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Orbital rotations induced by charges of polarons and defects in doped vanadates
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We explore the competition of doped holes and defects that leads to the loss of orbital order in vanadate
perovskites. In compounds such as La1−xCa xVO3 spin and orbital order result from superexchange interactions
described by an extended three-orbital degenerate Hubbard-Hund model for the vanadium t2g electrons. Long-
range Coulomb potentials of charged Ca2+ defects and e-e interactions control the emergence of defect states
inside the Mott gap. The quadrupolar components of the Coulomb fields of doped holes induce anisotropic
orbital rotations of degenerate orbitals. These rotations modify the spin-orbital polaron clouds and compete with
orbital rotations induced by defects. Both mechanisms lead to a mixing of orbitals, and cause the suppression of
the asymmetry of kinetic energy in the C-type magnetic phase. We find that the gradual decline of orbital order
with doping, a characteristic feature of the vanadates, however, has its origin not predominantly in the charge
carriers, but in the off-diagonal couplings of orbital rotations induced by the charges of the doped ions.

DOI: 10.1103/PhysRevB.103.035129

I. INTRODUCTION

The discovery that doping holes (or electrons) into Mott
insulators (MIs), formed by CuO2 layers, not just leads to a
metallic state and to the decay of the antiferromagnetic (AF)
order, but also yields high-temperature superconductivity [1]
was a great surprise. Very early, it was proposed that the
mechanism of high-temperature superconductivity originates
from the strong electron correlations, intrinsic to the MI [2–4]
rather than from the exchange of phonons. The discovery
triggered a systematic study of transition metal oxides [5,6],
many of them MIs, also to achieve deeper insights into the
fundamental open questions related to doped MIs. More re-
cently, time-dependent phenomena came into focus with the
discovery of ultracold fermion systems in optical lattices [7–9]
that represent alternative platforms to study Mott-Hubbard
physics.

Spin and/or orbital ordered phases are typical features
of orbitally degenerate MIs. The motion of doped holes in
such compounds leads to strings of misplaced spins [10–18]
or misoriented orbitals [19–21] or both [22–25]. In cuprates,
the perturbation induced by doping holes can be efficiently
described in terms of spin polarons [26,27] moving in a
two-dimensional (2D) spin- 1

2 quantum antiferromagnet. Due
to the strong quantum fluctuations, their kinetic energy is only
weakly reduced such that their binding to charged defects
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is small. As a consequence, the metal-insulator transition
and the breakdown of AF long-range order occur already at
quite low doping. In contrast, the perovskite vanadates, that
reveal strong quantum orbital fluctuations in certain regimes
[28,29], remain insulating up to moderate or even high doping
concentrations. For instance, Y1−xCaxVO3 enters a poor
metallic state only at x ≈ 0.5 [30]. In the parent compounds
RVO3, with R≡ La, Pr,..., Tb, Y, and Lu, the d2 configuration

FIG. 1. Orbital rotations due to charges of defects and doped
holes in RVO3: (a) CS/GO reference state with C-type order of
S = 1 spins of V3+ (d2) ions and alternating G-type orbital order
of occupied a≡yz and b≡xz vanadium orbitals. The occupied c≡xy
orbitals (not shown) are stabilized by a crystal field �c [see (b)].
Orbital rotations induced by a charged defect (red dot, Ca2+ ion) and
by the charge of a doped hole (blue dot, V4+ ion) on nearest-neighbor
V3+ ions are shown in (c) and (e), respectively. For clarity we display
only the highest rotated (i.e., unoccupied) orbital per V3+ ion in
the strong coupling limit (i.e., �c � D or Dh), whereas (d) and (f)
display the level splittings for moderate values of coupling constants
D and Dh.
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of V3+ ions has an orbital degeneracy of the t2g electrons
(Fig. 1) and Hund’s exchange stabilizes high-spin S =1 states
[31].

Orbitally degenerate Mott insulators display various kinds
of spin and orbital order [32–40]. RVO3 has several phases
with the respective transition temperatures dependent on the
radius of the R ions. For instance, all compounds from La
to Tb have a ground state with C-type spin and G-type or-
bital order (CS/GO) [41], i.e., with antiferromagnetic order
in the ab planes and ferromagnetic order along the c axis,
respectively, while the occupation of the topmost occupied
t2g orbital alternates between a=yz and b=xz [42] as shown
in Fig. 1(a), cf. also [43]. Above the Néel temperature TN,
there is a paramagnetic phase with G-type orbital order, which
disappears above the orbital order temperature TOO. In YVO3,
and all systems with smaller R ionic radius, there is a fur-
ther transition at TCG from the CS/GO to a complementary
GS/CO low-T state [44–46]. The CS/GO order emerges from
the intrinsic superexchange interactions, i.e., driven by strong
pseudospin- 1

2 orbital quantum fluctuations along the c axis.
These orbital fluctuations lead to much stronger FM spin cou-
plings in the CS/GO phase [47–49] than expected for frozen
orbitals, i.e., as assumed in Goodenough-Kanamori rules [50].
Strong orbital fluctuations in this state were also observed in
thin films, see e.g. [43]. YVO3 instead has a GS/CO ground
state triggered by also present Jahn-Teller interactions that
increase with decreasing R-ion radius [51–54]. Interestingly,
already traces of Ca doping switch the GS/CO ground state of
YVO3 to the CS/GO phase [41,55,56], a feature that could be
explained in a model for charged defects that we adopt here
[57,58].

