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In our previous work [Nozawa and Tsunetsugu, Phys. Rev. B 101, 035121 (2020)], we studied the quench
dynamics in the one-dimensional Hubbard model based on the generalized hydrodynamics theory for a partition-
ing protocol and showed the presence of a clogging phenomenon. Clogging is a phenomenon where vanishing
charge current coexists with nonzero energy current, and we found it for the initial conditions that the left half
of the system is prepared to be half filling at high temperatures with the right half being empty. Clogging occurs
at all the sites in the left half and lasts for a time proportional to its distance from the connection point. In
this paper, we use various different initial conditions and discuss two issues. The first issue is the possibility
of clogging in a stationary state. When the electron density in the right half is initially set nonzero, we found
that the left half-filled part expands for various sets of parameters in the initial condition. This means that the
clogging phenomenon occurs at all the sites in the long-time stationary state, and we also discuss its origin. In
addition, stationary clogging is accompanied by a back current, namely, particle density current flows towards the
high-density region. We also found that spin clogging occurs for some initial conditions, i.e., the vanishing spin
current coexists with nonzero energy current. The second issue is the proportionality of spin and charge currents.
We found two spatiotemporal regions where the current ratio is fixed to a nonzero constant. We numerically
studied how the current ratio depends on various initial conditions. We also studied the ratio of charge and
energy currents.
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I. INTRODUCTION

Understanding nonequilibrium phenomena in strongly cor-
related systems is an important and challenging issue, and
one-dimensional (1D) integrable models have attracted atten-
tion because their infinite number of conserved quantities play
an important role [1]. Recently, the generalized hydrodynam-
ics (GHD) theory was proposed by the authors of Refs. [2,3]
for studying nonequilibrium dynamics of integrable models,
and its experimental confirmation was demonstrated for a
1D Bose gas system [4]. An infinite number of conserved
quantities is also important in GHD, as time-evolution equa-
tions are formulated based on their continuity equations. The
GHD can describe the time evolution of spatially inhomoge-
neous systems, and partitioning is a frequently used protocol
[2,3,5–9] because the equations for the time evolution are sim-
ple in that case. Two semi-infinite parts in different thermal
equilibria are connected at the origin x = 0 and time t = 0,
and the time evolution of the connected system is analyzed.
By using this protocol, many aspects of nonequilibrium phe-
nomena in integrable models have been studied, e.g., the time
dependence of currents [2,3,10–23], Drude weights [24–26],
entanglements [27–30], correlation functions of densities and
currents [31,32], diffusive dynamics, and diffusion constants
[33–39].

The 1D Hubbard model is a canonical lattice model of
strongly correlated electrons and is exactly solvable through
the nested Bethe ansatz [40–43]. Studying its nonequilibrium

dynamics is very important to understand transport experi-
ments in many quasi-1D systems including inorganic [44] and
organic [45] compounds, quantum wires [46], and fermionic
cold atom systems [47]. Ilievski and De Nardis formulated its
GHD theory and also confirmed it by numerical calculations
[25]. In our previous work, we used their formulation with the
partitioning protocol and mainly studied charge and energy
currents [48]. We found the existence of a region that has
zero charge (spin) current while nonzero energy current flows
and named it charge (spin) clogged region [see Fig. 1(a)]. We
proved its existence for the cases that the left side of the initial
state is at infinite temperature βL = 0. We also numerically
studied charge and energy currents in the cases of βL > 0
where the initial right state has no electron. In these calcula-
tions, clogging occurs at sites in the left half for a finite period
of time that is proportional to the site position measured from
the origin. It is an interesting question whether one can realize
such a peculiar phenomenon as charge or spin clogging in the
stationary state, and if the answer is positive it is important to
find its conditions as a theoretical prediction for experimental
observations. A related important issue is the ratio of different
kinds of currents, e.g., charge ( jn), spin ( jm), and energy ( je)
currents since it is an observable evidence of multiple types
of quasiparticles. Our previous paper [48] mainly analyzed
the ratio je/ jn, which is related to the Wiedemann-Franz law
in thermal equilibrium [49], but jm/ jn was calculated only
in the high-temperature limit. From the viewpoint of con-
densed matter physics, it is also important to see how the two
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FIG. 1. Schematic picture of partitioning protocol and nonequi-
librium phenomena studied in this paper. (a) Charge clogged region,
where jn = 0 and je �= 0. (b) Stationary charge clogging. The region
of n = 1 includes ξ = 0. (c) Proportionality of spin and charge cur-
rents when μL �= 0 and BL �= 0. The ratio jm/ jn is fixed to a constant
value in a region to the right of ξ = VL. Outside the light cones,
ξ � VL or ξ � VR, local states are unchanged from the initial left
or right thermal equilibrium states, respectively.

currents jm and jn are related in the strongly correlated elec-
tron systems when a magnetic field is applied.

In this paper, to clarify these points, we will use the par-
titioning protocol with a wider range of initial conditions and
study the profiles of spin, charge, and energy currents. We will
mainly discuss two issues. The first issue is the possibility of
expanding the charge clogged region [see Fig. 1(b)]. We found
that the left half-filled region expands, and charge clogging
occurs in the stationary state, when the initial right tempera-
ture is lower than the initial left one (βL < βR) or a magnetic

field is applied in the initial right part (BR > 0). This will be
discussed in Sec. III. The second issue is the proportionality
of spin and charge currents [see Fig. 1(c)], which was studied
only in the high-temperature limit in our previous work [48].
We will study this issue in Sec. IV for the cases of finite
temperature and show that there emerge two regions where
the ratio of spin current to charge current is fixed to a constant
value.

This paper is organized as follows. In Sec. II, we introduce
the 1D Hubbard model and the GHD approach to it. In partic-
ular, we describe how to calculate the profiles of densities and
currents for the partitioning protocol. In Sec. III, we present
the main results on the expansion of a half-filled region.
We show initial conditions where stationary charge clogging
occurs and analyze the initial conditions dependence of the
existence of it. We also examine stationary spin clogging. In
Sec. IV, we present the main results on the proportionality of
spin and charge currents at finite temperatures. To study the
proportionality, we analyze the profiles of the ratio of spin
current to particle density current and their initial conditions
dependence. We also analyze the profiles of the ratio of energy
current to particle density current. Finally, the conclusions are
given in Sec. V.

