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Effect of strain-induced orbital splitting on the magnetic excitations in undoped cuprates
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We investigate the magnetic excitations in view of the recent reports suggesting that the spin-wave energy
may exhibit a significant dependence on the in-plane strain of a thin film of La2CuO4. The nature of dependence,
as we find, can be explained naturally within a two-orbital model based on the dx2−y2 and d3z2−r2 orbitals. In
particular, as the orbital-splitting energy between the dx2−y2 and d3z2−r2 orbitals increases with compressive strain,
the zone-boundary spin-wave energy hardens. However, the hardening persists only until the orbital splitting
reaches ∼2 eV, beyond which there is no significant change. The behavior of zone-boundary spin-wave energy
is explained in terms of the extent of hybridization between one of the exchange-split dx2−y2 bands which is nearly
half-filled and the d3z2−r2 band. The role of second order antiferromagnetic superexchange process involving the
interorbital hopping is also discussed.
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I. INTRODUCTION

The origin of unconventional superconductivity has been a
recurrent theme since the discovery of high-Tc cuprates in the
late 1980s [1–4]. The last decade has witnessed the discovery
of another large family of multiband superconductors based
on iron, which are also believed widely to be unconventional
in nature [5,6]. A striking similarity between the two classes
of superconductors is that a long-range magnetic order is
exhibited by the parent compounds that gives way to super-
conductivity on doping either holes or electrons [7]. Thus,
the idea that the unconventional superconductivity may be
mediated by the spin fluctuations is strengthened further and
therefore the nature of such fluctuations can be the key to the
understanding of pairing mechanism.

The spin-wave excitations in the Mott-antiferromagnetic
phase of high-Tc cuprates show a more dispersive behavior
near the zone boundary in comparison to the Heisenberg
antiferromagnet with only nearest neighbor exchange cou-
pling [8–12]. The deviation was explained by incorporating
the exchange couplings beyond the nearest neighbor in the
Heisenberg model or by considering hopping beyond the
nearest neighbor in the one-orbital Hubbard model [13–15].
Recent experiments based mainly on the resonant inelastic x-
ray spectroscopy (RIXS) have unfolded several new features
which are difficult to explain within the one-orbital model
[16,17]. One such remarkable feature is that the spin-wave
energy exhibits a variation of ∼60 meV at the zone boundary
upon subjecting a thin film of cuprate to a substrate-induced
strain. For instance, the spin-wave energy shows hardening
near the zone boundary with growing in-plane compressive
strain.

In the presence of in-plane strain, the orbital overlap
[17,18] and on-site Coulombic repulsion [18–21] can get

affected. The compressive strain enhances the orbital overlap,
which results in an increase in the in-plane hopping param-
eters (t). On the other hand, the separation between the two
eg levels also grows, which is expected to push the d3z2−r2

band further below the Fermi level so that the screening of the
intraorbital Coulombic interaction (U ) for the dx2−y2 orbital
gets reduced resulting in an increase in U . However, U/t may
remain constant as suggested by a density-functional theory
(DFT) calculation and x-ray absorption spectrum (XAS) mea-
surement [17]. Consequently, the effective exchange coupling
J ≈ 4t2/U can increase in the limit of a very large U , which
has been linked to the hardening of zone-boundary spin-wave
energy. Since the separation between the two eg orbitals is
directly affected by the in-plane strain, a study based on a
model incorporating the d3z2−r2 orbital can provide a more
clear picture about the origin of variation of zone-boundary
spin-wave energy with orbital splitting (OS), which is under-
taken in the current paper.

The importance of eg OS has been emphasized in several
recent works including the one which suggested that the dif-
ference between the superconducting transition temperature
across the high-Tc cuprates may depend on the eg-level separa-
tion. Particularly, the superconducting transition temperature
was shown to increase with OS [22–25]. The eg OS (δ) can
range in between 1 � δ � 2 eV, whereas the splitting between
the two sets eg and t2g of orbitals is ≈2 eV [2,26–32]. There-
fore, while the dx2−y2 orbital based one-orbital model can
describe the correlation effects for cuprates with a larger eg

splitting, it becomes necessary to include both eg orbitals for
the cuprates with a smaller splitting. The evidence from the
angle-resolved photoelectron spectroscopy (ARPES) experi-
ments indicates a significant hybridization of bands located
not far from the Fermi level, which involves the d3z2−r2 orbital
[33,34]. An important role of the d3z2−r2 orbital was also
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indicated in a recent work examining the spin-wave excita-
tions in the hole-doped La2CuO4 (LSCO) [16]. Presence of
this additional orbital may also be responsible for the stabil-
ity of AFM state against hole doping resulting mainly from
Hund’s first rule which demands the maximization of total
spin [35].