Here, we explore the stability of the disordered CS/GO
phase and its gradual decay at large doping. It is the coupling
to the extra orbital degree of freedom in the vanadates that
leads to the quenching of the kinetic energy and to strong
localization and binding of polarons by the Coulomb potential
of defects. Yet, this strong localization creates a new puzzle:
How is then the orbital order destroyed in these compounds?
As alternative mechanism, the orbital rotations (ORs) at vana-
dium ions were identified. They are induced by the Coulomb
fields of the charged defects [57,58]. It was shown that ORs
are an effective perturbation as each defect is surrounded by
eight nearest vanadium neighbors [see Fig. 1(b)]. It yields
a natural explanation for the gradual suppression of G-type
orbital order in vanadates as function of doping [59], and the
absence of clear signatures of collective phase transitions [60].
In this paper, we explore a complementary, a priori equally
important, orbital polarization mechanism triggered by the
polaron charge [see Fig. 1(c)]. A mechanism of this kind
was found essential by Kilian and Khaliullin [61] in a study
of orbital polarons in the orbital liquid regime of eg orbitals
in manganites [62–64]. For the t2g orbitals of vanadates we
find an abrupt reduction of orbital order caused by doped
holes and polarons beyond a critical coupling strength. Yet,
in combination with ORs induced by the defect charges the
gradual decline of orbital order dominates and is amplified by
ORs due to the polarons.

Despite the cubic structure, the undoped CS/GO state is
highly anisotropic, due to the FM correlations along the c axis,

where strong quantum orbital fluctuations boost the superex-
change [28,47–49]. Tokura and coworkers [65] observed that
the anisotropy ratio Aopt of optical weights for polarizations
along z and x axis changed from about two to one at large
doping in the CS phase. A goal of our work is to shed light on
this puzzle by studying the asymmetry in the kinetic energy
A = Kz/Kx that is strictly related to Aopt [48]. The case of
the vanadates is puzzling as the isotropy of kinetic energy
is observed at doping concentrations where the anisotropic
magnetic CS order still persists.

The paper continues in Sec. II with a brief description of
the minimal model for the doped vanadate Mott insulators.
The main focus here is on the orbital rotation terms that
control the orientation of vanadium orbitals, and are a con-
sequence of the Coulomb fields of defects and doped holes
or electrons. In Sec. III the effect of orbital rotations on the
occupation of orbitals, the magnetic and the orbital order is
studied. In Sec. IV we present our conclusions. The Appendix
contains further details of the multiorbital Hubbard-Hund in-
teraction, the Jahn-Teller and other small terms, as well as the
derivation of the orbital polarization terms.

II. MULTIORBITAL MODEL FOR DOPED VANADATE
MOTT INSULATORS

The minimal Hamiltonian that describes the t2g electrons,
the Mott gap, and the defect states in R1−xCaxVO3 is [58]

Ht2g = HHub +
∑
mi

v(rmi )n̂i +
∑
i< j

v(ri j )n̂in̂ j + Hpol. (1)

It includes an extended three-band Hubbard model HHub

[66,67] that describes the electronic multiplet structure of
the V3+ ions [57] and the different phases of the parent
compounds. For a first orientation the details of this term
can be ignored. They are described, however, in the Ap-
pendix. The second term in Eq. (1) describes the Coulomb
potentials of D− defects, that have an effective negative
charge and represent, for instance, Ca2+ substituting R3+
ions. Defects attract doped holes and strongly repel elec-
trons of V ions in the vicinity and shift these states from
the lower Hubbard band into the Mott gap [24]. Here
n̂i = ∑

ασ n̂iασ is the t2g electron density operator with
n̂iασ = d̂†

iασ d̂iασ and orbital flavors α={yz, zx, xy}≡{a, b, c}
[42] [see Fig. 1(a)]. The third term, the e-e interaction, leads
to the screening by t2g electrons and doped holes. Both terms
are determined by the Coulomb field v(r) ≡ e2/εcr, where
εc � 5 is the dielectric constant of the core electrons [57] and
r is the distance between charges of (i) a defect D− at site m
and t2g electrons at a V ion at site i, i.e., rmi = |Rm − ri|, and
(ii) two V ions at sites i and j with ri j = |ri − r j |.

