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Characterizing many-body localization via state sensitivity to boundary conditions
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We introduce characterizations for many-body phase transitions between delocalized and localized phases
based on the system’s sensitivity to boundary conditions. In particular, we change boundary conditions from
periodic to antiperiodic and calculate a shift in the system’s energy and shifts in the single-particle density-
matrix eigenvalues in the corresponding energy window. We employ the typical model for studying MBL, a
one-dimensional disordered system of fermions with nearest-neighbor repulsive interaction where disorder is
introduced as randomness on on-site energies. By calculating numerically the shifts in the system’s energy
and eigenvalues of the single-particle density matrix, we observe that in the localized regime, both shifts are
vanishing; while in the extended regime, both shifts are on the order of the corresponding level spacing. We also
applied these characterizations of the phase transition to the case of having next-nearest-neighbor interactions in
addition to the nearest-neighbor interactions and studied its effect on the transition.
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I. INTRODUCTION

In a free fermion model with extending plane-wave
eigenfunctions, fermions move freely in the entire system.
Introducing randomness in the free fermion model, which
represents disorder, leads to the localization of fermions
due to the quantum interference, proposed by Anderson
[1]. This phenomenon, so-called Anderson localization, has
been widely studied numerically, analytically, and experimen-
tally. In general, the Anderson localization is associated with
the symmetry and dimension of the system [2]. For one-
and two-dimensional systems, any infinitesimal uncorrelated
randomness makes the system localized [3]. For a three-
dimensional (3D) system, however, there exists a nonzero
critical disorder strength at which a quantum phase transition
between the localized and delocalized phase occurs [4]. In a
weak randomness regime, the system is delocalized; as the
disorder strength increases and hits the critical value, the sys-
tem becomes localized. Additionally, a phase transition from
a delocalized to a localized phase can be seen in the energy
resolution if the system under study has mobility edges. A 3D
Anderson model, for example, has localized phases at both
tails of the energy spectrum and delocalized phases in the
middle of the spectrum [5,6]. Thus as the system’s energy
changes from one energy window to another, it will undergo a
phase transition between localized and delocalized phases.

Another interesting phenomenon arises when interaction is
introduced in the Anderson model, from whence we encounter
the following questions: Does disorder suppress the effect of
the interaction? Or Is the interaction effect so strong that it
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makes the interacting system delocalized? More interestingly,
what role does temperature play in such a system? We can
also ask these questions from the perspective of statistical
physics: It is assumed that a classical ergodic system can visit
its whole phase space after a finite time, so the averaging of
a physical quantity over time is the same as averaging over
the whole phase space. In this perspective, the question of
the ergodicity of a random interacting system is important
[7]. Answering the above questions is currently a hot research
topic. By now, we know that in the interacting systems, at a
nonzero temperature a phase transition between localized and
delocalized phases arises by varying disorder strength [8,9].
In the strong disorder regime, the conductivity—even at a
nonzero temperature—is zero, and the state of the system is
localized in Fock space. The phase is thus called a many-body
localized (MBL) phase [10–13]. The states in the MBL phase
do not thermalize in the sense that after a long time, its prop-
erties still depend on the initial state of the system (i.e., local
integrals of motion constrain the system); in other words, the
system carries the information of the initial states [7]. Thus
an MBL phase is an out-of-equilibrium phase, and the laws of
statistical mechanics are not obeyed. On the other hand, in the
weak disorder regime a part of the system acts as a bath for the
remainder, such that the eigenstate thermalization hypothesis
(ETH) [14–17] can be applied and the system thermalizes. In
addition, an ETH-MBL phase transition can be seen at a fixed
disorder strength in the energy resolution, i.e., the mobility
edges can also be seen in the interacting system [18,19]. Ex-
perimentally, the phase transition between the ETH and MBL
phases has been witnessed in many systems, such as ultracold
atoms [20], trapped ion systems [21], optical lattices [22–28],
and quantum information devices [29].

In the remainder of this section, we first cite models with
ETH-MBL phase transitions. Then we mention some of the
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previously studied ETH-MBL phase transition characteriza-
tions along with our characterization. The typical model em-
ployed to study the ETH-MBL phase transition is the spinless
fermion model with constant nearest-neighbor (NN) hopping
and NN interactions (which is the Jordan-Wigner transforma-
tion of the XXZ model for the spin 1/2); disorder is intro-
duced by random on-site energies. Some studies have also
introduced random interactions into the system [30–32]. Hav-
ing an MBL phase in translation-invariant Hamiltonians and
systems with a delocalized single-particle spectrum have also
been investigated [32–35]. Although disorder is usually de-
scribed by random on-site energies, some studies reported that
on-site energies with incommensurate periodicity could trig-
ger ETH-MBL phase transitions [19,36,37]; other systems,
such as a frustrated spin chain [38] and a system under strong
electric field [39], also exhibit ETH-MBL phase transitions.