In this paper we investigate the role of OS between dx2−y2

and d3z2−r2 orbitals in the spin-wave excitations for the AFM
phase of the undoped cuprate. In order to achieve this goal, we
consider a two-orbital model based on both eg orbitals. Our
findings indicate that (i) the zone-boundary spin-wave energy
increases with the in-plane compressive strain in the cuprates
with a relatively smaller eg splitting such as LSCO, resulting
in a qualitative agreement with recent RIXS experiment. (ii)
However, it does not show any significant dependence on
strain for the cuprates with a larger splitting. (iii) The behavior
originates from the orbital mixing of the lower exchange-
split dx2−y2 band and a nearly flat d3z2−r2 band. This mixing
generates additional exchange coupling based on a second
order interorbital superexchange process in addition to the
intraorbital superexchange.

II. MODEL

We consider a Hamiltonian based on the two eg orbitals.
The delocalization-energy gain term is given by

HKE =
∑

ij

∑
μ,ν,σ

tμν

ij d†
iμσ djνσ . (1)

tμν

ij s are the hopping matrix elements from the orbital μ at

site i to the orbital ν at site j, respectively. The operator d†
iμσ

(diμσ ) creates (destroys) an electron with spin σ at site i in the
orbital μ. The orbitals μ and ν are either of the Cu 3dx2−y2 and
d3z2−r2 Wannier orbitals. The dx2−y2 Wannier orbital arises due
to the 3dx2−y2 orbital of Cu and the bridging 2px/y orbital of
O located in between two Cu atoms in the CuO2 plane. The
d3z2−r2 Wannier orbital results from the Cu d3z2−r2 orbitals and
2pz orbital of O present in the apical position [23].

The orbital splitting between the eg orbitals dx2−y2 and
d3z2−r2 is given by

HOS = δ

2

∑
i

(d†
iγ σ diγ σ − d†

iγ ′σ diγ ′σ ), (2)

where γ and γ ′ denote dx2−y2 and d3z2−r2 orbitals, respectively.
δ is the orbital splitting parameter, which is controlled by
the distance of the apical oxygen from the CuO2 plane. The
in-plane strain applied on a thin film can generate a modifi-
cation in both an in-plane and out-of-plane lattice parameter,
which can introduce a change in the overall crystal-field ef-
fect. Consequently, δ gets directly affected. The same has
been indicated by the XAS and RIXS measurements. The dd
excitations study, based on the Cu L3 edge, shows that the
center of mass of dd excitations shift systematically towards
higher energy with increasing in-plane compressive strain.
The dependence of the position of the center of mass on the
strain parameter defined as ε = (a − a0)/a0 is nearly linear.
This may also imply a similar enhancement in the eg orbital
splittings as a function of ε [17].

The standard on-site Coulomb interaction is given by

Hint = U
∑
i,μ

niμ↑niμ↓ +
(
U ′ − J

2

) ∑
i

niγ niγ ′

− 2J
∑

i

Siγ · Siγ ′ + J
∑
i,σ

d†
iγ σ d†

iγ σ̄ diγ ′σ̄ diγ ′σ . (3)

The intra- and interorbital Coulomb interaction (U and U ′)
terms are described by the first and second terms, respectively,
where niμσ = d†

iμσ
diμσ and niγ = ∑

σ d†
iγ σ

diγ σ with σ =↑,↓.
The third term stands for the Hund’s coupling between elec-
trons of different orbitals, where Sl

iγ = ∑
σσ ′ d†

iγ σ σ l
σσ ′diγ σ . σ l

are the Pauli matrices with l = x, y, z. The last term is the
pair-hopping term.

III. METHOD

The mean-field decoupling of various interaction terms in
Eq. (1) originating from the Coulombic interaction yields the
following mean-field Hamiltonian [36]:

Hk =
∑
kσ

�
†
kσ

[
ĥ(k) + N̂ sgnσ̄ M̂
sgnσ̄ M̂ ĥ(k + Q) + N̂

]
�kσ , (4)

for the (π, π ) AFM state in the momentum space. �
†
kσ =

(d†
k1σ , d†

k2σ , d†
k1̄σ

, d†
k2̄σ

) with d†
kl̄σ

= d†
k+Qlσ and Q = (π, π ).