Central to our discussion are the orbital polarization terms
Hpol ≡ H(1)

pol + H(2)
pol. They describe the ORs and the redis-

tribution of t2g electronic charge at V ions, induced by the
Coulomb fields of defects and doped holes. These terms
appear in addition to the monopole terms that are already
contained in the minimal model. The orbital polarization term
H(1)

pol, due to the charged defect [58], reads as

H(1)
pol = D

∑
m,i∈Cm
α,β,σ

λd
αβ δd,ri−Rm d̂†

iασ d̂iβσ , (2)
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where the coupling constant D is defined by the matrix el-
ement 〈iα|v(|r−Rm|)|iβ〉 ≡ Dλd

αβ in the basis α = {a, b, c}
[see Fig. 1(a)], with d=ri−Rm. We shall treat D as a free
parameter; a typical value is D ≈ 50 meV [59]. The effect of
orbital rotation is short ranged and affects only the 8 V ions
of the defect cube Cm of the defect m. The matrix elements
λd

αβ are traceless, like the three-flavor SU(3) matrices [68,69].
They depend on the diagonal axis d in the defect cube, i.e.,

λd
αβ =

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠,

⎛
⎝ 0 1 1̄

1 0 1̄
1̄ 1̄ 0

⎞
⎠,

⎛
⎝ 0 1̄ 1

1̄ 0 1̄
1 1̄ 0

⎞
⎠,

⎛
⎝ 0 1̄ 1̄

1̄ 0 1
1̄ 1 0

⎞
⎠

for d ‖ (111), (111̄), (11̄1), and (1̄11), respec-
tively. In the large-D limit, the unoccupied orbital
|a′〉= (|a〉+ |b〉+ |c〉)/

√
3 shown in Fig. 1(c) follows from

H(1)
pol alone. It has the largest overlap with the negative defect

and thus the highest energy.
The orbital polarizations H(2)

pol induced within the t2g or-
bitals of V ions by the quadrupolar components of the
Coulomb fields of doped holes is the central issue of this
paper. This perturbation of the orbital order, as well as the
competition with orbital rotations induced by defects, has not
been explored before. The perturbation due to the polaron
charge results from e-e interactions, where n0 − 〈n̂ j〉 measures
the hole density relative to the undoped system:

H(2)
pol = Dh

∑
m,i∈C j
α,β,σ

ζ h
αβ (n0 − 〈n̂ j〉)d̂†

iασ d̂iβσ . (3)

Here, n0 = 2 and we restrict the sum over ri to a neighborhood
C j that includes the 6 V neighbors of the hole at j as shown in
Fig. 1(e). A detailed derivation is given in the Appendix. The
coupling constant Dh is defined by the matrix element of the
field of the hole at r j :

Dhζ
h
αβ ≡ −(〈iα|v(|r−r j |)|iβ〉 − v(|h|)δαβ ),

with respect to the orbital basis a = yz, b = zx, and c = xy,
see Eq. (A2):

ζ h
αβ =

⎛
⎝ 2 0 0

0 1̄ 0
0 0 1̄

⎞
⎠,

⎛
⎝ 1̄ 0 0

0 2 0
0 0 1̄

⎞
⎠,

⎛
⎝ 1̄ 0 0

0 1̄ 0
0 0 2

⎞
⎠,

where ζ h
αβ depends on the axis h ‖ (100), (010), and (001),

respectively. That is, for a (001) V-ion neighbor of a hole at r j ,
the c orbital energy is raised by 2Dh, while a(b) are lowered
by Dh [see Fig. 1(f)]. This term frustrates the polarization
around charged defects Eq. (2).

The level splittings induced by the polaron charge are
illustrated in Fig. 2 where the hole was inserted into the b
orbital of the ion V0 in the center of the polaron. In the GO
state, all nearest neighbors of V0 have the c and a orbitals
occupied. The actions of H(2)

pol along the different cubic di-
rections are different, however. To see this anisotropy of the
orbital polaron it is useful to consider the matrix notation of
ζ h
αβ which depends on the axis h ‖ (100), (010), and (001).

For instance, at the (001) vanadium-ion neighbor, labeled V3,
of the doped hole at the ion V0 the c orbital energy is raised by

FIG. 2. (a)–(c) Change of level splitting of neighbor ions Vn

of a hole at V0 for two different cases: Dh = 0 and large Dh.
(d) Ions in x(y, z) direction, respectively, from the polaron center
at V0 carry labels n = 1(2, 3). Arrows indicate the occupation of
orbitals and a(b, c) are orbital labels. A cross indicates the blocking
of superexchange on bond V1-V4 due to an a to b orbital excitation
on ion V1 induced by the charge in the center of the polaron at V0.
(e) Occupation of the levels at the V0 site, where the hole (blue dot)
generating the polarization cloud resides. Grayed out arrows indicate
electrons either removed by doping (V0) or moved to a different
orbital (V1 and V3). Red arrows indicate the final orbital destination
of removed (grayed out) electrons.

2Dh, while a(b) are lowered by Dh. This term eliminates the
a/b orbital polarization at V3 ions. The other cubic directions
are different, for instance, along the b axis the occupation of
V2 does not change at all. Yet, along the a axis the a orbital of
V1 is raised by 2Dh while the others are lowered. This leads to
switching from a to b occupation as displayed in V1. We note
that this switching is particularly harmful for the a/b orbital
order, as it favors the inverted order.

