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Understanding the ferromagnetic-insulator phase in manganites through a localized band model
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Understanding the coexistence of ferromagnetism and insulating behavior in manganites is an unsolved prob-
lem. We propose a localized band model involving effective intermediate-range electron-electron (electron-hole)
repulsion (attraction) generated by cooperative electron-phonon interaction. A double-exchange mechanism,
involving holes virtually hopping to nearest neighbors and back, produces magnetic polarons in an antiferro-
magnetic environment; when these magnetic polarons coalesce and percolate the system, we get a ferromagnetic
insulator. Ferromagnetism gets more pronounced when the concentration of holes (doping) increases or when
the ratio of hopping to polaronic-energy dominates over the ratio of superexchange-coupling to hopping.
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I. INTRODUCTION

Perovskite oxides, such as manganites, display a variety
of orbital, charge, and spin orders when the parent oxide is
doped. While significant progress has been made in charac-
terizing most of the phenomena in bulk-doped materials, the
understanding pertaining to ferromagnetic insulator (FMI) is
still elusive. FMIs, inherently rare, are vital for many new
magnetic devices, such as dissipationless quantum-spintronic
devices, magnetic tunnel junctions, and solid-state quantum
computers [1]. The doped alloy 7;_,D,MnO;3 (where T refers
to trivalent rare-earth elements such as La, Pr, Nd, etc., and D
refers to divalent alkaline elements Sr, Ca, etc.) is an antiferro-
magnet when x > 0.5 with the nature of the antiferromagnet
(i.e., A-, C-, CE-, or G-type antiferromagnet) depending on
the compound and the dopant value x [2—4]. Contrastingly, for
x < 0.5, T1—D,MnOs is an intriguing ferromagnetic insulator
(FMI) at smaller values of x (i.e., 0.1 < x < 0.2) [5-7] and
is a ferromagnetic metal at higher dopings in the mangan-
ite systems La;_,Sr,MnOj3, La;_,Ca,MnOs;, Pr;_,Sr,MnO3,
and Nd;_,Sr,MnOs.

For modeling the diverse orderings and for exploiting the
functionality in these transition-metal oxides, one needs effec-
tive Hamiltonians for various types of interactions. Although
the importance of strong electron-phonon interaction (EPI)
has been pointed out much earlier [8] and significant progress
has been made some time ago in numerically treating electron-
phonon interaction in sizable systems [9], the treatment of
cooperative EPI (involving quantum phonons) was accom-
plished analytically only more recently in two dimensions
(2D) [10]. It has been demonstrated analytically in Ref. [10]
that introducing cooperative effects, when EPI is strong, pro-
duces nearest-neighbor (NN), next-nearest-neighbor (NNN),
and next-to-next-nearest-neighbor (NNNN) interactions. Fur-
thermore, incorporating spin-spin interactions along with
cooperative strong EPI is still an unsolved analytic problem.

As regards experiments pertaining to ferromagnetic-
insulating regions, while some suggested microscopically
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homogeneous electronic properties [11-13], others speculate
that coexistence of ferromagnetic metallic phases and anti-
ferromagnetic insulating phases leads to an inhomogeneous
ferromagnetic insulating state [14,15].

We will now argue, without considering any specific
model, that ferromagnetic-insulating phases are possible at
low doping in manganites by presenting below general the-
oretical points based on the essential features of manganites.

(1) Kinetic energy (KE) is quite small at low doping be-
cause bare hopping is small (caused by lower tolerance factor
[16], cation disorder, compatibility of distortions [17]) and
the electron-phonon coupling is strong. The electrons are ren-
dered essentially immobile and site localized due to spatial
disorder.

(2) Potential energy (from repulsive interactions, due to
cooperative EPI, that are intermediate range, i.e., NN, NNN,
NNNN, etc.) is much larger than KE. The ground state is
classical and the state of the system can be expressed by
a single state in the occupation number basis with number
density at each site either 1 or 0.

The fact that electrons are essentially site localized also
follows from the treatment in Ref. [18]; then, only a localized
polaronic band is relevant and the upper wide band cannot
overlap with the lower narrow polaronic band.

Furthermore, a simple type of phase-separated state with
ferromagnetic droplets (each containing one carrier) in an an-
tiferromagnetic matrix was shown to be possible in Ref. [19].
The mobility of these magnetic polarons is low and they are
easily localized by disorder and Coulomb interactions.

Thus, the potential energy determines the charge and spin
order.

(3) Because of cooperative strong EPI, a NN
electron-hole pair has a strong ferromagnetic interaction
[t>cos’(8/2)/(2E;r) with Ejr being the cooperative
Jahn-Teller energy, ¢ the hopping term between the NN
sites, and 6 the angle between the NN core spins]. Hence, a
robust ferromagnetic cluster is produced in the vicinity of a
hole.
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(4) Our model for magnetic interaction applies to man-
ganites with low density of localized holes. In regions away
from the holes, the cooperative EPI retains essentially the
same orbital texture as in the undoped manganite. As a result,
in regions without holes, the magnetic interaction is A-AFM
just as in the undoped manganite. As regards the regions with
holes, since the holes are site localized, the holes only virtu-
ally hop to a NN site and back and thus produce ferromagnetic
coupling between nearest neighbors. This ferromagnetic cou-
pling, between NN electron-hole pair, is much stronger than
the A-AFM coupling.

(5) Presence of site-localized holes produces FMI clusters
due to formation of magnetic polarons. A hole will polarize
NN electrons (and realistically speaking, NNN and NNNN
electrons as well) through virtual hopping, thereby produc-
ing a magnetic polaron. A collection of interacting magnetic
polarons will produce a FMI region. It is interesting to note
that FMI regions are present at moderate doping in mangan-
ites that are narrow band (Pr,_,Ca,MnOQO3), intermediate band
(La;_,Ca,MnOQO3), and wide band (La;_,Sr,MnO3).

The rest of the paper is organized as follows. In Sec. II,
invoking cooperative electron-phonon-interaction physics, we
obtain the effective Hamiltonian that is employed to under-
stand the FMI phase in manganites. Next, in Sec. III, we
outline our calculation procedure involving the Monte Carlo
technique. We use this procedure to simulate charge and spin
configurations and obtain the magnetization as a function of
various parameters. Then, in Sec. IV, we discuss our results
obtained for systems with different hoppings at various tem-
peratures and dopings. Lastly, in Sec. V, we conclude and
offer some perspectives.

