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We present and implement a self-consistent D�A approach for multiorbital models and ab initio materials
calculations. It is applied to the one-band Hubbard model at various interaction strengths with and without
doping, to the two-band Hubbard model with two largely different bandwidths, and to SrVO3. The self-energy
feedback reduces critical temperatures compared to dynamical mean-field theory, even to zero temperature in two
dimensions. Compared to a one-shot, non-self-consistent calculation the nonlocal correlations are significantly
reduced when they are strong. In case nonlocal correlations are weak to moderate as for SrVO3, one-shot
calculations are sufficient.
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I. INTRODUCTION

Strongly correlated materials are becoming more and more
relevant for technological applications. They are also utterly
fascinating, not least because their theoretical study is intrin-
sically difficult. The actual calculation of correlated materials
and their properties usually requires a combination of ab initio
methods and simplified model approaches. A very successful
ab initio method for studying strongly correlated materials is
the combination of density functional theory [1,2] with the
dynamical mean-field theory [3–7] (DFT + DMFT) [6–12],
which is capable of describing local electronic correlations
very accurately. In systems where nonlocal correlations play
an important role, e.g., in two-dimensional or layered systems,
DMFT cannot predict the correct low temperature behavior.
Cluster and diagrammatic extensions of DMFT [13,14] have
been developed to cure this problem.

One such method is the ab initio D�A [15–17] which
extends the concept of the dynamical vertex approximation
(D�A) [18,19] to realistic materials calculations. It inherits
from DMFT the nonperturbative treatment of strong local
correlations, but on top of this also includes nonlocal correla-
tions. To this end, a two-particle ladder is built with the local
DMFT irreducible vertex and the nonlocal Green’s function as
building blocks. These ladder diagrams then yield a nonlocal
contribution to the self-energy.

Hitherto such ab initio D�A calculations have been re-
stricted to so-called “one-shot” calculations without an update
of the DMFT vertex and nonlocal Green’s function. Obvi-
ously, such a one-shot calculation is only expected to be
reasonable as long as the nonlocal corrections to DMFT
remain small. It also does not suppress the DMFT critical
temperatures nor modifies the DMFT critical exponents. In
the case of D�A calculations for one-band models, so far
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a Moriyaesque λ correction [19,20] was devised as a cure.
It imposes a sum rule on the spin (or alternatively spin
and charge) susceptibility, reduces the critical temperature,
and yields reasonable critical exponents [21–23]. Supercon-
ductivity in cuprates [24] and nickelates [25] is described
surprisingly accurately, even correctly predicted in the lat-
ter case. The extension to the multiorbital case, however,
makes this Moriyaesque λ correction difficult. One would
need to introduce and determine various λ parameters for all
orbital combinations and spin channels. This would result in a
multidimensional optimization problem that is likely to have
several local optima of comparable quality; details of how
the λ correction is modeled (which is nonunique) might be
decisive.

Another route has been taken in the closely related dual
fermion approach [26] with ladder diagrams [27]. Here, the
Green’s function is updated with the calculated nonlocal
self-energy in a so-called “inner self-consistency.” Hitherto
applied to one-band model Hamiltonians such as the Hubbard
[28] and Falicov-Kimball model [29] yields very reasonable
critical temperatures and exponents. Also a self-consistent
update of the dual fermion vertex has been discussed [30–32].

In the case of D�A such an update of the Green’s
function has also been made, however only for the much
more involved parquet D�A [33–38]. Here, besides the self-
consistent update of the Green’s function and self-energy, all
three scattering (ladder) channels are mutually fed back into
all other channels through the parquet equation [39–42]. The
drawback is the extreme numerical effort needed to solve
the parquet equations, which limits the method to one-band
models so far [33,34,36,43].

In this paper we present a self-consistent ladder D�A
(sc-D�A) for multiorbital models. We update the Green’s
function lines, as is also done in parquet and dual fermion
approaches but neither in the original ab initio D�A method
nor in previous ladder D�A calculations. This allows for a
self-energy feedback into the ladder diagrams contained in
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the Bethe-Salpeter equation and leads to substantial damping
of the fluctuations in the respective scattering channel. Since
this approach only requires a repeated evaluation of the ab
initio D�A equations, its application to multiorbital models is
straightforward. Our results demonstrate that sc-D�A works
well for single- and multiorbital systems and also when dop-
ing away from integer filling.

The paper is organized as follows: In Sec. II we introduce
the Hubbard model (HM), our notation, and the DMFT. Fur-
thermore we give an overview over the different variants of
D�A that were hitherto used. In Sec. III we introduce our
new way of doing D�A self-consistently. Then, in Sec. IV,
we present results for the single-orbital Hubbard model on the
square lattice with nearest-neighbor hopping. This model has
already been extensively studied and our results can be com-
pared to the literature. Finally, in Sec. V, we present results
for a two-orbital model system with Kanamori interaction and
for SrVO3 at room temperature.

II. MODEL AND FORMALISM

A. Multiorbital Hubbard model

The Hamiltonian of the multiorbital Hubbard model reads

HHM =
∑

k

∑
lmσ

hlm(k)ĉ†
klσ ĉkmσ

+
∑

i

∑
ll ′mm′
σσ ′

Ulm′ml ′ ĉ
†
im′σ ĉ†

ilσ ′ ĉimσ ′ ĉil ′σ . (1)

Here, the first term is the underlying tight-binding model,
which can be obtained ab initio by Wannierization of a
band structure from density functional theory. The operator
ĉ†

kmσ (ĉkmσ
) creates (removes) an electron with spin σ in the

Wannier orbital m at momentum k (the Fourier transformed
operators are labeled with unit cell index i instead of k).
The second term of Eq. (1) contains the interaction of the
electrons. While the underlying ab initio D�A can in principle
include nonlocal interactions, we here restrict ourselves to
local ones. That is, in each unit cell i, the matrix Ulm′ml ′ param-
eterizes scattering events in which local orbitals l, l ′, m, m′
are involved. In cases where the unit cell contains multiple
atoms, the matrix elements of Ulm′ml ′ are nonzero only when
all indices correspond to interacting orbitals of the same atom
(i.e., are local interactions). This restriction can be relaxed, in
principle, to include also nonlocal interactions within the unit
cell, either defining the whole unit cell as “local” or includ-
ing the bare nonlocal interactions within the (then nonlocal)
vertex building block for ladder D�A.

The physics of the Hubbard model is usually studied in the
framework of the Green’s function formalism. Our computa-
tional methods additionally employ the Matsubara formalism,
where the one-particle Green’s function for a system in ther-
mal equilibrium at temperature T = 1/β is defined by

Gk
lm = −

∫ β

0
dτ eiντ 〈Tτ ĉkl (τ )ĉ†

km(0)〉. (2)

Here, the 4-index k = (iν, k) combines Matsubara frequency
iν and crystal momentum k; τ is the imaginary time. Spin in-

FIG. 1. Schematic explanation of DMFT and D�A loops.

dices were omitted here, since we consider only paramagnetic
systems with spin-diagonal Green’s functions. The interacting
Green’s function contains (infinitely) many connected Feyn-
man diagrams that are, via the Dyson equation (DE), captured
by the self-energy:

�k
lm = (iν + μ)δlm − hlm(k) − [Gk]−1

lm . (3)

B. Dynamical mean-field theory

In most cases, it is completely infeasible to compute Gk
lm or

�k
lm directly through these infinitely many Feynman diagrams.

