.8)

where r̃, r̃′ = R/L = +1/ − 1. From the Luttinger liquid the-
ory [57,58], it is known that with an appropriate intrawire
forward scattering the Luttinger parameter can be adjusted
such that the Hamiltonian of a single wire takes the following
form:

H j = u

2π

[(
∂xφ

R
j

)2 + (
∂xφ

L
j

)2]
. (2.9)

In this way, the designated chiral bosonic fields are decoupled
in each wire. (Here u is the speed of sound, which is not
essential to our later discussions.) Subsequently, the complete
Hamiltonian for the coupled wire model is

Htot =
M∑

j=1

H j +
M−1∑
j=1

t j+ 1
2

cos � j+ 1
2
. (2.10)

The second term comes from the tunneling operator V (p,q)

 for

each link 
 = j + 1/2, with t
 characterizing the tunneling
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strength. The filling fraction is adjusted so that the oscillatory
factor is canceled. Notice that in terms of chiral bosonic fields,
the link variable can be expressed as

� j+ 1
2

= φR
j − φL

j+1. (2.11)

Therefore, while the chiral modes are decoupled within in-
dividual wires, the tunneling operators are simply coupling
chiral modes with opposite chirality from neighboring wires,
as illustrated in Fig. 1(a). This simple picture motivates us
to analyze the interacting Hamiltonian in Eq. (2.10) by the
following decomposition:

Htot = Hedge + Hbulk, (2.12)

with the contribution from the boundary being

Hedge = u

2π

[(
∂xφ

L
1

)2 + (
∂xφ

R
M

)2]
, (2.13)

and the contribution from the bulk being

Hbulk =
M−1∑
j=1

{
u

4π

[(
∂x j+ 1

2

)2 + (
∂x� j+ 1

2

)2]
+ t j+ 1

2
cos � j+ 1

2

}
. (2.14)

Here we have also introduced the conjugate link variable

 j+ 1
2

= φR
j + φL

j+1, (2.15)

which, together with the link variable defined earlier in
Eq. (2.11), obey the following commutation relation:

[∂x�
(x),
′ (x′)] = 8iπ pqδ

′δ(x − x′). (2.16)

The bulk Hamiltonian Hbulk can now be viewed as de-
coupled copies of sine-Gordon models, each for a link.
In particular, when the interaction term cos �
 flows to
strong coupling, the link variables �
 in the bulk are all
pinned at the bottom of the cosine potential, i.e., �
 = 2πn
(n ∈ Z), which leads to a gapped bulk. Such an exactly solv-
able limit of our interacting microscopic model can be attained
when we include additional interwire scattering of the form:
(∂xφ

R
j )(∂xφ

L
j+1). The net effect of interwire scattering can be

absorbed into the Luttinger parameter K , so the bulk Hamil-
tonian is modified to

H′
bulk =

M−1∑
j=1

{
u

4π

[
K

(
∂x j+ 1

2

)2 + 1

K

(
∂x� j+ 1

2

)2
]

+ t j+ 1
2

cos � j+ 1
2

}
. (2.17)

For K < (pq)−1, the scaling dimension of the interwire tun-
neling is found to be �t < 2, and thus the cosine potential is
relevant. This gives an exactly solvable regime of our model,
in which the bulk is known to be gapped. Up to this point,
we have started from an interacting microscopic model and
constructed a family of bosonic quantum Hall states at filling
fraction ν = p/2q. For p = 1, these states are simply the
Abelian Laughlin states, which have been discussed before
[29]. Indeed, even for generic values of (p, q), the correspond-
ing state is still Abelian. Thus the reader may wonder whether
we can learn anything exciting here by studying the generic

case with p > 1. The answer is surprisingly affirmative and
has to do with how quasiparticles are scattered (i.e., their
allowed motion) in the wire model.

In the coupled wire construction, quasiparticles appear at
link 
 when �
 has a kink where it jumps by 2πn (n ∈ Z)
[28,29]. Away from the kink, the system is still in its ground
state as suggested by Eq. (2.17), and around the kink there
is an accumulation of charge ne/2q. Following Eqs. (2.7)
and (2.11), a charge-e/2q quasiparticle residing at link
j + 1/2 can be created by the following operator:[

�
R/L
e/2q, j+ 1

2

(x)
]†

= e− i
2pq φ

R/L
j/ j+1(x)

. (2.18)

This is not a local operator, as anticipated because quasiparti-
cles cannot be created locally. On the other hand, scatterings
of quasiparticles are expected to be represented by local oper-
ators. When acting on a single wire, it is clear from Eqs. (2.2)
and (2.3) that local operators should take the form ei(rϕ−2sθ )

(r, s ∈ Z). One can then check that the minimal quasiparticle
with charge e/2q can be scattered across a single wire only if
the scattering operator

O j = e
i

2pq (φR
j −φL

j ) = e
2i
p θ j (2.19)

is local, which is true only when p = 1. When p > 1, a min-
imal quasiparticle needs to hop across two wires in order to
obey locality and preserve its charge, which we will explain
in more detail. The motion of quasiparticle is thus constrained
in general, and as we soon see, this is a defining feature of
“nondiagonal” states. We want to emphasize that the phase we
have constructed here is different from the strongly clustered
phase studied before in Refs. [31,33]. In the strongly clustered
phase, electrons are bound into charge-pe clusters and form
the Laughlin state at filling νpe = 1/2pq (equivalently the
electronic filling is ν = p/2q), which also has quasiparticles
with minimal charge e/2q. However, in that case, irrespective
of what p is, quasiparticles can always hop across a single
wire.

The constrained motion of quasiparticles also appears in
fermionic nondiagonal states. Moreover, it also happens in a
superconducting context. There the contrast between the non-
diagonal state and the strongly clustered state can be under-
stood in terms of fractional Josephson effect, by considering
an array of 1D topological/trivial superconductors, with quasi-
particles replaced by quantum vortices. We will elaborate
more on this analogy, but before that, we want to introduce
an intimate connection between the constructed FQH state
to what is known as the nondiagonal conformal field theory.
The aforementioned pattern of bulk quasiparticle scattering
can be understood from the perspective of the full nonchiral
boundary CFT or, equivalently, the theory of a single wire.

B. Single wire: Nondiagonal CFT

While the bulk is gapped, it is manifest in the coupled wire
model that there are gapless chiral modes left at the boundary,
namely, at the very first wire ( j = 1) and the very last wire
( j = M ). We have the edge Hamiltonian Hedge written out
in Eq. (2.13), which resembles the Hamiltonian of a single
wire in Eq. (2.9), except that the two chiral edge modes are
separated by a gapped bulk. From Eq. (2.8), it is clear that each
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edge is described by a chiral Luttinger liquid with Luttinger
parameter K = 2pq. The edge theory is equivalently known as
the U (1)2pq chiral CFT, and it also describes the edge of the
strongly clustered state at filling νpe = 1/2pq. Hence, from
the perspective of a single chiral sector at the boundary, the
nondiagonal state is no different from the strongly clustered
state. To distinguish them, it is important to combine the chiral
and antichiral sectors and study the resulting nonchiral theory.
This full nonchiral boundary theory, which is equivalent to
the theory of a single wire, determines how quasipartilces can
move in the bulk and be scattered from one edge to another.
Here the nonchiral theory describes a boson compactified on a
circle, and first let us determine its radius of compactification.

The circle compactification can be easily inferred when the
bosonic fields ϕ and θ were first introduced in Eqs. (2.2) and
(2.3). They are defined to have the following shift symmetries
that leave the physical operators invariant:

ϕ 	→ ϕ + 2π, θ 	→ θ + π. (2.20)

Consequently, the circle CFT with the Hamiltonian

H = u

2π

[
(∂xϕ)2 + (∂xθ )2

]
(2.21)

is considered to have radius R = 1 (when looking at the com-
pactification of ϕ), or radius R = 1/2 (when looking at the
compactification of θ ). These two descriptions of radius are
indeed equivalent, due to a duality between circle CFTs of
radius R and 1/2R, which is known as the T -duality [59,60].

Substituting Eq. (2.7) into Eq. (2.9), the Hamiltonian de-
scribing a single wire can be expressed as

H j = ũ

2π

[
p

2q
(∂xϕ)2 + 2q

p
(∂xθ )2

]
, (2.22)

with the speed of sound rescaled to ũ = 4pqu. Comparing
with the circle CFT at radius R = 1, the circle CFT corre-
sponding to our single wire now has the following radius:

R =
√

p

2q
. (2.23)

In this paper, we focus on the situation where p and q are co-
prime integers, as otherwise there exists two smaller coprime
integers giving rise to the same radius for the edge theory, as
well as same filling factor for the bulk. For p = 1, the radius
is R = 1/

√
2q, which leads to the familiar circle CFT that is

known to describe the gapless edges of the ν = 1/2q-filling
Laughlin state, and as we will soon see, it is a diagonal theory.
Below, let us introduce the distinction between diagonal and
nondiagonal CFTs for a boson compactified on a circle, by
first studying their corresponding partition functions.

As discussed by Di Francesco et al. [60], the modular-
invariant partition function for a compact boson of rational
radius R = √

p/2q can be expressed as follows [61]:

Z

(√
p

2q

)
=

N−1∑
n=0

Kn(τ )Kωn(τ ), (2.24)

with τ being the modular parameter and Kn(τ ) the extended
character which can be expressed as

Kn(τ ) = 1

η(τ )

∑
m∈Z

λ(Nm+n)2/2N , (2.25)

where η(τ ) is the Dedekind η function and λ = e2iπτ . In the
above we have defined N = 2pq, which counts the number of
chiral primary fields. Modular invariance requires the param-
eter ω in Eq. (2.24) to satisfy the following conditions:

qr0 − ps0 = 1, (2.26a)

qr0 + ps0 = ω mod N. (2.26b)

In the range 1 � r0 � p, 1 � s0 � q − 1, the Bézout’s lemma
in number theory guarantees the unique existence of an integer
solution (r0, s0) to the first equation [62], which subsequently
defines ω in the second equation. For p = 1, we have the
solution (r0, s0) = (1, q − 1), which leads to ω = −1 mod N .
From Eq. (2.25), it can be seen that the extended character
obeys Kn = K−n, and hence for p = 1 we have

Z

(
1√
2q

)
=

N−1∑
n=0

|Kn|2. (2.27)

This defines the diagonal theory, in which the extended
characters from the chiral and antichiral sectors are combined
in a symmetric manner. On the contrary, for coprime integers
p, q > 1, the partition function in Eq. (2.24) cannot be
expressed in the diagonal form, and the corresponding
theory is known as nondiagonal [60]. This explains why
we would name the Abelian states constructed in Sec. II A
the “nondiagonal” states for p, q > 1. It is worth making
a contrast with the strongly p-clustered state at filling
ν = p/2q [31,33], which also has a minimal quasiparticle of
charge e/2q, but its edge theory has compactification radius
R = 1/

√
2pq and is thus a “diagonal” state.

In the coupled wire model, one can see an important phys-
ical consequence regarding the distinction between diagonal
and nondiagonal theories.1 Each extended chiral/antichiral
character Kn/Kn is associated with a chiral/antichiral pri-
mary operator, e± in

2pq φR/L

, while the expansion of the partition
function in terms of extended characters, namely, Eq. (2.24),
suggests how a physical local operator can be constructed
from a combination of chiral and antichiral sectors. For the
ν = p/2q state constructed in the wire model, the theory
of a single wire is nondiagonal for p, q > 1, so the desired
scattering operator O j introduced in Eq. (2.19), as a diagonal
combination of chiral and antichiral primary operators, is not
an allowed local operator. Hence the minimal quasiparticle in
a nondiagonal state cannot hop across just a single wire in
the coupled wire model. But it can always hop across two,
as we explain in the next subsection. This constraint leads to
the distinction of two types of quasiparticles: one that lives on
the even links and the other on the odd links. As we explain in
Sec. III, they are associated with the e-type and m-type anyons
in the Zp toric code, respectively.

1We thank the referee for bringing to our attention some earlier
works that studied nondiagonal partition functions in topological
order, which are associated with anyon condensation [63,64]. Here
we focus on a different situation: the motion of anyons is constrained,
leading to a symmetry-enriched topological order that features an
interplay between internal and spatial symmetries.
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The states with p > 1 and q = 1 require special attention,
as they are also “nondiagonal.” Admittedly, from the
perspective of CFT, they have diagonal partition functions
just like the diagonal states (with p = 1 and q > 1). In fact,
under T -duality, which interchanges ϕ and 2θ , p and q are
also interchanged, so this is expected. Nevertheless, ϕ and θ

have their respective physical meanings in the wire model.
In particular, the electron operator eiϕ carries charge e while
the density operator ei2θ is charge-neutral. As we see next,
charge conservation (as a natural symmetry in a quantum Hall
system) plays an important role in constraining the motion of
quasiparticle. One thus should not use T -duality to disqualify
the states with p > 1 and q = 1 as being “nondiagonal.” In
fact, by analyzing the allowed quasiparticle scattering pattern,
these states are constrained in just the same way as any other
nondiagonal states.