II. EFFECTIVE HAMILTONIAN

In this section, we focus on the analytical treatment of the
effective Hamiltonian which will be used for numerical sim-
ulation. We are working with a 2D version of the perovskite
manganite system which has Mn-O-Mn bonds along the x and
y directions. We have e, electrons (or holes) interacting with
the oxygen atoms. We have restricted our analysis to a system
of fermions interacting with the oxygens in the xy plane via
cooperative breathing mode and with the out-of-plane (z di-
rection) oxygens through noncooperative breathing mode as
depicted in Fig. 1.

Apart from the itinerant e, electrons, we also have a
localized core-spin background with spin § = % at each site.
Thus, the Hamiltonian of such a system has five contribu-
tions: the kinetic energy of the fermions, the fermion-lattice
coupling energy, the lattice energy, the spin-spin interaction
energy, and the fermion-disorder interaction energy:

H = Hxg + Hiny + Hia + Hsg + Has. (D

Here,
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FIG. 1. Schematic diagram for a 2D cooperative breathing mode
(CBM) system. Hopping sites for holes are represented by blue solid
circles, in-plane oxygen atoms (participating in the CBM) by black
empty circles, and noncooperative out-of-plane oxygen atoms by
solid black circles.

and d; ; (d T ;) represents the annihilation (creation) operator
for the fermion at site (7, j); ¢ is the hopping amplitude for
the fermion; the hopping process is modified by 6, the angle
between two localized S = % spins at NN sites [20,21]. The
second term represents the interaction between the fermions
and the quantum phonons in the system and is expressed as
(10]

Hip = —gayg Z{(aTx;i,j + ax; )i j — Ny ;)
ij

+ By + by )i j — 1 1)
+ (et + e ni it 3)

where y = +/2, g is the electron-phonon coupling constant,

wy is the optical-phonon frequency, and n; ; = dI ;jdi.j- The

displacement of the oxygen atom that is adjacent to the site

(@' i j+aci ;)
V2mawy

). In the z direction, the relative displacement

(i, j) in the positive x (y) direction is given by
((b w]+b),,)
of the two oxygen atoms next to site (i, j) is denoted by

Foode . .
(CT\/JFTO/;) with m/2 being the reduced mass of the oxygen

pair. Next, the lattice energy due to quantum harmonic oscil-
lators is given by

Hlat = Z(afx;i,jax;i,j + bTy;i,jby;i,j + nCTz;i,jCZ;i,j)v (4)
i,j
with 7 being set to be 1. The form of Hy,; and Hjy¢ corresponds

to treating cooperative breathing mode in two dimensions
and considering quantum phonons. Including cooperative
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Jahn-Teller effect (by considering quantum phonons) and ex-
tending it to three dimensions will significantly add to the
difficulty of an analytic treatment without altering the essen-
tial physics and results. The last term in the Hamiltonian H
represents the interaction with disorder and is expressed as

Hgo =) Vi jnij, (5)
iJ

where V; ; is the potential due to spatial disorder.

Now, to arrive at an effective Hamiltonian which can
be expressed solely in terms of fermionic operators, we
take resort to an analytic approach similar to that described
in Ref. [10]. This approach involves a duality transforma-
tion which converts a difficult strong-coupling problem to a
tractable weak-coupling one. For large electron-phonon cou-
pling, the above Hamiltonian H is subject to a canonical
transformation (i.e., modified Lang-Firsov transformation) to
produce an unperturbed part Hy and the perturbation term H;.
To obtain an effective Hamiltonian, we perform second-order
perturbation theory (as in Refs. [10,22]) and obtain

He = —E, E nij+2V, § (R, jnig,j + nijni jy1)

iJ iJ

0 ity
—(Ep+V,)/ i jiitl,j i
+ e I E |:cos (T)d’“ ;i

iJj

O; ji.j
+ cos < ’J’2~J+1 >dl~1+1d,,j + H.c.i|

+H? + Hgg + Z Vi, jtij» (6)
i,j

where the polaronic energy E, = (4 + y?)g’wy = 6g°wp and
the nearest-neighbor repulsion energy V, = g*wy; the second-
order perturbation theory yields the term H®. The small

2

parameter of the perturbation theory is N[Z(Ejr—v)wo] as
pTVp

derived in Ref. [23]. Now, the effective hopping term
te”EtVollo « wy and V; ; < E,. For large g, the effective
hopping term will be very small compared to the other terms
in Her — Hsg. Hence, we ignore the kinetic energy of the
system and treat the system as made up of carriers that are
localized due to weak spatial disorder. Then, we are justified
in treating the problem entirely classically with physics being
governed by the dominant potential energy terms in the effec-
tive Hamiltonian.

t2
@ _ _
! (E, +2V,) 4=

Then, we can rewrite Eq. (6) as

Her =2V, Z(”i,jni+l,j +n; jni 1) + H® + Hsg. (7)
ij
This formalism omits a constant energy term —E, Z N
in the effective Hamiltonian because it does not change the
physics of the problem. The convention we will use through-
out the paper is that n; ; will represent number density of
a hole at the lattice site (7, j) of the system. To calculate
H®, we go through an algebra similar to that mentioned in
Appendix A of Ref. [10] and arrive at a nearest-neighbor
repulsion term corresponding to the process where a particle
in 2D virtually hops to its NN and comes back. When a hole
at site (7, j) hops to its NN site, such as (i + 1, j), and comes
back, we need to keep track of the occupancy of the three rel-
evant nearest-neighbor sites of the intermediate site (i + 1, j),
i.e., the occupancy of the three sites (i + 2, j), i + 1, j + 1),
and (i + 1, j — 1). Depending on how many of these three
sites are filled, the coefficient for the hopping-and-returning
process will be modified.
Clearly, there are four such possibilities for the coefficients
and they will be considered below.

A. Three NN sites of the intermediate site are filled by electrons

In Fig. 2, when the intermediate site containing an electron
is surrounded by a hole and three electrons, we depict the hole
at site (i, j) hopping to its NN site (the intermediate site) and
returning back. The intermediate site can be any of the four
NNs of the originating site (i, j). A schematic view of the
four possibilities is shown in Fig. 2.