Finding a characterization for the ETH-MBL phase tran-
sition is part of the current research. Entanglement entropy
(EE) is one candidate that shows distinguished behavior in the
ETH and MBL phases [40,41]. To calculate EE, one divides
the system into two subsystems A and B; the reduced density
matrix of each subsystem ρA/B is calculated by tracing over
degrees of freedom of other subsystems. EE then can be
calculated as EE = −trρA/B log ρA/B [2,42]. EE follows an
area-law behavior in the MBL phase [43,44], while it obeys
volume law in the ETH phase, where the reduced density ma-
trix of a subsystem approaches the thermal density matrix. EE
thus fluctuates strongly around the localization-delocalization
transition point [45]. In addition, the statistics of the low-
energy entanglement spectrum (eigenvalues of the reduced
density matrix) have been used as a characterization of the
phase transition. The entanglement spectrum distribution goes
from Gaussian orthogonal in the extended regime to a Poisson
distribution in the localized regime [46]. Furthermore, people
have used the eigenenergies level spacing [47] and level dy-
namics [48] as characterizations. Some other methods, such
as machine learning, are also used for detecting the MBL
phase transition [49]. These are just a few, among many others
[19,37,46,50,51].

A recent paper [52] studied the single-particle density
matrix to distinguish MBnL from the ETH phase. The single-
particle density matrices are constructed by the eigenstates of
the Hamiltonian (H) of the system in a target energy window
through

ρi j = 〈ψ |c†
i c j |ψ〉, (1)

where i and j go from 1 to L (system size), and |ψ〉 is the
eigenstate of the Hamiltonian. They studied eigenvalues {n}
and eigenfunctions of the density matrix, |φk〉. Its eigenval-
ues, which can be interpreted as occupations of the orbitals,
demonstrate the Fock-space localization: Deep in the delocal-
ized phase, {n}’s are evenly spaced between 0 and 1, while
in the localized phase, they tend to be very close to either
0 or 1. Thus the difference between two successive eigen-
values of ρ shows different behavior in the delocalized and
localized phases. Moreover, they found that eigenfunctions of
the density matrix |φk〉 are extended (localized) in delocalized
(localized) phase [53,54].

We, in this paper, look at the ETH-MBL phase transi-
tion from the perspective of boundary-condition effects on

the system, namely, we change the boundary conditions
from periodic to antiperiodic and then study their effects on
the system’s energy as well as on the eigenvalues of the
single-particle density matrix (ρ) at a given energy window
(see Sec. II for more details). Our work is a generalization
of Ref. [55], where Anderson localization in free fermion
models is characterized based on the response of the system
to the change in the boundary conditions. The response of an
interacting system to a local perturbation, on the other hand,
is also investigated in Refs. [56] and [57] as a characterization
of the MBL phase, which is analogous to our work.

Results of our work, in brief, are as follows. In contrast to
the MBL phase, the system’s energy and occupation numbers
are sensitive to the boundary conditions in the ETH phase.
In MBL phase, shifts in the system’s energy and occupation
numbers are vanishing; however, in ETH phase, both shifts are
on the order of the corresponding level spacing. We use these
metrics in a previously studied model with NN interactions
that has a known ETH-MBL phase transition. We also apply
these characterizations to a model having both NN and NNN
interactions.

The paper’s structure is as follows. We first introduce
the model and explain the numerical method in Sec. II.
The responses of the Hamiltonian’s eigenenergy and the
single-particle density-matrix eigenvalues to the boundary
conditions, considering only the NN interaction, are presented
in Secs. III and IV, respectively. In Sec. V, we introduce the
NNN interaction in the model and consider its effect. We close
with some remarks in Sec. VI.

II. METHOD AND MODEL

We consider spinless fermions confined on a one-
dimensional (1D) chain with the nearest-neighbor (NN)
hopping; NN and next-nearest-neighbor (NNN) repulsive
density-density interactions, as well as diagonal disorder. The
effective Hamiltonian can be written as

H = −t
L∑

i=1

(c†
i ci+1 + H.c.) +

L∑
i=1

μi

(
ni − 1

2

)

+V1

L∑
i=1

(
ni − 1

2

)(
ni+1 − 1

2

)

+V2

L∑
i=1

(
ni − 1

2

)(
ni+2 − 1

2

)
, (2)

where c†
i (ci ) is the fermionic creation (annihilation) operator,

creating (annihilating) a fermion on the site i, and ni = c†
i ci

is the number operator. The first term in the Hamiltonian is
the NN hopping with constant strength t , which is used as
the energy unit in our calculations and is set to unity. The
randomized on-site energies, as a disorder representation, are
described by μ’s. They follow uniform distribution within
[−W,W ], where W is called disorder strength. The last two
terms in the Hamiltonian are the constant repulsive NN and
NNN density-density interactions.