C. Quasiparticle scattering

Let us now discuss the allowed motion of bulk quasiparti-
cles in more detail. Following the theory of Luttinger liquid
and bosonization [57,58], the smeared density on the jth wire
is

ρ j = 1

π
∂xθ j = 1

4πq

(
∂xφ

R
j − ∂xφ

L
j

)
, (2.28)

with the second equality following from the definition of
chiral bosonic fields in Eq. (2.7). Instead of assigning electric
charge to the wires, one can equally well assign charge to
the links and consider the following density operator for link

 = j + 1/2:

ρ
 = 1

4πq

(
∂xφ

R
j − ∂xφ

L
j+1

) = 1

4πq
∂x�
, (2.29)

with the second equality following from the definition of link
variable �
 in Eq. (2.11). In our wire construction, a quantum
Hall state is established when all link variables �
 are pinned
at the bottom of the cosine potential (arising from interwire
coupling), where they take values in 2πn (n ∈ Z). Therefore,
a minimal nontrivial quasiparticle excitation located on link 


would correspond to a 2π -kink in �
. The density operator in
Eq. (2.29) suggests that this quasiparticle carries charge e/2q.
The creation/annihilation operator for such a quasiparticle can
be constructed by requiring it to create a 2π -kink in �. We
have already introduced them ahead of time in Eq. (2.18),
where they are used to illustrate the motivation of our study.
Since we make heavy use of them in this subsection, they are
repeated here:

�
R/L
e/2q,
 = e

i
2pq φ

R/L
j/ j+1 . (2.30)

This operator is nonlocal, as it cannot be expressed as a
product of electronic operators. In the language of CFT, it
is a chiral primary operator. On the other hand, eiφR/L

is a
local operator, which acts as a simple current in the CFT
description. It can be interpreted as creating/annihilating a
“trivial” quasiparticle of charge pe (this is like the charge-e
quasiparticle in the Laughlin state, which is identified with
the vacuum). Therefore, the number of chiral primaries of the
edge CFT, or equivalently, the number of distinct quasiparti-
cles living on a specific link equals to N = 2pq. The notations

FIG. 2. Schematic illustration of quasiparticle operators. Quasi-
particles in the coupled wire model are excitations living on the links
between consecutive wires. For the ν = p/2q Abelian quantum Hall
states, the minimal nontrivial quasiparticle has charge e/2q. Such

a quasiparticle on link j + 1/2 can be created either by e
−i
2pq φR

j or

e
−i
2pq φL

j+1 , which are nonlocal operators. Local operators defined in
Eq. (2.31) scatter quasiparticles and thus allow them to move in the
bulk. For instance, applying O{r0,s0}

j would scatter a quasiparticle of
charge e/2q on link j + 1/2 to a quasiparticle of charge −ωe/2q on
link j − 1/2, with r0, s0, and ω defined through Eq. (2.26).

in Eq. (2.30) are adopted so as to make intuitive sense when
combined with the picture of the wire model (see Fig. 2): a
quasiparticle can be created in two equal manner, in one case
by acting (�R

e/2q,
)
†

on the jth wire and creating a quasiparti-

cle to its right, and in another case by acting (�L
e/2q,
)

†
on the

( j + 1)-th wire and creating a quasiparticle to its left.
Next we construct local operators that act on a single wire

and interpret their effect as scattering/moving quasiparticles
from one side of the wire to another. This interpretation is also
reflected in the langauge of CFT, where a physical operator
is a product of a chiral and an antichiral vertex operators.
Combination of the two would determine the partition func-
tion, as discussed in Sec. II B. Let us begin with the following
operator:

O{r,s}
j = ei(rϕ j−2sθ j ), (2.31)

which is known to be local when r, s ∈ Z, as it can be con-
structed out of the electronic operators introduced in Eqs. (2.2)
and (2.3). In this way, all local operators can be organized onto
a lattice, each labeled by a point (x, y) = (r, 2s), as depicted
in Fig. 3. Making the change of variables to chiral bosonic
fields, the above local operator becomes

O{r,s}
j = exp

i

2pq

[
(qr − ps)φR

j + (qr + ps)φL
j

]
. (2.32)

This expression has two important implications. First, on a
formal ground this is connected to the partition function for
the CFT of a single wire. The way that chiral/antichiral vertex
operators are combined to form a physical operator, as shown
in Eq. (2.32), can be translated to the way chiral/antichiral
characters are combined to form the modular-invariant parti-
tion function, as shown in Eq. (2.24). Specifically, by express-
ing n = qr − ps and using the definition of ω in Eq. (2.26),
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FIG. 3. Diagrams of the allowed local scattering operators acting
on a single wire for a bosonic system. Each lattice point corresponds
to an operator ei(xϕ−yθ ). Red dots label the points (x, y) = (r, 2s) with
r, s ∈ Z, which correspond to local operators. (a) For p = 1 and
q = 2, which gives a diagonal Laughlin state at ν = 1/4. (b) For
p = 2 and q = 1, which gives a nondiagonal bosonic state at ν = 1.
The arrows connecting the origin to the points (x, y) = (±p, 2q) rep-
resent the creation/annihilation operators for the trivial quasiparticle,
and they bind the shaded region which covers all N = 2pq distinct
quasiparticle scattering operators. Only operators on the vertical
axis are charge-neutral, while all others involve injection/removal of
electrons from a single wire.

we have ωn = qr + ps and hence the dictionary follows:

O{r,s} ↔ KnKωn. (2.33)

Second, from Eq. (2.32) one can read off the physical effect
of O{r,s}

j , which is to scatter a quasiparticle of charge e(qr −
ps)/2q residing on link j + 1/2 to another quasiparticle of
charge −e(qr + ps)/2q residing on link j − 1/2. An example
is depicted in Fig. 2. Notice for the special case that r = ±p
and s = ±q, the operator is actually creating/annihilating
a “trivial” quasiparticle of charge pe. As we see next, the
aforementioned implications suggest that we can learn about
the scattering pattern of quasiparticles by examining the local
operator O{r,s}, and since O{r,s} is related to the partition
function, the distinction between diagonal and nondiagonal
CFT is also reflected in the scattering of bulk quasiparticles.

Alongside the constraint of locality, the constraint of
charge conservation also plays an important role here. It is
clear from Eq. (2.31) that the local scattering operator is
charged when r �= 0, since it removes r electrons from the jth
wire. Therefore, combining locality with charge conservation,
only quasiparticles with charge pe/2q (or its multiples) can be
scattered across a single wire, which corresponds to the oper-
ators on the vertical axis in Fig. 3. For the “diagonal” Abelian
states, in which case p = 1, all quasiparticles can be scattered
across a single wire. This can also be seen from Fig. 3(a),
where all distinct nontrivial scattering operators lie on the
vertical axis, and thus are charge-neutral. The Laughlin states,
as well as the strongly clustered states [31,33], belong to
this category. On the other hand, for the “nondiagonal” states
with p > 1, there exist quasiparticles (including the mini-
mal quasiparticle with charge e/2q) that cannot be scattered
across just a single wire, as local operators that would scatter
them require injection/removal of electrons. A representative
situation is illustrated in Fig. 3(b), which clearly shows the
existence of charged scattering operators in the nondiagonal
case.

Having said that, by no means do we imply that quasiparti-
cles with charge other than (multiples of) pe/2q cannot move
at all in the bulk of nondiagonal states. Though they cannot
hop across just a single wire, they can indeed hop across two.
For instance, the local operator

O{−r,s}
j−1 O{r,s}

j ∝ exp i

[
(qr − ps)

2pq

(
φR

j − φL
j−1

)]
(2.34)

would scatter a quasiparticle with charge e(qr − ps)/2q
from link j + 1/2 to link j − 3/2. Note that in writing
Eq. (2.34) we have used the fact that � j−1/2 = φR

j−1 − φL
j

has been pinned at 2πn (n ∈ Z) as the bulk has been gapped,
so there is a numerical constant that can be factored out,
which explains the proportionality sign. This operator is
charge-neutral, because while r electrons are removed from
the jth wire, r electrons are injected into the ( j − 1)-th wire,
so that the minimal quasiparticle can indeed move across two
wires given an interwire tunneling interaction, which is local
and charge-preserving.

To summarize, nondiagonal quantum Hall states can be
distinguished from the diagonal states in terms of the scat-
tering pattern of bulk quasiparticle in the wire model. While
all quasiparticles in the diagonal states can hop across a single
wire, certain quasiparticles (including the minimal quasiparti-
cle) in the nondiagonal states are allowed to hop across only
two wires at a time. This then differentiates two types of quasi-
particles: ones which live on the even links, and the others
which live on the odd links. As we will show in Sec. III, they
can be associated with the e-type and m-type anyons in the Zp

toric code (also known as the D(Zp) quantum double model),
thus allowing us to assign a D(Zp) neutral sector to the non-
diagonal states. After establishing this relation, we will also
rigorously address the difference between nondiagonal states
and strongly clustered states, from the perspectives of intrinsic
topological order and symmetry-enriched topological order.

D. Fermionic states

In the above discussion we have been focusing on bosonic
nondiagonal states. Here we explain that a similar constrained
pattern of quasiparticle motion also arise in fermionic QH
states. Moreover, in an analogous setting of 2D weak topologi-
cal superconductor, vortices have a similar constrained motion
that can be understood in terms of fractional Josephson effect.

1. Nondiagonal quantum Hall states

The coupled wire construction for the fermionic nondiago-
nal state is detailed in the Appendix. The interwire coupling is
essentially the same, but due to the nonlocal nature of fermion,
which requires attaching a Jordan-Wigner string to the
bosonized electron operator, the filling fraction is modified to

ν = p

p + 2q
. (2.35)

In fact, most changes from the bosonic case to the fermionic
case can be accounted for by substituting 2q 	→ p + 2q. The
annihilation operator for the minimal quasiparticle on link

 = j + 1/2 is

�
R/L
e/(p+2q),
 = e

i
p(p+2q) φ

R/L
j/ j+1 , (2.36)
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FIG. 4. Diagrams of the allowed physical scattering operators
acting on a single wire for a fermionic system. Each lattice point
corresponds to an operator ei(xϕ−yθ ). Red dots are labeling the points
(x, y) = (r, r + 2s) with r, s ∈ Z, which correspond to physical op-
erators. (a) For p = 1 and q = 2, which gives rise to the diagonal
Laughlin state at ν = 1/5. (b) For p = 2 and q = 1, which gives
rise to a nondiagonal fermionic state at ν = 1/2. The arrows con-
necting the origin to the points (x, y) = (±p, p + 2q) represent the
creation/annihilation operators for the trivial quasiparticle, and they
bind the shaded region which covers all N = p(p + 2q) distinct
quasiparticle scattering operators. Only operators on the vertical
axis are charge-neutral, while all others involve injection/removal
of electrons from a single wire. In particular, operators with odd x
(or r) also change the fermion parity.

where the quasiparticle carries charge e/(p + 2q). Here
φR/L is the chiral bosonic field of a circle CFT with
compactification radius R = √

p/(p + 2q), and e±iφR/L

creates/annihilates a charge-pe trivial quasiparticle. A
physical operator that scatters a quasiparticle across a
single wire takes the following form:

O{r,s}
j = exp

i

p(p + 2q)

[
(qr − ps)φR

j + (qr + ps + pr)φL
j

]
,

(2.37)
with r, s ∈ Z. To avoid confusion, let us be clearer about our
terminology: an operator is physical (and thus allowed) in the
sense that it can be expressed in terms of electronic operators.
For bosonic states, a physical operator is equivalently a
local operator, as bosons are local objects. Thus, we have
used the terms “physical” and ”local” interchangeably in the
earlier discussion. However, since fermions are nonlocal, a
distinction should be made here.

Physical operators in the fermionic state can be organized
into a lattice as depicted in Fig. 4, which is analogous to
Fig. 3 for the bosonic state. Notice that the lattice here is in
a checker-board pattern because a physical operator is now
attached to a Jordan-Wigner string. The action of O{r,s}

j is to
scatter a quasiparticle of charge e(qr − ps)/(p + 2q) across
the jth wire to become a quasiparticle of charge −e(qr +
ps + pr)/(p + 2q). Analogous to the bosonic case, this opera-
tor violates charge conservation when r �= 0, so the associated
scattering process is forbidden in the presence of U (1) charge
symmetry. For the fermionic states with p > 1, the minimal
quasiparticle clearly cannot hop across just a single wire.
Its motion is constrained to hop across two wires at a time,
which can be achieved by exchanging electrons between the
two wires. Again, quasiparticles on the even links shall be
distinguished from those on the odd links, which is considered

to be the defining feature of a nondiagonal quantum Hall state.
As in the bosonic case, this would allow us to associate the
quasiparticles to anyons in the Zp toric code.