Instead, one is bound to rely on approximations. In the DMFT
approximation the self-energy is assumed to be strictly local
or momentum independent. This becomes exact in infinite
dimensions, while it still remains an excellent approximation
in three dimensions and even for many two-dimensional sys-
tems. As we illustrate in Fig. 1 in a very abstract way, DMFT
consists of two steps: First, one uses the k-integrated Dyson
equation (3) to obtain the local Green’s function from the local
(k-independent) DMFT self-energy:

Gν
lm = 1

VBZ

∫
BZ

dd k
[
(iν + μ)δlm − hlm(k) − �ν

lm

]−1
. (4)

Here, the integral over the crystal momentum k is taken over
the first Brillouin zone (BZ) with volume VBZ = (2π )d/V
(V : unit cell volume; d: dimension). The chemical potential
μ is chosen such that the system contains the desired num-
ber of electrons. In the second step one obtains a new local
self-energy, which is in principle the sum of all self-energy
diagrams built from the above propagator and the local inter-
action. These two steps can be iterated until convergence.

In practice the second step is usually solved by introducing
an auxiliary Anderson impurity model (AIM), since a direct
summation of all diagrams is infeasible. For the AIM, on the
other hand, it is possible to calculate correlation functions like
the one-particle Green’s function gν

l on the impurity numeri-
cally exactly.
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C. Local correlations on the two-particle level

Despite the success of DMFT, additional efforts are nec-
essary in order to access also the momentum dependence of
the self-energy. There are several diagrammatic extensions of
DMFT that result in the momentum dependent self-energy
(for a review see Ref. [14]). These diagrammatic routes to
nonlocal correlations all rely on two-particle vertices from
DMFT. Here locality is assumed on the two-particle level,
instead of the one-particle level. Local correlations on the two-
particle level [44] are contained in the two-particle Green’s
function of the (DMFT) impurity model,

Gν1ν2ν3ν4
abcd = 1

β2

∫ β

0
dτ1 dτ2 dτ3 dτ4ei(ν1τ1−ν2τ2+ν3τ3−ν4τ4 )

× 〈Tτ ĉa(τ1)ĉ†
b(τ2)ĉc(τ3)ĉ†

d (τ4)〉, (5)

for which we use spin-orbital compound indices a, b, c, d . In
this paper we compute such two-particle Green’s functions by
continuous-time quantum Monte Carlo (CT-QMC) with worm
sampling [45], which is implemented in W2DYNAMICS [46].

The two-particle Green’s function is connected to the full
reducible vertex Fabcd by

Gν1ν2ν3ν4
abcd = gν1

a gν3
c

(
δ12 − δ14

) − 1

β
gν1

a gν2
b gν3

c gν4
d F ν1ν2ν3ν4

abcd , (6)

where δ12 ≡ δabδcdδν1ν2 and δ14 ≡ δadδbcδν1ν4 . Closely related
is the generalized susceptibility

χ
ν1ν2ν3ν4
abcd = β

(
Gν1ν2ν3ν4

abcd − gν1
a gν3

c δ12
)

(7)

≡ χ
ν1ν2ν3ν4
0,abcd + χ

ν1ν2ν3ν4
conn,abcd , (8)

with

χ
ν1ν2ν3ν4
0,abcd = −βgν1

a gν3
c δ14. (9)

Since energy conservation constrains ν1 + ν3 = ν2 + ν4, it is
sometimes of advantage [47] to make a transition from four
fermionic frequencies to a notation with two fermionic and
one bosonic Matsubara frequency.

If we choose the bosonic frequency as ωph = ν1 − ν2, the
Bethe-Salpeter equation (BSE) in the particle-hole channel
can be solved separately at each bosonic frequency. In the
particle-particle channel, we have to choose ωpp = ν1 + ν3

instead. Furthermore, the Bethe-Salpeter equations can be di-
agonalized in spin space by the following linear combinations:

Fd,nlhm = Fn↑l↑h↑m↑ + Fn↑l↑h↓m↓, (10)

Fm,nlhm = Fn↑l↑h↑m↑ − Fn↑l↑h↓m↓, (11)

Fs,nlhm = Fn↑l↑h↑m↑ + Fn↑l↑h↓m↓, (12)

Ft,nlhm = Fn↑l↑h↑m↑ − Fn↑l↑h↓m↓. (13)

The Bethe-Salpeter equations for the impurity in the particle-
hole (ph) channel are thus

F νν ′ω
r,lmm′l ′ = �νν ′ω

r,lmm′l ′ +
∑

nn′hh′
nu′′

�νν ′′ω
r,lmhnχ

ν ′′ν ′′ω
0,nhh′n′F ν ′′ν ′ω

r,n′h′m′l ′ , (14)

where r = d, m denotes the afore-defined channel and ω ≡
ωph is the bosonic frequency. For better readability we will

adopt the shorthand notation

Fω
r = �ω

r + �ω
r χω

0 Fω
r , (15)

where all quantities are matrices in an orbital-frequency com-
pound index.

D. Dynamical vertex approximation

The D�A is a diagrammatic extension of DMFT that as-
sumes locality of the irreducible vertex, which is taken as
input from an auxiliary impurity problem (usually from a
converged DMFT solution to the original problem). Since its
original formulation in Ref. [18], the D�A was developed in
three main directions (often called different D�A flavors):

(i) the original parquet formulation (p-D�A), where the
locality is assumed on the level of the fully irreducible vertex
—this flavor treats the smallest set of diagrams as local,
and correspondingly it is computationally most demanding
[35,37];

(ii) ladder D�A (in combination with DFT input also
called ab initio D�A [15–17]), where it is the irreducible
vertex in the particle-hole channel (�ph) that is assumed local;

(iii) λ-corrected D�A (usually also called ladder D�A),
where as in (ii) the irreducible vertex �ph is taken as local.
However, after the solution of the Bethe-Salpeter equations
[a nonlocal version of Eq. (15)], a sum rule is imposed on
the susceptibility by introducing the so-called Moriyaesque λ

correction [19,20,48] to the susceptibility and self-energy.
Below we first briefly review these three existing flavors,

as this allows placing the new flavor (sc-D�A; introduced in
the next section) into its proper methodological context.

1. Parquet DΓA

The parquet scheme is a method to self-consistently cal-
culate one-particle and two-particle quantities [39–42] (it is
closely related to the multiloop generalization [49,50] of the
functional renormalization group (fRG) method [51]). Given
a one-particle Green’s function G and the fully two-particle
irreducible [52] two-particle vertex , one can iterate the
parquet equation

Fr = r +
∑

r′
cr′ �r′χ0Fr′︸ ︷︷ ︸

�r′

(16)

and the lattice BSE

F q
r = �q

r + �q
r χ

q
0 F q

r (17)

to obtain the (in general nonlocal) vertices Fr and �r . Here the
index r = d, m, s, t is as defined earlier the channel index, cr

denotes a real prefactor, and Eq. (17) is diagonal in the bosonic
variable (four-index q). In our short notation F q

r and �
q
r are

matrices in two fermionic multi-indices as before. The parquet
equation Eq. (16) is not diagonal in the bosonic four-index
and its evaluation requires evaluation of the per definition
reducible vertices �r at different frequency and momentum
combinations (for explicit formulation see, e.g., Ref. [35]).

The Green’s function entering the above Eqs. (16) and (17)
via χ0 can also be updated, since the full vertex F is related to
self-energy through the Schwinger-Dyson equation (SDE, see,
e.g., Ref. [35]). The SDE together with the Dyson equation
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and Eqs. (16) and (17) constitute a closed set with only one
input quantity: . For an exact , the parquet scheme pro-
duces the exact one- and two-particle quantities. In practice,
for example  = U is taken, which is the lowest order in
perturbation expansion widely known as the parquet approx-
imation [40,41]. In the parquet D�A method  is assumed
local and taken from a converged DMFT calculation [53].