II. MODEL AND METHOD

Let us briefly summarize in this section the GHD approach
to the 1D Hubbard model [25,48]. Throughout this paper, we
will use the notations defined in our previous work (Ref. [48]).
Refer to that paper for more details of the calculations.

The Hamiltonian of the 1D Hubbard model on L sites reads
as

Ĥ = −
L∑

j=1

∑
σ

[(ĉ†
j,σ ĉ j+1,σ + H.c.) + (μ + sσ B)n̂ j,σ ]

+ 4u
L∑

j=1

[(
n̂ j,↑ − 1

2

)(
n̂ j,↓ − 1

2

) − 1
4

]
, (1)

where ĉ†
j,σ and ĉ j,σ are the electron creation and annihilation

operators, respectively, at site j with spin σ ∈ {↑,↓}. n̂ j,σ ≡
ĉ†

j,σ ĉ j,σ and sσ is defined as s↑ = 1 and s↓ = −1. We set the
electron hopping amplitude to be unity, and use it as the unit of
energy throughout this paper. μ and B are chemical potential
and magnetic field, respectively. The Coulomb repulsion is
parameterized by u > 0, and the constant −1/4 in this term
is included so as to make the energy of the vacuum state zero.

The partitioning protocol is shown in Fig. 1. Initially, the
system is divided into left and right parts, and they are inde-
pendently thermalized with different sets of parameters (βL,
μL, BL) and (βR, μR, BR). At time t = 0, the two part are
connected at the origin x = 0, and we study the time evolution
of the total system. The initial particle density nL(R), magne-
tization mL(R), and energy density eL(R) are controlled by the
corresponding set of the parameters. Hereafter we consider
the case of μs � 0 and Bs � 0 for s = L, R, which means
nL(R) � 1 and mL(R) � 0.

The GHD theory describes a state by the distribution func-
tions of quasiparticles {ρa(w; x, t )}, and the time evolution is
defined by their continuity equations. Here, the integer label a
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denotes the type of quasiparticles. The first type correspond-
ing to a = 0 is called real k. They are scattering states of
polarized electrons, and each state carries the electron charge
e(< 0) and spin projection 1/2. The variable w takes a real
value k and represents charge momentum (−π < k � π ).
The second type corresponding to a > 0 is called �-string.
They are either scattering states of spins (a = 1) or bound
states of spins (a > 1). Each state carries spin projection
−a. In this case, the variable w = � represents the real part
of complex spin rapidity (−∞ < � < ∞). The third type
corresponding to a < 0 is called k-� string. They are bound
states of charges, and each state carries charge 2|a|e. The vari-
able w = � now represents the real part of complex charge
rapidity.

The distribution functions evolve in time follow-
ing the continuity equations [2,3,50] ∂

∂t ρa(w; x, t ) +
∂
∂x [

◦
va(w; x, t )ρa(w; x, t )] = 0. Here, { ◦

va} are the dressed
velocities [51], and the reader should refer to Refs. [25,48]
to know how to obtain them. Upon using the partitioning
protocol, it is known that the solution of the continuity
equations only depends on the ray ξ ≡ x/t , and it is
convenient to introduce the filling functions {ϑa(w; ξ )}
to represent the solution [2,3]. Once {ϑa(w; ξ )} are obtained,
the distribution functions {ρa(w; ξ )} are calculated by
solving the integral equations called the Takahashi equations
[52]. The solution of the filling functions are written
as

ϑa(w, ξ ) = 
(
◦
va(w, ξ ) − ξ )ϑL

a (w)

+ 
(ξ − ◦
va(w, ξ ))ϑR

a (w) (2)

with Heaviside’s step function 
(x). {ϑL(R)
a (w)} are the initial

left (right) filling functions and obtained by solving the inte-
gral equations for thermal equilibrium specified by the set of
parameters (βL(R), μL(R), BL(R)), which are called the thermo-
dynamic Bethe ansatz (TBA) equations [52]. We note that the
dressed velocities depend on the filling functions and there-
fore both of them have to be determined self-consistently. The
above solution shows that the value of ϑa(w, ξ ) is identical to
its initial value either in the left or right part.

Once the distribution functions {ρa(w; ξ )} and the dressed
velocities { ◦

va(w, ξ )} are obtained, they suffice to calculate
densities and currents. The particle density n, magnetization
m, and energy density e and their currents jn, jm, je are given
by [25]

[
nr (ξ )

jr (ξ )

]
=

∑
a

∫
dw

[
1

◦
va(w, ξ )

]
fr,a(w)ρa(w, ξ ), (3)

where the label (r = n, m, e) distinguishes densities nn = n,
nm = m, and ne = e and corresponding currents. The weights
are defined as

fn,a(w) = δa,0 + |a| − a, (4)

fm,a(w) = 1
2 (δa,0 − |a| − a), (5)

fe,a(w) = ea(w). (6)

Here, ea is the bare energy of the type-a quasiparticle

e0(k) = −2 cos k − 2u,

ea<0(�) = 4Re
√

1 − (� + iau)2 + 4au, (7)

and ea>0(�) = 0. The symbol Re denotes the real part.
We define light cones ξ±

a for each string a for later use.
From Eq. (2), ξ±

a are defined as the minimum and maxi-
mum ξ -values on the intersection line of the two surfaces
z1(w, ξ ) = ◦

va(w, ξ ) and z2(w, ξ ) = ξ . The filling function
ϑa(w, ξ ) continuously varies inside the light cone ξ−

a < ξ <

ξ+
a , while outside the light cone it is fixed to either ϑL

a (w) or
ϑR

a (w). In addition, we also define

VL ≡ min
a

ξ−
a = ξ−

0 , VR ≡ max
a

ξ+
a = ξ+

0 ,

(8)
VL,1 ≡ min

a �=0
ξ−

a , VR,1 ≡ max
a �=0

ξ+
a ,

and the first two are determined by real k quasiparticles. The
definition means that all the filling functions are equal to the
initial equilibrium values in the left part at ξ � VL, while those
in the right part at ξ � VR. We note that VL does not depend
on (βR, μR, BR), and vice versa. In the regions VL � ξ � VL,1

and VR,1 � ξ � VR, only real-k quasiparticles have a filling
function different from the initial equilibrium values.