We care to describe the fermionic case not only because it
is physically more relevant, but also because there is a subtle
difference between it and the bosonic case. For the bosonic
nondiagonal states, we have emphasized the importance of
charge conservation in constraining the motion of quasipar-
ticles. However, for a fermionic system, one can also talk
about the conservation of fermion parity, which could play an
additional role. Due to the nonlocality of fermionic electrons,
Z2 fermion-parity symmetry is more robust than the U (1)
charge symmetry. For fermionic states, the physical scatter-
ing operator O{r,s}

j with r ∈ 2Z + 1 violates not only charge
conservation but also fermion-parity conservation. Therefore,
the constrained motion of some quasiparticles in the fermionic
state is more robustly protected by the fermion-parity symme-
try. Having said that, in general the fermion-parity symmetry
cannot completely replace the role of charge symmetry. We
will elaborate more on this issue when we discuss the symme-
try enrichment of bosonic and fermionic nondiagonal states in
Sec. III. Before moving on, it is instructive to take a digression
and consider a setting different from the FQH state, where
fermion-parity symmetry alone can constrain the motion of
low-energy excitations in the way we have just discussed.

2. Fractional Josephson effect

Let us consider a wire model consisting of 1D supercon-
ductors, each described by a single-channel quantum wire
with attractive interaction. With superconductors, charge is
no longer conserved while fermion parity still is. Instead of
coupling wires to form a quantum Hall state, a 2D super-
conductor is formed by locking the pairing phases between
neighboring wires. As discussed in Refs. [31,33], such a wire
has two distinct phases: one is the “strongly paired” phase
where effectively all electrons are bound to form Cooper
pairs, in which case the wire is a 1D trivial superconductor.
Another phase is the “weakly paired” phase described by the
coexistence of unpaired electrons and Cooper pairs, in which
case the wire is a 1D topological superconductor, and has been
shown to adiabatically connect to the Luttinger liquid phase.
Here we are concerned with how superconducting vortices,
which are analogs of the quasiparticles in the quantum Hall
setting, can move around in the coupled wire model when the
constituting wires are either trivial or topological supercon-
ductors. The minimal vortex carries flux h/2e, around which
the pairing phase �sc is advanced by 2π . When the wires
are trivial, or in the “strongly paired” phase, the vortex has
no issue tunneling across a single wire, because the wire
contains only charge-2e Cooper pairs which are local with
respect to the vortex. As the vortex tunnels across a trivial
superconductor, and induces a 2π phase slip, the wire simply
returns back to its original state due to the ordinary Josephson
effect.

Things are different when the wires are 1D topological
superconductors, which when coupled together form the weak
topological superconductor. A possible material realization of
this setup has been proposed for a thin slab of Sr2RuO4 with
enhanced pairing instability for the quasi-1D band [65,66]. In
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FIG. 5. Fractional Josephson effect in weak topological super-
conductor. (a) A wire model for the weak topological supercon-
ductor, with individual wires being 1D topological superconductors.
Between two wires live a single vortex excitation, around which
the pairing phase �sc is advanced by 2π . When the vortex hops
across the middle wire, its associated branch cut is also dragged
across the wire to induce a 2π phase slip there. (b) Illustration of the
above process by modeling the place where the vortex crosses the
wire as a Josephson junction. There the topological superconductor
is cut open and hosts two Majorana modes that define a fermion
parity in the circled region. (c) The evolution of energy levels of
the coupled Majorana modes as a function of phase difference. A
2π phase slip leads to a change of fermion parity in the ground
state.

this case there are unpaired electrons in each wire, which are
nonlocal with respect to the h/2e-vortex. Consequently, tun-
neling the vortex across the wire would lead to the fractional
Josephson effect as illustrated in Fig. 5. The tunneling process
can be modeled by cutting the wire open at the place where the
process happens, and since the wire is topological, each open
end hosts a Majorana mode. The Majorana modes are coupled
in the Josephson junction and together defines a fermion parity
for the weak link. As predicted by Kitaev [67], a 2π phase
slip leads to a switch of fermion parity for the ground state,
and thus injection/removal of an electron is required in order
to move a single vortex across the wire. The fermion parity
symmetry for a single wire thus forbids the minimal vortex
from moving across it.

In this situation, there are two ways for vortices to move
in the bulk. One way is for a double vortex to tunnel across a
single wire, which leads to a total 4π phase slip that restores
the fermion parity of the wire. Also, from the perspective of
locality the h/e-vortex is local with respect to everything in
the topological superconductor and hence should be allowed
to tunnel across. Alternatively, a single h/2e-vortex can tunnel
across two wires at a time, as this can be achieved by exchang-
ing fermion parity between the two wires. These features are
analogous to what we have advertised for the nondiagonal
QH states, and later we will see that these give rise to an
interpretation of the h/2e vortices as anyons in the toric code.
We will further comment on this similarity, as well as an
important difference in this regard, when compared with the
nondiagonal state in Sec. III B.

Aside from the scattering pattern of low-energy excita-
tions, there is yet another revealing similarity with the original
wire model for QH states that is worth mentioning. Just like
the 1D topological superconductors that host Majorana end
modes, the quantum wires used for constructing nondiagonal
QH states actually host Zp parafermion end modes. This is

related to the interwire coupling discussed in Sec. II A, which
preserves the particle number mod p of each wire. Coupling
together these modes that appear at the top/bottom edge would
lead to an edge theory that is fundamentally different from
the one describing the left/right side edge. We analyze this
in detail in Sec. IV. Given discrete translation symmetry in
the bulk, it leads to a gapless (for p = 2, 3 at least) theory
for the top/bottom edge that is even richer than the side
edge already addressed in Sec. II B. Next, let us unveil more
interesting physics from the bulk perspective first, using the
tools we have just developed, which would eventually guide
us to a complete description for the edge of nondiagonal
states.

III. NEUTRAL SECTOR AS Zp TORIC CODE

In this section we first calculate the braiding statistics
of quasiparticles in nondiagonal quantum Hall states, so as
to reveal a “hidden” Zp topological order that can be at-
tributed to the neutral sector. It will be explained later that this
additional topological order originates from symmetry enrich-
ment [41–45], which ultimately distinguishes the nondiagonal
states from the strongly clustered states. For simplicity in
exposition, the following discussion would mostly refer to the
bosonic states. Further specification would be made when the
fermionic case is worth a distinction.

As demonstrated in the wire model for the ν = p/2q non-
diagonal state, quasipaticles are created/annihilated by the
vertex operators in Eqs. (2.18) and (2.30), so the fusion alge-
bra is simply Abelian. To characterize the topological order,
we focus our attention on the braiding statistics. At first sight,
it appears like the topological data resemble those of the
Laughlin states. Indeed, the nontrivial Abelian quasiparticle
with minimal charge e/2q also exists in the Laughlin state
of charge pe bosons at filling ν = 1/2pq (also known as the
strongly clustered state). Nevertheless, as we have noted be-
fore, quasiparticles in the nondiagonal states have constrained
motion in the bulk, which differentiates excitations on the
even links from those on the odd links. The result of braiding
depends on whether two quasiparticles live on links of the
the same type or not, and as we will see in Sec. III A, the
result can be understood in the context of the D(Zp) quantum
double model by associating quasiparticles on even/odd links
to e/m-particles, respectively. The D(Zp) quantum double
model has a Zp topological order and is also known as the
Zp-generalization of Kitaev’s toric code (which has p = 2)
[7,46,51–53].

It is important to notice that the distinction between even
links and odd links originates from U (1) charge symme-
try. Specific examples of nondiagonal states are analyzed in
Sec. III B to demonstrate how this would affect the quasipar-
ticle spectrum. Also, the e ↔ m anyonic relabeling is related
to the Z translation in the coupled wire model, which leads
us to eventually identify the nondiagonal states, with a Zp

toric code in the neutral sector, as a U (1) × Z symmetry-
enriched topological (SET) order. Furthermore, the “gauging”
of anyonic symmetry can be physically realized in the wire
model as the proliferation of dislocation defects, which are
sudden terminations of wires in the bulk. We explain these in
Sec. III C.
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FIG. 6. Schematic illustration of a braiding process between two
quasiparticles, one living on the even links and another on the odd
links.

A. Braiding statistics

The braiding statistics is encoded in the quasiparticle
operators studied in Sec. II C. Let us begin with a quasipar-
ticle of charge ne/2q on link 
 = j + 1/2. Here we denote
n = qr − ps for some r, s ∈ Z. Following Eq. (2.34), the local
operator that transfers this quasiparticle from link 
 to link

 − 2N can be written as

N−1∏
η=0

O{−r,s}
j−1−2η(x)O{r,s}

j−2η(x) = ei n
2pq [φR

j (x)−φL
j−2N+1(x)]

×
2N−1∏
μ=1

ei n
2pq �
−μ(x) ×

N−1∏
η=0

e−i r0n
p �
−2η−1(x) (3.1)

with r0 in the last term defined in Eq. (2.26). The first term
with the chiral fields clearly generates the anticipated scatter-
ing process. Here we have made explicit the wire coordinate
x, and retain the link variables �(x) which are essential to
deducing the braiding phase. Notice that in the last equality
the second term is contributed by every link between the first
(
) and the last (
 − 2N ), while the third term is contributed
only by the links whose indices are of the same parity as 
.

In order to consider a closed loop for a braiding process
one also needs to move a quasiparticle on link 
 along the
wire direction, say, from x1 to x2. This is accomplished by the
following operator:

℘
R/L

 (x1, x2) = exp i

n

2pq

[
φ

R/L
j/ j+1(x1) − φ

R/L
j/ j+1(x2)

]
= exp i

n

2pq

∫ x1

x2

dx ∂xφ
R/L
j/ j+1(x). (3.2)

This is indeed a local operator, as the last equality suggests
that it can be expressed in terms of bare electron densi-
ties and currents. With these established, we can consider
transferring a quasiparticle around a closed loop by local
operators. To be specific, let us set up a coordinate (
, x) for
a quasiparticle at position x on link 
, then we want to con-
sider the loop C: (
, x1) → (
 − 2N , x1) → (
 − 2N , x2) →
(
, x2) → (
, x1). An example is depicted in Fig. 6.

It is now clear that the following phase is picked up after
completing the loop C:

2N−1∏
μ=1

ei n
2pq [�
−μ(x1 )−�
−μ(x2 )]

×
N−1∏
η=0

e−i r0n
p [�
−2η−1(x1 )−�
−2η−1(x2 )]

. (3.3)

Recall that the bulk is gapped so that �’s are pinned at inte-
ger multiples of 2π , while quasiparticle excitations from the
ground state correspond to 2π -kinks. Thus the first term is
contributed by every enclosed quasiparticle, while the second
term is contributed only by the enclosed quasiparticles that
live on the links with parity different from that of 
. Hence
the braiding phase for two quasiparticles a and b, with charge
nae/2q and nbe/2q, respectively, is encoded in the following
matrix:

Māb̄ = e2π i
nanb
2pq

(
1 e−2π i

r0nanb
p

e−2π i
r0nanb

p 1

)
, (3.4)

with the matrix index ā = 1/2 for the quasiparticle a living
on the odd/even links. The braiding statistics for the fermionic
state is obtained by substituting 2q with p + 2q in the above
discussion (in both cases r0 is defined by qr0 − ps0 = 1). The
first factor gives the mutual statistics between quasiparticles
of the same type, namely, for those living on links of the
same parity. The same braiding statistics describes a strongly
clustered state, which is essentially a Laughlin state of charge
pe particles at filling νpe = 1/2pq (or νpe = 1/p(p + 2q) in
the fermionic case). For p = 1, this is the full story because
even and odd links need not be distinguished. However, for
p > 1, which corresponds to a nondiagonal state, the topo-
logical order is richer. The second factor in Eq. (3.4) is not an
identity matrix for p > 1, and since r0 is by definition coprime
to p, it is actually the braiding matrix for the D(Zp) quantum
double model. Below we briefly overview this well-known
topological order.