When a hole is at (i, j), its energy is equal to —E,. The
oxygen atoms on both the sides of the initial site are attracted
by the hole on the initial site and hence are pulled towards the
hole. When the hole virtually hops to the intermediate site,
its energy is equal to £}, + 2V, because the oxygen distortions
remain unchanged; in the energy of the intermediate state, £,
arises due to the distortion without the hole whereas the extra
energy 2V, (equal in magnitude to the NN repulsion energy
between two holes) results due to displacing the oxygen atoms
towards the initial site and away from the hole. Hence, change
in the energy when the hole jumps from the originating site
to the intermediate site is equal to 2E, + 2V,,. Thus, the co-
efficient of the second-order perturbation term turns out to be
ﬁ and the contribution to H® from all the possibilities
corresponding to Fig. 2 is given by

O; jiit+1,)
3 [cos2 (”’T“’>{ni,j<1 — nip1 (1= ni2 (1 = nign ) (= nigr o)}

+ cos? ( LIl {ni j(1 —ni—y ;) )A —ni—o )1 —n—y )1 —ni—1 1)}

—n; ;-1

+COSZ< ik l){ni,j(l

- ni,j—Z)(l

—niqj— 1)1 = nyyj-1)}

+ cos’ < LT ) (n n (1 —n )1 —n; )1 —n g j)(1 — ni+l,j+l)}:|' (®
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FIG. 2. Schematic diagram for the four possibilities of a hole, at an originating site (i, j), hopping to its NN site (the intermediate site) and
coming back (when three NN sites of the intermediate site are occupied by electrons): (a) hole at (i, j) hops to its right NN at (i + 1, j) and
comes back; (b) hole at (7, j) jumps to its left NN at (i — 1, j) and returns back; (c) hole at (i, j) jumps to its downward NN at (i, j — 1) and
comes back; (d) hole at (i, j) hops to its upper NN at (i, j 4+ 1) and returns. A hole is represented by a blue solid circle and a particle (i.e.,
electron) by a blue empty circle. All lattice sites that are not relevant to the consideration are represented by black solid circles.

B. Any two of NN sites of the intermediate site is filled

In Fig. 3, we depict the three possibilities corresponding to a hole at a site (i, j) hopping to its NN site (the intermediate site)
and returning; here, any two of the NN sites of the intermediate site are occupied by electrons. Henceforth, we will show all
the counterpart processes of Fig. 2(a) (considering these as representative diagrams) for various possibilities. Similar processes,
which will not be shown here, also occur for Figs. 2(b), 2(c), and 2(d).

When the hole virtually hops to the intermediate site, its energy is equal to E, 4+ 4V),; here, an extra repulsion of 2V, is
generated due to the occupancy of any one of the NN sites of the intermediate site by a hole. Then, the coefficient of the

¢ * * o ¢ ¢ ’ ®
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FIG. 3. Schematic diagram for a hole at an originating site (i, j) hopping to its NN site (the intermediate site) and returning back (when any
two of the NN sites of the intermediate site are occupied by electrons). Representation of a hole at (i, j) jumping to its right NN at (i 4 1, j)
and coming back when holes occupy (a) right and downward NN of the intermediate site; (b) right and upward NNs of the intermediate site;
(c) upward and downward NNs of the intermediate site. A hole is depicted by a blue solid circle and a particle by a blue empty circle. All
lattice sites that are not relevant to the consideration are represented by black solid circles.
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FIG. 4. Schematic diagram for a hole at an originating site (i, j) hopping to its NN site (the intermediate site) and coming back (when any
one of the NN sites of the intermediate site is occupied by an electron). Depiction of a hole at (7, j) jumping to its right NN at (i + 1, j) and
coming back when a particle occupies (a) downward NN of the intermediate site; (b) right NN of the intermediate site; (c) upward NN of the
intermediate site. A hole is represented by a blue solid circle whereas a particle by a blue empty circle. All lattice sites that are not relevant to
the consideration are indicated by black solid circles.

second-order perturbation term is and the contribution to H® from all the possibilities, similar to and corresponding to

t2
2E,+4V,
Fig. 3, is given by
2

" (QE, +4V,) 2

iJj

cos? O, juiv1,j
2
+n; (1 —nip1 ) )1 —np0 i jpi (L —npy j—1) + 0y (1 — ngq )1 — ng0 ) ) — ngq )R j—1}
0 i1
2 i, jii—1,j
+cos” | —=
(%

+n (1 —ni A = iy jer (L —mimg jo1) + i (1= )1 =m0 )1 — mi—y jp)niog,j—1)

Hz(z) = >{ni,j(l — N1, )i, j (1 — Ry ) — 1y j—1)

>{ni,j(1 —ni—p, i, (1 —ni_y jp)(1 —ni—y j—1)

2 (Oijii-1
+ cos (T){ni,j(l —ni - jo(1 —niy j- ) —nipy 1)

+ (1 —n ) —ng j_omimg jo1 (1 —nigeq j—1) + i j (1 —n i) =0 j2)(1 — ni—g j—)nigr, j—1)
0 ..
2 i, j3i,j+1
=+ cos (—2

+n; (1 —n jp 1)L —n; jo)niq jpi (1 — ngpg jp1) + 0 (1 — g j) (L —ng j0)(1 — ni—l,j+1)”i+1,j+l}:|- 9

>{”i,j(1 — i jr0 j2 (1 —mi_y jp) (1 — nigq 1)

C. Any one of NN sites of the intermediate site has an electron
In Fig. 4, three possibilities have been shown for the process where a hole jumps to an intermediate site and comes back;
here, any one of the NNs of the intermediate site is filled by an electron. Extending the logic given above to the present case, the
coefficient of the second-order perturbation term is and the contribution to H® from all the possibilities, similar to and
corresponding to Fig. 4, is given by

[2
2E,+6V,

2
@ _ _ t
3 (2E, + 6V,) Z

ij

0 v
2 i,j5i4+1,j
|:COS <—2 {nij(1 — nipy iz jniv 1 (1 — nigyj-1)

+n (1 — i1 ) — i i jriniej—1 + m (1= ni i (1 — ni )R j-1}
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FIG. 5. Schematic diagram for a hole at an originating site (i, j) hopping to its NN site (the intermediate site) and coming back (when
all the other three NN sites of the intermediate site are occupied by electrons). Representation of a hole at (i, j) jumping to its right NN at
(i + 1, j) and coming back. A hole is represented by a blue solid circle and a particle by a blue empty circle. All lattice sites irrelevant to the
analysis are represented by black solid circles.