Throughout this paper we set the repulsion u = 2. Ap-
proximations used for the numerical calculations at finite
temperatures are the same as in our previous work [48], where
the cutoff concerning the number of integral equations ac is
used [53]. The values of the densities and currents shown in
figures are extrapolated ones obtained from the calculations
for ac = 36, 42, and 48.

III. STATIONARY CLOGGING

When the initial left state is set half-filling (μL = 0) at
infinite or high temperatures, there emerges a charge clogged
region near the left end of the intermediate transient region

n(ξ ) = 1, jn(ξ ) = 0, je(ξ ) �≡ 0, (VL < ∀ξ < ξ−
−∞). (9)

In our previous work [48], the initial right state was an
electron vacuum, and then ξ−

−∞ < 0 for all the parameters
examined. Therefore, the clogging phenomenon appears only
at sites in the left half, and also it continues only for a limited
time, which is proportional to the distance between the site
position and the origin.

We now examine if one can realize clogging in a stationary
state by tuning initial conditions. Stationary values of physical
quantities are those at ξ = 0, and therefore the question is how
to tune parameters for achieving ξ−

−∞ > 0. We will show that
a key point is the density of real-k quasiparticles, n0(ξ ). In all
the cases in this section, we will control the initial conditions
in the right part, while the initial left state is prepared with
βL = 0.5 and fixed at half-filling μL = 0 except for the data
in Fig. 8.

Let us first set the initial temperature in the right part
lower than the left part βR = 2, and control chemical potential
in the range of −5 � μR � −1. Magnetic field is set zero
in both parts BL = BR = 0. Figure 2 shows the profiles of
particle density n(ξ ) and its current jn(ξ ). One should recall
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FIG. 2. Profiles of (a) particle density n(ξ ) and (b) its current
jn(ξ ) for various values of μR. Vertical dashed and solid lines are
ξ−
−∞ and VL, which are the borders of charge clogged region.

that VL ≈ −2.0 does not depend on μR. The figure shows a
clogging phenomenon for all μR’s and the particle density is
fixed to 1 in the clogging region. Its right end ξ−

−∞ moves to
the right with increasing μR, and the clogging region includes
ξ = 0 for the two largest values μL = −2 and −1. Thus,
charge clogging occurs in the stationary state in these cases.

Stationary clogging is accompanied by another interesting
phenomenon, and that is back current. Figure 2(b) shows a
region where jn < 0 for μL = −2 and −1, namely particle
density current flows towards the high-density region. This is
related to a nonmonotonic behavior of n(ξ ) in Fig. 2(a). One
can explain the presence of back current based on the continu-
ity equation of particle density ξ∂ξ n(ξ ) = ∂ξ jn(ξ ). Integrating
this over the region VL � ξ � VR with the boundary values
jn(VL) = jn(VR) = 0, one obtains

0 =
∫ VR

VL

dξ∂ξ jn(ξ ) =
∫ VR

VL

dξξ∂ξ n(ξ ). (10)

If the clogged region extends beyond ξ = 0, then n(ξ ) = 1 for
∀ξ � 0, and the above integral is rewritten as

0 =
∫ VR

0
dξξ∂ξ n(ξ ) = −

∫ VR

0
dξδn(ξ ), (11)

where δn(ξ ) ≡ n(ξ ) − nR is density deviation. Since δn(ξ ≈
0) > 0, this integral means that there exists a finite-width re-
gion where δn(ξ ) < 0. At the right end, δn(V R) = 0, and thus
n(ξ ) should be nonmonotonic. Let us also examine particle
current density. Just above ξ−

−∞ > 0, ∂ξ n is negative, and this
leads to

jn(ξ ) =
∫ ξ

ξ−
−∞

dξ ′ ξ ′ ∂ξ ′n(ξ ′) < 0, (12)

at least if 0 < ξ − ξ−
−∞ � 1. Therefore, although the left part

initially has a higher density of electrons, the particle current
flows to the left in this region. This contrasts with the ordinary
current flow driven by particle diffusion and may be called
back current in this sense.

We next consider the case of controlling μR when the
initial temperature is identical in both parts βL = βR = 0.5.
As in the previous case, μL = 0 and BL = 0. Figures 3(a) and
3(b) show n(ξ ) and jn(ξ ) at BR = 0 for −5 � μR � −0.25.
Since ξ−

−∞ < 0 for all μR’s, stationary charge clogging does

FIG. 3. Effect of magnetic field in the right initial state BR on the
profiles of n(ξ ) and jn(ξ ). (a), (b) BR = 0 and −5 � μR � −0.25,
while (c), (d) BR = 4 and −5 � μR � −1.

not occur, and we try another type of control, i.e., applying
magnetic field. Figures 3(c) and 3(d) show n(ξ ) and jn(ξ ) at
BR = 4 for −5 � μR � −1. The other initial conditions are
the same as those in Figs. 3(a) and 3(b). The result is that
stationary charge clogging occurs for μR � −3.

Figures 2 and 3 show that stationary charge clogging oc-
curs when the initial right state is prepared either at low
temperature or in a large magnetic field. We examined the
main effect of these initial conditions and found that one
common effect is the high density of real-k quasiparticle ex-
citations nR

0 . This is because the real-k excitations have an
energy lower than charge bound states (k-� string) and have
spin 1/2, while k-� string carries spin 0. Therefore, real-k
excitations have a higher density at lower temperature, and
they are more susceptible to magnetic field.