An important consequence of the orbital excitation from
a to b occupation of ion V1 when Dh crosses the switching
value is a blocking of orbital superexchange processes along
the z direction. This is indicated by a red cross on the V1-V4

bond. Since the same occurs on the complementary z bonds
centered at two equivalent V1 ions, the total energy increase,
or loss of negative superexchange energy, corresponds to four
broken bonds, each bond corresponding to a virtual kinetic
energy of �0 = E0

kin = 0.10 eV for t = 0.2 eV. Thus, the total
increase of kinetic energy is then 0.4 eV, which coincides with
the kinetic energy change per polaron, as we shall see further
below.

Moreover, the occupation change at V1 does not involve
the change of crystal-field energies, although there are some
changes of Jahn-Teller energies which we neglect here in the
discussion (but not in the calculations). The latter are, how-
ever, small compared to the change of superexchange energy.
Therefore, we can conclude that the crossover scale Dc

h is not
determined by crystal-field and/or Jahn-Teller terms, but by
the interplay of the OR terms and the superexchange energy,
that is, the scale is determined by the quantum dynamics of
the electrons, and is confirmed by our numerical study.

III. ORBITAL ROTATIONS INDUCED BY DEFECTS
AND POLARONS: RESULTS

In this study, we explore the spin-orbital order of vana-
dates in the insulating regime, where doped holes are bound
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FIG. 3. Electron densities: (a) nab for a and b orbitals and
(b) nc for c orbitals, as function of coupling strengths D and Dh,
respectively, for x = 0.0625. The electron transfer is compared for
three cases, namely, the orbital polarization clouds induced either by
defect charges or the polaron charges, as well as the combined effect.

to random defects and typically prefer a V site on a defect
cube; which site depends on the Coulomb interactions with
all other defects and doped holes. The latter generate polarons
and form defect states inside the Mott gap that persists up to
high doping [24]. We calculate the disordered electronic struc-
ture using a variant of the unrestricted Hartree-Fock method
[70,71] that obeys rotational invariance in both spin and or-
bital space [58,72], emphasized as well in HHub [73] and in
slave-boson theories [74–76]; this formulation preserves the
multiplet structure of atoms and ions and thereby avoids the
shortcomings of the nonrotational invariant formalism.

We first discuss the effect of H(1)
pol and H(2)

pol on the orbital
densities nab and nc. In Fig. 3, we monitor three cases, namely,
the separate effects of defect and polaron-induced ORs, as
well as the combined effect, where we use the geometrical
relation Dh/D = ξ ∼ 0.87, defined by the ratio ξ = d/a of
nearest-neighbor V-D (d) and V-V (a) distances. For D = 0,

Dh = 0, doped holes go into a and b orbitals due to the
crystal field �c, i.e., nab = 1 − x and nc = 1. The increase
of nab versus D (at Dh = 0) can be qualitatively under-
stood from the rotation of occupied states {|c〉, |b〉} into
|c′〉=(2|c〉−|a〉−|b〉)/

√
6 and |b′〉 = (|b〉 − |a〉)/

√
2 in the

large-D limit and at t = 0 [see Fig. 1(c)].
The transfer of holes into the c orbitals due to Dh (D=0) is

induced by an upward shift of a c orbital as shown in Fig. 1(f).
From H(2)

pol, one recognizes that, along a second polaron axis,
there is no change of occupation and, along the third axis,
there is an interchange of a and b orbital occupation. It is
this latter mechanism that is particularly harmful for the a/b
orbital order.

The change of G-type orbital order parameter with D and
Dh is shown in Fig. 4(a). It is determined by the spatial
modulation of the local occupation numbers nia and nib,

mo
ab ≡ 1

M

M∑
s=1

1

N

∑
i

〈n̂ia − n̂ib〉se
iQG·ri , (4)

where the disorder average is typically taken over M = 100
defect realizations s and QG ≡ (π, π, π ). Typical system sizes
are N = 43 or 83. For small Dh = ξD, the behavior of mo

ab is
very similar to the pure D (Dh = 0) case. The very different
behaviors of the pure polaron-induced Dh (D = 0) and defect-

FIG. 4. Changes of the ground state at doping x = 0.0625 due
to orbital polarization: (a) collapse of G-type orbital order mo

ab (4)
for three cases as in Fig. 3; (b) kinetic energy change per doped
hole δK = δKz + 2δKx versus Dh for D = 0 with contributions from
hopping along z and x(y), as well as contributions from different
orbitals to δKx = δKab

x + δKc
x .

induced rotation results from the diagonal versus off-diagonal
nature of ζ h

αβ and λd
αβ , respectively. This explains that, in spite

of frustration, the qualitative decay of orbital order of the
combined action of Dh = ξD is similar to the ORs due to
defects alone. Nevertheless the ORs due to polarons leads to
evident effects for large D.

