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Dynamical correlation enhanced orbital magnetization in VI3
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The effect of electronic correlations on the orbital magnetization in real materials has not been explored
beyond a static mean-field level. Based on the dynamical mean-field theory, the effect of electronic correlations
on the orbital magnetization in layered ferromagnet VI3 has been studied. A comparison drawn with the
results obtained from density-functional theory calculations robustly establishes the crucial role of dynamical
correlations in this case. In contrast to the density-functional theory that leads to negligible orbital magnetization
in VI3, in dynamical mean-field approach the orbital magnetization is greatly enhanced. Further analysis shows
that this enhancement is mainly due to the enhanced local circulations of electrons, which can be attributed to a
better description of the localization behavior of correlated electrons in VI3. The conclusion drawn in our paper
could be applicable to a wide range of layered materials in this class.
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I. INTRODUCTION

Although in most of the materials electronic spin magneti-
zation dominates their magnetic behaviors, in a few unusual
magnetic materials orbital magnetization can be significant
and even dominant [1–5]. Although its implications on the
fascinating properties of a broader range of materials [6–10] is
self-motivating, yet much of the attention has been paid to its
spin counterpart. In contrast to atomic and molecular species
where only local electronic circulation is possible, the orbital
magnetization of a crystalline material comes from intracellu-
lar and intercellular circulations [11–16]. Often concomitant
to magnetism is the most intricate issue of strong correlation
effect, which usually incurs dramatic changes in the electronic
structure. This begets a natural question whether and in what
manner electronic correlation will affect the orbital magneti-
zation in crystalline materials.

This interesting problem has been approached with various
theoretical frameworks in previous studies, however, associ-
ated with them are their natural shortcomings. For example, in
density-functional theory (DFT) with Hubbard U correction,
correlation effects were included only at the static mean-field
level [17]. Studies on the related issue of exciton g-factor
renormalization based on GW approximation [18–20], which
although accounts for many-body effects at the perturbative
level, only the simple formalism of orbital magnetic moments
for noninteracting case was used. Although the modern theory
of orbital magnetization has been generalized to interacting
systems and applied to model systems [21–24], its applicabil-
ity when dealing with real materials is yet to be established.
Thus, a more generic approach to this problem would be to
apply the formalism for the interacting case on a real material
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with proper treatment of electronic correlations beyond static
mean-field level.

The stabilization of long-range magnetic order in layered
magnetic materials, despite the celebrated Mermin-Wagner
theorem [25], is due to the strong magnetic anisotropy through
spin-orbit coupling, a direct consequence of the unquenched
orbital moments of magnetic ions. A large number of lay-
ered materials contains transition-metal elements which are
themselves magnetic in nature and exhibit strong electronic
correlation. On top of that, the highly anisotropic nature of
chemical bonding with strong in-plane and weaker interlayer
cohesion, leads to reduction of electronic dimensionality.
This, in turn, leads to reduced screening of the Coulomb
interaction, hence, stronger electronic correlation. Thus, the
question raised above becomes highly relevant to this class
of materials. A unique advantage of these materials is that the
individual layers can be removed and transferred to the desired
substrate [26], yielding a quasi-two-dimensional monolayer.

Two-dimensional magnetism with long-range magnetic or-
der has just been established in monolayer materials, such as
Cr2Ge2Te6 and CrI3 [27–29]. In both of these Cr compounds,
crystal-field splitted lower-lying t2g orbitals are fully filled
with three electrons in the majority spin channel, leaving less
room for the unquenched orbital moment. This observation
makes a material with less than fully filled t2g orbitals all
the more interesting. Recently reported VI3, which is also
suggested to be a layered van der Waals magnetic mate-
rial, satisfies this precondition. It is found to display more
complicated magnetic behavior compared to CrI3 [30–33].
In particular, VI3 is also suggested to be a Mott insulator
and exhibits larger saturated magnetization along the c axis
than in the in-plane direction. More specifically, Tian et al.
[30], reported a saturated magnetic moment of 2.47 μB/V
along the c axis, slightly larger than the expected value from
spin polarization, indicating an unquenched orbital magnetic
moment. Past study on YVO3 employing the Hartree-Fock ap-
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proach also reported small but nonzero orbital magnetization
[17]. Based on the above considerations, VI3 seems to be a
good platform to explore the effect of electronic correlation
on orbital magnetization.