To apply boundary conditions, we set c(†)
i+L = c(†)

i for the
periodic boundary condition (PBC) and c(†)

i+L = −c(†)
i for

the antiperiodic boundary condition (APBC), where L is
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the length of the 1D chain. We first diagonalize the Hamil-
tonian through the exact diagonalization method and find its
eigenvectors and the corresponding eigenvalues. We use the
parameter ε, which is defined as ε = (E−E0 )

(Emax−E0 ) , where E is the
target energy, E0 is the ground-state energy, and Emax repre-
sents the highest energy in the spectrum; it changes between
0 and 1, corresponding to the ground state and highest energy,
respectively. We focus on a certain energy window of the
spectrum: For a given ε, we calculate the target energy E and
select six eigenstates of H with the energy closest to E . For
each of these six eigenstates, we build up the single-particle
density matrix ρ from Eq. (1). By changing the boundary
conditions from PBC to APBC, we calculate the energy shift
for each eigenstate:

δEi = |Ei,PBC − Ei,APBC |, (3)

where Ei is the energy of the ith eigenstate; in this way, the
ith level of the Hamiltonian with PBC is compared with the
ith level of the Hamiltonian with APBC. We then take typical
averaging over six eigenstates and take a typical disorder av-
erage to obtain δEtyp (typical average of the random variable
x is e〈ln x〉, where 〈· · · 〉 stands for arithmetic mean). In the
same manner, we calculate shifts in the eigenvalues of the
single-particle density matrix:

δn( j)
i = ∣∣n( j)

i,PBC − n( j)
i,APBC

∣∣. (4)

A typical average on all eigenvalues of the ρ ( j goes from 1 to
L), another typical average over the six samples, and a typical
disorder average will be calculated to obtain δntyp.

III. EFFECT OF THE BOUNDARY CHANGE
ON THE ENERGY

In a free fermion model, the state of the system is the
Slater determinant of the occupied single-particle eigenstates.
In the localized phase, occupied eigenstates of the system are
confined in a small region of space, while in the delocalized
phase, they spread over the entire system. In Ref. [55], the
effect of the change in the boundary conditions on the single-
particle eigenenergies of a free fermion model is studied. By
changing the boundary conditions in the localized phase, the
single-particle energy does not change. On the other hand,
in the delocalized phase, where eigenstates of the system are
extended, any changes in the boundary conditions can be seen
by the wave function; these changes are then reflected in the
corresponding energy. Accordingly, the energy shift for each
level, δE , divided by the average level spacing �E , known as
Thouless conductance, is a characterization of the Anderson
phase transition between delocalized and localized phases:

gE = δE/�E . (5)

We conjecture that if we change boundary conditions for
an interacting system, a similar quantity such as Thouless
conductance (now for the system’s energy rather than the
single-particle eigenenergy), can be used to characterize the
phase transition. In particular, we change the condition from
periodic to antiperiodic (as explained in Sec. II) and calculate
gE for the system’s energy. In Fig. 1 typical averaged gE is
plotted for some selected values of the energy for the case
of NN interaction of Eq. (2), corresponding to V1 = 1,V2 = 0
(standard deviation of gE is plotted in Fig. 7). We see that deep

FIG. 1. Typical averaged gE = δE
�E for the case of having only

NN interaction (V1 = 1,V2 = 0) for some selected ε as disorder
strength W varies. We set L = 14, N = 7. We take a typical disorder
average over altogether 2000 samples for each data point.

in the delocalized phase, the shift in the system’s energy is on
the order of level spacing, while deep in the localized phase,
the shift is negligible compare to the delocalized phase. Based
on this plot, in the middle of the spectrum (ε = 0.5), gE goes
to zero at W ≈ 3.5, consistent with the previously obtained
results [56,58–60]. Also, gE is plotted for the whole spectrum
of energy in Fig. 2 as we vary the disorder strength W . This
plot is also consistent with the previously obtained results.