The drop of orbital order in Fig. 4(a), triggered by
the polaron-induced ORs, occurs at a crossover scale
Dh ∼ 0.17 eV for D=0. The crossover scale of H(2)

pol is
determined by the change of kinetic energy per polaron
δK = [K (x) − K (0)]/Nx, where Nx =xN [see Fig. 4(b)]. The
change of δK ∼ 0.4 eV corresponds to the breaking of four
superexchange bonds along the z direction expected from a
switch of a to b occupation at two V neighbors of a “b” hole.
That is, the stiffness of the magnetic correlations induced by
superexchange sets the scale, and not the crystal-field nor the
Jahn-Teller terms.

The magnetic anisotropy of the CS/GO phase of the parent
compounds is a manifestation of the strong orbital fluctuations
along the z axis [47,77,78]. This implies a much larger virtual

0 0.05 0.1
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-0.02

Kab
x

K
x (

eV
)

Dh (eV)

Kc
x

Kx

(b)
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-0.08

-0.06

K
z (

eV
)

Dh (eV)

x = 0

1/16

1/8

3/16

1/4

(a)

FIG. 5. (a) Kinetic energy Kz versus polarization strength Dh

(for fixed D = 0.05 eV) and doping x = 0, 1
16 , 1

8 , 3
16 , and 1

4 ; and
(b) kinetic energy Kx along x direction with its contributions Kx

ab

and Kx
c from a, b, and c electrons, respectively.
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FIG. 6. Anisotropy of the kinetic energy for increasing doping
x ∈ [0, 0.5]: (a) Contour plot of the ratio A=Kz/Kx for variable
defect-induced orbital rotation coupling constant D, and (b) a com-
parison of the x dependence of the anisotropy Aopt obtained from
optical experiments [65] (squares) for La1−xSrxVO3 and A for
D = 0, 0.01, . . . , 0.1 (legend). Parameter: Dh = 0.

kinetic energy of a and b orbitals along z as compared to
the virtual hopping along x. For the undoped parent state,
we find a large anisotropy A ≡ Kz/Kx ∼ 1.78 although the
hopping element t = 0.2 eV in HHub (1) is identical for all
cubic directions. This anisotropy A is similar to the ratio of
measured optical weights Aopt ∼ 1.84 for LaVO3 [65].

Next, we explore the change of the kinetic energy com-
ponents Kz and Kx as functions of x and Dh for fixed
D = 0.05 eV. The upward shift of Kz with hole doping x in
Fig. 5(a) reflects the loss of superexchange or binding energy.
The loss is further amplified by the Dh term. The total Kx

values in Fig. 5(b) lie close to −0.06 eV and show only a
marginal dependence on x and Dh. The small changes of the
components Kab

x and Kc
x with Dh reflect the transfer of holes

from {a, b} to c orbitals. Hence, we find that the change of
the total kinetic energy K with doping x is almost completely
determined by Kz, which results from large {a, b} orbital fluc-
tuations along z that favor G-type orbital order. The data in
Fig. 5 imply a decrease of the anisotropy A with increasing
polaron parameter Dh (at D= 0.05 eV), however, most of the
reduction of A with doping results from D, i.e., the OR clouds
induced by the defects. It is worth noting that it is much harder
to reach self-consistency at moderate Dh, due to the motion of
holes, than in calculations with defect-induced ORs alone.

The contour plot of the anisotropy A=Kz/Kx of kinetic
energies in Fig. 6(a) for Dh =0 displays a strong reduction
towards A∼1 when both the defect-induced OR parameter
D and doping x become sufficiently large. At x=0.2 and
D=0.06 eV, the asymmetry A∼1.3, whereas in absence of
ORs, for D=0=Dh, the decay of A with x is much weaker.
In the latter case, it is caused exclusively by the motion of
doped holes bound to defects as small spin-orbital polarons
[24]. Figure 6(b) shows the decay of A versus doping x for
different values of D and provides a comparison with the
optical anisotropy Aopt as determined for La1−xSrxVO3 [41],
the only system where such data seem to exist. It is remarkable
that the theoretical A and experimental Aopt almost coincide
for the undoped system. The most pronounced discrepancy is
a tendency of Aopt towards a cooperative transition.

However, the cooperative nature of the decay of orbital or-
der in the (La,Sr) system appears as an exception; experiments
for (Pr,Ca), (Nd,Sr), and (Y,Ca) show a gradual decline of
the order parameter with x [41,56]. We saw above that ORs
induced by defects act noncooperatively, consistent with such
a gradual decline. Yet, ORs induced by polaron charges may
well lead to cooperative transitions as they are driven by e-e
interactions; accordingly, they can be extremely relevant to
fine tune the theory to specific compounds.

IV. CONCLUSIONS

The robustness of the insulating state and of the G-type
orbital order in the vanadates, observed in several experiments
[41], has two main causes:

(i) Doped holes are localized by defects and form small
spin-orbital polarons. The main kinetic energy gain of a doped
hole is a double-exchange process on an active bond (a ferro-
magnetic bond in c direction) next to a defect.

(ii) Orbital order is predominantly suppressed as function
of doping x not by the kinetic energy associated with the small
polaron but rather by noncooperative orbital rotations induced
by defect charges.