1. The D(Zp) quantum double model

The D(Zp) quantum double model is a nonchiral Abelian
topological order that can be realized in the deconfined phase
of the Zp discrete gauge theory in 2+1D. Alternatively, it can
be characterized by a two-component Chern-Simons theory
with the following Lagrangian [22]:

L = εμνλ

4π
�αT

μK∂ν �αλ + �αT
μ

�jμ, (3.5)

where �αT = (α1, α2) represents the internal U (1)2 gauge field
and �j is the quasiparticle current. The K-matrix which en-
codes all the topological data is

K = pσx =
(

0 p
p 0

)
. (3.6)

The chiral central charge for this phase is c ∝ tr(K ) = 0. A
quasiparticle is labeled by a two-component vector �t defined
on the so-called anyon integral lattice �∗ = Z2, while the sub-
lattice � = K�∗ consists of the states that are local particles
which braid trivially with all quasiparticles, and thus belong to
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the identity topological sector. Hence, distinct quasiparticles
are defined on the quotient lattice �∗/�, which in this case
has p2 points. There are two types of minimal quasiparticle,
which is the e-particle with �tT = (1, 0) and the m-particle
with �tT = (0, 1). The p2 distinct quasiparticles in the D(Zp)
quantum double model can thus be labeled by eαmβ , where
0 � α < p and 0 � β < p.

The complete topological information is specified by the
fusion algebra and the braiding statistics. The fusion algebra
is Abelian:

eα1 mβ1 × eα2 mβ2 = eα1+α2 mβ1+β2 . (3.7)

Notice that ep = mp = 1 is the trivial quasiparticle. The self-
and mutual statistics are encoded in the T and S matrices
(the fusion algebra also follows from S through the Verlinde
formula), and in the K-matrix formulation they are given by

Tab = δabeπ i�aT K−1�a, DSab = e2π i�aT K−1 �b. (3.8)

Here �a, �b ∈ �∗/� are the vectors in the anyon lattice labeling
the two quasiparticles a and b, and D = √|detK| = p is the
total quantum dimension. It follows that e-particles and m-
particles are all self-bosons (they have trivial self-exchange
statistics), while eα and mβ have a nontrivial braiding phase of

e2π i αβ

p . The case with p = 2 has four anyons: 1, e, m and ψ =
em (a composite fermion), which is exactly the topological
order in Kitaev’s toric code [7,46].

There is an important global symmetry in the D(Zp) quan-
tum double model, known as the Z2 e-m anyonic symmetry.
More precisely, it is an anyon relabeling symmetry that in-
terchanges the e-particles with the m-particles, leaving the
fusion rules and braiding statistics invariant. In the K-matrix
formalism, the Z2 anyonic symmetry is implemented by act-
ing σx on the anyon lattice �∗, or equivalently by transforming
K → σ T

x Kσx = K . As the K-matrix is left invariant, it is clear
that all topological information is left invariant. Anyonic sym-
metry is of physical importance because a non-Abelian phase
can be obtained from gauging the anyonic symmetry in an
Abelian phase [51–53].

2. D(Zp) in nondiagonal QH states

Getting back to our original discussion, one realizes that
the braiding statistics in Eq. (3.4) can be understood by
viewing the (bosonic) nondiagonal quantum Hall state as
consisting of a U (1)2pq charge sector and a D(Zp) neutral
sector. The net braiding phase is obtained by adding the phase
in the charge sector and the phase in the neutral sector. A
quasiparticle of charge nae/2q excited on an even link can
be labeled by (na, e−r0na ), while a quasiparticle of charge
nbe/2q excited on an odd link can be labeled by (nb, mnb ).
A generic quasiparticle, which can be viewed as a composite
of quasiparticles from even and odd links, is then denoted as

(na + nb, e−r0na mnb ). (3.9)

The first component represents the electric charge (in unit
of e/2q), while the second component represents the neutral
sector and obeys ep = mp = 1. The interpretation of a Zp

toric code in the neutral sector also implies that the e-m
anyonic symmetry is concretely realized in the wire model as
the discrete translation symmetry by one wire. More precisely,

here the Z2 anyonic symmetry interchanges e−r0 ↔ m, with
r0 defined in Eq. (2.26).

Next, let us analyze some specific examples of nondiagonal
states, which would familiarize us with the connection to the
Zp toric code just advertised. Moreover, they highlight the
importance of symmetry considerations, particularly the U (1)
charge symmetry, for characterizing the topological order of
nondiagonal states. There are also exceptional cases in which
the fermion-parity symmetry can replace the role of charge
symmetry.

B. Examples

1. Bosonic state

We first study a representative example of bosonic nondi-
agonal states, with p = 2 and q = 1, which occur at filling
ν = 1. According to the discussion in Sec. II C, each link hosts
four distinct quasiparticle excitations, which have charge 0,
e/2, e, and 3e/2, respectively. Figure 3(b) summarizes the
possible scattering operators. In a system with charge con-
servation, only the charge-e quasiparticle (and the trivial
quasiparticle) can hop across a single wire, while the charge-
e/2 and charge-3e/2 excitations cannot, so those on the even
links are regarded as different from those on the odd links.
A quasiparticle excitation composed of a charge-e/2 excita-
tion on the even link and a charge-e/2 excitation on the odd
link, hence with total charge e, is then distinct from a single
charge-e excitation on either the even or odd link. Using the
presentation introduced in Eq. (3.9), we have the following
quasiparticle spectrum:

charge 0: (0,1), (0, em),

charge e/2: (1, e), (1, m),

charge e: (2,1), (2, em),

charge 3e/2: (3, e), (3, m). (3.10)

The first component labels the U (1)4 charge sector, and the
second component labels the D(Z2) neutral sector. It is im-
portant to notice that, from the point of view of intrinsic
topological order, (2, em) should really be treated as a triv-
ial quasiparticle due to the trivial self- and mutual statistics,
which would in turn reduce the spectrum down to only four
distinct quasiparticles. Specifically, by fusing with (2, em),
(1, m) would be identified with (3, e), (3, m) would be iden-
tified with (1, e), and (0, em) would be identified with (2,1).
From this perspective, it seems unnecessary to assign a neutral
sector, as m-particles can be identified with e-particles. The
intrinsic topological order in this example is thus the same
as the strongly paired state, which has only the U (1)4 charge
sector.

However, the importance of the neutral sector becomes
clear from the symmetry-enriched perspective. In particular,
the constrained motion of quasiparticles in the wire model is
tied up with the U (1) charge symmetry, which motivates us
to study the nondiagonal states in the presence of charge con-
servation. This then requires us to distinguish quasiparticles
with different electric charge and forbids us from identifying
e-particles with m-particles as above. A similar discussion
applies to a generic bosonic nondiagonal state.
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2. Fermionic state

Next we study a special example of fermionic nondiagonal
states, with p = 2 and q = 1, which occur at filling ν = 1/2.
This state is presumably more relevant experimentally, and
moreover, it is exceptional from the symmetry perspective.
Unlike bosonic states, the D(Z2) neutral sector needs not
be protected by the U (1) charge symmetry. Instead, the Z2

fermion-parity symmetry suffices to distinguish e-particles on
even links from the m-particles on odd links. To see this, we
list the quasiparticle spectrum:

charge 0: (0,1), (0, em),

charge e/4: (1, e), (1, m),

charge e/2: (2,1), (2, em),

charge 3e/4: (3, e), (3, m),

charge e: (4,1), (4, em),

charge 5e/4: (5, e), (5, m),

charge 3e/2: (6,1), (6, em),

charge 7e/4: (7, e), (7, m). (3.11)

The first component labels the U (1)8 charge sector, and the
second component labels the D(Z2) neutral sector. These
quasiparticles can move in the bulk by the physical opera-
tors summarized in Fig. 4(b). Using the fermionic version of
Eq. (3.4), one can check that (4, em) braids trivially with all
quasiparticles. However, strictly speaking it does not belong
to the identity sector as it carries topological spin −1. In fact,
(4, em) corresponds to the physical electron. For a fermionic
topological order, the physical electron is usually included
in the counting of topological excitations (this is known as
fermion-parity grading). Thus the above spectrum is complete
and irreducible. To put it another way, the fermion-parity
symmetry ensures the distinction between e-particles and m-
particles, as turning one into another would require a switch
in fermion parity.

It is easy to verify that the distinction between even and
odd links is robust for all p = 2 nondiagonal states (i.e., q
can be an arbitrary odd integer). However, for p > 2, fermion
parity is not enough to protect the D(Zp) neutral sector. For
odd p, any m-particle can be transformed into an e-particle
by adding/removing even number of electrons. For even p >

2, m2Z-particles can be transformed into e2Z-particles with-
out changing fermion parity. Therefore, except for p = 2,
both fermionic and bosonic nondiagonal states generally rely
on the U (1) charge symmetry to protect the D(Zp) neutral
sector.

3. Weak topological superconductor

The third example is related to the digression taken in
Sec II D 2. There we have considered a coupled wire model
of 2D weak topological superconductor (TSC), in which the
vortex excitations have a similar constrained motion as the
quasiparticles of nondiagonal quantum Hall states. Recall that
the conservation of fermion parity dictates the h/2e vortex to
be tunneled across two wires at a time, so the vortex excited on
an even link should be differentiated from the one on an odd
link. When the vortex is tunneled across two wires, notice that

there is an accompanying tunneling of an electron between
the wire, so braiding an h/2e vortex on even links around
another one on an odd link would require an electron to be
transferred around a π -flux. This results in a braiding phase
of eiπ . Equivalently, one could understand this by viewing
the π -flux on an even link as a composite of a π -flux on an
odd link together with a single electron. Therefore, the π -flux
on even/odd links can be viewed as e/m-anyon in the Z2

toric code. This situation is similar to the p = 2 fermionic
nondiagonal state, in that none of them require U (1) charge
symmetry to protect the neutral sector.

However, the weak TSC is different from the p = 2
fermionic nondiagonal state in another important aspect: the
Z translation symmetry in the weak TSC is not essential for
the Z2 topological order. While the translation symmetry acts
as the e ↔ m anyonic symmetry for the toric code (which is
a virtue of the wire model), with or without this symmetry the
superconductor always has a topological order. This is indeed
a well-known fact: a fully gapped superconductor coupled
with dynamic electromagnetism has a Z2 topological order
[68–70]. On the other hand, as we are going to elaborate be-
low, the presence of translation symmetry is actually essential
to the D(Zp) neutral sector of nondiagonal QH states. Next,
we discuss the importance of charge symmetry and translation
symmetry in a more systematic manner.

C. Symmetry enrichment

We have now established that quasiparticles on the
even/odd links can be associated with e/m-particles respec-
tively. This leads us to interpret the nondiagonal states as
having a U (1)2pq charge sector [for fermionic states it would
be U (1)p(p+2q)] and a D(Zp) neutral sector. This interpretation
is useful as it consistently describes the fusion and braiding
properties of the nondiagonal states. However, it is important
to ask whether this interpretation is essential. This is equiva-
lent to asking whether the nondiagonal state is really different
(if yes, then in what circumstances different) from a strongly
clustered state. From the perspective of a single wire that
constitutes the wire model, as we have discussed in Sec. II B,
these two states are respectively related to two distinct nonchi-
ral CFTs, one at radius R = √

p/2q (i.e., nondiagonal) while
another at R = 1/

√
2pq (i.e., diagonal), which suggests that

the answer is yes. To fully answer the question we need to
address the role of two symmetries: charge conservation and
translation symmetry. The former has been hinted at in the
examples just analyzed, while the latter is related to the e-m
anyonic symmetry. Here we discuss the symmetry issue from
the bulk perspective, and in the next section we study the
implications to the boundary.

1. Charge conservation

From the specific examples analyzed in Sec. III B, we
have seen that charge conservation plays an important role
in constraining the quasiparticle scattering pattern. Here we
provide a more general argument to establish the U (1) charge
symmetry as a necessary ingredient to protect the neutral
sector. We focus on the bosonic states first. As discussed in
Sec. II C, certain local scattering operators are charged for
nondiagonal states (p > 1), which indicate that hopping the
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associated quasiparticle across a single wire would violate
charge conservation. Instead, the charge-conserving process
is for a quasiparticle to hop across two wires at a time, thus
differentiating excitations on the even and odd links. In the
absence of U (1) charge symmetry, however, such a distinction
would be meaningless. For the bosonic nondiagonal state at
filling ν = p/2q, a local electron operator e−iϕ j creates an
(2q, e−r0qmq)-excitation, which is trivial from the perspective
of intrinsic topological order. By fusing with (2q, e−r0qmq)-
excitations, all m-particles can be transformed to e-particles,
thus rendering the neutral sector label meaningless. Hence,
without charge conservation the nondiagonal state of electron
at filling ν = p/2q is topologically equivalent to the Laughlin
state of pe-clusters at filling νpe = 1/2pq (or the strongly
clustered state for short). In the presence of U (1) charge
symmetry, quasiparticles should be distinguished not only by
their braiding statistics but also by their symmetry charge.
This in turn distinguishes the e-particles from the m-particles
in nondiagonal states. The only trivial quasiparticle, in the
“symmetry-enriched” sense, is (0,1). While it is also true for
the strongly clustered state that quasiparticles with different
electric charge should be distinguished in the presence of
U (1) symmetry, there is no enriched neutral sector in that
case.