The elements of the 2 × 2 matrix ĥk are given by

h11(k) = −2t1(cos kx + cos ky) + 4t2 cos kx cos ky

− 2t3(cos 2kx + cos 2ky),

h12(k) = h21(k) = 2t4(cos kx − cos ky)

+ 2t5(cos 2kx − cos 2ky),

h22(k) = −2t6(cos kx + cos ky), (5)

where the hopping parameters are t1 = 0.452, t2 = 0.0895,
t3 = 0.0705, t4 = 0.171, t5 = 0.0248, and t6 = 0.113, with
the unit being eV. t1, t2, and t3 are the nearest, next-nearest,
and next-next-nearest neighbor intraorbital hopping param-
eters for the dx2−y2 orbitals. t4 and t5 are the nearest and
next-next-nearest neighbor interorbital hopping parameters. t6
is the nearest neighbor intraorbital hopping parameter for the
d3z2−r2 orbitals.

M̂ and N̂ are 2 × 2 matrices with the elements given
in terms of the interaction parameters, charge densi-
ties, and magnetization. 2Mll = Umll + J

∑
l �=m mmm and

2Mlm = Jmlm + (U − 2J )mml . Also, 2Nll = Unll + (2U −
5J )

∑
l �=m nmm and 2Nlm = Jnlm + (4J − U )nml . The self-

consistent mean-field order parameters, i.e., charge density
and magnetization are given by nμν = ∑

kσ 〈d†
kμσ

dkνσ 〉 and

mμν = ∑
kσ 〈d†

k+Qμσ dkνσ 〉sgnσ .
In order to study the spin-wave excitations in the AFM

state, we calculate the transverse spin susceptibility

χ+−
αβ,μν (q, q′, iωn)

= T
∫ 1/T

0
dτeiωnτ 〈Tξ [S+

αβ (q, τ )S−
νμ(−q′, 0)]〉. (6)

within the two-orbital model. Here q, q′ = q or q + Q. The
components of the spin operators are given by Si

αβ (q) =
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FIG. 1. The orbital contents of electronic bands along the high-
symmetry directions in the two-orbital model when the orbital
splittings (δ) are (a) 0.5 eV and (b) 1.5 eV. The orbital mixing is
dominant near (π, 0).

∑
k

∑
σσ ′ d†

ασ (k + q)σ i
σσ ′dβσ ′ (k). σ i are Pauli matrices while

the subscripts σ, σ ′ =↑,↓. Using the mean-field Hamiltonian
described by Eq. (4), the bare Green’s functions G↑

αμ(k, iωn)
can be obtained. The transverse-spin susceptibility for the
AFM state in the random-phase approximation is calculated
as

ˆ̄χ(q, iωn) = [1̂ − χ̂ (q, iωn)Û ]−1χ̂ (q, iωn), (7)

where 1̂ is a 8 × 8 identity matrix and Û is a block-
diagonal interaction matrix with the elements of both
blocks being identical. ˆ̄χ (q, iωn) and χ̂ (q, iωn) are 8 ×
8 matrices, which is evident from the structure of
Eq. (6). Note that each element of the susceptibility ma-
trix χ̂ (q, iωn) contains χαβ,μν (q, q, iωn) = ∑

k,iω′
n

G↑
αμ(k +

q, iω′
n + iωn)G↓

νβ (k, iω′
n) when q′ = q as well as the terms

arising due to the Umklapp processes. The physical spin sus-
ceptibility using the appropriate elements of the ˆ̄χ(q, iωn) is
given by χ̄ph(q, iωn) = ∑

αμ χ̄αα,μμ(q, q, iωn) [37].

IV. RESULTS AND DISCUSSION

Figure 1 shows the electronic dispersions in the two-orbital
model for the OS (a) δ = 0.5 eV and (b) 1.5 eV. There is
no mixing of dx2−y2 and d3z2−r2 orbitals in the bands along
the (0, 0)-(π, π ) direction as h12(k) vanishes identically. The
mixing is maximum near (π, 0) in the vicinity of Van Hove
singularity because h12(k) attains its maximum value at the
same point. In other directions, the orbital mixing is moderate.
As the OS increases, the two bands are increasingly orbitally
polarized and they become almost completely polarized for
δ ≈ 1.5 eV and beyond. In the limit of very small eg splitting
the bands will resemble that of the monolayer manganites
[38].

