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Neural networks have been used as variational wave functions for quantum many-particle problems. It has
been shown that the correct sign structure is crucial to obtain highly-accurate ground state energies. In this
paper, we propose a hybrid wave function combining the convolutional neural network (CNN) and projected
entangled pair states (PEPS), in which the sign structures are determined by the PEPS, and the amplitudes of the
wave functions are provided by CNN. We benchmark the ansatz on the highly frustrated spin-1/2 J1-J2 model.
We show that the achieved ground energies are competitive with state-of-the-art results.
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I. INTRODUCTION

Neural network (NN)-based machine learning (ML) has
been applied to solve various physical problems [1,2], such
as experiment automation [3], quantum state classification
[4–8], emerging physics from neural networks [9], simula-
tion of quantum computation [10], accelerating Monte Carlo
calculations [11–13], accelerating density-functional-theory
calculations [14,15], representing quantum states [16–25],
and time evolution for open quantum systems [26–29].

Recently, neural networks have also been applied to solve
quantum many-particle problems, which is one of the most in-
teresting and challenging fields in condensed matter physics.
A variational ansatz, namely, a restricted Boltzmann machine
(RBM), has been demonstrated that can solve the nonfrus-
trated Heisenberg model to a high accuracy [25], that is
comparable with the state-of-the-art methods. It has been ar-
gued that RBM [16,18] and a convolutional neural network
(CNN) [30] can even represent quantum states beyond area
law entanglement, and therefore have great potential to solve
a large class of quantum many-particle problems.

Solving quantum frustrated models is an even more chal-
lenging problem for neural networks. Some of the authors
first attacked the highly frustrated spin-1/2 J1-J2 model on the
square lattice via CNNs [31]. They have obtained ground state
energies that are lower than the string-bond-states method
[32]. Later on, Choo et al. found that the ground energies
can be significantly improved by introducing a prior sign
structure before CNN and enforcing rotational symmetry [33].
However, in Ref. [33], the sign structures were artificially
assigned based on the Marshall-Peierls sign rule (MPSR) [34].
Westerhout et al. investigated the learning ability for the sign
structure and amplitudes of the wave functions of quantum
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frustrated systems, using supervised ML. It was concluded
that while CNNs have no problem in generating the ampli-
tudes of the wave function, the generation of a sign structure is
very challenging, especially for frustrated systems [35]. Since
the sign structure is a discontinued function with respect to
spin configurations, it is difficult to present the sign structure
and the amplitude of the wave function by a single NN. Szabó
et al. introduced a CNN structure for quantum many-particle
wave functions, in which the sign structure is represented by
a single-layer CNN, and the amplitudes of the wave function
are represented by a separate deep CNN [36].

On the other hand, the tensor network methods, e.g., the
projected entangled pair states (PEPS) method [37–41], has
achieved extremely high precision in solving the ground ener-
gies of quantum many-particle problems, especially for highly
frustrated systems [42–47]. In principle, the PEPS can present
any quantum state faithfully, provided the tensor bond dimen-
sion is large enough. However, the computational scaling is
extremely high to contract a PEPS, especially for a PEPS
with periodic boundary conditions (PBCs), which limits their
applications.

In this paper, we propose a hybrid PEPS and deep CNN
hybrid structure, which combines the two state-of-art tech-
niques, as a variational ansatz for the quantum many-particle
problems. For a given spin configuration, the corresponding
coefficient is the product of the sign (+ or −) provided
by PEPS (with a small bond dimension) and the magnitude
provided by CNN. We first show that the MPSR can be rig-
orously represented by the PEPS even with a virtual bond
dimension D = 1 on the square lattice. More complicated sign
rules should be able to be represented by PEPS with a larger
bond dimension. Another advantage of using PEPS to present
the sign structure is that the PEPS can be optimized via the
time-evolution method without sampling over the spin con-
figurations, which may bypass the spin generation problem
[35]. We benchmark the ansatz by calculating the spin-1/2
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FIG. 1. Illustration of the deep CNN, where K is the side length
of the convolution filter, and M1 and M2 are the output channels of
convolution and transposed convolution, respectively. (a) The shal-
low CNN in Ref. [31]. (b) The building blocks for the deep CNN
modified from the shallow CNN, in which the two-dimensional max-
pooling and transposed convolution are changed to one dimensional.
(c) The deep CNN is built by stacking the building block (b) for six
times. To maintain the dimension, the input of each block is padded
based on PBC. The input of the deep CNN is a spin configuration on
the |σ z