To study this point systematically, we fix the left initial
state and vary μR to check stationary clogging for each
(βR, BR ) of four choices. Figure 4 shows the calculated pro-
files of n(ξ ) and n0(ξ ). The initial left state is the same one
as in Figs. 2 and 3: (βL, μL, BL) = (0.5, 0, 0). In this case,
nL = 1 and nL

0 ≈ 0.875. The four sets of (βR, BR) are also
the same as those in Figs. 2 and 3 except for the set (2,4).
The results show that stationary charge clogging for all the
(βR, BR ) sets except (0.5,0) when |μR| is small.

Let us first examine how stationary charge clogging corre-
lates with the total electron density nR and real-k quasiparticle
density nR

0 in the initial right state. Figure 5 shows nR
0 and

nR and also shows whether stationary charge clogging occurs.
The cases that stationary charge clogging occurs are shown by
a circle symbol. The parameters (βR, BR) for the right initial
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FIG. 4. Real-k quasiparticle density n0(ξ ) and total electron den-
sity n(ξ ) for four different parameter sets of the right initial state [(a),
(b), (c), and (d)]. Panel (d) also shows VL (solid line) and ξ−

−∞ (dashed
lines).

state are identical to those used in Fig. 4, but a larger number
of μR values are used. This plot shows that the most important
factor for realizing stationary charge clogging is a high den-
sity of nR

0 . As shown by the results for (βR, BR ) = (0.5, 0),
the total density nR is large but stationary clogging does not
occur. Therefore, nR is not a primary factor to determine the
appearance of stationary charge clogging.

FIG. 5. The real-k quasiparticle density nR
0 plotted versus the

total density nR in the initial right state. μR is varied in the range
−8 � μR � −0.25 for each set of (βR, BR ). Circles show that sta-
tionary charge clogging occurs, while crosses show no clogging.

−1

0

1

2

−0.4 −0.2 0 0.2

ξ− −
∞

nR
0 − nL

0

(0.5, 0)
(0.5, 4)
(1, 0)
(1, 4)
( )

(1.5, 0)
(1.5, 4)
(2, 0)
(2, 4)

FIG. 6. Right border of charge clogged region ξ−
−∞ plotted versus

the density difference of real-k quasiparticles between the two initial
states nR

0 − nL
0 . The part of ξ−

−∞ > 0 is the region of stationary charge
clogging.

We confirm this expectation that stationary charge clogging
is determined the density of real-k quasiparticles. Figure 6
shows the right border of charge clogged region ξ−

−∞ plotted
versus nR

0 − nL
0 . The data are calculated for the same sets of

initial conditions as in Fig. 5 and supplemented by the results
at intermediate temperatures (βR, BR ) = (1, 0), (1,4), (1.5,0),
and (1.5,4). The part of ξ−

−∞ > 0 corresponds to the cases of
stationary charge clogging, and this agrees precisely with the
region of nR

0 − nL
0 > 0. The results show a universal curve for

the different sets of data, and this means that the right border
ξ−
−∞ is determined by the one factor nR

0 − nL
0 > 0 alone, at

least when the initial left state is fixed. Therefore, although
this analysis is based on numerical calculations with eight
parameter sets, it is likely that this is a general criterion for
realizing stationary charge clogging, represented explicitly as

(nL − nR)
(
nL

0 − nR
0

)
< 0, and (1 − nL)(1 − nR) = 0,

(13)

where the later condition is equivalent to μL = 0 or μR = 0.
Namely, the majority-minority relation should be reversed
between the total electron density and the density of real-k
quasiparticles.

We also examine the possibility of stationary spin clogging.
This occurs when BL = 0 and is characterized as

m(ξ ) = 0, jm(ξ ) = 0, je(ξ ) �≡ 0, (VL < ∀ξ < ξ−
∞), (14)

while m �≡ 0, jm �≡ 0 at ξ−
∞ < ξ < VR. Figure 7 shows the

profiles of magnetization m(ξ ) and spin current jm(ξ ) for
−10 � μR � −5. The two sets of initial conditions are those
used in Figs. 3 and 4, and βR is different between the two.
The right boundary of spin clogged region is ξ−

∞ not ξ−
−∞, and

it is shown by dashed lines. For both sets of initial conditions,
stationary spin clogging occurs for μR � −8. In contrast to
charge clogging, stationary spin clogging occurs when |μR|
is large, i.e., nR is small. Similar to stationary charge clog-
ging, we numerically confirmed that stationary spin clogging
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ξ
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μR = −6
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FIG. 7. Profiles of (a), (c) magnetization density m(ξ ) and (b),
(d) spin current jm(ξ ) for various values of chemical potential in the
right initial state μR. Vertical solid and dashed lines represent VL and
ξ−
∞, which are the borders of spin clogged region. In (c) and (d), ξ−

∞’s
for μR = −5 and μR = −6 overlap.

occurs, if the following criterion is satisfied:

(mL − mR)
(
mL

0 − mR
0

)
< 0, and mLmR = 0. (15)

For all the initial conditions used, we never found the coexis-
tence of charge and spin cloggings in the stationary state.

Finally, we note that back current is not limited to the
case when stationary charge clogging occurs. Figure 8 shows
an example in the case of (βL, μL, BL) = (0.5,−0.25, 0) and
(βR, μR, BR) = (2,−5, 4). In this case, nL ≈ 0.984 > nR ≈

−0.08

−0.04

0

−3 −2 −1 0 1 2 3

j n
,j

n
,0

ξ

0.9

1

−3 −2 −1 0 1 2 3

n
,n

0

ξ

0.9

1

−3 −2 −1 0 1 2 3

n
,n

0

ξ

−0.08

−0.04

0

−3 −2 −1 0 1 2 3

j n
,j

n
,0

ξ

FIG. 8. Profiles of (a) particle density n(ξ ) and (b) its current
jn(ξ ) when back current flows without charge clogging.