Truncated unity approximation. The parquet scheme is nu-
merically extremely costly [35]. We thus employ an additional
approximation. Specifically, we transform the fermionic mo-
mentum dependence of the two-particle reducible vertices �r

into a real space basis, leaving only the bosonic momentum q:

�̃��′q
r = 1

N

∑
k,k′

( f k�)∗�kk′q
r f k′�′

, (18)

where f k� are basis functions (typically known as form fac-
tors) of a suitable transformation-matrix which we choose
to obey certain symmetries. Exploiting the relative locality
[37,54] of the reducible vertices � in their two fermionic
momenta we limit the number of basis functions f k� used
for the transformation (hence the name truncated unity). This
amounts to setting the more nonlocal parts (in the fermionic
arguments) of the two-particle reducible vertices to zero.

�̃��′q
r = 0 for �, �′ > lmax (19)

The calculations to transform the entire parquet scheme in-
cluding convergence studies in the number of basis functions
can be found in Refs. [37,55]. The truncated unity implemen-
tation (TUPS) [37] with one or nine form factors was used to
generate the comparison data in Sec. IV.

2. Ladder DΓA

Even with the truncated unity approximation the parquet
D�A is numerically very costly. It also suffers from the pres-
ence of divergencies [56–60] in the fully irreducible vertex
 that is directly taken as input. Therefore it is often prefer-
able to use ladder D�A, where the locality level is raised to
the irreducible vertex in the particle-hole channel �d/m,imp.
The choice of channel is here determined by the dominant
type of nonlocal fluctuations. By choosing the particle-hole
channel we take nonlocal magnetic and density fluctuations
into account, while treating particle-particle fluctuations only
at the local level [61]. Note that the transversal particle-hole
fluctuations will later be included on the same level by using
the crossing symmetry, which relates it to the particle-hole
channel.

Then, D�A becomes significantly simpler and essentially
consists of two steps: First one has to compute the Bethe-
Salpeter equations

F q
r = [

1 − �ω
r,impχ

q
0

]−1
�ω

r,imp (20)

in the particle-hole channels r = d, m. Since the irreducible
impurity vertices �r,imp can also exhibit divergences, it is
better to reformulate the above equation. This is done by
expressing � by Eq. (15) and rearranging the terms, as shown
in Ref. [15]. Then one arrives at

F q
r = Fω

r

[
1 − χ

nl,q
0 Fω

r

]−1
(21)

containing only the full reducible vertex F , and the nonlocal
part of the bubble χ

nl,q
0 = χ

q
0 − χω

0 .
The momentum-dependent reducible vertices F q

r from the
longitudinal and transversal particle-hole channels are then
combined. We do not need to calculate the latter explicitly,
because it can be obtained from the former through the cross-
ing symmetry [14]. The combined vertex F is then

F kk′q
d,nlhm = F νν ′ω

d,nlhm + F nl,νν ′q
d,nlhm

− 1

2
F nl,(ν ′−ω)ν ′(k′−k)

d,hlnm − 3

2
F nl,(ν ′−ω)ν ′(k′−k)

m,hlnm (22)

(see also Eq. (54) in Ref. [15]). Vertices labeled “nl” are
nonlocal, i.e., F nl,νν ′q

r,nlhm = F νν ′q
r,nlhm − F νν ′ω

r,nlhm. Inserting this into
the Schwinger-Dyson equation of motion [15]

�con,k
mm′ = − 1

β

∑
nlhn′l ′h′

∑
k′q

Umlhnχ
k′k′q
0,nll ′n′F kk′q

d,n′l ′h′m′G
k−q
hh′ (23)

yields the connected part of the momentum-dependent self-
energy. In practice this equation is evaluated separately for the
summands of F in Eq. (22) [17], such that one can identify the
nonlocal corrections to the DMFT self-energy.

Equations (21)–(23) can be evaluated efficiently even for
multiorbital models with h(k) from DFT as input. This is
known as the ab initio D�A [15–17]. Hitherto they are eval-
uated only once, and this flavor is therefore referred to as
one-shot D�A (1-D�A) in the following.

3. λ-corrected DΓA

The self-energy obtained in the one-shot ladder-D�A
calculation does not always exhibit the correct asymptotic be-
havior, especially if the susceptibility is large. In addition, the
susceptibilities related to Eq. (21) diverge at the DMFT Néel
temperature, violating the Mermin-Wagner theorem [62] for
two-dimensional models. This problem was partially solved
by so-called λ corrections [19,20], where one enforces the
sum rule for the spin (or spin and charge) susceptibility(-ies)
by adapting a parameter λ (hence the name).

While very successful for one-band models [22–25,48,63],
this solution is not straightforwardly extensible to multiorbital
systems. The reasons are twofold. Firstly, λ would be a ma-
trix with as many independent entries as there are different
spin-orbital combinations, resulting in a multidimensional op-
timization problem. Secondly, the solution to this problem is
quite likely nonunique and there are at the moment no criteria
how the physical matrix λ should be chosen. While we do not
exclude that a reasonable scheme can be devised for the mul-
tiorbital case in the future (see, e.g., [64,65] for application
of sum rules in the multiorbital two-particle self-consistent
approach [66]), we focus here on an alternative scheme that
does not rely on enforcing sum rules.

III. SELF-CONSISTENT LADDER D�A

While the λ correction is impractical or perhaps not
even possible for multiorbital systems, a one-shot ladder-
D�A calculation as hitherto employed for realistic materials
calculations also has severe limits. Where the nonlocal cor-
rections become strong, its application is not justified. When
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the DMFT susceptibility diverges at a phase transition, the
nonlocal corrections of a one-shot D�A calculation are not
meaningful any more.

There are two main physical reasons why this is wrong:
Firstly, the ladder diagrams of say the particle-hole chan-
nel lack insertions from the particle-particle channel, which
dampen the particle-hole fluctuations. These diagrams are
taken into account only on the level of the impurity. In
order to correctly incorporate the nonlocal contributions to
such insertions, we need to evaluate the full parquet scheme
that is at the moment numerically too costly for multiorbital
calculations.

Secondly and arguably even more important, the self-
energy that enters the propagators in the BSE is still the
local DMFT self-energy in a one-shot D�A. This DMFT
self-energy fulfills the local SDE with local Fω, where the
nonlocal contributions do not enter. By using the updated non-
local self-energy in the BSE, we can introduce feedback from
two-particle nonlocal correlations to the one-particle quanti-
ties. For example, spin fluctuations lead to a reduced lifetime
which, when included in the ladder Green’s function or self-
energy, reduces the spin fluctuations in turn. This mechanism
hence suppresses the magnetic transition temperature below
the DMFT mean-field value.

A. sc D�A

The approach we propose here consists of finding a
momentum-dependent self-energy for a lattice, defined by the
tight-binding Hamiltonian h(k), that is consistent with the
local irreducible vertex �ph,imp. This can be achieved by using
an iterative scheme illustrated in the lower panel of Fig. 1 in
order to underline its formal similarity to DMFT: The first step
is again the construction of propagators by the DE [Eq. (3)],
with a chemical potential that constrains the electron number.
But in contrast to DMFT the self-energy is now momentum
dependent. In the second step we sum up all self-energy
diagrams that are generated from the local vertex �. More
explicitly, this step consists of the subsequent evaluation of
the BSE [Eq. (21)] and SDE [Eq. (23)]. Just as in DMFT, here
the second step is numerically much more expensive than the
first (DE) step.

The self-energy resulting from the first iteration of ladder
D�A is taken to be the input (or “trial”) for the second itera-
tion. Starting from the third iteration, linear combinations of
trial and result self-energies from several previous iterations
are used as new trials. The linear combination is constructed
by the Anderson acceleration algorithm [67,68]; see also Ap-
pendix A. If the result is equal to the trial, the iteration is
stopped. The workflow of such a calculation is illustrated in
Fig. 2.

To our knowledge there is no proof of uniqueness or exis-
tence of such a fixed point. However, we find the procedure
to be convergent over a large range of parameters (cf. Fig. 3
which is discussed in Sec. IV).