Oi ji-1,j
+ cos? (%){ni,j(l — Ry, i, i1, 1 (1 —mi_y j—1)

(1 —ni— ) =m0 iy jeihimt, j—1 + i j(1—ni_y i (1 — ni_y jp)ni—1,j—1}

2

+n; (1 —n )1 —n; jo)ni_q j—inipr,j—1 +ni (L —n; j_)n jo(1 — ni_q j_1)nigr j—1}

6 i i1
2 [ Oijiij
+cos (— {n; j(1 —n; j—n; joni—y j—1(1 — nipy,j—1)

0 ..
2 i, jsi, j+1
+ cos (—2 {ni ;1 —ny jr0n; jro(1 — miy jr1)nir, j+1

+n (1 —n jo)( = ng jo)niq i jrr + mj (1 =m0 jponio (1 — ni+l,j+1)}:|~ (10)

D. All the NN sites of the intermediate site have holes

Here, for the situation where all the NN sites of the intermediate site have holes, we depict in Fig. 5 a hole hopping to an
intermediate site and coming back. Here, the coefficient of the second-order perturbation term is MZW and the contribution to
P P

H® from all the possibilities, similar to and corresponding to Fig. 5, is given by

2
2) ! 2 ei,j;iJrl,j
B == (2E, +8V)) Z |:COS (T){”i,j(l — iy, )ig2, jRig 1, 411, j—1)

iJ

O iy i
2 L]t sJ
+ cos (T {ni j(L—mi_1 o jmi—1 jmio1, -1}

9 i
2 i,j5i,j—1
+ cos (—2 ){n,-,_,-(l — i jo 1N j—2Mi—y, j—1 M1, j—1}
2 ((Gijiijt . . AT 1 Ty 11
+ cos — {ni j (1 — i )i jpomiot, 1M1, 417 |- (1)

(

From the contributions H(>, H\>, H*, and H{” obtained ~ given by
above, we express H® as
Hsp = —Jy »_ cos(0))+J. » cos(@)).  (13)
H® =H? + H? + H + H. (12) (i (i)

Lastly, the superexchange [24] term Hgg generates A-AFM Here, we mention that the spins of the #,, electrons, being
spin-spin exchange in manganites such as LaMnO; and is S = %, can be treated as classical spin vectors. Furthermore,
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it is important to note that, while the range of charge-charge
interaction is as far as NNNN, the range of spin-spin inter-
action is only NN. The effective electron-electron interaction
is obtained from electron-phonon interaction by performing
perturbation theory and eliminating the phonon degrees of
freedom as shown in Appendix B of Ref. [10]. On the other
hand, the spin-spin interactions are due to double exchange
and superexchange; consequently, the range of the spin-spin
interactions is determined by the range of the nearest-neighbor
hopping. If cooperative effects are ignored, then V,, = 0 and,
similar to the range of the spin-spin interaction, we would
have the range of the charge-charge interaction to be nearest
neighbor only.

III. CALCULATION PROCEDURE

For a numerical study, we consider a 2D lattice with pe-
riodic boundary conditions in both directions. We treat the
problem fully classically using the effective Hamiltonian,
comprising of the effective electron-phonon interaction (the
charge-spin-coupled term) and the superexchange interaction
(the spin-spin interaction term), as given by Eq. (7). We use
classical Monte Carlo technique and make use of the stan-
dard Metropolis algorithm to update the charge configuration
as well as the spin configuration of the system. We follow
a two-step procedure to arrive at the final charge and spin
configurations.

First, to deal with problem of charge configurations that
correspond to local minima which are close in energy, we
resort to simulated annealing for the charge degrees of free-
dom only. The spin variables are kept frozen since the energy
scale for the charge interactions is much higher than the
energy scale for superexchange interactions. Since we are
working with low hole densities (i.e., between 0.1 and 0.3),
a large number of degenerate states will appear in the charge
spectrum. In order to obtain maximum number of such de-
generate configurations, we employ a three-step procedure
at each temperature of the simulated annealing process to
obtain the optimized charge configurations. The primary step
is a “single-particle-exchange” process where we choose any
two sites at a time, one sequentially and the other ran-
domly, and exchange their number-density values provided
they differ by 1. Physically, we exchange a particle at a
site with a hole at any other site. The secondary step is a
“general-two-particle-exchange” process where any two ran-
dom sites are selected with both being occupied by particles
and then their occupants are exchanged with another pair
of randomly chosen sites both containing holes. Thus, we
actually exchange two particles with two holes at a time.
The final step, a “plaquette-exchange” process, is a spe-
cial case of the “general-two-particle-exchange” mechanism.
Here, plaquettes are chosen sequentially; if the difference
in number densities between the two diagonal pairs is 2,
then the number densities of the diagonals are exchanged.
At a particular temperature, to arrive at the final lowest-
energy charge configuration at that temperature using Monte
Carlo technique, an initial random charge configuration (with
a fixed number of particles) first goes through 4 x 10°
steps of “single-particle-exchange”; then, an equal number
of steps involving “general-two-particle-exchange”; followed

by 30 times the system size number “plaquette-exchange”
steps.