Figure 2 shows the charge densities and magnetic order
parameters for the orbitals dx2−y2 and d3z2−r2 as a function
of OS in the AFM state. The total charge density n = 3.0
is fixed throughout the paper unless stated otherwise, which
corresponds to the scenario with nearly half-filled dx2−y2 or-
bital and completely filled d3z2−r2 orbital. The charge density
nx2−y2 in the dx2−y2 orbital decreases while n3z2−r2 increases
as the OS increases, which results from the constraint that the
total charge density is fixed while the electrons will occupy the
low-energy states first. However, nx2−y2 > 1 by ≈2% even if
δ ≈ 1.5 eV a value greater than what is considered widely ac-
ceptable for LSCO. Thus, the d3z2−r2 orbital is not completely
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FIG. 2. Magnetizations for the orbitals (a) dx2−y2 and (b) d3z2−r2

show opposite behavior as a function of the OS. It increases for the
former while decreases in magnitude for the latter when the OS is in-
creased. Note that a negative m3z2−r2 indicates that the magnetization
is oriented in a direction opposite to mx2−y2 . At the same time, the
orbital-resolved charge density (a) nx2−y2 decreases and (b) n3z2−r2

increases.

filled and therefore can play an important role in the spin-wave
excitations to be discussed below. The magnetization mx2−y2

in the dx2−y2 orbital increases continuously with a rise in the
OS. This is mainly a consequence of the fact that the double
occupancy diminishes as the OS increases. On the other hand,
the magnitude of m3z2−r2 drops as the double occupancy in-
creases.

Figure 3 shows the reconstructed band in the AFM state
for various OSs. Unlike the dx2−y2 band, the exchange splitting
for d3z2−r2 dominated band is small because d3z2−r2 orbitals are
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FIG. 3. Predominant orbitals in all the four reconstructed bands
of the AFM state along the high-symmetry directions for (a) δ =
0.5 eV, (b) 1.5 eV, (c) 2.0 eV, and (d) 3.0 eV. A significant orbital
mixing in the lower exchange-split band and d3z2−r2 dominated band
is present for δ ≈ 2 eV.
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FIG. 4. Spin-wave excitations along the high-symmetry di-
rections. Zone-boundary spin-wave energy shows a significant
dependence on the orbital splitting between dx2−y2 and d3z2−r2 or-
bitals within the range 0.5 � δ � 2.0 eV, while there is only a weaker
dependence beyond δ = 2.0 eV.

nearly doubly occupied. For δ = 0.5 eV, the d3z2−r2 dominated
bands are located in between the exchange-split dx2−y2 bands.
Moreover, the mixing of orbitals in the bands are minimal. But
the separation between the relatively narrow d3z2−r2 band and
the lower-exchange split dx2−y2 band decreases with the rise
in OS. This results in an increased mixing of the two orbitals
in the three low lying bands. With further rise in the OS, the
orbital mixing maximizes and thereafter it decreases so that
there are almost completely polarized two upper bands domi-
nated by the dx2−y2 orbital and two lower bands dominated by
the d3z2−r2 orbital as shown in Fig. 3(d).

Figure 4 shows the spin-wave excitation energy calculated
by using imaginary part of χ̄ph(q, iωn) as a function of δ along
the high-symmetry direction. We have chosen the intraor-
bital Coulomb interaction parameter U = 2.85 eV, Hund’s
coupling J = 0.2U , and δ ≈ 1 eV so that the spin-wave ex-
citations shows a good agreement with the neutron-scattering
experiments for LSCO. It is worthwhile to note that there
may a non-negligible magnon self-energy correction due to
coupling of spin degree of freedom with charge and orbital
degree of freedom [39].