In case of convergence, the asymptotic behavior of the
self-energy is largely repaired with respect to one-shot
D�A calculations. Furthermore, the magnetic susceptibility
in two-dimensional models stays finite at all temperatures in
agreement with the Mermin-Wagner theorem.

FIG. 2. Step-by-step illustration of a self-consistent ladder D�A
calculation. The first box (orange color) shows preliminary calcu-
lations to set up the model. The second box (blue color) concerns
the DMFT calculations, and the third one (green color) shows the
sc-D�Acycle. Quantities written in red are kept constant throughout
the whole calculation; those in blue are self-consistently determined
in sc-D�A.

B. Implementation and computational effort

The sc-D�A is applicable to multiorbital calculations
using the AbinitioD�A code [17], with the slight modifi-
cation of allowing for momentum-dependent self-energies
in the input. A step-by-step description of the workflow is
given in Fig. 2, whereas in Appendix A we provide more
technical details of how this is done in operation with the
AbinitioD�A.

The first step (orange box in Fig. 2) is the creation of a
model. It can be based on ab initio calculations and consists

FIG. 3. Phase diagram of the square-lattice Hubbard model at
half filling. Blue crosses denote points at which the sc-D�A could
be converged. The DMFT-Néel temperature is shown in gray (from
Ref. [73]). The magenta line indicates the DMFT metal-insulator
transition. We also show the first two vertex divergence lines (from
Ref. [56]).
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of a tight-binding Hamiltonian as well as a parametrization of
the interaction in the form of a U matrix.

The second step is to determine a local (impurity) vertex
�imp. Here, this is obtained from the local impurity problem at
DMFT self-consistency as indicated in the blue box in Fig. 2;
then usually the DMFT self-energy is also taken as a starting
point for the following D�A calculations. It is however not
strictly required to start from a converged DMFT calculation.
One might as well start from GW or calculate �imp from the
D�A Green’s function in an additional self-consistency step,
as indicated by the dashed gray arrow in Fig. 2 but not done
in this paper.

Finally, the actual sc-D�A cycle is illustrated in the green
box of Fig. 2. It essentially amounts to the execution of the
AbinitioD�A code [17], but in the repeated evaluation of
Eqs. (21)–(23), we have to generate updated input quantities
after every iteration, until convergence is reached. Here, also
the chemical potential μ is adjusted so that the total number
of electrons is kept fixed.

In the sc-D�A implementation the local irreducible vertex
is never used explicitly, and the equations are evaluated in
terms of the local full vertex Fω [Eq. (21) instead of Eq. (20)].
As already mentioned, this avoids the computational difficul-
ties coming from using a very large irreducible vertex near
or on a divergence line. Indeed, the sc-D�A scheme can be
converged also quite close to the divergence lines (cf. Fig. 3).
Let us however note that the local part of self-energy in the
converged sc-D�A calculation is in general not related to Fω

via the local SDE (as it was the case in a one-shot ladder
D�A). The sc-D�A corrections to the self-energy modify
thus also its local part that is not any more equal to the
DMFT solution. One can envisage [14,15,69] an update of
the local multiorbital vertex � (dashed gray arrow in Fig. 2;
not implemented here) so that the local Green’s function of
the impurity is equal to the local sc-D�A Green’s function.
Such an update is at the moment numerically prohibitively
expensive and hence beyond our scope.

At this point, it is appropriate to comment on the compu-
tational effort of the present self-consistent ladder D�A. The
cost of a DMFT calculation and the two-particle Green’s func-
tion depends mainly on the desired accuracy, if one is using a
Monte Carlo method as an impurity solver. The scaling of the
CT-QMC with temperature and number of orbitals has been
discussed in the literature [13]. The measurement of the two-
particle Green’s function in worm sampling of w2dynamics
scales as ∼(#ω)3Mcomp, where Mcomp is the number of non-
vanishing spin-orbital components. In the case of Kanamori
interaction this goes as Mcomp ∼ M2, where M is the number
of impurity orbitals [70]. For a general dense U matrix, the
number of components is Mcomp = (2M )4. The number of
frequencies #ω has to be scaled linearly with 1/T as lower
temperatures are approached. Note that at this point we do
not distinguish between the number of fermionic and bosonic
frequencies, since at least their scaling with temperature is the
same.

Having calculated the two-particle Green’s function, the
remaining time of the computation is direct proportional to
the number of iterations (Niter) needed for convergence. Niter

ranges from a few (∼10) at high-temperatures to many (∼200)
iterations at low temperatures. However, in problems with

TABLE I. Computational effort [time measured in core hours (h)
on an Intel Skylake Platinum 8174 processor with 3.1 GHz] for the
calculation of the local two-particle vertex �imp (blue box in Fig. 2)
and the sc-D�A (green box in Fig. 2) for a few cases treated in this
paper. “Sq. latt.” (square lattice) refers to Sec. IV, “2-band” refers to
the two-band model treated in Sec. V.

Case [Time]�imp [Time]sc-D�A

Sq. latt., U = 2, 1/T = 4 2400 h 65 h
Sq. latt., U = 2, 1/T = 20 43 000 h 11 000 h
2-band, 1/T = 10 13 000 h 3000 h
2-band, 1/T = 20 40 000 h 70 000 h

weak spin fluctuations, Niter is hardly dependent on temper-
ature. In our experience, convergence is accelerated if the
DMFT self-energy � used as a starting point has little noise.
Therefore we use symmetric improved estimators [71] to com-
pute it in CT-QMC. Noise in the vertex, on the other hand,
does not have a large influence on the self-energy in D�A, as
shown recently [72].

The computational effort of one D�A iteration has been
discussed in Ref. [17]. Let us give a brief overview for the
sake of completeness. In this part, most time has to be spent
with the BSE, where it is necessary to (#ω#q) times invert a
matrix of dimension (M2#ω). Overall this gives a scaling of
∼#q(#ω)3.5M5 [17].

In order to give a rough feeling or rule of thumb for
the computational cost, we remark that at high tempera-
tures the DMFT and CT-QMC calculations take considerably
more time than the D�A self-consistency cycle. For the most
complicated cases, where many iterations are needed for con-
vergence, one may expect to spend about twice as much time
for ladder D�A than for the CT-QMC. We illustrate this by
providing the actual CPU hours that were spent on some of
the calculations in Table I.

C. Relation to p-D�A

The self-consistency imposed on the self-energy that is ob-
tained by iterative application of BSE (21), crossing symmetry
(22), and SDE (23) is reminiscent of the parquet scheme. The
main difference is the lack of the full parquet equation (16),
which would include also nonlocal particle-particle insertions
in the full vertex F . In the full p-D�A the level of local
approximation is also different, since  contains fewer dia-
grams than �. In the truncated unity approximation however,
� is also effectively local if we do calculations with only one
form factor (1FF p-D�A). It can be explicitly seen, e.g., in
Eq. (21) in Ref. [37]. The difference between the irreducible
vertices � in the two approaches is that in sc-D�A it is taken
from DMFT and never updated during the self-consistency
cycle, whereas in 1FF p-D�A it is updated through the parquet
equation in every iteration. This update allows for mixing of
scattering channels in 1FF p-D�A, notwithstanding the fact
that the nonlocal contributions from other channels into � are
averaged over momenta.
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IV. SQUARE LATTICE HUBBARD MODEL

We begin the application of the sc-D�A method by con-
sidering a relatively simple system, which already has been
studied well in some parameter regimes: the one-orbital Hub-
bard model on a square lattice with nearest-neighbor hopping.
The dispersion h(k) in Eq. (1) is then simply

h(k) = −2(cos(kx ) + cos(ky)), (24)

where the nearest-neighbor hopping amplitude is set to t ≡ 1
to define our unit of energy for this section (with h̄ ≡ 1 setting
the frequency unit). Furthermore, the lattice constant a ≡ 1
sets the unit of length and kB ≡ 1 the unit of temperature, and
the orbital indices l , m, l ′, m′ are restricted to a single orbital
at each site.