An important feature of both orbital rotation mechanisms,
namely, the orbital rotations due to the charges of defects and
of polarons, is the transfer of holes from the a/b orbitals to
c orbitals. In the absence of these terms, in the atomic limit
t → 0, one finds nc = 1 and nab = 1 − x, where the latter
relation shows that doped holes go into a/b orbitals. Table I
summarizes the transfer of holes in two further limits; for
instance, if Dh is in the saturation regime (and D = 0) the
number of electrons in the a/b sector becomes even larger
than one, that is, nab = 1 + x, whereas there are now even
more holes in the c orbitals, i.e., nc = 1 − 2x, than expected
from the doping concentration x.
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TABLE I. Doping dependence of occupation numbers nab and nc

in the atomic limit (t → 0) for different limiting cases for Dh and
D. Here, Dsat

h and Dsat denote saturation values where the orbital
rotation is complete.

Dh D nab nc

0 0 1 − x 1
Dsat

h 0 1 + x 1 − 2x
0 Dsat 1 − x + 8

3 x 1 − 8
3 x

Figure 7 displays the decay of the G-type orbital order
parameter mo

ab as function of Dh. Interestingly, it also shows
a slight increase of the complementary C-type spin order in
the ab orbital sector ms

ab. This perhaps surprising increase of
ms

ab is related to the transfer of holes from {a, b} to c orbitals
due to ORs. It is reminiscent of the peculiar robustness of the
long-range CS order in the large doping regime where orbital
order is still present, but short ranged [56].

In summary, we explored the competition between the
orbital rotations induced by the polaron charges and those
induced by the defect charges, a priori both being of similar
importance. We found that these rotations are the key mecha-
nisms that control the decay of orbital order of t2g electrons in
doped vanadates, much more important than the string mech-
anism [11,13–15] active in high-Tc superconductors. When
they act together, the qualitative suppression of orbital order
appears to be mainly controlled by the off-diagonal rotations
(2) due to defect charges. We found that the energy scale for
rotation of orbitals is primarily determined by quantum orbital
fluctuations rather than by classical crystal fields and Jahn-
Teller potentials. It is very surprising that the suppression of
the anisotropy of kinetic energy under increasing doping x
occurs in the still-anisotropic C-type magnetic state.

FIG. 7. Decline of orbital order moG
ab for several doping concen-

trations versus orbital rotation coupling constant Dh due to polaron
charges and the simultaneous strengthening of CS order msC

ab of a/b
electrons, i.e., resulting from the transfer of holes from a, b to c
orbital sector.
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APPENDIX: DETAILS OF THE HAMILTONIAN

In this Appendix, Sec. 1, we summarize the detailed, min-
imal multiorbital Hubbard model for the description of the
spin and orbital degrees of freedom which give rise to the
rich phase diagram of the RVO3 vanadates with perovskite
structure. We confine ourselves to the space spanned by the
t2g electrons of vanadium. An extension of the minimal model,
i.e., by implementation of the Coulomb fields of defects and
the electron-electron interactions in Sec. 2 allows to study the
doped systems. By the inclusion of the e-e interactions the
extra screening of the defect potentials by the doped elec-
trons and/or holes are taken into account within the UHF
approach. In Secs. 3 and 4 we discuss the derivation of the
extra quadrupolar terms that result from the Coulomb fields of
defects and among electrons, respectively. Perhaps it is useful
here to remind the reader that the monopole Coulomb fields
due to defects and e-e interactions are explicitly contained in
the minimal model as described in Sec. 2.

Our general approach follows a similar route as the many-
body treatment of high-Tc superconductors where one also
starts from a minimal model, namely, the planar one-band
Hubbard model [2], although the model for the vanadates here
is more complex. The Hubbard model of cuprates contains the
spin- 1

2 Heisenberg model, the doped holes and their interac-
tions. All states not directly related to Cu(d9), in particular
the O(2p) states, have been “integrated out.” Their effect is
still present in the form of renormalized effective parameters,
like for instance the hopping parameters ti j . As long as one
is interested in the low-energy and low-temperature physics
this approach is fully justified. Only if one considers spectro-
scopies in the energy window of p-d transitions, where the
oxygen states come into play, then the model is not sufficient
to describe those, as they have been integrated out.

1. Three-orbital flavor Hubbard model

The three-orbital Hubbard model for the t2g electrons was
introduced for the triangular lattice [66] and adopted later for
the pnictide superconductors [67]. It has very rich physics for
electronic orders as shown recently [79]. Here, we use it for
doped vanadium (La, Y)1−xCaxVO3 perovskites [24,57,58]

HHub = Hkin + Hint + HCF + HJT. (A1)

Its main part consists of the kinetic energy Hkin and of
the local interactions between the electrons in the three t2g

orbitals, Hint. It describes the situation in the vanadium per-
ovskites after supplementing it by rather weak terms [49,53]:
the crystal-field (CF) splitting HCF, and the Jahn-Teller (JT)
interactions HJT [58].