Second, using the charge profile generated by the
three-step process, we now optimize spin variables by
taking an initial random spin configuration and updat-
ing through the Metropolis algorithm. The spins S, being
large in magnitude, are essentially classical spins with S; =
(sin 6; cos ¢;, sin 6; sin ¢;, cos 6;). While updating the spins,
we consider the full Hamiltonian H.¢ and consider both the
charge and spin interaction energies. The cos(9) and ¢ values
are binned to fix the orientation of the classical spin vector.
We have allowed equally spaced 40 values of cos(@) in the
interval (—1, 1) and 80 values of ¢ in the usual range of
(0, 27), thus totaling to 3200 different possibilities. A sweep
involves visiting all the lattice sites sequentially and updating
the spin orientation at each lattice site by the Metropolis
algorithm. The equilibrium number of sweeps required for
medium (higher) temperatures is around 15 x 10° (6 x 10),
while another 15 x 10° (6 x 10°) sweeps are required for the
thermal averaging of the total magnetization of the system.
It is to be noted that for low-hole concentrations, we have
many degenerate states. We calculate the magnetization for
typically 10 degenerate configurations. The degenerate states
are chosen based on the charge optimization process only,
fed to the full Hamiltonian H.¢ containing both charge and
spin variables, and then energy is optimized to obtain the
total magnetization of all such states. The magnetization/site
of the system, that has been plotted, is the magnetization/site
averaged over all the degenerate states for a particular filling
of holes when spins are normalized to unity.

We study the system for the bare hopping parameter val-
ues t = 0.2 and 0.3 eV. Our calculations take the polaronic
energy to be £, =0.43 eV and the nearest-neighbor repul-
sion energy to be V, = 0.07 eV. Thus, we are in the regime
of strong electron-phonon coupling characterized by (E, +
V,)/wo > 1 with the optical phonon frequency wy value being
given as 0.05 eV < wy < 0.1 eV. The superexchange energy
coefficient J, = 4.8 meV [25,26]; thus, the superexchange
energy is much smaller than the electron-hole pair ferromag-
netic interaction coupling [¢?/(2E,, + 2V,)]. Furthermore, the
ferromagnetic coupling Jy, = 1.4 x J,. Thus, the charge con-
figuration can be assumed to remain constant as the spins are
optimized. The total magnetization of the system is computed
at various temperatures, with the highest temperature being
T = 0.1t /kg (i.e., about 330 K for r = 0.3 eV). Henceforth,
kg will be set to unity for convenience. The lowest temper-
ature on the other hand is 7 = 0.001¢ (i.e., about 3 K for
t = 0.3 eV) which is much smaller than J;; thus, the system
can be assumed to be in its ground state at 7 = 0.001¢.

Here, we should comment that above 7 = 0.03¢, the
excited-state charge configurations also begin to contribute to
the magnetization. In the Appendix we present the quality of
the annealing, used to obtain optimized charge configurations
of the system, through analyzing the energetics, as a function
of temperature, in the Monte Carlo simulations.

IV. RESULTS AND DISCUSSION

We consider a 2D lattice of dimensions 6 x 12 (i.e., with
a total of 72 sites) with periodic boundary conditions in both

035140-7



SANJUKTA PAUL AND SUDHAKAR YARLAGADDA

PHYSICAL REVIEW B 103, 035140 (2021)

Different system sizes; t=0.3 eV; A-AFM|
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FIG. 6. Averaged per-site magnetization (m;) (of spins normal-
ized to unity) as a function of hole doping x for two different lattices
(6 x 12 and 12 x 12) and for a fixed T = 0.001z.

directions; the number of rows being /, = 6 and the number
of columns being [, = 12. Each site represents an Mn ion
consisting of an electron and a positive charge center. We
study the interplay between the electron-phonon interaction
and the magnetic interaction of the spins [see Eq. (7)]. As
stated earlier (in Sec. I), due to the the smallness of the kinetic
energy in comparison to the potential energy, the problem
is treated fully classically. Thus, the holes are site localized
and the system can be represented by a single state in the
occupation-number basis with the number density at each site
being either 1 or 0. Hence, for strong electron-phonon inter-
action, we have a fully insulating system resembling a charge
solid as shown in Fig. 7. Using the effective Hamiltonian in
Eq. (7), we can simulate different observables in the system.
We study the variation of the total magnetization of the system
as a function of hole doping in the pure manganite sample.

A. A-AFM background

The hopping value ¢ is varied to study the interplay be-
tween the electron-phonon interactions and the superexchange
interactions in the system. The hole doping x is varied as
0.1 < x < 0.3. The magnetic profile still resembles that of an
A-AFM system away from the holes; in the NN vicinity of
a hole, the spins get polarized in the direction of the spin of
the hole, thereby forming a magnetic polaron. For different
hopping cases, the temperature variation of the total magneti-
zation of the system is studied. We have also considered a 2D
lattice with system size 12 x 12 and carried out the magne-
tization measurements. It shows qualitatively similar results
as that of the 6 x 12 lattice as depicted in Fig. 6. However,
the 12 x 12 system requires a running time which is ~~5 times
that of the 6 x 12 case; also, the number of degenerate states
for the 12 x 12 system is much more. Thus, dealing with the
12 x 12 case is computationally expensive. So, we conclude
that 6 x 12 lattice can be considered to be representative for
the 12 x 12 lattice and will be used for investigating the
ferromagnet-insulator properties of the system.
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00000000000 000000000000
O00000000000 00000000000
(@ (b)
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000000000000 00000000000
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(oJeJoleloJelo)oJeloXo)e) (oJoJelelolololoJelo)o)e)
000000000000 000000000000
0000000000 00000000000
00000006000 (o)oJeJelolo)o)olele)o)e)
00000000 0O00 0000000000
Q0000OOOOO0OO 000000006000
(e) U]
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FIG. 7. Charge configurations in the ground state of a 6 x 12
lattice. An arbitrarily chosen degenerate ground state, involving 72
sites, for (a) 12 holes, (b) 14 holes, (c) 16 holes, (d) 18 holes, (e) 22
holes, (f) 24 holes (diagonal stripe order), (g) 32 holes, and (h) 36
holes.

At a very low-hole concentration ~0.1 (i.e., 8 particles on
a 72-site lattice), 8 holes get distributed among 12 columns
such that NN as well as NNN and NNNN interactions are
avoided. In most of the degenerate states, no two holes occupy
the same column. Hence, we have site-localized holes in the
system, polarizing their NN spins, giving rise to magnetic
polarons that remain disconnected in the lattice. Due to the
NN interaction Jy,, spins in a column try to align ferromag-
netically; whereas J; (= J,,/1.4) tends to order spins in a
row antiferromagnetically. Thus, the ferromagnetic polarons
and the ferromagnetic interaction in columns together give
rise to an effective low-magnetization value (with a sizable
fluctuation).