In Fig. 3 we show the DMFT phase diagram of the Hubbard
model on a square lattice at half filling (n = 1 electron per
site). With blue crosses we denote points in the phase dia-
gram for which we were able to obtain a converged sc-D�A
solution. Please note that the sc-D�A method can be used
both below the DMFT Néel temperature (indicated by the gray
curve in Fig. 3) as well as between the divergence lines (red
and orange curves in Fig. 3). It is only on or directly next to
divergence lines that we were not able to obtain convergence.

The phase diagram in Fig. 3 serves as a proof of principle
and it is not our intention to discuss the sc-D�A results in
the different parameter regimes in the current paper. Instead,
we show selected results for weak (U = 2) and intermedi-
ate (U = 4) coupling, where comparison to other methods is
possible, as well as for strong coupling (U = 8) and out of
half filling (n = 0.85) to show the applicability of the method
in this interesting (e.g., with regard to superconductivity)
regime.

A. Weak coupling

In order to benchmark the method against known results,
we first study a half-filled weak coupling case, with the inter-
action U = 2 (in our units the bandwidth is W = 8). This case
was intensively studied by various methods in Ref. [63], and
in the spirit of Ref. [63] we focus on spin fluctuations and the
formation of the pseudogap at low temperature.

In Fig. 4 the static magnetic susceptibility at q = (π, π ) is
shown. For U = 2 DMFT predicts a phase transition at TN ≈
0.08. The sc-D�A leads to a seemingly nondiverging antifer-
romagnetic (AFM) susceptibility; the updated self-energy in
the BSE dampens the magnetic fluctuations and removes the
divergence. In the temperature range accessible, the sc-D�A
susceptibility shows first a 1/(T − TN ) behavior, as in DMFT
which has a finite Néel temperature TN , and then deviates to
a linear behavior on the log scale of Fig. 4, corresponding to
χm(T ) ∼ exp(α/T ) with some constant α. Such an exponen-
tial scaling with a divergence only at T = 0 is to be expected
for a two-dimensional system, fulfilling the Mermin-Wagner
theorem [62] (cf. also Fig. 13 in Ref. [63]).

The sc-D�A AFM susceptibility is somewhat smaller than
the one from λ-corrected D�A presented in Ref. [63] (not
shown here) as well as slightly smaller than the parquet-D�A
results (shown in Fig. 4 for one and nine form factors). The
overall behavior is however well reproduced.

FIG. 4. Static magnetic susceptibility of the square-lattice Hub-
bard model with U = 2 and n = 1 at momentum q = (π, π ) as a
function of inverse temperature. Different colors and symbols denote
different methods. The gray vertical line marks the DMFT Néel
temperature.

In order to correctly resolve the growing correlation length
when lowering the temperature, the size of the momentum
grid has to be increased. For the lowest two temperatures
shown in Fig. 4 we performed extrapolation to infinite grid
size (for details see Appendix B).

With lowering the temperature the growing spin fluctu-
ations lead to enhanced scattering and suppression of the
one-particle spectral weight at the Fermi energy and to open-
ing of a pseudogap [19,63,76–79]. Due to the van Hove
singularity [80–83] at the antinodal point kAN = (π, 0), the
suppression happens earlier (upon lowering T ) at this point
than at the nodal point kN = (π/2, π/2). In Fig. 5 we show
the spectral functions (right) as well as the corresponding
self-energies on the imaginary (Matsubara) frequency axis
(left) for the two momenta kN and kAN and for different
temperatures.

The pseudogap behavior of the spectral function is also
visible in the imaginary part of self-energy on the Matsubara
frequency axis. Upon lowering the temperature we first see
metallic behavior at both nodal and antinodal points: |Im�N |
at the first Matsubara frequency is smaller than at the second.
At lower temperatures, the slope of Im�N at the first two
Matsubara frequencies changes sign; first only at the antinodal
point (pseudogap) and finally at both nodal and antinodal
points. This is usually taken as a criterion for the opening of a
pseudogap.

Note however that for 1/T = 25 there is already a pseudo-
gap for kN in Fig. 5 (top right) while the slope of Im�N is still
negative in Fig. 5 (top left). However, a kink is visible. This
kink of the analytic �N function is apparently already enough
for the analytic continuation to yield a large negative Im�N at
low real frequencies, which is needed for seeing a pseudogap.

In Fig. 6 we show the behavior of the imaginary part
of the self-energy at the first three Matsubara frequencies
for the nodal and antinodal points as a function of inverse
temperature. Here we compare the sc-D�A to parquet D�A
and λ-corrected ladder D�A [63], and the diagrammatic quan-
tum Monte Carlo (DiagMC) [63,84]. For the first Matsubara
frequency all the methods lie almost on top of each other down
to approx. 1/T = 10 (at the nodal point differences already
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FIG. 5. The imaginary part of sc-D�A self-energy (left) and the corresponding spectral function (right) at U = 2 and half filling for two
momenta on the Fermi surface: nodal point, kN = (π/2, π/2), and antinodal point, kAN = (π, 0). Different colors and symbols denote different
temperatures. The spectral functions were obtained by analytic continuation with the maximum entropy method [74,75].

FIG. 6. Inverse temperature dependence of the imaginary part of self-energy at U = 2 and half filling for the first three Matsubara
frequencies ωn = {πT, 3πT, 5πT } for two momenta on the Fermi surface: kN = (π/2, π/2) and kAN = (π, 0). Different colors and symbols
denote different methods. The λ-D�A and DiagMC data in this figure were kindly provided by the authors of Ref. [63].
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become noticeable at 1/T = 10). For lower temperatures the
methods still qualitatively agree, but |Im�(ωn = πT )| grows
faster in the λ-D�A and quantitatively agrees better with the
DiagMC benchmark. In the sc-D�A, as well as in the p-D�A,
this growth happens at lower temperatures. This is in corre-
spondence to the behavior of AFM susceptibility, which also
grows slower in these methods upon lowering the temperature
compared to λ-D�A and DiagMC, while correctly reproduc-
ing the overall behavior.

If we however look at the two larger frequencies (middle
and right panel of Fig. 6), the situation is opposite. Here both
the p-D�A as well as sc-D�A follow the DiagMC benchmark
closely up to 1/T = 15 and do not show any enhancement
in |Im�| with lowering T , while in the λ-D�A the second
and third Matsubara frequency follow the behavior of the
first one. This is probably a consequence of the λ correction
that is applied a posteriori to the self-energy. While it works
very well for the AFM susceptibility and it gives the correct
behavior for the low energy part in the self-energy that is
closely influenced (enhanced) by the strong spin fluctuations,
it overestimates this influence for larger energies.

All in all, the comparison with the DiagMC benchmark
shows the ability of sc-D�A to describe the behavior of
self-energy in all different temperature regimes: incoherent
behavior at high temperatures, metallicity in the intermediate
temperature regime, and the opening of spin-fluctuation in-
duced pseudogap. Quantitatively the agreement with DiagMC
is excellent down to approx. 1/T = 10, with small quantita-
tive differences visible for the lowest temperatures. The most
pronounced difference is that the opening of the pseudogap is
shifted to lower temperature than in DiagMC.

B. Intermediate coupling

Next, we increase the interaction to U = 4 but stay at half
filling. Since we already enter a regime, where the numeri-
cally exact methods are limited to high temperatures, we do
not show comparisons to benchmarks. We focus here on the
comparison to parquet D�A and the λ-corrected D�A.