Below we use the definition of t2g orbital degrees of free-
dom which selects uniquely a single cubic direction along
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which the hopping is inactive to label each orbital flavor [42]:

|a〉 ≡ |yz〉, |b〉 ≡ |zx〉, |c〉 ≡ |xy〉. (A2)

The kinetic energy for t2g electrons preserves the orbital flavor
in the hopping along the bond 〈i j〉 ‖ γ oriented along one of
the cubic axes γ ∈ {a, b, c}. It reads as

Hkin =
∑
〈i j〉‖γ
α,β,σ

tαβ
i j (d̂†

iασ d̂ jβσ + d̂†
jβσ d̂iασ ). (A3)

Here, d̂†
iασ is the electron creation operator in the t2g orbital

α ∈ {xy, yz, zx} with spin σ =↑,↓ at site i. The effective
hopping (t > 0)

tαβ
i j = −t δαβ (1 − δγα ) (A4)

occurs in two steps, via the hybridization to an intermedi-
ate oxygen 2pπ orbital, along idealized 180◦ V–O–V bonds.
Therefore, the hopping is (i) diagonal and conserves the or-
bital flavor α when the hybridization with the oxygen 2pπ

orbitals is finite, and (ii) zero otherwise, i.e., if the hybridiza-
tion with the oxygen 2pπ orbitals vanishes by symmetry.

Local interactions at vanadium ions Hint are rotationally in-
variant in the orbital space [73] and depend on two Kanamori
parameters: (i) intraorbital Coulomb interaction U and
(ii) Hund’s exchange JH between each (equivalent) pair of t2g

electrons in different orbitals:

Hint = U
∑

iα

n̂iα↑n̂iα↓ + JH

∑
i,α �=β

d̂†
iα↑d̂†

iα↓d̂iβ↓d̂iβ↑

+
∑

i,α<β

[(
U − 5

2
JH

)
n̂iα n̂iβ − 2JH �̂Siα · �̂Siβ

]
. (A5)

Interorbital Coulomb interactions ∝n̂iα n̂iβ are expressed
in terms of orbital electron density operators for a pair
α < β, n̂iα = ∑

σ n̂iασ = ∑
σ d̂†

iασ d̂iασ . Orbital spin operators

�̂Siα ≡ {Ŝx
iα, Ŝy

iα, Ŝz
iα} appear in Hund’s exchange term

−2JH �̂Siα · �̂Siβ . In a Mott insulator, charge fluctuations are
quenched and electrons localize due to large energy of
the fundamental Mott gap (U − 3JH ) � t , associated with
high-spin charge excitation. In the case of LaVO3, one finds
the ground state in a t2

2g configuration at each vanadium ion.
Hund’s exchange JH stabilizes high-spin states with spin
S = 1. The insulating ground state of LaVO3 has a C-type
antiferromagnetic spin (CS) order coexisting with G-type
alternating orbital (GO), i.e., CS/GO order [49].

The CF Hamiltonian

HCF = −�c

∑
i

n̂ic (A6)

lifts the degeneracy of the three t2g orbitals, breaks the cubic
symmetry in the orbital space, and favors the electron occu-
pancy in c ≡ xy orbitals. This symmetry breaking occurs at
the structural transition intervening at temperature Ts [31]. We
take �c as a constant parameter independent of temperature;
it selects the orbital doublet as orbital degree of freedom and
gives either c1

i a1
i or c1

i b1
i configuration at the V ion at site

i, depending on the actual lattice distortion in the ab plane.
In a Mott insulator, spin-orbital superexchange explains the
ground state observed in LaVO3 [47].

Lattice distortions change the electronic state and induce
weak JT interactions in the three-band Hubbard model (A1):

HJT = 1

4
Vab

∑
〈i j〉‖ab

(n̂ia − n̂ib)(n̂ ja − n̂ jb)

− 1

4
Vc

∑
〈i j〉‖c

(n̂ia − n̂ib)(n̂ ja − n̂ jb). (A7)

Using the orbital τ z
i operators [47],

τ z
i ≡ 1

2

∑
σ

(d̂†
iaσ d̂iaσ − d̂†

ibσ d̂ibσ ), (A8)

the JT interactions in Eq. (A1) are

HJT = Vab

∑
〈i j〉‖ab

τ̂ z
i τ̂

z
j − Vc

∑
〈i j〉‖c

τ̂ z
i τ̂

z
j . (A9)

These interactions stabilize another competing type of spin-
orbital order [47], the G-type AF spin (GS) spin coexisting
with C-type AO (CO) order, which represents the GS/CO
ground state in YVO3 [45,57]. Small doping x � 0.01 leads
to a phase transition to the CS/GO phase [57], which is the
phase studied in this work.