In this paper, we study the effect of dynamical correla-
tions on the magnetic properties of VI3. To this end, we
use a combination of DFT + U [34,35] and self-consistent
DFT + dynamical mean-field theory [36] in our paper. Here-
after, we will refer to the latter method simply as DMFT.
We find that compared to the static mean-field results from
DFT + U method, the dynamical correlations involved in
the self-consistent DMFT framework enhance the orbital
magnetization in VI3 in both states, the high-temperature
paramagnetic as well as the low-temperature ferromagnetic
state. We find that dynamical correlation also stabilizes the
orbital magnetization in the monolayer limit. This is a demon-
stration of the role of dynamical correlation in the orbital
magnetization in real magnetic materials.

II. METHODS

For bulk calculations, the experimental lattice parameters
are adopted [30,32]. For lattice relaxation of monolayer VI3,
we use the DFT as implemented in the Vienna ab init io sim-
ulation package [37,38]. The energy convergence criterion is
10−5 eV, and the interatomic force convergence for structure
optimizations is 0.01 eV/Å. The DFT and DFT + U elec-
tronic structure calculations are based on the full-potential
linearized augmented plane-wave method as implemented
in the WIEN2K package [34,35]. In DFT + U calculations,
the Hubbard U correction is added through an effective
Ueff = U − J = 4 eV [39]. The value of Ueff is chosen by
matching the computed gaps (0.67 and 0.64 eV for R3̄
and P3̄1c, respectively) to the experimentally observed op-
tical band gap at room temperature (0.60 and 0.67 eV for
R3̄ [31] and P3̄1c [32], respectively). The local dynamical
correlation of d electrons is accounted for in the charge
self-consistent DMFT calculations [36]. The spin-orbit cou-
pling was included in both DFT + U and DMFT calculations.
In all DFT calculations, including the DFT steps in the
charge self-consistent DMFT and the DFT + U calculations,
an exchange-correlation functional within the generalized-
gradient approximation is used [38].

In DMFT calculations, the Coulomb interaction matrix
are parametrized by the Slater integrals with the Coulomb
repulsion interaction parameter U = 6.0 eV and Hund’s ex-
change interaction parameter JH = 1.0 eV for the calculations
in the main text, respectively. The values of U and JH used
in DMFT is determined by matching the computed spec-
tral gap at 290 K to experimentally observed optical band
gap at room temperature [31,32]. The self-energy double
counting is subtracted via the nominal scheme [40], i.e.,
�dc = U (n0

3d − 1/2) − JH/2(n0
3d − 1). For V3+, we take the

nominal occupancy n0
3d = 2.0. The hybridization expansion

continuous-time quantum impurity solver is employed to
solve the Anderson impurity models [41,42].

The k grids of 6 × 6 × 2, 5 × 3 × 5, 6 × 6 × 2, 6 × 3 ×
3, and 7 × 7 × 1 are adopted in all self-consistent calcula-
tions for bulk R3̄, C2/m, P3̄1c, C2/c, and monolayer VI3,
respectively. For orbital magnetization calculations denser k

FIG. 1. Crystal structures of (a) monolayer, and (b) bulk R3̄. The
local Cartesian coordinates for the octahedral coordination x′ − y′ −
z′ are indicated with red arrows.

grids are employed for the Brillouin-zone samplings (20 ×
20 × 1 for bulk R3̄, P3̄1c, and monolayer, 16 × 8 × 16 for
bulk C2/m, 20 × 10 × 1 for bulk C2/c).