In Fig. 7 we show the static magnetic susceptibility as a
function of momentum q for two temperatures. We choose
T = 0.25 for also comparing with the DMFT result that di-
verges for slightly lower temperature. Already for T = 0.25
we see a large difference from the DMFT result. As for
the different D�A methods, the results fall almost on top
of each other with the exception of 1FF p-D�A, where the
susceptibility is somewhat larger close to the M point. For the
lower temperature of T = 0.1 the situation is quite different.
Although all methods agree for momenta far from q = (π, π ),
close to it the results differ significantly, as was the case
for U = 2. The sc-D�A susceptibility is again the smallest,
followed by the p-D�A results.

In Fig. 8 we show the imaginary part of self-energy as a
function of Matsubara frequency for the same two temper-
atures as in Fig. 7. For T = 0.25 the D�A methods agree
well, although not any more quantitatively as it was in the
weak-coupling case for this temperature. Here the 1FF p-D�A
result is noticeably different: At U = 4 the 1FF approximation
is not sufficient any longer at this temperature (cf. Ref. [37]).
For T = 0.1 at the antinodal point we already start to see the

FIG. 7. Static magnetic susceptibility for U = 4 on a path
through the Brillouin zone for T = 0.25 and T = 0.1. The value
of λ-D�A susceptibility at the M point is χm(ω = 0, q = (π, π )) =
415 (beyond the y range of the plot). A smaller momentum window
is shown in the insets.

FIG. 8. Imaginary part of self-energy for the nodal (N) and antin-
odal (AN) points as a function of Matsubara frequencies for U = 4,
n = 1 and two temperatures: T = 0.25 and T = 0.1. Different meth-
ods are distinguished by different symbols and colors. The 1FF and
9FF p-D�A data are reproduced from Ref. [37].
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pseudogap behavior of self-energy in the sc-D�A and p-D�A
methods, whereas in λ-D�A the pseudogap sets in at a higher
temperature of T ≈ 0.17 [48]. Except for the first Matsubara
frequency, the three D�A methods are in excellent, almost
quantitative agreement. As in the U = 2 case, the difference
in the first Matsubara frequency is likely to be caused by
much smaller AFM susceptibility in sc-D�A as compared to
λ-D�A.

An open question remains why the sc-D�A produces siz-
ably smaller AFM susceptibility than the λ-D�A upon going
to low temperatures. For the case of U = 2 it is also sig-
nificantly smaller than the DiagMC result [63]. An intuitive
partial understanding can be gained by looking at the p-D�A
results for one and nine form factors (1FF and 9FF). As
already mentioned in Sec. III C and explained in Ref. [37],
for the 1FF approximation to p-D�A the irreducible vertex
� is also local. But contrary to sc-D�A, it is updated after
each update of the self-energy. Therefore when the damping
effect of self-energy at low temperature becomes big, it can
be counterbalanced by a larger � which results in a larger
susceptibility (cf. Figs. 4 and 7). In sc-D�A this vertex stays
the same throughout the calculation; the two-particle feed-
back onto the self-energy is reduced [85]. There is also no
feedback from the particle-particle channel that is present
in p-D�A.

In the truncated unity p-D�A we can make � systemati-
cally less local by using more form factors. It has also a strong
effect on the susceptibility, as the 9FF p-D�A results show. In
the case of U = 2 the susceptibility is larger for 9FF; it is,
however, smaller than the 1FF result for U = 4 (cf. Fig. 7).
Similar (opposite) tendencies of the AFM susceptibility were
seen for the two values of U in Ref. [37]. Although the
convergence study in Ref. [37] shows that at T = 0.25 the
9FF p-D�A result is converged with respect to the number
of form factors, it is quite likely not the case for much lower
temperatures.

In the λ-corrected D�A the vertex is also local and not
updated. The imposed sum rule however imitates the mutual
feedback of the one- and two-particle quantities.

C. Strong coupling

Another interesting parameter regime that we can use
the sc-D�A method for is the doped strong-coupling case,
which is relevant for superconductivity, as shown, e.g., in
Refs. [24,25,86–90]. Going to sufficiently low temperatures,
such as in the case of λ-D�A [24,25], is a highly non-
trivial task that requires computations with high numerical
efficiency, since the momentum and frequency grids have to
be sufficient to capture the growing correlation length.

In the following we show results for the Hubbard model on
a square lattice with U = 8 and 15% hole doping (n = 0.85)
in the temperature range T ∈ [0.05, 0.5]. With lowering the
temperature the magnetic fluctuations, still antiferromagnetic
at T = 0.5, become incommensurate. This is indicated by the
shift of the maximum of the static magnetic susceptibility
from q = (π, π ) to q = (3π/4, π ) in Fig. 9. If we look at
the dynamic susceptibility χm(ω, q) at finite frequencies ω,
we can identify a splitting of the peak maximum. In the left
panel of Fig. 10 we show the dynamic magnetic structure

FIG. 9. Static magnetic susceptibility in sc-D�A along the X -M
path in the Brillouin zone (qy = π ) for different temperatures T , U =
8t , and n = 0.85.

factor Imχm(q, ω)/(1 − e−ω/T ), obtained by analytic continu-
ation with the maximum entropy method [74,75] for T = 0.05
and also the position ωmax of the maximum (or maxima) as
a function of q for different temperatures. The plots form
characteristic Y -shaped spin-excitation dispersions, also seen
experimentally [91] and discussed in Ref. [90]. We observe
that the frequency ωmax, at which the splitting occurs, moves
to lower values as the temperature is lowered. It could be inter-
preted as sharpening of the dispersion relation upon lowering
the temperature.

In the right panels of Fig. 11 the corresponding self-energy
for the lowest temperature in Fig. 9, T = 0.05, is shown. The
imaginary part becomes slightly smaller at the lowest Matsub-
ara frequencies in D�A. In stark contrast to the particle-hole
symmetric systems studied above, the momentum dependence
is rather small and visible mainly in the real part. This results
in a slight deformation of the Fermi surface, which we can see
in the left panels of Fig. 11. While purely local correlations
cannot change the shape of the Fermi surface with respect to
the tight-binding model, nonlocal correlations of D�A in this

FIG. 10. Left panel: logarithmic plot of the dynamic magnetic
structure factor Imχm(q, ω)/(1 − e−ω/T ) at U = 8, n = 0.85, and
T = 0.05, obtained by analytic continuation. The analytic con-
tinuation was done with the maximum entropy method [74,75].
Right panel: Y -shaped spin-excitation dispersion obtained from the
dynamic magnetic susceptibility at q = (qx, π ) for different temper-
atures T .

035120-10



SELF-CONSISTENT LADDER DYNAMICAL VERTEX … PHYSICAL REVIEW B 103, 035120 (2021)

FIG. 11. Fermi surface (FS) and the corresponding real and
imaginary part of self-energy as a function of Matsubara frequency as
obtained in DMFT and sc-D�A. For sc-D�A we show two different
momenta on the FS, as indicated with green and blue stars on the FS
plot. The FS was obtained by plotting Ak(0) ≈ G(k, τ = 1/(2T ))
(which avoids the analytical continuation and averages the spectral
function over an interval ∼T around the FS). The noninteracting
tight-binding FS is plotted with a thin cyan line in both FS plots.
The parameters are T = 0.05, U = 8, n = 0.85.

case make the Fermi surface slightly more “quadratic,” since
in the nodal direction the real part of the self-energy at low
frequencies is larger than DMFT. Furthermore, we observe
that spectral weight is redistributed and more concentrated at
the corners.

Our results demonstrate that sc-D�A works very well also
in the doped case. This has been a weak spot for 1-D�A since
in contrast to the symmetric half-filled model, nonlocal corre-
lations change the filling. If the Coulomb interaction is rather
large and we are close to half filling, this effect is rather weak.
Indeed previous 1-D�A calculations have hence focused on
this parameter regime. However, in other cases the filling of
the DMFT serving as an input to the one-shot calculation can
and will be quite different from the filling of the 1-D�A. This
renders a self-consistent treatment with an adjustment of the
chemical potential obvious, so that the filling remains as that
for which the vertex � was calculated.