1 σ z
2 · · · σ z

N 〉 basis. The final output is denoted as WCNN(S), and
it is generated by taking the products of the output neurons in the last
block.

J1-J2 model on the square lattice. We show that the sign rule
provided by the PEPS can significantly improve the ground
state energies of the J1-J2 model, which are very competi-
tive with other state-of-the-art neural network wave functions.
The results show that the PEPS + CNN hybrid structure is a
very promising variational wave function for quantum many-
particle problems.

II. METHODS

A. Deep CNN architecture

The building block of the deep CNN is based on the
network used in a previous work [31], which is depicted
in Fig. 1(a). Each block consists of a convolution layer, a
maxpooling layer, and a transposed-convolution layer. In the
figure, K denotes the convolution filter size, and M1 and
M2 are the channel numbers of convolution and transposed-
convolution respectively. To reveal the details of the CNN
structure, we take a four-site spin chain as an example. We use
M1 = M2 = 1 and K = 3. The convolution layer performs the
following transformation,

⎡
⎢⎣

p1

p2

p3

p4

⎤
⎥⎦ = b +

⎡
⎢⎣

w1 w2 w3 0 0 0
0 w1 w2 w3 0 0
0 0 w1 w2 w3 0
0 0 0 w1 w2 w3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

s4

s1

s2

s3

s4

s1

⎤
⎥⎥⎥⎥⎥⎦

, (1)

where w are the weights of the filter, b is the bias vector,
and [s4, s1, s2, s3, s4, s1]ᵀ is the input spin configurations with
si = ±1. To maintain the dimension, each side of the input is
padded (K − 1)/2 sites according to PBC.

Then maxpooling is performed on the neurons,[
g1

g2

]
=

[
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]
. (2)

After the maxpooling, a transposed convolution is performed,
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to restore the original size of the lattice.
Each output channel after transposed convolution is a di-

rect summation of the neurons from each filter [31]:
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For a two-dimensional (2D) spin lattice, the filters are 2D
and the convolutions are performed in 2D. In the previous
literature [31], the maxpooling and transposed convolution is
chosen naturally as two dimensional, as shown in Fig. 1(a).
However, because two-dimensional maxpooling neglects too
many neurons, it reduces the representation ability when the
CNN is deep. To build a deep CNN structure, we modify the
two-dimensional maxpooling and transposed convolution to
one dimensional. The modified structure is shown in Fig. 1(b).
To fit the one-dimensional maxpooling, the output neurons of
each convolution filter is also flattened to one dimensional,
and the output neurons after transposed convolution are re-
shaped to maintain the dimension. Figure 1(b) is the building
block of our deep CNN. Each neuron after the transposed
convolution is a linear combination of the spin values

hi =
∑

k=1···N
Ai,kσ

z
k + ci, (5)

where Ai,k is the real coefficient of spin σ z
i in hi and ci is a real

number.
The deep CNN is built by stacking the building block six

times, as shown schematically in Fig. 1(c). The input of the
first block is 2D spin configurations on the basis of |S〉 =
|σ z

1σ z
2 · · · σ z

N 〉, and the value of each spin σi is ±1. To maintain
the dimension, each channel of the input of each building
block is padded (K − 1)/2 sites according to the PBC, which
is the same as the one-dimensional case. The output of the
deep CNN is the wave-function coefficient WCNN(S), which is
the product of the output neurons in the final block. The wave
function that the deep CNN represents is

|�CNN〉 =
∑

S

WCNN(S)|S〉, (6)

where |S〉 is the spin configuration. Because of the product of
the output neurons from the last building block, the deep CNN
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associates the spin configuration to the high order correlations
between the spins,

WCNN(S) =
∑

n1···nN

g(n1 · · · nN ; σ1 · · · σN )σ n1
1 · · · σ nN

N , (7)

where the order number Ñ = n1 + n2 + · · · + nN � N and
the coefficient g is given by the deep CNN. Because of the
maxpooling, g also depends on the spin configurations [31].