III. RESULTS AND DISCUSSION

VI3 has been found to crystallize in different polymorphs
owing to different layer stacking with the space groups
R3̄, P3̄1c, C2/m, and C2/c [30–33]. The structural phase
transitions in VI3, albeit interesting, are very subtle. A sum-
mary of experimentally reported crystal structures at low and
room temperatures can be found in Appendix A. For sim-
plicity, we will focus exclusively on the R3̄ structure for the
discussion here for subtle stacking difference is not expected
to impact the orbital magnetization in any way significantly.
Within each layer, V atoms form a honeycomb lattice, and
each V is caged by six I−’s that form edge-sharing octahe-
dra as shown in Fig. 1 (a). In the R3̄ structure, a hexagonal
primitive cell contains three monolayers, and the vanadium
honeycomb lattices display a rhombohedral stacking along
crystallographic c direction as shown in Fig. 1(b).

Recent experiments show that the bulk VI3 exhibits an op-
tical band gap of 0.6–0.7 eV [31,32], in contrast to a metallic
band structure from a DFT electronic structure calculation as
shown in Fig. 5 in Appendix B. By including the static corre-
lation described by Hubbard U (i.e., DFT + U ), the calculated
band structures recover the insulating nature for reasonable U
values (see Fig. 5 in Appendix B), indicating that VI3 is indeed
Mott insulating. We choose a value of Ueff = U − J = 4 eV
by matching the computed band gaps (0.67 and 0.64 eV for
R3̄ and P3̄1c, respectively) to experimentally observed optical
band gaps at room temperature (0.60 and 0.67 eV for R3̄
[31] and P3̄1c [32], respectively). From the projected band
structure and density of states for R3̄ shown in Figs. 2(a)
and 2(b), it can be seen that both t2g and eg orbitals at V
atoms hybridize with p states of iodines. This hybridization
is significantly enhanced when compared to the result without
U and magnetism as shown in Fig. 2(c). It will shortly be seen
that this enhanced mixing may lead to overestimation of the
extended contribution to the orbital magnetization.
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FIG. 2. (a) Projected band structure and (b) density of states of
bulk R3̄ using DFT + U . (c) Projected density of states of bulk R3̄
without U and magnetism.

As DFT + U calculations only capture the static part of
electronic correlation, the self-consistent DMFT method is
employed to examine the effects of the dynamical correlation
[36]. The starting point of a DMFT calculation is a nonmag-
netic DFT calculation without U , which shows a significant
crystal-field splitting between t2g and eg of 2 eV [see Fig. 2(c)].
Since the crystal-field splitting is larger than the bandwidths
of both t2g and eg sets, Hubbard U is added only to the t2g set in
DMFT calculations. We find that inclusion of eg orbitals into
our correlated subspace does not change our main conclusions
concerning the orbital magnetizations (see Appendix D). To
obtain the spin- and momentum-resolved spectral functions in
DMFT calculations, we have performed an analytical contin-
uation of self-energies using the maximum-entropy method
[36]. Figures 3(a) and 3(c) are momentum-resolved spectral
functions for high-temperature (290 K) paramagnetic and
low-temperature (29 K) ferromagnetic phases, respectively. In
contrast to the DFT + U result, due to the dramatical renor-
malization from electronic correlation, the spectral weight
of t2g becomes highly smeared out along the energy axis,
although the Mott gap is clearly visible in both ferro- and
paramagnetic regimes.

Experimentally, VI3 is a ferromagnet with out-of-plane
magnetic moments (i.e., along the z direction) and Curie
temperature of Tc ∼ 50 K [30–33]. Our DMFT calculations
can reproduce both the low-temperature ferromagnetic and
the high-temperature paramagnetic phases. As seen in the
spin-resolved density of states shown in Fig. 3(e), the two spin
projections of the t2g orbitals are equally populated at 290 K,
leading to the paramagnetic phase. At 29 K, the spin-up com-
ponent dominates, and the system develops a ferromagnetic

FIG. 3. (a) and (c) are momentum-resolved spectral functions for
bulk VI3 in the R3̄ space group using the DMFT method at 290 and
29 K, respectively. (b) and (d) are corresponding projected density of
states. (e) Spin-resolved density of states.

order. In the low-temperature ferromagnetic phase, there is
a quasiparticle peak around the chemical potential as shown
in Figs. 3(d) and 3(e). This dynamical singlet, attributable to
Kondo resonance, is insensitive to the parameters used in the
analytical continuation but is quickly obliterated by thermal
fluctuations as the temperature rises. In the ferromagnetic
phase, the local spin moment on each V atom obtained from
DMFT and DFT + U is 1.88 and 2.00μB, respectively, which
is close to the expected S = 1 state. We will examine next the
orbital magnetization at both DFT + U and DMFT levels.