V. MULTIORBITAL CALCULATIONS

A. Two-orbital model

In order to demonstrate that self-consistent D�A also
works for more than one orbital, we consider next a simple
two-orbital model on a square lattice. Here, electrons can hop
only to neighboring atoms with hopping amplitudes t1 = 1
and t2 = 0.25 for the two orbitals. This gives rise to a wide and
a narrow cosine band with bandwidth 8 and 2, respectively.
Along a high-symmetry path, the band structure is shown in
Fig. 12 (left) and the Fermi surface of the noninteracting tight-
binding model in Fig. 12 (right). This tight-binding model is
supplemented by a Coulomb repulsion parametrized in the

FIG. 12. Two-band model: band structure (left) and Fermi sur-
faces at T = 0.1 (right). The filling is n = 1.7, such that the chemical
potential is slightly temperature dependent.

Kanamori form with intraorbital interaction U = 4, Hund’s
coupling J = 1, and interorbital interaction V = U − 2J . The
spin flip and pair hopping processes are of the same magnitude
J . Considering the different bandwidths, the wide band will be
weakly correlated, since U is only one half of the bandwidth.
The narrow band, however, is strongly correlated since U is
twice as large as its bandwidth.

In the context of an orbital-selective Mott transition
[92–107], such simple half-filled two-band models with dif-
ferent bandwidths and intraorbital hopping have been studied
very intensively in DMFT. Early calculations, however, did
not include the spin flip and pair hopping processes, but only
the density-density interactions for technical reasons. In this
situation, the tendency toward an orbital selective Mott tran-
sition is largely exaggerated: A spin Sz = ±1 formed by the

FIG. 13. Real (top) and imaginary part (bottom) of the self en-
ergy at the lowest Matsubara frequency for the two band Hubbard
model at T = 0.1 along a high-symmetry path through the Brillouin
zone.
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FIG. 14. Real (top) and imaginary (bottom) part of the self-energy vs Matsubara frequency at T = 0.1 for the �, X , and M point, comparing
DMFT, 1-D�A, and sc-D�A for a two-band Hubbard model. The different colors refer to the two bands, as plotted in Fig. 12; the different
line types to the different methods.

Hund’s exchange cannot undergo a joint SU(4) Kondo effect,
while the spin-1 of the SU(2)-symmetric interaction can. As
we are primarily interested in testing the sc-D�A method,
we consider here the case where the model is doped away
from half filling or n = 2 electrons per site. Specifically, we
consider the doping n = 1.7. This gives rise also to a nonzero
real part of the self-energy and (slightly) different fillings of
the two orbitals, and hence tests various aspects at the same
time.

In Fig. 14 we show the self-energy at selective k points.
For the given parameters, the 1-D�A corrections to the self-
energy are extremely strong, even exceeding the value of the
DMFT self-energy. The reason for this is that we are quite
close to an (incommensurate) antiferromagnetic phase transi-
tion in DMFT. Immediately before the phase transition, the
1-D�A corrections become even larger and turn the system
insulating.

Similar as for the one-band model, the self-consistency
suppresses the antiferromagnetic fluctuations; the actual phase
transition occurs only at zero temperature because we are
in two dimensions. Hence the sc-D�A corrections are much
weaker at the fixed temperature close to the DMFT phase
transition. They will, as a matter of course, become stronger
at lower temperatures which are not reachable by 1-D�A
exactly because of the DMFT phase transition. Indeed, Fig. 14
suggests that sc-D�A is not too distinct from the DMFT
result. That is, the self-consistency dampens away much of
the one-shot corrections.

However, there is actually a quite important difference:
Depending on the k point the sc-D�A imaginary part of the
self-energy at low Matsubara frequencies is above or below

the DMFT self-energy in Fig. 14. This becomes even more
obvious in Fig. 13, where we plot the self-energy at the
lowest Matsubara frequency and see that the low frequency
self-energy strongly depends on the momentum. A strong
momentum differentiation of the imaginary part of the self-
energy (i.e., the scattering rate) has also been reported for a
SrVO3 monolayer [108].

In contrast to the imaginary part, the real part of the self-
energy only shows a weak momentum dependence around the
DMFT value in Fig. 13. This is different for 1-D�A where the
strong corrections are also reflected in a sizable momentum
dependence of the real part of the self-energy; the strongly
correlated band (band 2, blue) also displays a sizable overall
shift compared to the DMFT result in 1-D�A.

But let us turn back to the momentum dependence of
the self-energy in sc-D�A. It has a larger influence on the
spectral function (Fig. 15) than what one might expect from
the Matsubara-frequency dependence in Fig. 14. In Fig. 15
we see, for all three methods, that the weakly correlated
band 1 is still close to the tight-binding starting point in
Fig. 12, whereas the strongly correlated band 2 is split into
an upper Hubbard band (around ω ∼ 4), a lower Hubbard
band (around ω = −0.5), and a central quasiparticle peak
around the Fermi level (ω = 0). The last is better visible in the
zoom-in provided by Fig. 16. The aforementioned momentum
differentiation of the self-energy results in a considerably
wider central quasiparticle band in sc-D�A than in DMFT or
1-D�A. In 1-D�A the strong fluctuations around the phase
transition also smear out the central band when reducing
temperature from T = 0.2 to T = 0.1; T = 0.05 is below
the DMFT ordering temperature and a one-shot calculation
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FIG. 15. Momentum-resolved spectral function of the two-orbital Hubbard model at T = 0.1 along a high-symmetry path through the
Brillouin zone. The first column shows only the component corresponding to the wide band, the second column only the component
corresponding to the narrow band. In the third row the full spectral function is shown.

is hence no longer possible (the reduction of the Néel tem-
perature and susceptibility requires the self-consistency or a
Moriya λ correction [19]).

In Fig. 17, we further show the spectral weight at the
Fermi level in DMFT and sc-D�A, summed over both or-
bitals. Clearly a Fermi surface close to the tight-binding ones

FIG. 16. Low-frequency zoom of momentum-resolved spectral function for the two-orbital Hubbard model at temperatures T =
0.2, 0.1, 0.05 on a path through the Brillouin zone. In the 1-D�Aspectrum at T = 0.1 it is clearly visible that the analytic continuation
does not work well in the vicinity of the � point. This is a typical issue for 1-D�A calculations where nonlocal self-energy corrections become
large.
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FIG. 17. Spectral weight at the Fermi level A(k, 0) ≈ G(k, τ =
1/2T ) of the two-band Hubbard model for T = 0.1 (top) and T =
0.05 (bottom), comparing DMFT (left) and sc-D�A (right) and the
tight-binding model without interaction (red and blue lines).

is visible. This stems mostly from the wide, less correlated
band. The narrow, strongly correlated band is slightly shifted
downwards to lower energy and considerably broadened, cf.
Fig. 16. Since the band is so flat, this tiny shift results in
a sizable deformation of the spectral weight distribution on
the Fermi level: Considering also that A(k, 0) averages over a
frequency range ∼T , we get diffuse arcs around the M point,
i.e., (π, π ), which is visible in Fig. 17. However, due to the
strong renormalization that is already present in DMFT, the
narrow band gives only a small contribution to the spectral
weight on the Fermi level.

B. Strontium vanadate

As a second, archetypical multiorbital application we study
bulk strontium vanadate SrVO3 at room temperature (T =
26.3 meV). This material has served as a testbed for the
development of realistic materials calculations with strong
correlations and is hence most intensively studied [109–132].
Also the first realistic materials calculations using diagram-
matic extensions of DMFT, i.e., ab initio D�A, have been
performed for this perovskite [15]. SrVO3 is a strongly corre-
lated metal with a quasiparticle renormalization of about two
[109]. Electronic correlations also lead to a kink in the self-
energy and energy-momentum dispersion relation [111,133–
135]. Theoretical calculations and experiments do not indicate
any long-range order.