The situation is similar for the fermionic states. Fol-
lowing Eq. (2.37), the local operator O{−2,0}

j creates the
(2(p + 2q), e−2r0qm2(p+q) )-excitation. This is equivalent to a
pair of electrons, so the fermion parity is preserved. No-
tice that when p is odd, 2(p + q) is coprime to p (given
our assumption that p and q are coprime), thus fusing with
an appropriate number of the (2(p + 2q), e−2r0qm2(p+q) )-
excitations can turn any m-particles into e-particles. When p
is even, fusing with the (2(p + 2q), e−2r0qm2(p+q) )-excitations
would identify the m2Z-particles with e2Z-particles. There-
fore, except for the p = 2 states, a fermionic nondiagonal state
also relies on the U (1) charge symmetry to protect its D(Zp)
neutral sector.

Having said that, U (1) charge symmetry is only necessary
but not sufficient for distinguishing the nondiagonal states
from the strongly clustered state.

2. Translation and anyonic symmetry

In the presence of U (1) charge conservation, excitations
on the even links are distinguished from those on the odd
links. However, without the translation symmetry that trans-
forms wire j 	→ j + 1 (which we denote as the Z translation),
the nondiagonal state is actually adiabatically connected to
the strongly clustered state. This can be seen if we dimer-
ize the 2 jth wire with the (2 j + 1)-th wire (for all j ∈ Z)
such that the interwire couplings in Eq. (2.10), i.e., t2 j+1/2’s,
are pushed to infinity. This corresponds to setting the gap
in the even links to be infinite, and thus all e-particles are
infinitely heavy and only m-particles are left in the spectrum.
In this way, the neutral sector becomes meaningless as the
quasiparticle spectrum is the same for both the nondiagonal
state and the strongly clustered state. In fact, they have the
same topological ground state degeneracy on a torus: for the
bosonic state, the degeneracy is N = 2pq; for the fermionic
state, the degeneracy is N = p(p + 2q). Thus, without the

FIG. 7. Illustration of a braiding process between a quasiparticle
and a dislocation defect in the wire model, which turns a quasipar-
ticle on the even link (e-particle) into a quasiparticle on the odd
link (m-particle). A dislocation in the wire model thus acts as a
twist defect for the anyonic symmetry in the D(Zp) quantum double
model.

Z translation symmetry, the nondiagonal state of electron at
filling ν = p/2q is topologically equivalent to the Laughlin
state of pe-bosons at filling νpe = 1/2pq. To sum up, the
nondiagonal state is different from the strongly clustered state
precisely in that the former can be enriched to a more exotic
topological phase with an additional D(Zp) neutral sector, by
the U (1) × Z symmetry.

It is important to notice that the Z translation symmetry
in the wire model is related to the Z2 anyonic symmetry in
the D(Zp) quantum double model, because the translation
by one wire would transform even links to odd links, thus
exchanging e ↔ m. In this regard, the nondiagonal QH state
is similar to Kitaev’s toric code on a honeycomb lattice and
Wen’s plaquette model [46,48,49], as well as the weak TSC
discussed in Sec. III B 3. Nevertheless, the D(Zp) in a nondi-
agonal state is realized only with symmetry enrichment, while
the D(Zp) in Kitaev’s and Wen’s models [as well as the D(Z2)
in superconductor] is intrinsic.

We also want to comment on a subtle relation between
the translation symmetry and the anyonic symmetry. When
speaking of anyonic symmetry, it is usually viewed as an
abstract relabeling symmetry that permutes the anyon types
in a way that all fusion and braiding properties are left in-
variant [51–53]. In such a definition, no explicit reference to
the Hamiltonian is made, and thus the energetics of anyons
are really not concerned. In our case, it is then more precise
to relate the translation symmetry to the exact anyonic sym-
metry. The exactness lies in the energetics, which requires
the anyonic excitations to have the same energy under the
relabeling transformation.

The presence of an exact anyonic symmetry in the nondi-
agonal states has an important physical consequence, as then
the symmetry can be gauged. According to the general theory
of anyonic symmetry, the gauged phase is non-Abelian in
nature [51–53]. In the coupled wire model there is an explicit
description of such gauging process, which is the proliferation
of dislocation defects. A dislocation defect in the wire model
is a sudden termination of a wire in the bulk, as illustrated
in Fig. 7. Braiding an e-particle around a dislocation defect
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would relabel the quasiparticle as an m-particle and vice
versa. Hence a single dislocation defect is a gauge flux of
the Z2 anyonic symmetry, which is also known as a twist
defect [47]. To be more precise, as double dislocations are
condensed, a single dislocation would be truly Z2 in nature. In
the “melting phase” of the coupled wire model where single
dislocations are deconfined and double dislocations prolifer-
ate, the Z2 anyonic symmetry in the neutral sector of the
(Abelian) nondiagonal quantum Hall state is gauged, and the
resulting phase would be isotropic and non-Abelian. We hope
to better characterize this exotic quantum Hall state in future
works.

Now, equipped with the knowledge in the bulk we shall
revisit the edge and discuss a signature of the symmetry en-
richment in nondiagonal states. When the anyonic symmetry
in the bulk is exact, that is, when the wire model has a discrete
translation symmetry, an additional gapless boundary theory
could emerge.

IV. THEORY OF THE SYMMETRIC EDGE

We now study the boundary theory in more detail. The cou-
pled wire model has two types of edges: one is the left/right
side edge which has been studied in Sec. II B; another type
is the top/bottom edge that is formed by coupling together
the ends of wires. In this section, by studying the top/bottom
edge, we first recover the chiral Luttinger liquid which has
been shown to live on the left/right edge (Sec. IV A). This is
the chiral edge theory of the U (1)2pq charge sector. Without
additional symmetry, it describes the only gapless edge mode
for the nondiagonal state, which is the same edge mode for
a strongly clustered state. This is reflecting that these states
share the same intrinsic topological order, as explained in the
previous section. However, with the Z translation symmetry
in the wire model, a nonchiral gapless theory could emerge
in the neutral sector, which describes the critical transition
of a quantum Zp clock model (Sec. IV B). When both the
charge and neutral sectors are gapless, a single electron can
be tunneled into the symmetric edge from a metal. The associ-
ated tunneling exponent is predicted in Sec. IV C, which may
serve as a possible experimental signature for the nondiagonal
states.

What we discover for the symmetry-enriched neutral sec-
tor corroborates with earlier studies on critical parafermion
chains [55] and twist defect chains [56], which linked to-
gether translation invariance with self-duality of the clock
model. Indeed, the symmetric edge of a nondiagonal quan-
tum Hall state provides an electronic platform to realize the
physics discussed in these earlier works. Given the discussion
in Sec. II D 2, one would expect the ends of wires to host
parafermion zero modes, which are coupled by electron tun-
neling to form a parafermion chain at the edge. Alternatively,
the discussion in Sec. III C suggests the termination of a wire
as a twist defect of the Zp toric code that exchanges e and m
particles, so the top/bottom edge can be equivalently viewed
as a twist defect chain. While in Ref. [56] the equivalence
between the twist defect chain and the clock model is demon-
strated using Wilson loop operators, in our following analysis
we intend to provide a more transparent derivation based on
interwire electron-tunneling interactions at the edge. Impor-

FIG. 8. Chiral Luttinger liquids at the top (T) and bottom (B)
edges of the coupled wire model, labeled as χT and χB respectively.
The gray shaded region represents the gapped bulk, obtained from
interwire tunneling of charge-pe clusters. The termination of each
wire is modeled by a hard-wall boundary condition, such that the
chiral and antichiral modes of each wire (φR and φL) are reflected
into each other. While φR/L on neighboring wires are locked together
deep in the bulk, they are left to fluctuate near the boundary where
the interwire couplings vanish, giving rise to the gapless charge
mode χT/B.

tantly, we notice that a generalized quantum clock model is
actually realized at the edge, in contrast to the conventional
clock model discussed previously. This complicates the sit-
uation for p � 4, and in Sec. IV D we address the related
subtleties.

For convenience, our discussions in Secs. IV A and IV B
are based on the bosonic states. The results for the fermionic
states are essentially the same and differ simply by a substitu-
tion 2q 	→ p + 2q. In Sec. IV C, where we discuss possible
experimental signatures by tunneling electrons from Fermi
liquid into the symmetric edge, we focus only on the fermionic
states.

A. Charge sector

The edge theory in the charge sector can be intuitively
understood in a pictorial depiction of the coupled wire model
as shown in Fig. 8. While the interwire couplings have gapped
out the bulk by freezing the degrees of freedom therein, a
chiral Luttinger liquid is left freely fluctuating near the ter-
mination of wires, where the interwire couplings diminish.
Here we provide a more rigorous derivation of this Luttinger
liquid edge mode, and the setup would also be useful for
understanding the more nontrivial edge modes in the neutral
sector.

To model the termination of a wire, we adopt the hard-wall
boundary condition so that left-movers are reflected into right
movers, and vice versa at the other end. The finite-size Lut-
tinger liquid is then characterized by the bosonized variables
ϕ(x) and θ (x) that satisfy

[θ j (x), ϕ j′ (x
′)] = iπδ j j′H (x − x′), (4.1)
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where H (x) is the Heaviside step function, together with the
boundary conditions

θ j (0
−) = 0 and θ j (L

+) = πNj . (4.2)

Here j, j′ label the wires, which terminate at x = 0, L, and
Nj is the electron number operator for wire j. Importantly,
we have been careful in specifying the x-coordinates of the
bosonic fields, in the above and in what follows, so as to
ensure that commutation relations can always be evaluated
unambiguously. In our notation, the very end of the wire with
a fixed boundary condition is located at x = 0− (L+), the
interwire tunneling that fluctuates near the boundary happens
at x = 0 (L), and the interwire tunneling that is pinned in
the bulk is thought of as happening at x = 0+ (L−). This
seemingly pedantic effort would prove to be crucial when we
derive the chiral algebra for the top/bottom edge mode.

In terms of the chiral modes introduced in Eq. (2.7), we
have [

φ
R/L
j (x), φR/L

j′ (x′)
] = ±2iπ pqδ j j′sgn(x − x′), (4.3a)[

φR
j (x), φL

j′ (x
′)
] = 2iπ pqδ j j′ , (4.3b)

together with the boundary conditions

φR
j (0−) = φL

j (0−), (4.4a)

φR
j (L+) = φL

j (L+) + 4πqNj . (4.4b)

Notice that there are generally discontinuities in these chiral
modes at the edge (x = 0, L) from one wire to the next, which
are caused by the interwire tunneling term cos � j+1/2. Indeed,
φR/L(x) is the chiral mode of each single wire defined along
the x-direction, so they are not quite the right variables for
describing the top/bottom edge modes which run along the
y-direction.

To identify the appropriate chiral edge modes at x = 0
(top) and x = L (bottom), which should vary slowly from
one wire to the next, let us examine again the bulk interwire
coupling, but now slightly modified to cos �̃
(x), with the link
variable

�̃ j+1/2(x) ≡ φR
j (x) − φL

j+1(x) − 2πqNj . (4.5)

Compared with Eq. (2.11), the interwire coupling is defined
with an extra 2πqNj term. This modification is needed to en-
sure that [�̃
(x), �̃
′ (x′)] = 0, given the commutation relation
in Eq. (4.1) which is appropriate for a hard-wall boundary
condition. As we have shown in Sec. II A, the interwire cou-
plings then pin �̃
 ∈ 2πZ everywhere in the bulk and thus
completely gap out the bulk. At the boundaries (x = 0, L),
the interwire interaction diminishes so that �̃
 is allowed to
fluctuate there. As we see next, this fluctuation gives rise to
the chiral Luttinger liquid at the top/bottom edge.