The deep CNN structure used in this work has several im-
portant differences compared to the deep CNN structure used
in Refs. [33,36]. First, the nonlinearity in our deep CNN is
induced by the maxpooling, whereas in Refs. [33,36], the ac-
tivation functions are used. The maxpooling picks up the most
important degree of freedom in a convolution filter, which
is similar to the coarse-grained process in a renormalization
group theory [48].

Another important difference is that, traditionally, the out-
put wave functions are taken as the exponential function of
the NN [16–18,22,25], whereas in our construction, the wave
function WCNN(S) is generated by taking the products of the
neurons from the last building block [31]. In our deep CNN,
WCNN(S) can be either positive or negative, which is crucial to
represent the ground states of frustrated systems, using only
real network parameters.

As discussed in Ref. [31], the representability of the CNN
structure relies on whether it can capture the long-range spin
correlations (or entanglement). For the shallow CNN shown
in Figs. 1(a) and 1(b), the first convolution layer is vital to
capture the long-range correlation, therefore the CNN filter
should be as large as the lattice size or the correlation length
[31]. However, in the deep CNN, the spins in different filters
of front layers can be entangled via maxpooling and convo-
lution in the deeper neural networks, therefore it can capture
the long-range spin correlations efficiently with much smaller
filters. This is similar to the renormalization process in the nu-
merical renormalization group method [49]. The information
is reused by stacking the building blocks, which can enhance
the representation ability [30]. In our investigations, we fix
the deep CNN structure as depicted in Fig. 1(c), where there
are 3531 real parameters. This is compared to the shallow
CNN used in our previous work [31], where M1 = 128 and
K = 9 filters were used, leading to 11 009 real parameters.
Obviously, the deep CNN has much fewer parameters.

When using a (deep) CNN to represent the quantum many-
particle wave functions, the wave functions consist of a sign
structure and amplitudes. In many ML cases, especially for
regression problems, the output is usually continuously dis-
tributed with respect to the continuous input. However, this
may not be true for a quantum system. Taking the J1-J2 model
as an example. It is known that when J2 = 0, the ground
state exactly obeys the MPSR, and that the sign of the wave
function is (−1)MA where MA is the magnetization of the
equivalent sublattice A. MPSR is a discontinuous function
with respect to flipping spin configurations. Therefore, the
sign rule is quite difficult to be presented by a single CNN
[35] which must keep the amplitude smooth at the same
time [36]. It has been demonstrated in Ref. [33] that an ex-
plicit preconditioning to the CNN wave function by a MPSR
can significantly improve the ground state energies compared

(a)

D

(b)

A

FIG. 2. (a) The illustration of a PEPS on a 4 × 6 lattice. The
circles stand for a rank-five tensor on the lattice sites, which are
connected by virtual bonds of dimension D. (b) The rank-five tensor
A(l, r, u, v, s) on each site has four virtual bonds, l , r, u, and v, and
one physical index s.

to those without the preconditioning, for the J1-J2 model.
However, the sign rule is added ad hoc by hand in Ref. [33].
Later on, Szabó et al. introduced a separate single-layer CNN
to represent the sign structure, which is optimized with fixed
amplitudes. They obtained an accurate MPSR for both J2 = 0
and J2 = 0.5J1 [36].