IV. EFFECT OF THE BOUNDARY CHANGE ON THE
SINGLE-PARTICLE DENSITY MATRIX

We now focus on the effect of boundary conditions on
the occupation numbers of density matrix Eq. (1). First, let
us look at the case of free fermions, where we can write the
Hamiltonian of the system as

HFree fermion =
L∑

i, j=1

hi j c†
i c j . (6)

FIG. 2. Typical average of gE = δE
�E for the entire spectrum of

the energy as we change the disorder strength W for the NN inter-
action case (V1 = 1,V2 = 0). System size L = 14, N = 7. We take
typical disorder average over altogether 2000 samples for each data
point.
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FIG. 3. Eigenvalues of the single-particle density matrix (occu-
pation numbers {n}) corresponding to periodic boundary condition
(blue) and antiperiodic boundary condition (red) for NN interaction
of Eq. (2) (V1 = 1,V2 = 0). In left plots, ε and W are chosen such
that we are in the extended phase, while in the right plots they
correspond to the MBL phase. We set L = 14, N = 7. Only one
sample is considered, and we do not take a disorder average. We see
that shifts in the occupation numbers in the MBL phase are almost
zero, while the shifts are appreciable in the extended phase.

We observe that eigenfunctions of the single-particle density
matrix and matrix h are the same (both can be diagonalized by
the same unitary matrix):

hi j =
∑

k

Uik εk U †
k j, (7)

ρi j =
∑

k

Uik nk U †
k j, (8)

where εk is the single-particle eigenenergy of the Hamilto-
nian. By the argument of Thouless [55] that single-particle
eigenstates of the Hamiltonian are sensitive (insensitive) to
the boundary conditions in the delocalized (localized) phase,

FIG. 4. Typical averaged gn = δn
�n for the NN interaction case of

Eq. (2) corresponding to V1 = 1,V2 = 0 for some selected values of
ε’s as we change the disorder strength W . We set L = 14, N = 7. We
take the typical average over altogether 2000 samples for each data
point.

FIG. 5. Typical averaged gn = δn
�n for the NN interaction case of

Eq. (2) corresponding to V1 = 1,V2 = 0 for some selected values of
disorder strength W as energy varies, where we can see the mobility
edges. We set L = 14, N = 7. We take the typical average over
altogether 2000 samples for each data point.

we can say that eigenvalues of ρ are sensitive (insensitive) to
the boundary conditions in the delocalized (localized) phase.
Thus we can identify the shifts in the eigenvalues of ρ when
we change the boundary condition from periodic to antiperi-
odic as a probe of the phase transition.

This idea has been verified indirectly before: We know that
for a free fermion system divided into two subsystems, the
reduced density matrix of each subsystem can be written as
exp(−Hent ), where Hent is called entanglement Hamiltonian
and can be obtained from the single-particle density matrix of
the corresponding subsystem [61]. The effect of the boundary-
condition changes on the entanglement Hamiltonian for free
fermion models was studied in Ref. [62]. A boundary con-
dition is changed from periodic to antiperiodic, and shifts in
the eigenvalues of the entanglement Hamiltonian (and thus on

FIG. 6. Typical averaged gn = δn
�n for the NN interaction case of

Eq. (2) corresponding to V1 = 1,V2 = 0 for the entire energy spec-
trum as we change the disorder strength W . We set L = 14, N = 7.
We take the typical average over altogether 2000 samples for each
data point.
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FIG. 7. Standard deviation of gE (upper panel) and gn (lower
panel) for the entire spectrum of the energy as we change the disorder
strength W for the NN interaction case (V1 = 1,V2 = 0). System size
L = 14, N = 7. Number of samples is 2000 for each data point.

the entanglement entropy) are calculated; it is shown that they
can be used as a characterization of the localized-delocalized
phase transition.

For the interacting case, we know that the single-particle
density-matrix eigenstates are localized (delocalized) in the
localized (delocalized) phase [52]; thus we put one step

forward and conjecture that the ETH phase can be distin-
guished from the MBL phase by analyzing the shifts of the
occupation numbers when we change boundary conditions. In
particular, we change the boundary condition from periodic
to antiperiodic (as described in Sec. II) and calculate the
shifts in the occupation numbers of the single-particle density
matrix δn.

In Fig. 3 we plot occupation numbers for the NN inter-
action case of Eq. (2), corresponding to V1 = 1,V2 = 0, for
periodic and antiperiodic boundary conditions in extended
and MBL phases. Here just one sample is considered without
disorder averaging. We can see that in the MBL phase, occu-
pation numbers corresponding to PBC and APBC are almost
identical and the shifts are negligible; in contrast, we get a
nonvanishing change of the occupation numbers in the ex-
tended phase.