Earlier the necessity of a similar range of U was stressed
in the one-orbital model for different cuprates [8,13,14].
The estimates by studies based on the photoemission spec-
troscopy also yields a similar value of U [40]. For this range
of an on-site Coulomb interaction parameter, the magneti-
zation mx2−y2 ∼ 0.9 in a self-consistent mean-field theory,
which is significantly larger than the experimental estimates
0.55 μB. However, by going beyond the mean-field level, it

can be shown that the correction to the mean-field sublattice
magnetization originating due to the spin fluctuations may
yield a reduction up to 40% [41]. This brings the sublat-
tice magnetization to a value very close to what is observed
experimentally. It is true that the corrections to the sublat-
tice magnetization were obtained only within the one-orbital
model, it is though not unreasonable to expect that the mag-
nitude of correction will be of a similar order even in the
two-orbital model.

More importantly, the zone-boundary excitations show a
significant dependence on the OS. In particular, we find that
the zone-boundary spin-wave energy increases with the OS
within the range 0.5 � δ � 2.0 eV. The growth is monotonic
at the high symmetry point (1/2, 0). Beyond δ ∼ 2.0 eV, the
zone-boundary spin-wave energy starts decreasing but the rate
of decline is comparatively smaller than the rate of rise noted
for δ � 2.0 eV.

The hardening of zone-boundary spin-wave energy also
implies an enhancement in the effective exchange coupling,
which in turn may indicate a more stable AFM state. The
stabilization may result from the presence of an additional
channel for lowering of energy, which is specific to the two-
orbital models. While in the one-orbital model there is only a
single channel for the second order superexchange interaction,
several channels for the second order exchange interactions
are possible in the two-orbital models. The zone-boundary
hardening of the spin-wave excitation energy occurs because
of the virtual process involving the hopping of a d3z2−r2

electron to a neighboring dx2−y2 orbital and then returning
back, which is possible as the interorbital hopping is nonzero.
More specifically, when the magnetic moments are consid-
ered oriented along the z direction as in the current paper,
an additional antiferromagnetic exchange coupling can be
generated because an ↑-spin d3z2−r2 electron from a site with
↑-spin dx2−y2 electron can hop to the dx2−y2 orbital at a nearest
neighbor site occupied already by a ↓-spin electron and then
return back to its original position.

The energy of the ↑-spin d3z2−r2 electron at its original
site is ≈ U + U ′ − J . The d3z2−r2 orbital is doubly occupied,
therefore there is a contribution of U due to the intraorbital
Coulomb interaction. Similarly, there is also a contribution of
U ′ due to the interorbital Coulomb interaction. Furthermore,
the energy is lowered by J because of the Hund’s coupling
between the ↑-spin d3z2−r2 and dx2−y2 electrons at the original
site.

When the ↑-spin d3z2−r2 electron transfers to the dx2−y2

orbital at the neighboring site, its Coulombic energies are U
and 2U ′ due to the intra- and interorbital interactions, respec-
tively. There is no contribution from the Hund’s coupling term
because d3z2−r2 is almost doubly occupied. Thus, the total
Coulombic energy at the new site is ≈ U + 2U ′ + δ, where
we have also incorporated the fact that dx2−y2 and d3z2−r2

orbitals are separated by the energy δ because of the orbital
splitting.

Such a process leads to the antiferromagnetic exchange
coupling Jint ≈ −4t2

4 /(δ + U ′ + J ) = −4t2
4 /(δ + U − J ),

where t4 is the interorbital hopping parameter and
U = U ′ + 2J in accordance with the rotational symmetry of
the Hamiltonian. The contribution of this term is negligible
when the lower exchange-split dx2−y2 band and d3z2−r2 band
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FIG. 5. The zone-boundary spin-wave excitation energies and
the effective exchange coupling as a function of orbital splitting
between the dx2−y2 and d3z2−r2 orbitals.

do not mix much as is the case when the OS is either very
small (∼0.5 eV) or too large (∼3.0 eV). However, at the
intermediate value of δ ∼ 2 eV, the contribution is significant
as the orbital mixing is non-negligible. Note the presence of
δ in the denominator of Jint, which explains a faster rise in
the zone-boundary spin-wave energy for a smaller OS within
the range 0.5 � δ � 2.0 eV and a slower decline beyond
δ ∼ 2.0 eV for a larger OS. Figure 5 shows the zone-boundary
spin-wave excitations ω at X ≡ (1/2, 0) and R ≡ (3/4, 1/4)
as a function of δ. Both show almost a linear growth up
to δ ≈ 2.0 eV, thereafter they do not show much variation.
The region with a nearly linear dependence shows a very
good qualitative agreement with the observed zone-boundary
spin-wave excitations in the samples subjected to the in-plane
strain. We have also plotted the effective-exchange coupling
determined from the approximate relation Jeff = ωX /2Z ,
where the renormalization factor resulting from the
self-energy correction is Z = 1.2 [14,16]. As the exchange
coupling displays a nearly linear dependence on the in-plane
compressive strain, our finding suggests that the eg orbital
splitting δ may also exhibit a nearly linear dependence on the
in-plane strain.