We now introduce the chiral edge mode living at top/
bottom (x = 0/L) edge as follows:

χ j (0) = φL
j (0) − 2πq

∑
j�i

Ni −
∑
j�i

�̃i+1/2(0+), (4.6a)

χ j (L) = φL
j (L) + 2πq

∑
j�i

Ni −
∑
j�i

�̃i+1/2(L−), (4.6b)

where �̃
(0+) and �̃
(L−) correspond to the bulk link vari-
ables that are pinned. For link 
 = j + 1/2, the link variables
at the edge are then

�̃
(0) = χ j (0) − χ j+1(0) + �̃
(0+), (4.7a)

�̃
(L) = χ j (L) − χ j+1(L) + �̃
(L−), (4.7b)

which imply that χ j (0/L) indeed varies slowly between
neighboring wires. The fluctuation of χ is controlled by the
interwire tunneling near the boundary, which is proportional
to

cos �̃
(0/L) ∼ [χ j (0/L) − χ j+1(0/L)]2. (4.8)

Note that the series expansion is legitimate because �̃
(0+)
and �̃
(L−) are pinned at 2πZ. Taking the continuum limit in
the y-direction, i.e., χ j (0) 	→ χT(y) and χ j (L) 	→ χB(y), we
obtain the effective Hamiltonian for the top/bottom edge,

HT/B
ρ = u

2π

(
∂yχ

T/B
)2

. (4.9)

Furthermore, one can readily check that

[χ j (0), χ j′ (0)] = 2iπ pq sgn( j − j′), (4.10a)

[χ j (L), χ j′ (L)] = −2iπ pq sgn( j − j′), (4.10b)

which imply the chiral algebra in the continuum limit,[
χT/B(y), χT/B(y′)

] = ± 2iπ pq sgn(y − y′). (4.11)

Altogether, Eqs. (4.9) and (4.11) suggest that the low-energy
effective theory for the top/bottom edge of the ν = p/2q
nondiagonal state is partly described by a chiral Luttinger
liquid with Luttinger parameter K = 2pq. A similar result
holds for the fermionic state at filling ν = p/(p + 2q), with
K = p(p + 2q). This is the edge mode guaranteed by the bulk
topological order, and it coincides with the gapless mode on
the left/right side edge described by φR/L. The subscript ρ

in Eq. (4.9) represents the charge sector, and as we discuss
next, the edge Hamiltonian could have other contributions that
would be attributed to the neutral sector (σ ), which become
particularly important in the presence of symmetry.

B. Neutral sector

1. Physical picture

In the bulk of nondiagonal states, wires of Luttinger liquid
are coupled together by interwire tunneling of p electrons. As
shown in Sec. II A, at electron filling ν = p/2q the bulk is
completely gapped, so the pe-tunneling is the only interaction
that matters in the bulk. This leaves a gapless chiral Luttinger
liquid fluctuating at the boundary as we have shown above.
This interaction preserves the electron number mod p in each
wire. From now on this quantity is referred to as the “number
p-rity.”

Note, however, the number p-rity of each wire is generally
not conserved. By tunneling a single electron between the
ends of two neighboring wires, e.g., ei(ϕ j−ϕ j+1 ), the number
p-rity of each involved wire is shifted by 1. Given that the
charge sector at the boundary (associated with pe-tunneling)
is gapless, the interwire tunneling of a single electron could
be important at the boundary. Thus, a complete description
of the edge should take into account all possible fluctuations
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FIG. 9. Quantum Zp clock model at the top edge of the coupled
wire model, which is obtained from interwire tunneling of a single
electron. As a thinking aid, we imagine that the array of wires
are dimerized such that wire 2 j and wire 2 j + 1 are connected at
the bottom edge, forming a single Luttinger liquid, to which we
associate a number p-rity. Tunneling between wire 2 j and 2 j + 1
(dashed circle) preserves this number p-rity, while tunneling between
wire 2 j and 2 j − 1 (dotted circle), as well as between wire 2 j + 1
and 2 j + 2, shifts the number p-rity. These edge couplings can be
associated with the clock operators τ j and shift operators σ j as shown
in the text. Choosing a different dimerization pattern is equivalent
to an order-disorder duality transformation. Given the translation
symmetry in the bulk of the wire model, the clock model at the edge
is self-dual.

of the number p-rity of each wire. To gain physical insights,
say, for the top edge, we pretend to dimerize the array of
wires by connecting wire 2 j with wire 2 j + 1 (for all j ∈ Z)
at the bottom edge, as depicted in Fig. 9. The x = 0 end of
wire 2 j and the x = 0 end of wire 2 j + 1 then become two
ends of the same Luttinger liquid, and the electron tunneling
between them, i.e., ei(ϕ2 j−ϕ2 j+1 ), would conserve the number p-
rity of this Luttinger liquid. We expect the interwire tunneling
over link 2 j + 1/2 to be related to a p-state clock operator
τ j that measures this number p-rity, whereas the interwire
tunneling over neighboring links (2 j − 1/2 and 2 j + 3/2) to
be related to a shift operator σ j that changes this number p-
rity. The effective Hamiltonian then describes a p-state clock
model.

The dimerization procedure just described is fictitious,
but it provides an intuitive perspective for understanding the
edge neutral sector. In particular, it naturally leads to the
order-disorder duality in the clock model. Had we chosen
another dimerization pattern, which connects wire 2 j with
wire 2 j − 1, we would have associated a dual clock operator
ν j−1/2 to measure the number p-rity over link 2 j − 1/2, and
a dual shift operator μ j−1/2 to change this number p-rity.
Importantly, when the Z translation symmetry is present in
our coupled wire model, dimerization is actually forbidden.
The two ways of dimerization described above are thus put on
the same footing, which suggests that the edge neutral sector
is a self-dual clock model, described by some gapless critical
theory in the continuum limit. Next, we will supplement the
above argument by a more rigorous derivation. We focus on

the x = 0 (top) edge, as the situation for the bottom edge is
essentially the same.

2. Generalized Zp clock chain

Let us first consider the interwire tunneling of a single
electron,

H1e = −J1

∑
j

cos(ϕ j − ϕ j+1). (4.12)

The notation at the boundary is simplified, i.e., ϕ j ≡ ϕ j (0).
We also assume translation symmetry here, so that the tunnel-
ing strength is the same for each link. Later we will discuss the
physical consequences with and without this symmetry. Using
Eq. (4.6), we have

ϕ j − ϕ j+1 = 1

p
(χ j − χ j+1) + 2πq

p
Nj + 2π

p
Ñj+1/2. (4.13)

For later convenience, we have introduced the quasiparticle
number operator Ñ
 = �̃
(0+)/2π . By definition, Ñ
 has in-
teger eigenvalue, and it is shifted by 1 whenever a minimal
quasiparticle is tunneled from one end of the link to another.
The first term in Eq. (4.13), which involves χ j − χ j+1, simply
contributes to the Luttinger liquid in the charge sector. The re-
maining terms represent additional contributions in the neutral
sector that we are interested in. This motivates us to introduce
the operator

W j+1/2 = ei( 2πq
p Nj+ 2π

p Ñ j+1/2+πq). (4.14)

One can readily check that W p

 = 1, which follows from the

commutation relation

[Nj, Ñk+1/2] = ip

2π
(δ j,k − δ j,k+1). (4.15)

Moreover, these operators satisfy the commutation algebra
appropriate for a quantum Zp clock model,

[W j+1/2,Wk+1/2] = 0, for | j − k| > 1, (4.16a)

W j+1/2W j−1/2 = ω W j−1/2W j+1/2, (4.16b)

with ω = e2π iq/p [71]. This reflects the physical intuition we
discussed earlier: the single-electron tunneling through each
link shall be associated with a p-state clock operator, while
the tunneling through the neighboring link shall be treated
as the corresponding shift operator. We can make an explicit
correspondence to the Zp clock model by defining the clock
variables as follows:

W2 j+1/2 = τ j, (4.17a)

W2 j−1/2 = σ jσ
†
j−1. (4.17b)

They satisfy

τ
p
j = σ

p
j = 1, (4.18a)

τ jσ j = ωσ jτ j, (4.18b)

and τ j commutes with σk for j �= k. Consequently, the Hamil-
tonian for the interwire tunneling of a single electron can be
written as

H1e = −J1

∑
j

(τ j + σ jσ
†
j−1) + H.c. (4.19)
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Only the contribution in the neutral sector is considered here,
as the charge sector has been taken into account already.

More generally, one should consider all possible
ne-tunneling processes, for 1 � n < p. The effective
Hamiltonian in the neutral sector thus takes the following
form:

Hσ = −
∑

j

p−1∑
n=1

Jn[(τ j )
n + (σ jσ

†
j−1)n + H.c.]. (4.20)

Importantly, the spin-spin coupling and the transverse-field
coupling have the same strength due to the translation symme-
try which interchanges even and odd links. As we have argued
with a physical picture, translation in the bulk (by a single
wire) actually is associated with the order-disorder duality at
the edge. Indeed, we can introduce the dual clock variables as
follows:

μ j− 1
2

=
∏
j�i

τ
†
i , (4.21a)

ν j− 1
2

= σ jσ
†
j−1, (4.21b)

which is a “p-state” generalization to the Kramers-Wannier
duality transformation for the Ising model [72–74]. The
Hamiltonian can then be rewritten as

Hσ = −
∑

j

p−1∑
n=1

Jn
[(

ν j− 1
2

)n + (
μ j+ 1

2
μ

†
j− 1

2

)n + H.c.
]
. (4.22)

This demonstrates the self-duality of the p-state clock model,
provided that the wire model has translation symmetry, which
in turn is equivalent to the bulk e-m anyonic symmetry ac-
cording to our discussion in Sec. III C.

Some words of caution are due here. We would refer to the
symmetry-enriched neutral sector Hamiltonian in Eq. (4.20)
as the self-dual generalized Zp clock model, which is to be
contrasted with the conventional clock model for p � 4. In
2D classical statistical mechanics, the distinction between the
general clock model and the conventional one (see Ref. [75])
is discussed by Cardy in Ref. [76]. Here for the 1D quanutm
chain, the differences are twofold: first, the clock operators are
defined to obey Eq. (4.18) with ω = e2π iq/p, in contrast to ω =
e2π i/p in the conventional model. Our model thus has distinct
self-dualities for different q’s; second, the clock operators here
appear with various powers, i.e., (τ j )n and (σ jσ

†
j−1)n with

n ranging from 1 to p − 1, in contrast to the conventional
model with just n = 1 [77,78]. Consequently, for p � 4 the
generalized model is different form the conventional one. One
has to pay special attention to the more complicated phase
diagram at self-duality [79,80]. As we are going to discuss
in Sec. IV D, the symmetry-enriched edge neutral sector can
sometimes be gapped.

For p = 2, 3, the generalized clock model is no different
from the conventional one. For p = 2 the neutral sector is
described by an Ising-Majorana chain [58,81], while for p = 3
it is described by a three-state Potts chain [82,83]. Self-duality
then implies a critical transition characterized by some gapless
continuum theory. As is well known in statistical mechanics,
the corresponding gapless theories are the Ising CFT and the
Z3 parafermion CFT, respectively [59,60,84,85]. With both

the charge and neutral sectors being gapless, a single electron
can be tunneled into the symmetric edge. Such tunneling
experiments may be used to probe the nondiagonal states.
Our next task is to compute the edge tunneling exponents
for nondiagonal states, especially for p = 2, 3, which have
symmetry-protected gapless edges.

3. Edge operators

To that end, it is useful to express the edge electron op-
erator ψ j (0) ∝ eiϕ j (0) in terms of operators in the charge and
neutral sectors explicitly. To do so, let us define the lattice
parafermion operator in the neutral sector by combining the
order and disorder operators [86],

β2 j = ω
p−1

2 μ
†
j− 1

2

σ
†
j , (4.23a)

β2 j−1 = μ
†
j− 1

2

σ
†
j−1, (4.23b)

which satisfy β
p
j = 1, and

β jβk = ωsgn( j−k)βkβ j, (4.24)

where ω = e2iπq/p. Maneuvering through the definition of
variables introduced in this section, one can verify that the
edge electron operator can be expressed simply as follows:

ψ j (0) ∝ β je
i
p χ j (0)

. (4.25)

Therefore, in the continuum limit, the scaling dimension of
the edge electron is

�e = �β + K

2p2
= �β + 1

2ν
. (4.26)

Here �β is the scaling dimension of the (most relevant) con-
tinuum field corresponding to the lattice parafermion operator.
The Luttinger parameter is K = 2pq for a bosonic state at
filling ν = p/2q, and K = p(p + 2q) for a fermionic state at
ν = p/(p + 2q). The above expression holds up as long as the
charge and neutral sectors decouple at low energy. As we will
explain, this is indeed the case for p = 2, 3.