In the DFT + U static mean-field approximation, the or-
bital magnetizations can be efficiently calculated using the
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noninteracting formula in the low-temperature limit,

M(k) = − ie

2h̄

∑
n

fnk

〈
∂unk

∂k

∣∣∣∣ × (Hk + εnk − 2μ)

∣∣∣∣∂unk

∂k

〉
, (1)

where unk is the cell-periodic part of the Bloch function of the
nth band at crystal momentum k, εnk is the band dispersion,
and μ is the chemical potential. Brillouin-zone summation of
M(k) then yields the total orbital magnetic moment. We use
the perturbation formula to evaluate |∂unk/∂k〉,∣∣∣∣∂unk

∂k

〉
=

∑
m �=n

|umk〉〈umk|∂Hk/∂k|unk〉
εnk − εmk

. (2)

The velocity matrix elements 〈umk|∂Hk/∂k|unk〉 are obtained
using the linear optics module as implemented in the WIEN2K

package [34,35,43]. A large number of unoccupied bands
(up to ∼10 eV above the Fermi level) are included to ensure
the convergence of obtained orbital magnetization. The value
of the orbital magnetization for the bulk R3̄ phase is about
0.02μB per V, accounting for about 1% of the spin moment.
The orbital magnetic moment of monolayer VI3 is computed
to be essentially zero within this approach.

To further incorporate dynamical correlation in the self-
consistent DMFT level, the generalized formula for orbital
magnetization expressed in terms of interacting Green’s func-
tions is used [21]

Mc(k) = ie

2h̄β

∑
ωn

εabc tr

{[
H0 − μ + �

2

]
Gva(k)Gvb(k)G

}
,

(3)

where a, b, and c refer to the Cartesian axes x, y, z, ωn =
(2n + 1)π/β, G(k, iωn), and �(iωn) are Matsubara fre-
quencies, interacting Green’s functions, and self-energies,
respectively. va(k) = −∂ka G−1 is the velocity operator. In the
above formula, a term involving the derivative of self-energy
against magnetic-field B has been dropped as the DMFT
self-energy cannot depend on B linearly [21]. For � = 0 this
formula will reduce to the noninteracting case given in Eq. (1),
which can be confirmed by both explicit derivation and nu-
merical calculation. The Matsubara summation is converged
with |n| � 600 for 290 K and |n| � 2000 for 29 K.

Remarkably, in the DMFT calculations the computed or-
bital magnetizations are greatly enhanced compared with the
DFT + U results as listed in Table I. The DMFT method gives
consistent values of Mz for all bulk structures and a mono-
layer. This is reasonable in the sense that the local octahedral
crystal fields imposed on V atoms are nearly identical in these
structures. It should be pointed out that Eq. (3) is derived with-
out considering the entropic contribution and only suitable for

TABLE I. Calculated orbital magnetization along the z direction
for bulk R3̄, P3̄1c, C2/m, C2/c, and monolayer VI3 using different
methods and temperatures as indicated in each case. Units: μB/V.

R3̄ P3̄1c C2/m C2/c monolayer

DFT + U 0.021 0.026 0.003 0.020 0.001
DMFT (290 K) 0.079 0.084 0.079 0.081 0.084
DMFT (29 K) 0.080 0.085 0.079 0.085 0.085

FIG. 4. (a) and (b) are the calculated orbital magnetization dis-
tributions in the Brillouin zone (on the kz = 0 plane) for bulk R3̄
using DFT + U and DMFT (29 K), respectively. (c) and (d) are the
calculated orbital angular momentum distributions in the Brillouin
zone (at the kz = 0 plane) for bulk R3̄ using DFT + U and DMFT
(29 K), respectively.

low temperatures [14]. Although, the values of U and JH in
our DMFT calculations are chosen by matching the computed
spectral gap at 290 K to the experimental optical gap at room
temperature [31,32], more calculations show that the calcu-
lated orbital magnetizations are similar within a reasonable
range of U and JH values (see Table II in Appendix E).