At each temperature, the value of magnetization is es-
sentially unchanged between hole densities 8/72 and 12/72
(~0.167); this is because up to the filling 12/72, holes can still
maintain to be noninteracting (on ignoring the superexchange)
as can be seen in Fig. 7(a).

At temperatures T < J, (= 0.016¢ for t = 0.3 eV and =
0.024¢ for r = 0.2 eV), antiferromagnetic coupling between
columns is effective and the system has low magnetization
at low concentrations (i.e., x < 12/72). On increasing the
temperature up to T = J;, the effect of J, diminishes while
the effect of ferromagnetic coupling Jy, = 1.4J; is more
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6 X 12 lattice; t=0.3 eV; A-AFM
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FIG. 8. Averaged per-site total magnetization (m;) (of spins nor-
malized to unity) as a function of the number of holes doped for
a 6 x 12 lattice and for various temperatures (expressed in units of
hopping parameter ¢). The background spin configuration is A-AFM
type and hopping r = 0.3 eV.

dominant; thus, magnetism in the system increases with in-
creasing temperature. For higher temperatures T > J,, and
again at low concentrations (i.e., x < 12/72), the effect of
the ferromagnetic coupling J,, also diminishes, and the mag-
netism decreases with increasing temperature.

1.t =0.3 eV case

As the concentration of holes increases, initially NNNN
interactions and later NNN interactions become relevant; the
NN interactions being the strongest are still avoided. Thus,
longer ferromagnetic chains are formed, thereby increasing
the total magnetization of the system. So by x = 14/72 ~
0.194 [see Fig. 7(b)], magnetization for lower temperatures
such as T = 0.001z starts rising sizably; the peak magneti-
zation value is now at a reduced temperature of 7 = 0.01¢
as shown in Fig. 8. By x = 18/72 = 0.25 [see Fig. 7(d)]
NNN interactions also appear, the different local magnetic
polarons start interacting with one another and hence form
larger magnetic polarons, and the peak magnetization tem-
perature reduces to 7 = 0.001¢; here, starting from 7' = 0.1z,
the magnetization increases with decreasing temperature. It
is to be noted that there occurs a narrow crossing region
(14/72 < x < 17/72) where magnetization curves for differ-
ent temperatures intersect. In the crossing regime, there is
a complex interplay of various competing effects: (1) align-
ing of different magnetic polarons due to dominance of J,,
over J;; (2) reduction of electron-hole spin interactions due
to appearance of NNNN and NNN interactions (of strength
ﬁiwp); (3) commencing of percolation effects of magnetic
polarons due to large hole concentrations; and (4) disordering
effects of the temperature. Atx = 18/72 (= 0.25), percolation
effect of magnetic polarons is largely dominant over antifer-
romagnetic interactions. At even higher hole concentrations,
this effect is even more pronounced; magnetization rises faster
with lowering of temperature. As can be seen from Fig. 8,
at lower temperatures and for x > 15/72, the magnetization

I#—FN=8
L AAN=12|
B8 N= 14
0.8 *—% N=15H
E—BN=16
t=03 N=17|
) o-eN-17
2 N=19
= 0.6 N=20
Xﬁ : N=22
\% 0.4
0.2F,
0 . 1 . 1 . 1 . | .
0 0.02 0.04 0.06 0.08 0.1

T (in units of't)

FIG. 9. Averaged per-site total magnetization (m;) (of spins nor-
malized to unity) as a function of temperature (expressed in units
of hopping parameter 7) for a 6 x 12 lattice and for various hole
densities. The background spin configuration is A-AFM type with
hopping t = 0.3 eV.

increases faster with increasing hole concentration. At 7' =
0.001¢, we get an almost fully ferromagnetic large cluster for
x =22/72 ~ 0.3 [see Fig. 7(e)], with averaged magnetization
values close to the maximum possible.

To have an idea about the onset of percolation, we plot
in Fig. 9 the magnetization of the system as a function
of temperature at fixed hole densities. It appears that the
lower-hole-density curves show a magnetization that at first
increases and then decreases as the temperature is reduced.
It is observed that there is a finite value of magnetization
(between 0.15 and 0.2) even at very low densities where holes
are noninteracting. A possible explanation for this is that even
when no superexchange interactions are considered and when
only very few holes are present, magnetization has been tested
to decrease as %ﬁ, where N is the total number of sites in

the system. Hence, for an A-AFM background, due to the
ferromagnetic interaction Jy,, the fall in magnetization with
increasing system size is much slower; however, the magne-
tization is expected to go to zero for large-sized systems. For
t =0.3 eV, around x > 16/72, percolation starts and this is
definitely more detectable from the curves depicting (m;)/site
versus T (see Fig. 9) rather than the plots with (m;) /site versus
number of holes (see Fig. 8). It is to be noted that the isolated
magnetic polarons (that are formed because holes polarize
nearest-neighbor particles) get connected to each other by
the ferromagnetic layers of the A-AFM and hence perco-
late. However, the localization length for the carriers (since
they are site localized) is always smaller than the size of the
magnetic polarons. Hence, electrical conduction is negligible.
For hole densities greater than the percolation threshold, at
lower temperatures, all curves show an upward rise in the
magnetization value; this clearly distinguishes them from the
lower-hole-density curves that show a downward trend which
for large systems should yield zero magnetization. It is to be
noted that forr = 0.3 eV, J;, > 0.02¢ and for T = 0.05¢, there
is a probability exp —0.02¢/0.05¢ (with kg = 1) that higher-
energy values are chosen based on the competition between
Jxy and T'. Thus, by T > 0.07¢, when the effects of J;, and J,
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6 X 12 lattice; t=0.2 eV; A-AFM
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FIG. 10. Averaged per-site total magnetization (m;) (of spins
normalized to unity) as a function of the number of holes doped for
a 6 x 12 lattice and for various temperatures (in units of hopping 7).
The background spin configuration is A-AFM and r = 0.2 eV.

are mostly gone, the system gradually stops percolating. This
conclusion is justified since the higher-hole-density curves
merge with the lower-density curves (that are essentially non-
interacting configurations of particles that do not percolate).