The above discussion allows one to experimentally reveal
the symmetry-enriched edge structure through the tunnel-
ing exponent for tunneling electrons from an ordinary metal
into the symmetric edge. We will elaborate on this in the
next subsection. Alternatively, one can consider the interedge
quasiparticle tunneling through a point contact, which makes
use of the operators that scatter a minimal quasiparticle from
the top edge to the bottom edge. For instance, for the bosonic
states, one can check that [Ñj+1/2, [φR

j (0)−φR
j (L)]/2pq] = i,

hence the following operator tunnels a minimal quasiparticle
of charge e/2q from the top edge to the bottom edge through
link 
 = j + 1/2,

�
e/2q

 = e

i
2pq [φR

j (0)−φR
j (L)]

. (4.27)

Combining the above discussions for both the charge and neu-
tral sectors, we can reexpress the interedge tunneling operator
as

�
e/2q
2 j+ 1

2

∝ (
σ T

j

)−r0
(
σ B

j

)r0 e
i

2pq [χ2 j (0)−χ2 j (L)]
, (4.28a)

�
e/2q
2 j− 1

2

∝ (
μT

j− 1
2

)−r0
(
μB

j− 1
2

)r0 e
i

2pq [χ2 j (0)−χ2 j (L)]
, (4.28b)
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where r0 satisfies qr0 = 1 mod p. Here σ T and μT are the
clock variables for the top edge defined in Eqs. (4.17) and
(4.21), while σ B and μB are the clock variables for the bottom
edge which can be defined analogously. The above expression
suggests that quasiparticles excited on the even links, which
are known as the e-particles in Sec. III, are created at the
top/bottom edge with the spin operator σ T/B. On the other
hand, quasiparticles excited on the odd links, which are known
as the m-particles, are created with the disorder operator μT/B.
Again, we are seeing here the equivalence between the order-
disorder duality at the edge and the e-m anyonic symmetry in
the bulk [87].

In principle, one could use Eq. (4.28) to compute the
tunneling exponent for interedge quasiparticle tunneling at a
point contact and thus reveal the structure of the symmetric
edge. Having said that, in making the constriction, transla-
tion symmetry on the edge may be easily broken to render
a gapped neutral sector. A more practical way of probing
the symmetric edge structure is by tunneling electrons into
the edge from a Fermi liquid, which is what we focus on in
the following. For experimental relevance, we consider only
the fermionic nondiagonal states.

C. Tunneling from metal into the symmetric edge

In the presence of translation symmetry, both the charge
and neutral sectors of the top/bottom edge are gapless for
nondiagonal states with p = 2, 3. A single electron can then
be tunneled into the symmetric edge. For the left/right side
edge, however, the neutral sector is gapped, and this edge
is completely characterized by the chiral Luttinger liquid of
charge-pe clusters, which is gapless only to the tunneling of
p electrons. This anisotropy between the top/bottom and the
left/right edges highlights the symmetry-enrichment aspect
of the nondiagonal quantum Hall states. Experimentally, the
edge structure of a quantum Hall state can be revealed by
measuring the tunneling exponents [88,89]. In the following,
we are mainly interested in the tunneling from an ordinary
metal, a Fermi liquid, into the edge of fermionic nondiagonal
state at filling ν = p/(p + 2q).

Before analyzing the symmetric edge, let us make a con-
trast with the situation where the translation symmetry is
broken. In this case the clock model is no longer self-dual,
so the neutral sector is generally gapped. The top/bottom
edge is then identical to the left/right side edge. Both are de-
scribed only by a chiral Luttinger liquid with K = p(p + 2q).
Notice that neither e

i
p χ nor e

i
p φ are local operators, hence

a single electron cannot be tunneled into these edges. The
most relevant local operator at the edge is either eiφ or eiχ ,
which corresponds a charge-pe cluster with scaling dimension
�pe = K/2. The charge-pe cluster in the Fermi liquid has
scaling dimension δpe = p2/2. Thus, for the nonsymmetric
edge, the tunneling current I has the following scaling [89]:

I ∼ V 2(�pe+δpe )−1 = V p2/ν+p2−1, (4.29)

where V is the bias voltage. The same tunneling exponent
is obtained by tunneling from metal into the strongly clus-
tered state (Laughlin state of pe-clusters) at filling νpe =
ν/p2 = 1/p(p + 2q). This is expected given our discussion

in Sec. III C: the nondiagonal state shares the same intrinsic
topological order as a strongly clustered state.

On the other hand, the symmetric edge is gapless to a single
electron, at least for p = 2, 3, and this can be used to reveal the
signature of symmetry enrichment in the nondiagonal state.
The tunneling current from metal into the symmetric edge has
the following power-law behavior:

I ∼ V 2(�e+δe )−1, (4.30)

where δe = 1/2 and �e is given by Eq. (4.26) provided that
charge and neutral sectors decouple. Let us now analyze the
specific cases in detail.

1. p = 2: Ising CFT

We first note that the U (1) charge sector decouples with the
Ising neutral sector at low energy. To couple together the two
sectors, one would consider an operator Ôcn = ÔcÔn, where
Ôc and Ôn are local operators in the charge and neutral sectors,
respectively. In the charge sector, the most relevant nontrivial
operator is ∂yχ , with scaling dimension 1. In the neutral sec-
tor, the spin field σ is not local. In fact, as we have seen in
last subsection, the spin operator σ and the disorder operator
μ correspond to the bulk anyons e and m, respectively. As
for the energy operator ε ∼ ββ̄ (with scaling dimension 1),
while being local, it dimerizes the Ising spin chain and violates
the translation symmetry. Therefore, the dominant allowed
coupling is Ôcn = (∂yχ )T , with T being the stress-energy
tensor in the Ising CFT. The total scaling dimension of the
coupling is 3, hence irrelevant, which implies the decoupling
between the charge and neutral sectors.

It then follows from Eq. (4.30) that the edge tunneling
current scales with the bias voltage as

I ∼ V 1/ν+1, (4.31)

for the fermionic nondiagonal state at filling ν = 1/(q + 1),
with q ∈ 2Z + 1. Here we have used �β = 1/2 for the Majo-
rana field [60].

2. p = 3: Z3 parafermion CFT

The situation for p = 3 is similar to p = 2. For an operator
Ôcn = ÔcÔn coupling the charge and neutral sectors, Ôn again
cannot be the spin or disorder operator as they are associated
with creating the nonlocal e/m quasiparticles in the bulk.
Also, the translation symmetry at the edge forbids Ôn to be
the energy operator with dimension 4/5. The most relevant
allowed coupling is then given by Ôcn = (∂yχ )T , where T
is the stress tensor for the Z3 parafermion CFT. Again, with
scaling dimension 3, this coupling is irrelevant at low energy.
Hence, the U (1) charge sector and the Z3 parafermion neutral
sector are decoupled at infrared on the symmetric edge.

The Z3 parafermion is a little more subtle than the Majo-
rana fermion, as the continuum limit of the lattice parafermion
operator is not just the parafermion primary field. As argued
by Mong et al. [83], aside from the parafermion field with
dimension 2/3, the lattice parafermion operator actually con-
tains a more relevant primary field with scaling dimension
7/15. Thus, we should use �β = 7/15 for p = 3. This leads
to the following scaling relation between the tunneling current
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and the bias voltage:

I ∼ V 1/ν+14/15, (4.32)

for the fermionic nondiagonal state at filling ν = 3/(2q + 3),
with q ∈ 3Z ± 1.

D. Complexities for p � 4: The generalized clock model

Finally, let us comment on the edge structure of nondiag-
onal states with p � 4. Unlike cases for p < 4, translation
symmetry (or self-duality) alone does not guarantee a gap-
less neutral sector. Our following discussion supplements the
results obtained in Ref. [56], where the twist-defect chain (as
the edge of Zp toric code) had been modeled as a conventional
Zp clock model. As explained in Sec. IV B, the quantum clock
chain realized at the edge of nondiagonal states (as well as the
Zp toric code) is actually the generalized clock model, which
has a much richer phase diagram for p � 4 as we discuss
below.

1. p = 4: Ashkin-Teller model

For p = 4, the symmetry-enriched (self-dual) neutral sec-
tor is described by the following Hamiltonian:

Hσ = −
∑

j

{J1[τ j + σ jσ
†
j−1]

+ J2[(τ j )
2 + (σ jσ

†
j−1)2] + H.c.}. (4.33)

Without loss of generality, we can assume q = 1 (the non-
trivial effect for q > 1 would become important for p � 5).
What we have here is a 1D quantum model equivalent to
the highly anisotropic limit of the 2D Ashkin-Teller model
at self-duality [90]. The corresponding phase diagram had
been studied thoroughly in Ref. [91]. When J2/J1 = 0, this
model reduces to the “conventional” Z4 clock model, which
is equivalent to two decoupled copies of Ising models. At
self-duality, the neutral sector is then gapless, characterized
by the Ising2 CFT, which is also known as the U (1)/Z2

orbifold CFT at radius Rorb = 1 [59,92]. When J2 = J1, the
generalized clock model has an additional S4 permutation
symmetry, which makes it into the four-state Potts model [93].
At self-duality, the neutral sector is again gapless, but this
time characterized by the four-state Potts CFT, which is the
U (1)/Z2 orbifold CFT at radius Rorb = √

2 [92]. In fact, for
|J2/J1| � 1, there is a continuous line of criticality described
by the orbifold CFT, which includes also the Z4 parafermion
CFT [59,84,92]. Hence, for this region of parameter space, the
p = 4 nondiagonal state does have a gapless edge allowing for
tunneling of a single electron, though the tunneling exponent
is nonuniversal.

Importantly, the self-dual Ashkin-Teller model is gapped
when |J2/J1| > 1, and this is a totally allowed region in
our parameter space. Intuitively, for J2 � J1, the generalized
clock model is dominated by the J2 terms: (τ j )2 and (σ jσ

†
j−1)2,

which favor the simultaneous condensation of τ 2 and σ 2 (no-
tice that they do commute for p = 4). This results in a partially
ordered phase where 〈σ 2〉 = ±1 (there is a spontaneous sym-
metry breaking as either +1 or −1 is chosen) and 〈σ 〉 = 0.
This phase is in fact separated from a fully ordered region with
〈σ 〉 �= 0 and a fully disordered region with 〈σ 2〉 = 〈σ 〉 = 0

FIG. 10. Schematic phase diagram of the self-dual Z4 general
clock model. Notice that there exist gapped phases even at self-
duality, hence there is no guarantee that the symmetric edge of the
p = 4 nondiagonal state is gapless. A detailed discussion of the
complete phase diagram can be found in Ref. [91].

by two Ising transitions. For J2 < −J1, the system is ordered
in an antiferromagnetic frozen phase, where 〈σ 2〉 equals 1
in one sublattice and −1 in another. The phase diagram for
the self-dual Z4 generalized clock chain is summarized in
Fig. 10. We thus conclude that, for the p = 4 nondiagonal
state, translation symmetry in the bulk (self-duality on the
edge) does not necessarily imply a gapless neutral sector on
the edge.

2. p � 5

Similarly, for the nondiagonal states with p � 5, the neu-
tral sector of the symmetric edge is also not guaranteed to
be gapless. This is most easily demonstrated by tuning all
the parameters Jn to the same value, in which case the gen-
eralized clock model becomes a p-state Potts model. It is
well known that for p � 5 the self-dual Potts model is de-
scribed by a first-order phase transition and is thus gapped
[93]. In this situation, the symmetric edge would develop
spontaneous dimerization appropriate for either the ordered or
disordered phase. As phase coexistence could occur at a first-
order transition, one may anticipate seeing both the ordered
and disordered phases on the edge. Parafermion zero modes
could reside at the domain walls that separate these two phases
(for the general chiral model, see Ref. [82]).

On the other hand, it is interesting to ask if there can
exist any gapless phase at all on the symmetric edge. The
answer turns out to depend on q as well. For q = ±1 (mod p),
by setting all Jn’s to be zero except for J1(= Jp−1), the
self-dual generalized Zp model reduces to the conventional
Zp model at criticality, which is known to be in the gap-
less Berezinskii-Kosterlitz-Thouless (BKT) phase for p � 5
[77–80]. However, such a gapless phase is not always allowed
for a generic q, as can be seen by attempting (and failing) to
construct a self-dual sine-Gordon representation for the BKT
phase. Suppose there exists such a sine-Gordon model, then it
is expected to take the following form:

HSG = uσ

2π

[
q̃2(∂yφe)2 + (∂yφm)2

]
+ ve cos(pφe) + vm cos(pφm) + · · · (4.34)

for some q̃ = q (mod p). Here φe and φm are defined to satisfy

[φe(y), φm(y′)] = 2iπ p−1H (y − y′), (4.35)

where H (y) is the Heaviside step function. The cos(pφm) term
then creates vortices for φe with a 2π -compactification, and
the cos(pφe) term provides a p-state anisotropy that leads to
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a clock model. The clock operators can be expressed in terms
of the sine-Gordon variables as follows:

e−iq̃φe ∼ σ and eiφm ∼ μ. (4.36)

The appropriate clock algebra with ω = e2iπq/p simply fol-
lows from the commutation relation in Eq. (4.35). The duality
transformation in the generalized clock model, which in-
terchanges σ ↔ μ, is thus equivalent to the transformation
−q̃φe ↔ φm in the sine-Gordon model. This explains the
kinetic terms in Eq. (4.34), which are chosen to ensure the
self-duality. The duality would also require the vm cos(pq̃φe)
term to appear in the Hamiltonian, but for simplicity we have
swept it under the ellipsis. Notice that the two vm-terms have
scaling dimension �m = p|q̃|/2 > 2, hence they are irrele-
vant at low energy.