In order to further analyze how the dynamical correlation
influences orbital magnetization, we plot the orbital magneti-
zation Mz(k) across the Brillouin zone from both DFT + U
and DMFT calculations for the R3̄ structure as shown in
Figs. 4(a) and 4(b). It is obvious that the distributions of
orbital magnetization in the Brillouin zone are quite different
for these two methods. In the DFT + U method, the main
contribution to orbital magnetization comes from the Brillouin
zone center, whereas the orbital magnetization accumulates
mainly along the Brillouin-zone boundaries for the DMFT
result. The distribution of Mz(k) from DFT + U is more local-
ized compared to the DMFT result, which means the orbital
magnetization in real space should be more extended in the
DFT + U result. This difference can be partially attributed to
the enhanced d-p mixing in the DFT + U electronic struc-
tures as mentioned earlier. Another source of the difference
is the dramatical renormalization of the electronic structures
through the DMFT self-energy as shown in the spectral func-
tions above [Figs. 3(a) and 3(c)]. The overall effects lead to
an over fourfold enhancement of total orbital magnetization
compared to the DFT + U result. It is noteworthy that the
orbital magnetization is along the z direction, thus, it will
lead to strong anisotropy of saturation magnetization, which
is consistent with the experimental observation [30–32].

Since in the atomic limit, the orbital magnetization orig-
inates from orbital angular momentum, we have performed
a further analysis to elucidate the correlation effect on the
orbital angular momentum of Bloch wave functions. As the
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net residual orbital angular momentum can come from the
imbalanced occupation of d orbitals of vanadium atoms, we
have projected the Bloch wave functions to the five channels
of the spherical harmonics Y m

2 with m = 0,±1,±2. The k-
resolved orbital angular momentum is defined as

lz(k) =
∑

n∈occ

∑
m

m
∣∣〈ψnk|Y m

2

〉∣∣2
, (4)

where the summation is over the occupied states. ψnk is the
Bloch wave functions. The results for the bulk R3̄ structure
are shown in Figs. 4(c) and 4(d). It can be seen that for both
the methods, distributions of the orbital angular momentum
in k space are almost uniform, especially for the DFT + U
method. The reason behind such a behavior can be understood
in terms of strong localization of d orbitals on V atoms, lead-
ing to weak k dependence of the orbital angular momentum.
However, the values of the orbital angular momentum from
DMFT is greatly enhanced compared to that from DFT + U .
The integrated lz for DFT + U and DMFT are 0.060 and
0.158/V, respectively. Note that for an atomic model with
two electrons filling the t2g orbitals of V atoms, according to
Hund’s rules, the orbital magnetic moment should be 1 μB/V
and antiparallel to the 2 μB/V spin moment [44]. However,
the experimental observations show that the out-of-plane mag-
netic moments are larger than the in-plane ones [30–32],
indicating that the orbital magnetic moment should be parallel
to the spin moment. In our DMFT paper, we find the orbital
moments of ∼0.08 μB/V parallel to spin moments, consistent
with the experimental observations. Our results imply that
the orbital magnetization in real materials cannot be simply
explained by the atomic model.

Hence, a unified physical picture for dynamically enhanced
orbital magnetization in VI3 emerges from the above com-
parison. Despite a stronger p-d mixing in DFT + U that
increases the intercellular electronic circulations of electrons
[corresponding to the hot spot in Fig. 4(a)], it suppresses
the (potentially more important) intracellular circulations
at the same time. The overall effect is minimal occupa-
tional imbalance among lz channels and quenched orbital
angular momentum. In the self-consistent DMFT frame-
work, the localization behavior of correlated electrons in
VI3 is found to increase the occupational imbalance of
lz channels dramatically. Although the orbital hybridiza-
tions in crystals will still suppress the orbital magnetization,
the greatly enhanced residual orbital angular momentum
eventually leads to a significantly enhanced orbital mag-
netization in the DMFT approach when compared to that
from DFT + U .