B. PEPS-CNN hybrid structure

We propose a hybrid PEPS and CNN structure as a vari-
ational wave-function ansatz for the quantum many-particle
problem. Considering a 2D square lattice with N = Lx × Ly

sites, and d-dimensional local Hilbert space (for a spin-1/2
system, d = 2), denoted as |sm〉 on the site m = (i, j), the
PEPS wave function of this system, which is schematically
shown in Fig. 2(a), can be written as [39]

|�PEPS〉 =
∑

S

WPEPS(S)|S〉, (8)

where

WPEPS(S) = Tr
(
As1

1 As2
2 · · · AsN

N

)
, (9)

and Asm
m = Am(l, r, u, v, sm) is a rank-five tensor located on

site m as shown in Fig. 2(b). The physical index sm takes
a value from 1 to d and four virtual indices l, r, u, v, which
correspond to four nearest neighbors. The dimension of each
virtual bond is D, and the “Tr” denotes the contraction over
all the virtual indices of the tensor network.

One way to construct the PEPS-CNN hybrid structure is
to take the direct products of the PEPS wave functions to the
CNN wave functions. Here, we propose an alternative PEPS-
CNN hybrid structure as follows,

W (S) = sgn[WPEPS(S)] · WCNN(S), (10)

i.e., we take the sign of the PEPS wave function and multiply
it to the CNN wave function. We first show that the PEPS
can rigorously represent the MPSR on the square lattice even
with a virtual bond dimension D = 1. For both Néel order
and stripe order, MPSR requires a spin flip on the sublattice,
changing the wave function’s sign. For D = 1, the PEPS on
each site (i, j) only has two elements (a, b), one for spin up
and one for spin down. For the Néel order, we take a = 1
for all sites and b = (−1)i+ j . For the stripe order, we take
a = 1 for all sites and b = (−1) j . One can easily prove that
these PEPSs satisfy MPSR, which have also been checked
numerically. One may expect that more complicated sign rules
should be able to be presented by PEPS with larger D.
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TABLE I. Comparison between the ground energies of the spin-
1/2 J1-J2 model on a 10 × 10 square lattice, achieved by different
CNN structures. “S. CNN” and “D. CNN” denote the shallow CNN
and deep CNN, respectively.

S. CNN PEPS+S. CNN PEPS+D. CNN

J2 = 0 −0.668236 −0.670718 −0.671330
J2 = 0.5 −0.482986 −0.492335 −0.495502

The ground state many-particle wave functions respect the
symmetry of the Hamiltonian. We could therefore also enforce
the rotational symmetry to the wave function [50],

W̃ (S) =
3∑

i=0

W (T̂ iS), (11)

and T̂ is the rotation operator that rotates the spin configura-
tion for 90◦.

III. RESULTS AND DISCUSSION

We benchmark the hybrid PEPS-CNN wave functions for
the spin-1/2 J1-J2 model. The Hamiltonian of the model reads

Ĥ = J1

∑
〈i, j〉

si · s j + J2

∑
〈〈i, j〉〉

si · s j, (12)

where 〈i, j〉 and 〈〈i, j〉〉 indicate the nearest- and next-nearest-
neighboring spin pairs. The model is calculated on a L × L
square lattice with PBC. We set J1 = 1 and L = 10 throughout
the investigations and on two cases: J2 = 0 and J2 = 0.5.
When J2 = 0.5, the frustration is very strong and the ground
state is inferred as the quantum spin liquid [51–53], therefore
solving the ground state is challenging.

We first give the results of the shallow CNN used in the
literature [31] without a prior sign structure but with enforcing
rotational symmetry, for J2 = 0 and J2 = 0.5. The convolution
filter numbers M1 = 128 and M2 = 1, and the side length of
the filter K = 9, are used. The number of variational param-
eters of this NN is 11 009. The network is optimized by the
stochastic reconfiguration (SR) method [54]. We obtain the
energy per site −0.668 236 for J2 = 0 and −0.482 986 for
J2 = 0.5, which are listed in Table I.