V. SUMMARY AND CONCLUSIONS

The spin-wave excitations in the cuprates has been largely
explored within a one-orbital model. In a recent work the two-
orbital model was invoked to explain the difference between
the superconducting-transition temperature across different
cuprates using the fluctuation-exchange approximation which
incorporates the spin-spin correlations [22–25]. An indirect
implication of the above result is that the spin-wave excita-

tions in different phases including the AFM may also show
dependence on the OS induced by the in-plane stress.

The strain in the layered cuprates affects not only the
overlap integral between the orbitals at neighboring sites but
it can also lead to a non-negligible modification in the on-
site Coulombic interaction. The net possible impact of the
interplay between the aforementioned consequences on the
spin-wave excitations is yet to be fully understood. However,
the most significant impact of in-plane strain perhaps is on the
extent of orbital mixing for the bands either located near or
far from the Fermi surface. As illustrated through the current
work, even if we ignore the modification in overlap integral
and Coulomb interaction, the two-orbital model successfully
describes the experimental observations in terms of orbital
mixing present in various bands.

Our study is focused at zero doping where the cuprates
show only the antiferromagnetic order. On doping holes, the
long-range magnetic order is lost. However, the nature of
leading order local magnetic-exchange couplings are expected
to show a weak dependence on doping. The higher spin-wave
excitation energy for a larger δ may indicate an enhancement
in the exchange coupling which will remain true even on dop-
ing holes. As found, the spin-wave excitation energy increases
with δ for a realistic range so does the magnetic-exchange
coupling. Therefore, the high energy spin fluctuations would
help to increase the superconducting transition temperature
Tc. However, this is true only for those cuprates for which
δ � 2 eV. The cuprates such as HgBa2CuO4 has a relatively
larger δ � 2 eV. According to our calculation, the spin-wave
excitation energy does not increase on increasing δ near 2 eV.
Thus, by applying in-plane compressive strain we may not be
able to increase TC of HgBa2CuO4 except for the lower eg split
cuprates such as La2CuO4 [22–24].

In summary, we have explored the spin-wave excitations in
the undoped AFM state of cuprates within a two-orbital model
based on dx2−y2 and d3z2−r2 orbitals. Our investigation reveals
that the zone-boundary spin-wave energy hardens with an
increase in the orbital splitting for the range 0.5 � δ � 2.0 eV.
The result, besides providing a plausible explanation for the
recent observations in RIXS measurements, emphasizes also
on the importance of d3z2−r2 orbital in the cuprates with
smaller eg splitting.

ACKNOWLEDGMENTS

We would like to thank the anonymous referee for bringing
our attention to the issue explored in this work. We acknowl-
edge the use of HPC clusters at HRI. Y.B. was supported
through NRF Grant No. 2020-R1A2C2-007930 funded by the
National Research Foundation of Korea.

[1] J. G. Bednorz and K. A. Müller, Phys. B: Condens. Matter 64,
189 (1986).

[2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[3] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.
75, 473 (2003).

[4] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[5] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 (2008).

[6] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett.
101, 026403 (2008).

035122-5

https://doi.org/10.1007/BF01303701
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1021/ja800073m
https://doi.org/10.1103/PhysRevLett.101.026403


DHEERAJ KUMAR SINGH AND YUNKYU BANG PHYSICAL REVIEW B 103, 035122 (2021)

[7] Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017
(2016).

[8] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost,
T. E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86,
5377 (2001).

[9] L. Braicovich, L. J. P. Ament, V. Bisogni, F. Forte, C. Aruta, G.
Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F.
Miletto Granozio, M. Radovic, M. Salluzzo, J. van den Brink,
and G. Ghiringhelli, Phys. Rev. Lett. 102, 167401 (2009).

[10] N. S. Headings, S. M. Hayden, R. Coldea, and T. G. Perring,
Phys. Rev. Lett. 105, 247001 (2010).

[11] M. P. M. Dean, R. S. Springell, C. Monney, K. J. Zhou,
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