0.974 ≈ nR
0 > nL

0 ≈ 0.875. Both initial states are prepared
with nonzero chemical potential, and stationary charge clog-
ging does not occur. However, Fig. 8(b) shows that back
current ( jn < 0) flows. As in the cases of stationary charge
clogging, n(ξ ) is not monotonic while n0(ξ ) is monotonic. In
the region VL < ξ < ξ−

−∞, n(ξ ) increases slightly with ξ and
approaches toward half filling. The current jn(ξ ) is nonzero
but its amplitude is small. In this sense, this is a “pseudo-
clogged” region. For ξ > ξ−

−∞, n(ξ ) decreases quickly and
this is accompanied by a large enhancement of jn. This de-
crease stops at ξ = VR,1 = ξ+

−1 and then n(ξ ) increases again.
It is notable that back current extends over the entire tran-

sient region VL < ξ < VR. Therefore, the stationary particle
density n(0) is larger than the initial particle densities in both
left and right parts n(0) > max{nR, nL} as shown in Fig. 8(a).
One should note that the back current is attributed to real-k
quasiparticle current jn,0 < 0, and all the contributions of
bound state excitations show a normal behavior, i.e., flows
towards lower-density side jn,a > 0 for a < 0.

IV. PROPORTIONALITY OF CURRENTS

In this section, we investigate the relations, particularly
proportionality, among spin, charge, and energy currents. As
will be shown later, there exist several ξ -regions showing
different behaviors of current ratios. To realize nonzero spin
current as well as charge current, we use initial conditions that
nonzero magnetic field and chemical potential are applied to
the left initial state: μ̄ ≡ βLμL �= 0 and B̄ ≡ βLBL �= 0. In our
previous work [48], we studied the ratio of spin and charge
currents in the high-temperature limit βL = 0 and showed that
the following simple relation holds in a region connected to
the left thermal equilibrium

jm(ξ )

jn(ξ )
= tanh B̄

2 tanh |μ̄| , (βL → 0, VL < ξ < VL,1), (16)

where VL,1 is defined in Eq. (8).
Let us first investigate how nonzero βL changes this propor-

tionality. Figure 9 shows the spatial profiles of the current ratio
jm(ξ )/ jn(ξ ) and the corresponding density ratio m(ξ )/n(ξ )
for various values of βL whereas (μ̄, B̄) is fixed to one of
four pairs. Note that μL and BL are also varied simultaneously
to fix (μ̄, B̄). The initial right state is set so that nR = 0.
All the data in Figs. 9(a)–9(d) show a plateau behavior of
jm(ξ )/ jn(ξ ). Namely, the region of constant current ratio per-
sists for all βL > 0’s used and its width agrees quite well
with VL < ξ < VL,1 calculated for each βL. For ξ > VL,1, the
current ratio decreases with ξ , but shows a second plateau for
larger ξ , which will be discussed later in detail. Varying βL at
least in the high-temperature region does not destroy a plateau
in the current ratio but has two main effects. The first effect
is about the constant ratio of jm/ jn. Lowering temperature
with keeping (μ̄, B̄) fixed decreases its value from the high-
temperature limit (16), which is shown by the black solid line
in each panel of the figure. The second effect is about the
width of the first plateau, and lowering temperature shrinks its
width. Comparison of the data for the different sets of (μ̄, B̄)
shows that larger |μL| or smaller |BL| expands the plateau
width when βL is fixed.
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FIG. 9. Profiles of the current ratio jm(ξ )/ jn(ξ ) (solid lines) and
the corresponding density ratio m(ξ )/n(ξ ) (dashed lines). In each
panel [(a), (b), (c), and (d)], the temperature in the initial left state
is varied in the range 0.5 � βL � 2, while the pair (βLμL, βLBL ) is
fixed. The initial right state is an electron vacuum nR = 0. Vertical
dashed-dotted line shows VL,1, while horizontal black solid line rep-
resents the high-temperature limit (16).

It is important that the plateau value of the current ratio
jm/ jn differs from the corresponding density ratio m(ξ )/n(ξ ),
which changes with ξ in this region, and also from the ratio
in the left equilibrium state mL/nL. This is consistent with
the fact that these ratios differ from Eq. (16) in the high-
temperature limit [48,52]

m(ξ )

n(ξ )
= tanh B̄

2 tanh |μ̄|
[

1 − 2n(ξ )−1

e2|μ̄| + 1

]
, (VL < ξ < VL,1),

(17)
mL

nL
= sinh B̄

2(e−|μ̄| + cosh B̄)
. (18)

The current and density ratios, jm/ jn and m/n, become closer
with further increasing ξ > VL,1.

We next examine how the right initial state changes the
proportionality among jn, jm, and energy current je. Figure 10
shows the results for the two values of temperature, βR = 0.5
and 2. For each value, chemical potential is varied in the range
−∞ � μR � −3, and the upper two panels show the propor-
tionality between jm and jn, while the lower two are for je and
jn. The other parameters of the initial condition are set to the
same values used in Fig. 9(b): (βL, μL, BL) = (1,−1, 2) and
BR = 0.

Let us discuss the results in Fig. 10. Figures 10(a) and
10(e) show that the ratio jm/ jn in the first plateau region
VL < ξ < VL,1 hardly depends on the initial right conditions
jm/ jn ≈ 0.62. This is also reflected by a universal slope of
the lines starting from the origin in Figs. 10(b) and 10(f). In

FIG. 10. Effects of varying the initial right conditions on the pro-
files of the ratios (a), (e) jm/ jn and (c), (g) je/ jn. Characteristics are
also shown for (b), (f) jn- jm and (d), (h) jn- je. In panels (a) and (e),
vertical solid lines represent ξ+

−1, and vertical dashed lines represent
ξ−

1 .

all of these cases, VL,1 = ξ−
−1, and this means that the right

boundary of the current ratio plateau is characterized by the
left light cone of the charge bound state with a = −1. Thus,
quasiparticles with charge 2e break the constant current ratio.