We then benchmark the shallow CNN multiplied by a prior
sign structure provided by PEPS. We reduce the number of fil-
ters for the CNN structure to M1 = 90 and M2 = 1 with filter
size K = 9. The total variational parameters of this structure
are reduced to 7741 for the CNN. Since the computational
scaling of a PEPS of PBC is very high, we use a PEPS with an
open boundary condition, despite the physical system having
a PBC. The PEPS bond dimension is taken to be D = 1, which
allows the PEPS to be efficiently contracted.

To obtain the sign structure, we first optimize the PEPS
wave function alone (without CNN) for J2 = 0 using the
imaginary time-evolution method with the so-called simple
update scheme [39]. We exam the signs of the wave function
on massive random spin configurations, and find that the sign
rule provided by PEPS is consistent with MPSR. After we
obtain the PEPS for the sign structure, the CNN wave function
is then optimized with the SR method, by fixing the PEPS

FIG. 3. The optimization of the energy with respect to SR epochs
for the PEPS + deep CNN, in the case of (a) J2 = 0 and (b) J2 = 0.5.
The relative error is defined as |(E − Ebest )/Ebest|, where Ebest are
given in Table II. The SR is first done without enforcing rotational
symmetry, and after energy converges, we enforce rotational sym-
metry on the wave functions, which yields to a sharp decrease of
the relative error. The sample number for each SR step is 16 000
without rotational symmetry and 100 000 with rotational symmetry.
The energy expectation is averaged over the last ten SR steps, which
is denoted by the solid black line.

sign rules as a precondition factor. For J2 = 0, the ground
state energy is calculated to be E = −0.670 718, which is
significantly better than that without the precondition.

We find that if we use the PEPS optimized by simple update
(SU) under J2 = 0.5 for the sign rule, even with a bond di-
mension as large as D = 4, the energy converges very slowly
when further optimizing the CNN. Since it has been shown
in Refs. [33,36] that the MPSR is also a good precondition
factor for J2 = 0.5, we use the PEPS sign rule obtained from
J2 = 0 for the J2 = 0.5 case. The converged energy per site
is −0.492 335 for J2 = 0.5, also significantly better than that
without the precondition.

We now benchmark the PEPS and deep CNN hybrid wave
function for the J1-J2 model. We use the same PEPS sign rule
as used for the above shallow CNN. The energy convergence
with respect to SR steps is depicted in Fig. 3. We start with
random parameters for the deep CNN and the wave func-
tions are optimized under fixed PEPS. We first optimize the
network without enforcing rotational symmetry. For J2 = 0,
the energy converges quickly with respect to the SR steps as
shown in Fig. 3(a). After 170 steps, the energy converges to
−0.670 697. We then enforce the rotational symmetry, and the
energy further reduces to −0.671 330.

The CNN is much more difficult to optimize in the case of
J2 = 0.5. As shown in Fig. 3(b), it takes about 2880 SR epochs
to converge without enforcing the rotational symmetry, and
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TABLE II. Comparison between the ground energies of the spin-1/2 J1-J2 model on a 10 × 10 square lattice, achieved by this work
(PEPS+deep CNN) and other NN-based wave-function methods in the literature. The GWF+RBM stands for the RBM-enhanced Gutzwiller
projected fermionic wave functions, whereas CNN1 and CNN2 are two convolutional NNs taken from Refs. [33,36], respectively.

GWF+RBM [21] CNN1 [33] CNN2 [36] Best [55,56] This work

J2 = 0 −0.67111 −0.67135 −0.671275 −0.671549 −0.671330
J2 = 0.5 −0.49575 −0.49516 −0.494757 −0.49755 −0.495502

the energy per site is −0.493 587. By enforcing the rotational
symmetry, the energy further reduces to −0.495 502.

We compare the energies obtained by several state-of-
the-art NN methods in Table II. The GWF + RBM wave
function [21] is constructed as the product of a Gutzwiller-
projected fermionic state and a complex-valued RBM. CNN1
and CNN2 are the two convolutional networks presented in
Refs. [33,36], respectively.