2.t =0.2¢eV case

For the t = 0.2 eV situation, the crossing region (i.e.,
13/72 < x < 19/72) is wider than it is for the t = 0.3 eV
case. The peak-magnetization temperature oscillates in the
crossing regime (see Fig. 10); furthermore, the curves cor-
responding to 7" < J; = 0.024¢ intersect more than once in
the crossing region. A plausible explanation for this can be
given as follows. The ratio of electron-hole spin interac-
tion and antiferromagnetic coupling [(#izv,,)ﬂz] is only 8;
when NNN and NNNN interactions are relevant, the ratio re-
duces to (ﬁ)/]z = 7. Thus, antiferromagnetic coupling
becomes more prominent than for the the + = 0.3 eV case
and frustration effects become relevant. It could be due to
frustration that, at lower temperatures (such as 7 = 0.001z),
the magnetization curve drops at the higher carrier concen-
tration x = 18/72 = 0.25. This also could be an indication of
the superspin glass phase claimed in experiments [27]; here,
“superspin” refers to a spin cluster (i.e., a large magnetic
polaron). At x > 20/72 (=~ 0.28), percolation effect of mag-
netic polarons dominates over antiferromagnetic interactions;
magnetization rises with lowering of temperature. Finally, for
the higher-hole concentration x =22/72 >~ 0.3 and at T =
0.001z, we get a reasonably high magnetization value of 0.85.

B. G-AFM background, ¢ = 0.3 eV case

To gain further insight, we study the interplay between the
strong ferromagnetic electron-hole interaction that polarizes
the NN spins of a hole and the superexchange NN antifer-
romagnetic interaction J,. The magnetic profile, away from
the holes, resembles that of a G-AFM system; the holes form
ferromagnetic polarons involving the hole spin and the NN

6 X 12 lattice; t=0.3 eV; G-AFM
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FIG. 11. Averaged per-site total magnetization (m;) (of spins
normalized to unity) as a function of the number of holes doped for a
6 x 12 lattice and for various fixed temperatures (in units of hopping
parameter ¢). The background spin configuration is G-AFM type with
t=03eV.

spins. At temperatures T < J, = 0.016¢ and hole fillings up
to x = 24/72, due to the effect of antiferromagnetic J, cou-
pling on all sides, the polarizations of the magnetic polarons
oppose each other, leading to a low magnetization as shown in
Fig. 11. For higher temperatures, due to the dominance of the
disordering effect of the temperature over the superexchange
interaction, there is a probability for the clusters to get less
misaligned. Hence, we notice an increase in the magnetiza-
tion for T > J,. For x =24/72 = 1/3, we have a diagonal
stripe order as depicted in Fig. 7(f); each column has two
holes. For this arrangement, diagonals containing holes are
ferromagnetic, but every such diagonal (with holes) is antifer-
romagnetically coupled to its neighboring diagonal. In each
column, half the spins are in one direction while the other
half are in the opposite direction, leading to a very small total
magnetization.

Here too, very similar to the case of + = 0.2 eV with
A-AFM background, there is a crossing region; the cross-
ing occurs in the region 24/72 < x < 32/72. In the crossing
regime, the peak-magnetization temperature oscillates and
the curves for T < Jz intersect thrice in the crossing region.
Since all the background spins interact antiferromagnetically
(which is in contrast to the A-AFM case), percolation of mag-
netic polarons dominates over antiferromagnetic interactions
at an even larger filling; around x > 32/72 = 0.44 [refer
Fig. 7(g)], magnetization increases with lowering of temper-
ature. It is to be noted that, for half-filling [see Fig. 7(h)],
we should expect a fully ferromagnetic spin profile with a
checkerboard charge structure [28].

C. Fully FM background,t = 0.3 eV

Lastly, to better appreciate subtleties pertaining to FMI,
we also study the case where the superexchange interaction
is fully ferromagnetic (FM) with coupling J, = 0.016¢ when
t = 0.3 eV. Here, while in the NN vicinity of a hole the
spins get strongly polarized, thereby forming a ferromagnetic
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FIG. 12. Averaged per-site total magnetization (m;) (of spins
normalized to unity) as a function of the number of holes doped
for a 6 x 12 lattice and for various fixed temperatures (in units of
hopping parameter ¢). The background spin configuration is fully FM
andt =0.3eV.

magnetic polaron, the magnetic profile is that of a weaker FM
system away from the holes. Hence, for temperatures much
smaller than J; (such as T = 0.001¢), we have an almost fully
ferromagnetic system as shown in Fig. 12. On increasing the
temperature, the spins get more misaligned and the magneti-
zation reduces. At lower fillings, as the temperature increases
to the value 0.03¢ (i.e., T =~ 2J;), the disordering effect is
large enough so that the magnetization drops considerably as
shown in Fig. 12. On the other hand, at higher fillings and
again at T = 0.03¢, percolation of magnetic polarons coun-
ters the disordering effect and generates higher magnetization
values. For still higher temperatures (such as T = 0.17), the
magnetic polarons tend to orient in random directions because
the superexchange coupling is ineffective, thereby reducing
the magnetization significantly. It is interesting to note that,
in all the three Figs. 8, 11, and 12 plotted at t = 0.3 eV, the
magnetization curves are similar for 7 = 0.1z because the
superexchange is ineffective and hence the nature of superex-
change coupling is irrelevant.

V. CONCLUSIONS AND PERSPECTIVES

We studied the nature of ferromagnetic insulator in the
experimentally relevant doping regime of 0.1 < x < 0.3 in
bulk manganites. The magnetic interaction considered here
applies to manganites with low density of localized holes.
In regions without holes, as in the undoped manganites, the
magnetic interaction is A-AFM; in a region with a hole, the
site-localized hole produces strong ferromagnetic coupling
between its spin and its NN electron spins. We find that near
the doping x = 0.3, the insulator is almost fully ferromag-
netic. Now, the critical doping at which the system becomes
fully ferromagnetic depends on the dimension; in 2D it is
expected to be around twice the value of the critical dop-
ing in three dimensions (3D) for the following reason. In a
conducting-site percolation problem, the critical concentra-

tion for conduction in a simple cubic lattice is 0.31 and in
a square lattice it is 0.59 (see Ref. [29]); hence, the critical
doping to produce a percolating cluster that is a checkerboard
charge-ordered region is 0.5 x 0.31 in 3D and at 0.5 x 0.59
in 2D see Ref. [30]).