Further insights can be obtained by separating the orbital
magnetization into local (MLC) and itinerant (MIC) parts,
leading support to the foregoing picture. As defined by Thon-
hauser et al. [12],

MLC = −ie/(2Nh̄)
∑

nk fnk〈∇kunk| × Hk|∇kunk〉 and

MIC = −ie/(2Nh̄)
∑

nk fnk〈∇kunk| × |∇kunk〉εnk. For
DFT + U case, these two parts can be calculated according
to the above formulas separately. In order to compare the
results given by DFT + U and DMFT on equal footing, we
need some approximations for the DMFT case. Specifically,
we used the eigenenergies from the DFT step but corrected

by the real part of self-energy at the infinity frequency,
corresponding to a shift of chemical potential to ensure a
proper electron number, i.e., εDMFT

nk ≈ εDFT
nk + Re �∞. As

the d-p mixing is directly related to the itinerant motion of
electrons, it is indeed found that in the DFT + U results, the
itinerant contribution dominates the orbital magnetization
(Mz

LC = −0.012μB/V and Mz
IC = 0.033μB/V). However,

the orbital magnetization is dominated by the local
part in the DMFT framework (Mz

LC = 0.208μB/V and
Mz

IC = −0.148μB/V) due to the localization behavior of V
atoms.

IV. CONCLUSION

To summarize, we have studied the electronic correlation
effect on orbital magnetization, taking the layered van der
Waals magnetic materials VI3 as an example. Our calculations
reveal that the dynamical correlation is crucial for evaluating
the orbital magnetization in correlated materials, such as VI3.
The static mean-field theory based density-functional theory
(in the DFT + U level) is insufficient to capture the renor-
malization to spectral functions and the localization behavior
of correlated electrons. As a result, it will underestimate the
intracellular circulations contribution to orbital magnetization
for these materials. Making use of the state-of-the-art dynam-
ical mean-field theory, we are able to recover the dynamical
correlation and give a better description to orbital magneti-
zation, which is consistent with the experimental observation
[30–32]. It is interesting that the correlation effect can stabi-
lize the orbital magnetization in the monolayer limit, which
clearly warrants future experimental studies with a particular
interest in low-dimensional magnetism as well as potential
spintronics applications. Theoretically, the effects of nonlocal
correlations on the orbital magnetization will be an interesting
direction to pursue in the immediate future, which may require
cluster- or GW-DMFT methods [45–47].

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11725415 and No.
11934001), the Ministry of Science and Technology of China
(Grants No. 2018YFA0305601 and No. 2016YFA0301004),
and by the Strategic Priority Research Program of Chinese
Academy of Science (Grant No. XDB28000000).

APPENDIX A: REVIEW OF THE SUBTLE STRUCTURAL
PHASE TRANSITIONS IN VI3

The structural phase transitions in VI3 is very subtle and
still under debate. Tian et al. [30] claim that the structural
phase transition of VI3 is analogous to the structural transition
of CrI3, i.e., between the high-temperature monoclinic struc-
ture C2/m and the low-temperature rhombohedral structure
R3̄ with Ts = 79 K. Son et al. [32] report that VI3 is in the
space-group P3̄1c under room temperature with a structural
phase transition to monoclinic C2/c at Ts = 79 K. Kong
et al. [31] have determined the R3̄ structure at 100 K and
suggest a subtle structural phase transition at 78 K. Doležal
et al. [48] also observe a structural phase transition from
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FIG. 5. Band structures of bulk R3̄, C2/m, and monolayer VI3

with and without U .

high-temperature R3̄ to low-temperature monoclinic structure.
Although the structural phase transitions are very interesting,
they are complicated and not the aim of this paper. The
subtle stacking differences of these possible structures are
not expected to impact the orbital magnetization in any way
significant. We then calculated the orbital magnetizations for
these possible structures but only focus on the R3̄ structure for
discussions in the main text for simplicity. We also show in
our calculations that the main conclusions concerning orbital

FIG. 6. DMFT spectral functions for bulk R3̄, C2/m, and mono-
layer VI3 under low (29 K) and high (290 K) temperatures. U =
6.0, JH = 1.0 eV.

magnetization drawn for the R3̄ structure remain unaltered for
all crystal structures of VI3.