Another interesting finding is that the current ratio jm/ jn
shows a second plateau around ξ ∼ −1 in Figs. 10(a) and
10(e). The jm- jn curves in Figs. 10(b) and 10(f) show this
second plateau as an almost straight inclined line in the most
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ξVL VRVL,1

1st 
plateau

2nd 
plateau

spin
clog

quasi plateausmall
changeje/jn

jm/jn

FIG. 11. Summary of the behavior of the current ratios
jm(ξ )/ jn(ξ ) and je(ξ )/ jn(ξ ), for the initial conditions with μL �= 0,
BL �= 0, and BR = 0. Shaded parts are transient regions where the
current ratio shows a large change.

distant part from the origin. The current ratio in the second
plateau is smaller than the value in the first plateau. In con-
trast to the first plateau, this value depends on the initial
condition μR in the right part, and this is particularly evi-
dent at βR = 0.5. The ratio increases as μR approaches zero,
and this control corresponds to varying nR towards nL. We
found that the left border of the second plateau is determined
by the light cone ξ+

−1. Its value is calculated for each μR

and shown by a solid line in the figure (−6 � μR � −3 for
visibility). The right border is the light cone ξ−

1 and shown
by a dashed line. It is interesting that the second plateau
expands as μR goes down (nR decreases). This is related
to the size of spin clogged region, which will be explained
below.

With further increasing ξ , the second plateau terminates
and the current ratio jm/ jn shows a continuous drop down to
0. This part is represented in the jm- jn curves as a vertical
edge of each triangular loop.

The rightmost part connected to the right initial state is a
spin clogged region, where jm/ jn = 0. This is dual to charge
clogged region, which appears when the two parts with μ = 0
and �= 0 are connected. In this case, the two parts with B = 0
and �= 0 are connected and a spin clogged region appears. The
spin clogged region corresponds to a base of each jm- jn loop.
Its width is determined by V R − ξ+

∞ and expands as μR goes
up (i.e., higher density of nR).

Thus, summarizing the behavior of the current ratio jm/ jn,
the whole transient space VL < ξ < VR is divided into five
regions as shown in Fig. 11: two plateaus and one spin clogged
regions separated by two transient regions. This is different
when considering the ratio of energy and charge currents
je/ jn.

Figure 10 also shows the proportionality between energy
and particle density currents. Figures 10(c) and 10(g) show
that the ratio je/ jn changes with ξ and its value also varies
with the initial right conditions in the ξ -region of the first
plateau of jm/ jn. However, as ξ approaches VL, the ratio je/ jn
approaches a universal value ∼ − 5.2. This value is indepen-
dent of the initial right conditions. We calculated the ratio for
other initial conditions and found that it depends on the initial
left conditions. This result means that near the left thermal
equilibrium state each carrier in particle density current also
carries the identical energy irrespective of the initial right
conditions.

For ξ > VL,1, the ratio je/ jn shows a large ξ dependence
for a while, but Figure 10(c) shows that ξ -dependence is
strongly suppressed in the region of the second plateau of
jm/ jn and also at other ξ < VR. This quasiplateau behavior
becomes more evident as μR decreases, and the je- jn curve
shows a retracing straight line in the Fig. 10(d). The corre-
sponding results for the case of lower temperature in the initial
right state βR = 2 are plotted in Figs. 10(g) and 10(h). In this
case, the ratio je/ jn shows a large ξ dependence in the whole
ξ space, particularly for μR = −3 and −4, but the amplitude
of both currents is quite small in those cases as shown in
Fig. 10(h). Decreasing μR below −4, the ξ -dependence in
the region ξ > −1.5 is suppressed as in the case of βR = 0.5,
and the je- jn curve shows a quite straight path in Fig. 10(h).
With decreasing μR, the ratio je/ jn converges −4 in the
quasiplateau region. This value corresponds to the energy of a

carrier with the fastest velocity maxk
◦
vR

0 (k) = ◦
vR

0 (π/2) = 2.
As shown in Eq. (7), that is e0(π/2) = −2u = −4, since
u = 2 in the present work.

Thus, summarizing the behavior of the ratio je/ jn, the
whole transient space VL < ξ < VR is now divided into three
regions as shown in Fig. 11. In the first plateau and the first
transient regions of jm/ jn, the ratio je(ξ )/ jn(ξ ) shows a small
and large dependence on ξ , respectively. In the remaining
region, the ratio je(ξ )/ jn(ξ ) shows a quasiplateau behavior
that becomes evident as μR decreases.

V. CONCLUSION

In this paper, we mainly studied two issues of the nonequi-
librium quench dynamics in the 1D Hubbard model based on
the generalized hydrodynamics theory with the partitioning
protocol.

The first issue is the possibility of charge and spin clogging
in a stationary state, i.e., the phenomenon where charge or spin
current is zero whereas nonvanishing energy current flows at
the ray ξ = x/t = 0. We examined various cases of initial
conditions under the constraint that the initial particle density
is nL = 1 and nR < 1 for the two parts.

When stationary charge clogging occurs, the half-filled
region expands to the right side. In Sec. III, we numerically
solved the GHD equations for various initial conditions and
found several cases of stationary charge and spin clogging.
We studied the dependence on the initial conditions and found
that an important factor is the particle density of scattering
states n0. We found by numerical calculations that the condi-
tion nL

0 < nR
0 is crucial for stationary charge clogging [more

precise one in Eq. (13)]. Similar to stationary charge clog-
ging, when stationary spin clogging occurs, mL

0 − mR
0 > 0 is

satisfied in the cases of mL = 0 and mR > 0. When stationary
charge clogging occurs, n(ξ ) should be nonmonotonic, and
we found that there exists a back current, which flows towards
the higher-density region (n = 1). In the right part, as time
goes, the particle density decreases first and then increases to
be half filling, while the sign of its current does not change
jn < 0.

The second issue is the proportionality among currents of
spin jm, charge jn, and energy je. The current ratio jm/ jn in
the high-temperature limit βL = 0 was studied in our previous
work [48]. We numerically studied this issue at finite temper-
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atures in Sec. IV and calculated the profiles of spin, particle
density (equivalent to charge), and energy currents for various
sets of initial conditions and analyzed the results. We found
that the constant proportionality of jm and jn in the region
VL < ξ < VL,1 persists even at finite temperatures (the first
plateau). The value of this constant ratio depends on the initial
left temperature βL, but its dependence on the initial right
conditions is negligible. Another finding is a second plateau
of jm/ jn in the region of ξ+

−1 < ξ < ξ−
1 . In contrast to the first

plateau, the constant ratio in the second plateau depends on
the initial right conditions.