It was experimentally observed that an FMI phase is
manifested in the wide-band manganite La;_,Sr,MnO; in
the doping region 0.1 < x < 0.18 [31], in the intermediate-
bandwidth La;_,Ca,MnOs3 in the doping range 0.1 < x <
0.225 [31,32], and in the narrow-bandwidth Pr;_,Ca,MnO;
in the region 0.1 < x < 0.3 [31]. The fact that the FMI re-
gion persists until a higher doping when bandwidth decreases
(and concomitantly electron-phonon coupling increases [16])
is consistent with the fact that the tendency to localize in-
creases as bandwidth decreases [18,19]. The hopping values
considered in this work are pertinent to wide-bandwidth
and intermediate-bandwidth manganites. While our one-band
model (involving site-localized holes) is relevant to under-
stand manganites in the FMI region, it is certainly not valid
to study the ferromagnet metallic (FMM) phase that occurs at
higher doping in manganites; to understand the FMM region,
we need to invoke a two-band model and analyze the effect of
disorder on localization.

The experimental managanite phase diagram reported in
Ref. [33] reveals increasing 7, values at higher dopings for the
FMI phase in La;_,Sr,MnO3. Based on this phase diagram,
for a fixed T < T.(x = 0.1), we expect the magnetization
to increase when the doping increases in the FMI region;
this is consistent with the curves in Fig. 8. Furthermore, in
Fig. 9, a constant magnetization line, such as that of (m;) /site
= 0.4, intersects the constant-hole density curves at larger T
values when hole dopings are larger. Thus, 7, increases with
increasing x. This supports the behavior of 7, in the exper-
imental phase diagrams depicted in Refs. [5,6]. The nature
of the phase transition, as can be inferred from Fig. 6, is a
second-order phase transition with no visible change in the
nature of the magnetic transition even for a larger system size;
this agrees with Ref. [13]. Now the nature of the transition is
expected to be the same whether temperature is varied (as in
Fig. 8) or density is varied (as in Fig. 6).

Next, comparing the t = 0.2 eV, A-AFM case with the t =
0.3 eV, G-AFM case, we conclude that the antiferromagnetic
coupling J, plays the important role of causing frustrations
in the system. We also point out the possible occurrence of
glassiness in the system to explain the multiple intersections
of the curves in the crossing regime at T < J, (see Figs. 10
and 11). Such a picture is supported by the observed superspin
glass phase in LaggyCag 1sMnO3 ferromagnetic insulator at
T <70 K [27]. Further theoretical analysis is required to
clearly identify and characterize a superspin glass phase at
lower temperatures.

Regarding the transport properties of the system, since we
work with a localized band of polarons, the mobility of the
polarons is due to activated transport (where electrons can
only hop to neighboring sites). The resistivity p is thus given
as (see Ref. [34])

4 M?
T ﬂa)o(l + W)exp[ — 2¢’ tanh <%):|, (14)
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where M is the magnetization, My is the saturation magneti-
zation, a is the lattice constant, g, is the electronic charge, n,
is the density of carriers, and 8 = —. Now, when an external
magnetic field is switched on, this fBurther aligns the spins and
hence resistivity of the system drops. This drop in resistivity
with the application of an external magnetic field can account
for the observed magnetoresistance behavior in the system
(see Ref. [13]).

We also would like to make a few observations regard-
ing inclusion of long-range Coulomb (Irc) interaction and
the bulk transition from a FMI to a ferromagnetic metal
(FMM). Inclusion of Irc interaction can be done in a two-band
model to account for inhomogeneities in doped manganites
(see Ref. [35]). Localized [/ states (with Jahn teller energy
Ejyr) and undistorted, extended b states (with zero site en-
ergy and hopping energy ¢) get acted upon by Irc interaction.
They produce, at low doping, distinct regions of unoccupied
b states; at intermediate doping, puddles of b states with [
polarons as background; finally, at higher doping, percolating
b states. However, for small values of doping x, because of
strong Hubbard U, the b states remain away from the po-
laronic [ states thereby reducing the effective bandwidth to
BWoitective = /X BW. Thus, for small x, primarily the region
of the ferromagnetic insulator (FMI) which we are focusing
on, the b bands are practically empty and the b-band bottom
is above the polaronic energy Ejr. Hence, this justifies the use
of a one-band model, which is the band of localized polarons
in our problem. The inclusion of the Irc interaction is thus not
relevant in this case since we want to study, as a function of
hole doping, the onset of FMI phase and the effect of temper-
ature on the magnetism of the system. It is also to be noted
that, though the transition from an insulator to a metal phase
has been explained in Refs. [18,35], a proper treatment of the
FMI phase is missing in these works. A detailed treatment of
the FMI phase is the primary highlight of our work. We point
out that extension of our work to two bands and considering
Irc interaction will likely elucidate the FMI-FMM transition;
however, this is both analytically and numerically challenging
and can be considered as a separate work.

We close by noting that there exist interesting
pictures pertaining to charge disproportion (where
on adjacent sites d*+d* — d*+d°> or MnO; +
Mnog_ — Mnog_ + MnOéo_) leading to formation of
electron-hole (EH) dimers; this then leads to an EH Bose
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FIG. 13. Averaged total energy per site, as a function of tem-
perature (in units of hopping parameter ¢) for two different hole
numbers for a 6 x 12 lattice, showing how annealing guides the
system to the lowest-energy state. Annealing-based optimized charge
configurations are obtained for hopping r = 0.3 eV.

liquid (see Ref. [36]). However, to have a reasonable theory
based on such a Bose liquid, a detailed numerical analysis
is needed to demonstrate emergence of a ferromagnetic
insulator phase at small doping.
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APPENDIX: QUALITY OF ANNEALING IN THE SYSTEM

Showing some of the energetics in the Monte Carlo sim-
ulations (as a function of temperature) will also help in
understanding the quality of annealing used to obtain opti-
mized charge configurations of the system. It is visible from
Fig. 13 that, as temperature is lowered, the system accesses
lower-energy states (avoiding possible local minima in the en-
ergy landscape); below T =~ 0.01¢, the averaged total energy
of the system saturates.
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