APPENDIX B: DFT and DFT + U BAND STRUCTURES

Here we show the calculated band structures of bulk
R3̄, C2/m, and monolayer VI3 with and without U (see
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Fig. 5). The results for P3̄1c and C2/c are similar to them. For
brevity, they are not shown here. We can see that without the
Hubbard U correction, they are all metallic. By including the
Hubbard U correction (Ueff = U − J = 4 eV), the calculated
band structures recover the insulating nature, indicating that
VI3 is indeed Mott insulating.

FIG. 7. (a) and (c) are momentum-resolved spectral functions
for bulk VI3 in the R3̄ space group using the DMFT method under
290 and 29 K, respectively. (b) and (d) are corresponding projected
density of states. In contrast to the results in main text, here all t2g

and eg orbitals of V are treated as correlated orbitals. (e) Calculated
orbital magnetization distribution in the Brillouin zone (at the kz = 0
plane) for bulk VI3 using DMFT (29 K).

APPENDIX C: DMFT SPECTRAL FUNCTIONS

Here we show the calculated DMFT spectral functions of
bulk R3̄, C2/m, and monolayer VI3 at high (290 K) and low
(29 K) temperatures (see Fig. 6). The results for P3̄1c and
C2/c are similar to them. For brevity, they are not shown here.
We can see that they are all Mott insulating at both low and
high temperatures.

APPENDIX D: VALIDATION OF THE CHOICE OF
CORRELATED SUBSPACE

In order to examine the reliability of the approximation that
only t2g set is treated as correlated, we have performed further
calculations to treat all t2g and eg states as the correlated
manifold. Note that after taking into account the eg states,
the screening from the uncorrelated shells decreased. Thus,
we need a larger Coulomb U to obtain a similar spectral gap.
Here, we have chosen U = 10 eV. The results are shown in
Fig. 7. We can see that the resulted spectral functions are
similar except that the energy dispersion of t2g orbitals below
the Fermi level becomes narrower, leading to a reduced p-d
hybridization. The obtained orbital magnetization for bulk VI3

(space-group R3̄) at 29 K is only slightly reduced from 0.080

TABLE II. Calculated orbital magnetization along the z direction
for bulk R3̄, C2/m, and monolayer VI3 using DFT + DMFT with
different U and JH parameters under low (29 K) and high (290 K)
temperatures.

Structure U (eV) JH (eV) T (K) Morb (μB/V)

29 0.079
0.8

290 0.078
5.0

29 0.084
1.0

290 0.070
R3̄

29 0.078
0.8

290 0.078
6.0

29 0.080
1.0

290 0.079

29 0.078
0.8

290 0.077
5.0

29 0.085
1.0

290 0.079
C2/m

29 0.077
0.8

290 0.078
6.0

29 0.079
1.0

290 0.079

29 0.084
0.8

290 0.082
5.0

29 0.089
1.0

290 0.084
Monolayer

29 0.084
0.8

290 0.083
6.0

29 0.085
1.0

290 0.084
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to 0.073μB/V, which can be attributed to the reduced p-d
mixing. Although including both the t2g and the eg sets in the
correlated subspace leads to a correction to the final orbital
magnetization, our conclusions remain valid. In this sense, the
approximation to only treat the t2g manifold as our correlated
subspace is reasonable.

APPENDIX E: THE DEPENDENCY OF M ON U AND JH

More calculations show that the calculated orbital magne-
tizations are similar within a reasonable range of U and JH

values (see Table II).
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