We also analyzed the ratio of energy and charge current
je/ jn with controlling the initial right conditions. We found

that as ξ approaches the left end of the transient region
VL the ratio, je/ jn approaches a constant value independent
of the initial right conditions. In a wide ξ -region including
the second plateau of jm/ jn, the ratio je/ jn also shows a
quasiplateau behavior particularly when μR is not so small.
When |μR| is large, the ratio je/ jn in the quasiplateau ap-
proaches the universal value −2u.

ACKNOWLEDGMENTS

Calculations in this work were partly performed using the
facilities of the Supercomputer Center at ISSP, the University
of Tokyo.

[1] P. Calabrese, F. H. L. Essler, and G. Mussardo, Introduction to
‘quantum integrability in out of equilibrium systems’, J. Stat.
Mech. (2016) 064001.

[2] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent
Hydrodynamics in Integrable Quantum Systems Out of Equi-
librium, Phys. Rev. X 6, 041065 (2016).

[3] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Transport
in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges
and Currents, Phys. Rev. Lett. 117, 207201 (2016).

[4] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, Gener-
alized Hydrodynamics on an Atom Chip, Phys. Rev. Lett. 122,
090601 (2019).

[5] R. J. Rubin and W. L. Greer, Abnormal lattice thermal conduc-
tivity of a one-dimensional, harmonic, isotopically disordered
crystal, J. Math. Phys. 12, 1686 (1971).

[6] H. Spohn and J. L. Lebowitz, Stationary non-equilibrium states
of infinite harmonic systems, Commun. Math. Phys. 54, 97
(1977).

[7] D. Bernard and B. Doyon, Energy flow in non-equilibrium
conformal field theory, J. Phys. A 45, 362001 (2012).

[8] D. Bernard and B. Doyon, Non-equilibrium steady states
in conformal field theory, Ann. Henri Poincaré 16, 113
(2015).

[9] M. J. Bhaseen, B. Doyon, A. Lucas, and K. Schalm, Energy
flow in quantum critical systems far from equilibrium, Nat.
Phys. 11, 509 (2015).

[10] M. Fagotti, Charges and currents in quantum spin chains: late-
time dynamics and spontaneous currents, J. Phys. A 50, 034005
(2016).

[11] A. De Luca, M. Collura, and J. De Nardis, Nonequilibrium
spin transport in integrable spin chains: Persistent currents and
emergence of magnetic domains, Phys. Rev. B 96, 020403(R)
(2017).

[12] B. Doyon and H. Spohn, Dynamics of hard rods with initial
domain wall state, J. Stat. Mech. (2017) 073210.

[13] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore,
Bethe-Boltzmann hydrodynamics and spin transport in the XXZ
chain, Phys. Rev. B 97, 045407 (2018).

[14] B. Doyon, T. Yoshimura, and J.-S. Caux, Soliton Gases and
Generalized Hydrodynamics, Phys. Rev. Lett. 120, 045301
(2018).

[15] M. Collura, A. De Luca, and J. Viti, Analytic solution of the
domain-wall nonequilibrium stationary state, Phys. Rev. B 97,
081111(R) (2018).

[16] B. Bertini and L. Piroli, Low-temperature transport in out-of-
equilibrium XXZ chains, J. Stat. Mech. (2018) 033104.

[17] B. Bertini, L. Piroli, and P. Calabrese, Universal Broadening of
the Light Cone in Low-Temperature Transport, Phys. Rev. Lett.
120, 176801 (2018).

[18] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura, Gen-
eralized hydrodynamics of classical integrable field theory: the
sinh-Gordon model, SciPost Phys. 4, 45 (2018).

[19] L. Mazza, J. Viti, M. Carrega, D. Rossini, and A. De Luca,
Energy transport in an integrable parafermionic chain via gen-
eralized hydrodynamics, Phys. Rev. B 98, 075421 (2018).

[20] M. Mestyán, B. Bertini, L. Piroli, and P. Calabrese, Spin-
charge separation effects in the low-temperature transport of
one-dimensional Fermi gases, Phys. Rev. B 99, 014305 (2019).

[21] U. Agrawal, S. Gopalakrishnan, and R. Vasseur, Generalized
hydrodynamics, quasiparticle diffusion, and anomalous local
relaxation in random integrable spin chains, Phys. Rev. B 99,
174203 (2019).

[22] B. Doyon, Generalized hydrodynamics of the classical Toda
system, J. Math. Phys. 60, 073302 (2019).

[23] V. B. Bulchandani, X. Cao, and J. E. Moore, Kinetic theory
of quantum and classical Toda lattices, J. Phys. A 52, 33LT01
(2019).

[24] E. Ilievski and J. De Nardis, Microscopic Origin of Ideal Con-
ductivity in Integrable Quantum Models, Phys. Rev. Lett. 119,
020602 (2017).

[25] E. Ilievski and J. De Nardis, Ballistic transport in the one-
dimensional hubbard model: The hydrodynamic approach,
Phys. Rev. B 96, 081118(R) (2017).

[26] B. Doyon and H. Spohn, Drude weight for the lieb-liniger bose
gas, SciPost Phys. 3, 039 (2017).

[27] V. Alba, Entanglement and quantum transport in integrable
systems, Phys. Rev. B 97, 245135 (2018).

[28] B. Bertini, M. Fagotti, L. Piroli, and P. Calabrese, Entangle-
ment evolution and generalised hydrodynamics: noninteracting
systems, J. Phys. A 51, 39LT01 (2018).

[29] V. Alba, Towards a generalized hydrodynamics description of
Rényi entropies in integrable systems, Phys. Rev. B 99, 045150
(2019).

[30] V. Alba, B. Bertini, and M. Fagotti, Entanglement evolution
and generalised hydrodynamics: interacting integrable systems,
SciPost Phys. 7, 005 (2019).