To have a characterization independent of the system size,
we divide δn to average level spacing for occupation numbers
�n and introduce the following as an ETH-MBL phase tran-
sition characterization:

gn = δn/�n. (9)

We plot typical averaged gn for the NN case of Eq. (2) (V1 =
1,V2 = 0) for some selected values of ε, as we change disor-
der strength W in Fig. 4. We see that deep in the delocalized
phase, shifts in the eigenvalues of the density matrix are on
the order of level spacing of the eigenvalues, and it vanishes in
the localized phase. At the middle of the spectrum (ε = 0.5),
we obtain Wc ≈ 3.6, consistent with the previously obtained
results [56,58–60]. We see that gn is not symmetric around
the middle of the spectrum and is tilted toward smaller ε.

By looking at gn, we can locate mobility edges, the points
in the energy spectrum, for a fixed value of disorder strength
where the phase changes between delocalized and localized.
We calculate gn for a fixed value of W as we change ε. The
results are plotted in Fig. 5. As we can see, there are no
mobility edges deep in the localized phase and deep in the de-
localized phase, i.e., for W = 1.0 and W = 4.5. For W = 1.0,
gn is always nonzero, while for W = 4.5 it vanishes for all
values of ε. For other disorder strength values, we can see
mobility edges where gn goes to zero. All this information can
be summarized in Fig. 6, where gn is calculated for the entire
energy spectrum as we change disorder strength W (standard
deviation of gn is plotted in Fig. 7).

FIG. 8. Typical averaged gE = δE
�E (left panel) and gn = δn

�n (middle panel) for the case of having both NN and NNN interactions
corresponding to V1 = 1,V2 = 1 in Eq. (2) for some specific ε’s as disorder strength W varies. Right panel: typical averaged gn = δn

�n for
the case of NN and NNN interactions for some selected values of disorder strength W as energy varies, where we can see the mobility edges.
For all plots, we set L = 14, N = 7. We take a typical average over altogether 2000 samples for each data point.
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FIG. 9. Typical average of gE = δE
�E (upper panel) and gn = δn

�n
(lower panel) for the entire spectrum of the energy as we change
the disorder strength W for the case of having both NN and NNN
interactions corresponding to V1 = 1,V2 = 1 in Eq. (2). We set L =
14, N = 7. We take a typical average over altogether 2000 samples
for each data point.

V. NEAREST-NEIGHBOR AND
NEXT-NEAREST-NEIGHBOR INTERACTIONS

It is also instructive to apply our method of characterizing
the ETH-MBL phase transition to the case of having both
NN and NNN interactions, corresponding to V1 = 1,V2 = 1 in

Eq. (2). Having NNN interaction in addition to the NN inter-
action makes localization harder, i.e., we expect that a larger
amount of disorder is required to make the state localized at
each energy, and thus a transition from the ETH to MBL phase
happens at a larger value of Wc compared to the NN case. The
obtained results of gE and gn for the case of V1 = 1,V2 = 1
are plotted in Figs. 8 and 9. As we expected, the transition
point moves to larger values of disorder strength. We also see
that the transition points become more asymmetric compared
to the NN case. Moreover, there is no phase transition between
ETH and MBL for states with the largest ε’s, and those states
are localized with a nonzero disorder strength.

VI. CONCLUSION

Regarding the ETH-MBL phase transition in random in-
teracting systems, finding the phase characterizations is a
main research focus today. In this work we introduce methods
for characterizing the phase transition, namely, we stud-
ied the response of the system to the boundary conditions.
For free fermions, the effect of change in boundary con-
ditions on single-particle eigenenergies [55], as well as on
the single-particle density matrix [62], has been studied be-
fore. Extended eigenstates are affected by what happens
at the boundary, while changes in boundary conditions are
not reflected in the localized phase. We extend this idea to
the interacting case. In particular, we changed the bound-
ary conditions between periodic and antiperiodic, and then
we studied the echo of these changes in the energy of the
system and eigenvalues of the single-particle density matrix.
We used these characterizations for the case of a 1D model
with nearest-neighbor interaction, nearest-neighbor hopping,
and disorder which is added by random on-site energies.
This model has been studied before, and we approximately
know the phase transition point. We could identify the ETH
phase with significant shifts in the system’s energy and sig-
nificant shifts in the occupation numbers (both shifts are on
the order of corresponding level spacing). In contrast, the
MBL phase exhibits a vanishing response to the change in
the boundary conditions. Furthermore, we added extra next-
nearest-neighbor interactions and studied their effects on the
ETH-MBL phase transition.
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