The ground state energy for the nonfrustrated model, i.e.,
J2 = 0 can be obtained to very high accuracy by the stochastic
series expansion method [55]. The best ground state energy
in the literature for J2 = 0.5 is obtained by a Gutzwiller-
projected fermionic wave function improved by the Lanczos
iterations [56].

For J2 = 0, our energy is only about 2 × 10−4 higher than
the best result. Compared to other NN-based variational wave-
function methods, our result is only about 2 × 10−5 higher
than the one given by CNN1 [33], but are better than GWF +
RBM and CNN2.

For J2 = 0.5, GWF + RBM gives the best results among
the NN methods, but is still about 1.8 × 10−4 higher than the
best result in the literature [56]. Our energy is about 2.5 ×
10−4 higher than the GWF + RBM method, but is lower than
the other two CNN methods.

The CNN1 [33] has 3838 complex numbers, and a total of
7676 variational parameters, much more than the 3531 param-
eters used in our deep CNN. Since the sign structures used
in the works are almost identical, our results suggested that
the maxpooling is an efficient way to capture the long-range
entanglement, and the product of neurons is an efficient way
to generate the signs of the wave functions.

We also evaluate the antiferromagetic order parameter

S2(q) = 1

N (N + 2)

∑
i, j

〈si · s j〉eiq·(ri−r j ), (13)

where q = (π, π ) and q = (π, 0) correspond to the struc-
ture factor of Néel order and stripe order, respectively. The
spin correlations 〈si · s j〉 are calculated using 106 samples.
For J2 = 0, we have S2(π, π ) = 0.156 65 and S2(π, 0) =
0.004 96, whereas for J2 = 0.5 we have S2(π, π ) = 0.058 80
and S2(π, 0) = 0.006 33. These results are consistent with
those given in Refs. [33,36].

In Fig. 4, we compare the spin correlation functions ob-
tained by different CNN structures, in the case of J2 = 0.5,

C(r) = 1

2L2

∑
i, j

(〈si, j · si+r, j〉 + 〈si, j · si, j+r〉) . (14)

The results show that the correlation functions obey a power-
lay decay. We fit C(r) as C(r) = αr−γ + c0, and we plot the

correlation functions G(r) = αr−γ , i.e., the constants have
been subtracted. We obtain γ = 2.30, 2.09, and 2.08 for
the shallow CNN, PEPS + shallow CNN, and PEPS + deep
CNN, respectively. We see that the correlation function with-
out the PEPS sign structure decays much faster than those
with the sign structures, which may cause the errors in the
ground state energy.

We remark that this is only a proof-of-principles work
where the PEPS sign structures are fixed beforehand, and
therefore the ground state energies we obtain are in principle
only the upper bound of the energies that can be achieved by
this ansatz. A further optimization of the PEPS sign structure
along with the optimization of CNN is necessary, especially
for the models whose sign rule cannot be reached beforehand.
However, because the sign function is a jump function, it
makes the optimization of the sign structure very challenging.
We leave this problem for future investigations.

IV. SUMMARY

We proposed a variational ansatz for quantum many-
particle wave functions which combines two state-of-the-art
techniques, i.e., PEPS and deep CNN. In this ansatz, CNN
represents the wave-function amplitudes, whereas PEPS pro-
vides the sharp changing sign structures which are difficult to
be presented by the deep CNN structure. We test this ansatz on
the two-dimensional spin-1/2 J1-J2 model. We demonstrate
that even a PEPS of small bond dimension can present the
sign rule very well, and the hybrid structure can achieve a
very accurate ground state energy that is competitive with
the results of other state-of-the-art neural networks. The fur-
ther optimization of the PEPS sign structure along with the

FIG. 4. Correlation function G(r) with respect to distance r for
different CNN wave functions, in the case of J2 = 0.5.
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optimization of CNN is a promising routine to improve the
results and to solve more general models.
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