[31] L. Piroli, J. De Nardis, M. Collura, B. Bertini, and M. Fagotti,
Transport in out-of-equilibrium XXZ chains: Nonballistic be-

035130-9

https://doi.org/10.1088/1742-5468/2016/06/064001
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.1063/1.1665793
https://doi.org/10.1007/BF01614132
https://doi.org/10.1088/1751-8113/45/36/362001
https://doi.org/10.1007/s00023-014-0314-8
https://doi.org/10.1038/nphys3320
https://doi.org/10.1088/1751-8121/50/3/034005
https://doi.org/10.1103/PhysRevB.96.020403
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1088/1742-5468/aab04b
https://doi.org/10.1103/PhysRevLett.120.176801
https://doi.org/10.21468/SciPostPhys.4.6.045
https://doi.org/10.1103/PhysRevB.98.075421
https://doi.org/10.1103/PhysRevB.99.014305
https://doi.org/10.1103/PhysRevB.99.174203
https://doi.org/10.1063/1.5096892
https://doi.org/10.1088/1751-8121/ab2cf0
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1103/PhysRevB.97.245135
https://doi.org/10.1088/1751-8121/aad82e
https://doi.org/10.1103/PhysRevB.99.045150
https://doi.org/10.21468/SciPostPhys.7.1.005


YUJI NOZAWA AND HIROKAZU TSUNETSUGU PHYSICAL REVIEW B 103, 035130 (2021)

havior and correlation functions, Phys. Rev. B 96, 115124
(2017).

[32] B. Doyon, Exact large-scale correlations in integrable systems
out of equilibrium, SciPost Phys. 5, 054 (2018).

[33] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen, Superdif-
fusion in One-Dimensional Quantum Lattice Models, Phys.
Rev. Lett. 121, 230602 (2018).

[34] J. De Nardis, D. Bernard, and B. Doyon, Hydrodynamic Diffu-
sion in Integrable Systems, Phys. Rev. Lett. 121, 160603 (2018).

[35] S. Gopalakrishnan, D. A. Huse, V. Khemani, and R. Vasseur,
Hydrodynamics of operator spreading and quasiparticle dif-
fusion in interacting integrable systems, Phys. Rev. B 98,
220303(R) (2018).

[36] J. De Nardis, D. Bernard, and B. Doyon, Diffusion in general-
ized hydrodynamics and quasiparticle scattering, SciPost Phys.
6, 49 (2019).

[37] S. Gopalakrishnan and R. Vasseur, Kinetic Theory of Spin
Diffusion and Superdiffusion in XXZ Spin Chains, Phys. Rev.
Lett. 122, 127202 (2019).

[38] S. Gopalakrishnan, R. Vasseur, and B. Ware, Anomalous re-
laxation and the high-temperature structure factor of XXZ spin
chains, Proc. Natl. Acad. Sci. USA 116, 16250 (2019).

[39] M. Fava, B. Ware, S. Gopalakrishnan, R. Vasseur, and S. A.
Parameswaran, Spin crossovers and superdiffusion in the
one-dimensional Hubbard model, Phys. Rev. B 102, 115121
(2020).

[40] C. N. Yang, Some Exact Results for the Many-Body Problem
in One Dimension with Repulsive Delta-Function Interaction,
Phys. Rev. Lett. 19, 1312 (1967).

[41] M. Gaudin, Un systeme a une dimension de fermions en inter-
action, Phys. Lett. A 24, 55 (1967).

[42] E. H. Lieb and F. Y. Wu, Absence of Mott Transition in an
Exact Solution of the Short-Range, One-Band Model in One
Dimension, Phys. Rev. Lett. 21, 192 (1968).

[43] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E.
Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, England, 2005).

[44] N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G.
Roth, G. Behr, B. Büchner, and C. Hess, Ballistic heat transport
of quantum spin excitations as seen in SrCuO2, Phys. Rev. B
81, 020405(R) (2010).

[45] A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi,
and T. Giamarchi, On-chain electrodynamics of metallic
(TMTSF)2X salts: Observation of Tomonaga-Luttinger liquid
response, Phys. Rev. B 58, 1261 (1998).

[46] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E.
Smalley, L. Balents, and P. L. McEuen, Luttinger-liquid
behavior in carbon nanotubes, Nature (London) 397, 598
(1999).

[47] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin- and density-resolved
microscopy of antiferromagnetic correlations in Fermi-Hubbard
chains, Science 353, 1257 (2016).

[48] Y. Nozawa and H. Tsunetsugu, Generalized hydrodynamic ap-
proach to charge and energy currents in the one-dimensional
Hubbard model, Phys. Rev. B 101, 035121 (2020).

[49] See, for example, W. Jones and N. H. March, Theoretical Solid
State Physics Vol. 2 (John Wiley and Sons, New York, 1972).

[50] B. Pozsgay, Algebraic Construction of Current Operators in
Integrable Spin Chains, Phys. Rev. Lett. 125, 070602 (2020).

[51] L. Bonnes, F. H. L. Essler, and A. M. Läuchli, “Light-Cone”
Dynamics After Quantum Quenches in Spin Chains, Phys. Rev.
Lett. 113, 187203 (2014).

[52] M. Takahashi, One-dimensional hubbard model at finite tem-
perature, Prog. Theor. Phys. 47, 69 (1972).

[53] M. Takahashi and M. Shiroishi, Thermodynamic Bethe ansatz
equations of one-dimensional Hubbard model and high-
temperature expansion, Phys. Rev. B 65, 165104 (2002).

035130-10

https://doi.org/10.1103/PhysRevB.96.115124
https://doi.org/10.21468/SciPostPhys.5.5.054
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevB.98.220303
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1073/pnas.1906914116
https://doi.org/10.1103/PhysRevB.102.115121
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1103/PhysRevLett.21.192.2
https://doi.org/10.1103/PhysRevB.81.020405
https://doi.org/10.1103/PhysRevB.58.1261
https://doi.org/10.1038/17569
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1103/PhysRevB.101.035121
https://doi.org/10.1103/PhysRevLett.125.070602
https://doi.org/10.1103/PhysRevLett.113.187203
https://doi.org/10.1143/PTP.47.69
https://doi.org/10.1103/PhysRevB.65.165104