Now a crucial observation is that the presumed dual of
cos pφe does not exist in general, because cos(pφm/q̃) is not
an allowed operator unless |q̃| = 1. Without its dual, there is
no term to compete with the ve-term, and this would lead to
gap opening if ve flows to strong coupling. Since the scaling
dimension of cos pφe is �e = p/(2|q̃|), we conclude that the
gapless BKT phase (or equivalently a Luttinger liquid) is
allowed only when |q̃| < p/4, with q̃ = q (mod p). For ex-
ample, the nondiagonal state for p = 5 and q = 1 can have a
gapless neutral sector on the symmetric edge, while for p = 5
and q = 2 the neutral sector can only be gapped.

Our above discussion is not likely to be comprehensive
for the symmetric edge theory of nondiagonal quantum Hall
states with p � 4, and we look forward to future numerical
studies that can fully characterize the phase diagram of the
generalized clock chain, including the chiral model where
coupling strengths are made complex. Notably, much has been
known, either exactly or perturbatively, regarding the chiral
clock/Potts model [82,94–97]. We will leave it as a future
work to examine how these known results can shape our
understanding about the symmetric edge of the nondiagonal
states. Nevertheless, our discussion here suffices to emphasize
the distinction between the p < 4 case and the p � 4 case:
while a gapless edge is guaranteed by translation symmetry
(or self-duality) in the former case, it is not guaranteed in the
latter due to the possibility of having a first-order transition,
and moreover, depending on the value of q, sometimes the
only possibility is to have a gapped edge that spontaneously
breaks the symmetry.

V. SUMMARY AND OUTLOOK

In this paper, we have proposed a family of Abelian frac-
tional quantum Hall states known as the nondiagonal states,
which happen at filling fraction ν = p/2q for bosonic elec-
trons and ν = p/(p + 2q) for fermionic electrons, with p and
q being a pair of relatively prime integers. These states are
constructed using a coupled-wire model, where a single wire
of Luttinger liquid is described by a nondiagonal circle CFT,
and interwire couplings are the pe-tunneling. The “nondiago-
nal” property dictates that a generic physical operator cannot
be written as a diagonal combination of chiral and antichiral
primary fields, which in turn strongly constrains the motion
of quasiparticles in the wire construction. We realize that, in
the presence of U (1) charge conservation and Z translation

symmetry of the wire model, the nondiagonal quantum Hall
state possesses a nontrivial symmetry-enriched topological
order. Without the translation symmetry, the nondiagonal state
is identical to a strongly clustered Laughlin state of charge-pe
particles, which has a U (1) charge sector and a boundary
characterized by the chiral Luttinger liquid. In the presence
of both charge and translation symmetries, the nondiagonal
state also possesses an additional neutral sector characterized
by the quantum double model D(Zp), which has a Zp topo-
logical order. Similar to Kitaev’s toric code [46,47] and Wen’s
plaquette model [48,49], the translation symmetry in the wire
model acts as the e-m anyonic symmetry of the Zp topological
order. As a result, a dislocation in the wire model, which is a
termination of a wire in the bulk, acts as a twist defect for
the anyonic symmetry. The nondiagonal states thus provide
an electronic quantum Hall setting for realizing and testing
out various ideas developed in the general theory of anyonic
symmetry [51–53]. An experimental arena for the realization
of nondiagonal states maybe found in twisted materials, where
an array of quasi-1D subsystems emerge with built-in transla-
tion symmetry [54].

We have also investigated in detail the edge structure of
nondiagonal states. For the edges perpendicular to the direc-
tion of wire, we have derived the corresponding low-energy
effective Hamiltonian, which is found to consist of a chiral
Luttinger liquid [for the U (1) charge sector] and a generalized
p-state quantum clock model [for the D(Zp) neutral sector].
Discrete translation in the bulk of wire model is associated
with the order-disorder duality of the clock model on the edge.
For p = 2 and p = 3, the self-dual clock model is at a gapless
critical transition, hence the nondiagonal states possess a pair
of edges that are completely gapless. This is referred to as the
symmetric edge, whose charge and neutral sectors are both
gapless, thus allowing a single electron to be tunneled into
it. In contrast, for the boundary parallel to the direction of
wire, only the charge sector remains gapless and thus only
allows a cluster of p electrons to be tunneled into it. Hence,
the nondiagonal state is anisotropic, possessing two distinct
pairs of edges, as a reflection of its symmetry enrichment. As a
potential experimental probe, we have predicted the tunneling
exponent for tunneling electrons from a Fermi liquid into
the symmetric edge. As for p � 4, the self-dual generalized
clock model on the symmetric edge acquires a richer phase
diagram, which allows the neutral sector to be gapped even in
the presence of symmetry. This is because the symmetric edge
could be at a first-order transition, thus gapped by spontaneous
symmetry breaking. It is of intellectual interest (and hopefully
of practical interest in the future) to numerically study the
phase diagram of the self-dual generalized p-clock model in
greater detail, as previous studies have instead focused on the
conventional clock model. We would save this for future work.

An important future direction for us to pursue is to better
characterize the nondiagonal states with the translation sym-
metry, equivalently the anyonic symmetry, gauged. According
to the general theory of anyonic symmetry, the gauging of
anyonic symmetry in an Abelian topological phase would
give rise to a non-Abelian phase [51–53]. In the coupled-wire
construction, such a gauging process concretely corresponds
to the melting of the wire model, because a dislocation (as
a termination of wire) has been shown to correspond to a
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twist defect (i.e., gauge flux of anyonic symmetry). Therefore,
by melting the wire model of the nondiagonal anisotropic
quantum Hall state, an isotropic non-Abelian quantum Hall
state can be realized. We hope to develop a comprehensive
theory to characterize such a state in the future.

Note added: The constrained motion of π -flux in the weak
topological superconductor (discussed here in Secs. II D 2 and
III B 3) is also studied recently by Rao and Sodemann [98].
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APPENDIX: CONSTRUCTING THE FERMIONIC STATES

In the main text we have explicitly constructed the nondi-
agonal quantum Hall states for a bosonic system. There we
discussed the scattering pattern of quasiparticles in the wire
model and the symmetry-enriched D(Zp) neutral sector that is
implied. In fact, the same kind of physical phenomena appear
for fermionic systems, with the electrons faithfully treated as
fermions. We have alluded to this fact and also addressed the
fermionic nondiagonal states in the main text, and here we
supplement with more technical details.

To account for the fermionic nature of electrons, a Jordan-
Wigner string is attached to the electron operator [its bosonic
version is in Eq. (2.2)] to ensure anticommutation [57,58]:

ψR/L, j ∝ e±i(πρ̄x+θ j )eiϕ j . (A1)

To construct nondiagonal states in the coupled wire model, we
adopt the same interwire tunneling term as depicted in Fig. 1.
More precisely, we consider the following interaction on link

 = j + 1/2:

V (p,q)

 = (

ψ
†
L, j+1ψR, je

−ibx
)p

ρ
q
j+1ρ

q
j + H.c.

= ei(2πρ̄p+4πρ̄q−pb)xei�
 + H.c., (A2)

with the link variable now defined as

�
 = p(ϕ j − ϕ j+1) + (p + 2q)(θ j + θ j+1). (A3)

As in the bosonic case, here we focus only on a coprime pair
of integers p and q. Canceling the spatial oscillatory factor
in Eq. (A2) to guarantee momentum conservation, we obtain
the filling fraction for the fermionic quantum Hall states under
construction:

ν = p

p + 2q
. (A4)

The states with p = 1 are the familiar Laughlin states, which
form the diagonal series of Abelian quantum Hall states. As
we show next, the p > 1 states have interesting pattern of
quasiparticle scattering that resembles the one for bosonic
nondiagonal quantum Hall states, and will thus be known as
fermionic nondiagonal states. There is also a nontrivial Zp

topological order in their neutral sector.

The coupled wire construction proceeds in much the same
way as presented in Sec. II A, which gives rise to a quantum
Hall phase, with a gapped bulk where the link variables �
 are
condensed at values that are integer multiples of 2π , and with
a pair of gapless chiral edges now described by a circle CFT
at radius R = √

p/(p + 2q). Here we note that the decoupled
chiral bosonic modes in a single wire, originally defined for
a bosonic system according to Eq. (2.7), are now modified to
account for the Jordan-Wigner string of the electron:

φR
j = pϕ j + (p + 2q)θ j, (A5a)

φL
j = pϕ j − (p + 2q)θ j, (A5b)

and their commutation relations become[
∂xφ

r̃
j (x), φ r̃′

j′ (x
′)
] = 2iπ p(p + 2q)r̃δr̃r̃′δ j j′δ(x − x′), (A6)

where r̃, r̃′ = R/L = +1/ − 1. Up to this point, it should
be clear that many changes from the bosonic case to the
fermionic case can be accounted for by simply taking 2q 	→
p + 2q. Quasiparticle excitations in the wire model again cor-
respond to 2π -kinks in the link variables �
. Analogous to
Eq. (2.30), the annihilation operator for the minimal quasipar-
ticle is expressed as

�
R/L
e/(p+2q),
 = e

i
p(p+2q) φ

R/L
j/ j+1 , (A7)

where the charge of the minimal quasiparticle in the fermionic
phase is e/(p + 2q). A charge-pe excitation can be created/
annihilated by the physical operator eiφR/L

and is thus treated
as the trivial quasiparticle that is identified with the vacuum.
Hence there are N = p(p + 2q) distinct Abelian excitations
within each link.

Notice that, unlike in the bosonic case, here we have to
carefully distinguish the term “local” from the term “physi-
cal.” Since our system is made up of electrons, we would refer
to an operator that can be expressed as a product of electronic
operators as “physical,” which are allowed to appear in the
Hamiltonian. Since the fermionic electron is strictly speaking
nonlocal, local operators form only a subset of physical op-
erators, which do not change the fermion parity. For certain
nondiagonal fermionic states, the fermion-parity symmetry
can replace the role of charge conservation in constraining the
motion of quasiparticles. This particular distinction between
bosonic and fermionic states is discussed in Sec. III B.

A generic physical scattering operator (in the above sense)
can be expressed as

O{r,s}
j = ei[rϕ j−(r+2s)θ j ] (A8)

with r, s ∈ Z. To interpret its effect of scattering quasiparti-
cles, we make a change of variables to the chiral bosonic fields
and obtain

O{r,s}
j = exp

i

p(p + 2q)

[
(qr − ps)φR

j + (qr + ps + pr)φL
j

]
.

(A9)
This is telling us that O(r,s)

j would scatter a quasiparticle
of charge e(qr − ps)/(p + 2q) residing on link j + 1/2 to
another quasiparticle of charge −e(qr + ps + pr)/(p + 2q)
residing on link j − 1/2. For the particular cases with (r, s) =
±(p, q),±(−p, p + q), the operator is either creating or an-
nihilating a trivial quasiparticle of charge pe. For systematic
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analysis of quasiparticle scattering, we can organize the op-
erators onto a lattice, similar to the bosonic case in Fig. 3.
The difference is that the points corresponding to physical
operators are now ordered in a checker-board pattern, because
of the additional Jordan-Wigner string eirθ in Eq. (A8). Two
representative scenarios for the fermionic case are demon-
strated in Fig. 4.

It is again important to distinguish the scattering operators
that are charged (with r �= 0) from those that are charge-
neutral (with r = 0). Quasiparticles that are scattered by the
charge-neutral operators are the only quasiparticles that can
be scattered across a single wire under the constraint of lo-
cality and charge conservation. From Eq. (A9), it is clear
that these quasiparticles carry charge of integral multiples of
pe/(p + 2q). For states with p = 1, these are all the
quasiparticles. For states with p > 1, there exist nontrivial
quasiparticles, including the minimal quasiparticle of charge

e/(p + 2q), that cannot be scattered across only a single wire.
Instead, they have to hop across two wires at a time through
the following local operator which preserves charge:

O{−r,r+s}
j−1 O{r,s}

j ∝ exp i

[
(qr − ps)

p(p + 2q)

(
φR

j − φL
j−1

)]
. (A10)

Since p and q are assumed to be relatively prime, the Bé-
zout’s lemma guarantees the existence of integral solutions
(r, s) such that qr − ps = 1. Hence the minimal quasiparticle
in a nondiagonal state, though cannot be scattered across a
single wire, can indeed be scattered across two at a time. This
defining feature of nondiagonal quantum Hall states in the
coupled wire model would distinguish quasiparticles on the
even links from those on the odd links, and eventually reveal
a hidden Zp toric code in the neutral sector.
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