Following the earlier studies [24], we have fixed the small
parameters in HCF and HJT as follows: �c = 0.1, Vab = 0.03,
and Vc = 0.05 (all in eV). The term ∝Vab favors alternating
{a, b} orbitals, i.e., G-AO order in the ab planes (Vab > 0)
while the ferro-orbital order is favored along the c cubic axis
(Vc > 0). Thus, the term ∝Vc weakens the superexchange or-
bital interaction ∝Jr1, where J = 4t2/U and r1 = (1 − 3η)−1

with η = JH/U [47]. One finds that for the present parameters
(U = 4.5, t = 0.2, JH = 0.5, all in eV) Jr1 = 53 meV, so
taking Vc = 50 meV one is indeed close to the switching of
the orbital order observed in YVO3 [45,46,54].

2. Coulomb fields and orbital rotations due to charged
defects and polarons

The complete Hamiltonian for t2g electrons in doped vana-
dium (La, Y)1−xCaxVO3 perovskites [Eq. (1)] reads as [24]

Ht2g= HHub +
∑
i< j

v(ri j )n̂in̂ j +
∑
mi

v(rmi )n̂i + Hpol. (A10)

It includes the three-band Hubbard model HHub [49] (see
above), the long-range electron-electron and defect-electron
interactions ∝v(r) (see main text) and orbital polarization
terms

Hpol = H(1)
pol + H(2)

pol. (A11)

The first term was analyzed before and is responsible for the
collapse of orbital order under doping by charged defects [59].

3. Defect-induced orbital polarization

The term of the Hamiltonian for vanadium ions at ri in the
Coulomb potential of defects D− at Rm is

HD =
∑

m,i∈Cm
α,β,σ

〈iα|v(|r−Rm|)|iβ〉d̂†
iασ d̂iβσ . (A12)
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Introducing

Vαβ
mi = 〈iα|v(|r−Rm|)|iβ〉 (A13)

and

V̄αα
mi = 1

3

∑
α

Vαα
mi ≡ v(rmi ) (A14)

one obtains

HD =
∑
mi

v(rmi )n̂i + H(1)
pol, (A15)

where the sums in the first term extend over the whole system.
The range of the polarization term, due to the short-range

nature of the matrix elements, will be restricted to the defect
cube of the respective defect Cm. The polarization term

H(1)
pol =

∑
m,i∈Cm

ασ

[
Vαα

mi − v(rmi )
]
n̂iασ +

∑
m,i∈Cm
α �=β,σ

Vαβ
mi d̂†

iασ d̂iβσ (A16)

consists of a diagonal and an off-diagonal term. For a
nondistorted cubic neighborhood only the off-diagonal terms
contribute, where the coupling constant D is defined by the
matrix element

Dλd
αβ ≡ Vαβ

mi = 〈iα|v(|r−Rm|)|iβ〉. (A17)

Here, λd
αβ contains the signs of the matrix elements and is

displayed in the main text. The signs do depend on the re-
spective diagonal of the defect cube, i.e., parallel to the vector
d=ri−Rm connecting the respective V ion and the defect.
The rotation operator can then be summarized as

H(1)
pol = D

∑
m,i∈Cm
α,β,σ

λd
αβ δd,ri−Rm d̂†

iασ d̂iβσ . (A18)

A value D ≈ 50 meV has been estimated by simple defect-
potential-mediated superposition integrals, given a strength of
the defect potential at the vanadium sites (at a given t2g orbital)
of 2 eV.

4. Orbital polarization due to the polaron charge

The orbital polarization induced on the vanadium ion at ri

due to the charge of polaron at r j stems from e-e interactions.
The leading term H(2)

pol has monopole-quadrupole character.
Similar to the defect case we can write

H(2)
pol =

∑
j,i∈C j
α,β,σ

(
Vαβ

ji − δαβv(r ji )
)
(〈n j〉 − n0)d̂†

iασ d̂iβσ . (A19)

Here (〈n j〉 − n0) represents the negative density of doped
holes, and n0 is the number of electrons per V ion in the un-
doped case, i.e., for the d2 configuration n0 = 2. The coupling
constant Dh follows from the two-center matrix element

Vαβ
ji = 〈iα|v(|r−r j |)|iβ〉. (A20)

For the undistorted cubic system only diagonal terms con-
tribute, that depend on the vector h=ri−r j connecting V
ion and the polaron density at r j , where we include only the
nearest neighbor V ions to the V ion at site j, i.e., in the
neighborhood C j . The coupling constant Dh is defined by the
matrix element of the field of the hole at r j and the orbitals at
ri:

Dhζ
h
αβ ≡ −(〈iα|v(|r−r j |)|iβ〉 − v(|h|)δαβ ). (A21)

We find that for an undistorted cubic lattice ζ h
αβ is diagonal

with respect to the global t2g basis

ζ h
αβ = δαβ (3δαγ − 1) (A22)

and depends on the cubic axis γ (h), i.e., parallel to the vec-
tor h=ri−r j that connects the polaron density at r j and a
nearest-neighbor V ion at ri. In our study, we shall use either
D = 0 or 50 meV with Dh as a free parameter. Alternatively,
we use the geometric relation Dh/D � (d/a)γ defined by the
nearest-neighbor V-V and the V-D distances, labeled as a and
d , respectively. This corresponds to 0.87 for γ = 1, which we
use here.
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