For this realistic ab initio calculation, we start with a
WIEN2K calculation [136,137] using the PBE exchange cor-

FIG. 18. Momentum dependence of the self-energy of strontium
vanadate at the lowest positive Matsubara frequency and kz = 0.
Upper row: one-shot ab initio D�A, lower row: self-consistent D�A.
The DMFT value is (1.861–0.104i) eV.

relation potential in the generalized gradient approximation
(GGA) [138] and a lattice constant of a = 3.8 Å. The cal-
culated band structure is projected onto maximally localized
t2g Wannier orbitals [139–141] using wien2wannier [142].
This three-band Wannier Hamiltonian, available open source
[143], is supplemented by a Kanamori Coulomb interaction
including the same terms as for the two-band model and pa-
rameterized by U ′ = 3.5 eV, J = 0.75 eV and corresponding
U = U ′ + 2J = 5 eV. The interactions U ′ and J have been
calculated by the constrained local density approximation
(cLDA) in [109]; J was later slightly corrected as outlined in
Sec. 4.1.3 of Ref. [12] to account for the precise way J enters
in Hamiltonian (1) and the cLDA. The difference to earlier ab
initio D�A [15–17] calculations, which have been one-shot
non-self-consistent calculations, is that we now perform a
self-consistent calculation.

As already mentioned, a Moriya-λ correction is extremely
difficult for such realistic multiorbital calculations. There is
not only a magnetic and charge λ for every orbital but ad-
ditionally also various orbital combinations. Hence, we hold
that a self-consistent calculation shall be preferable compared
to a high-dimensional fit of the various λ parameters. Also
conceptionally it is a clearer approach.

In Fig. 18 we compare the self-energy of the one-shot and
self-consistent D�A calculation. In contrast to the two-band
Hubbard model study above, the differences are here only
minor. The reason for this is that in the case of the two-band
Hubbard model we were close to the DMFT phase transition,
whereas SrVO3 is rather far away from any phase transition.
Hence, the 1-D�A corrections are much smaller to start with.
In such a situation, the self-consistency is not necessary. This
justifies a posteriori the use of non-self-consistent D�A in
Refs. [15–17].

Nevertheless, Fig. 19 indicates some minor differences
between the DMFT, 1-D�A, and sc-D�A spectral functions.
There are minor differences between 1-D�A and sc-D�A
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FIG. 19. Momentum-dependent spectral function of SrVO3, comparing DMFT, one-shot D�A, and self-consistent D�A.

regarding the weight of the lower Hubbard band and the
broadening of the quasiparticle peak. This behavior is per-
fectly in line with the effect of 1-D�A in other systems studied
above. Furthermore there is a shift of the position of the lower
Hubbard band toward lower binding energies visible at the
� point. Experimentally, the maximum of the lower Hubbard
band is slightly above −2 eV [109].

VI. CONCLUSION

We have presented a self-consistent solution of the ladder
D�A equations where the calculated D�A self-energy is fed
back into the Bethe-Salpeter ladder. This dampens the Green’s
function and thus the overall strength of the ladder, largely
reducing the critical temperatures of DMFT. Hitherto, a sim-
ilar effect has been achieved by a Moriyaesque λ correction
for one-band models; multiorbital models have only been
studied by one-shot, non-self-consistent, and non-λ-corrected
calculations. Applying such a λ correction to multiorbital or
doped systems is difficult, to say the least. One-shot calcula-
tions, on the other hand, are disputable whenever the nonlocal
corrections to DMFT become large. Our paper demonstrates
that conceptionally clean self-consistent calculations are in-
deed feasible and work well, also for multiorbital and doped
systems.

For the one-band Hubbard model we have benchmarked
the method against previous (λ-corrected and parquet) D�A
and numerically exact DiagMC results at weak coupling. We
find an excellent agreement up to the point where the sus-
ceptibilities become huge, where self-consistent D�A yields a
somewhat reduced susceptibility. The self-consistency allows
applying D�A even in the close vicinity of the divergence
lines of the vertex, at strong coupling and for doped systems.

For the two-band Hubbard model we study the regime
close to the DMFT phase transition. Here, the one-shot D�A
corrections are large but the self-consistency mitigates this
to a large extent. While the frequency dependence eventually
looks similar to that of DMFT, there is a sizable momentum
dependence which leads to a widening of the quasiparticle
band. In the case of SrVO3 we have performed realistic ab
initio D�A materials calculations. Here, we are not close to
any phase transition and the difference between one-shot and
self-consistent ab initio D�A is minute.
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APPENDIX A: IMPLEMENTATION

For the practical evaluation of the D�A equations (21)–
(23), we use the ab initio D�A code [17]. Here we describe
the details of the implementation, which are closely connected
to ab initio D�A. Solving the aforementioned equations self-
consistently means that the ab initio D�A code is executed
several times in a loop in order to do a fixed-point iteration.
Before each iteration, we create an updated trial input, until
the point where the output does not differ from the input
anymore. Therefore, in order to describe the details of the
updates, we have to recapitulate the input structure of ab initio
D�A first.

Apart from the system-defining parameters (tight-binding
Hamiltonian and U matrix) the following quantities are re-
quired as input:

(1) lattice self-energy �k (can also be momentum inde-
pendent)

(2) impurity self-energy �ν
imp (can be identical to the lat-

tice self-energy, as in 1-D�A)
(3) impurity Green’s function gν

(4) impurity two-particle Green’s function Gνν ′ω

The update proceeds in the two steps described in the
following.

1. Update of the self-energy and one-particle Green’s function

This step defines the update. We take trial and result self-
energies from several preceding iterations and compose a new
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trial self-energy �
k ( j)
trial for the jth iteration. This prediction is

usually made by the Anderson acceleration algorithm [67,68]
(also known as Pulay mixing [144] or direct inversion in
iterative subspace, DIIS [145]). This trial self-energy is then
used to compute a new local propagator Gν ( j)

loc by

Gν ( j)
loc = 1

VBZ

∫
dd k

[
(iν + μ( j) )1 − h(k) − �

k ( j)
trial

]−1
, (A1)

where the chemical potential μ( j) is adapted such that the
expectation value of the particle number stays at the desired
value. The change of the chemical potential usually stays in
the range of a few percent. Once the new local Green’s func-
tion is determined, we project (downfold) it to the correlated
impurity subspaces. Thus, each impurity I obtains its new
Green’s function gν ( j)

I .

2. Update of impurity quantities

This step is inherent to our specific implementation of ab
initio D�Aand not part of the algorithm per se. But since
ab initio D�A reads the one- and two-particle Green’s func-
tion instead of the irreducible vertex, we need to “wrap”
the irreducible vertex (unchanged throughout all iterations)
in the new impurity propagator by means of the Bethe-
Salpeter equation. In order to avoid direct computation of
the irreducible vertex, we compute the updated generalized
susceptibility for iteration ( j) in channel r by

χ ( j)
r =χDMFT

r

[
χDMFT

r + χ
( j)
0 − χ

( j)
0

(
χDMFT

0

)−1
χDMFT

r

]−1
χ

( j)
0 .

(A2)
Note that all susceptibilities in this equation are compound-
index matrices in the orbital space of the impurity and
fermionic frequencies. The new impurity one-particle Green’s
function enters into this equation only through χ

( j)
0 of Eq. (9),

where updated impurity Green’s functions g( j) are used. The
two-particle Green’s function is obtained by dividing through
β and adding a disconnected part, according to Eq. (7).

FIG. 20. Extrapolation of antiferromagnetic susceptibility of the
square-lattice Hubbard model with U = 2 at T = 0.05. The largest
q grid is 80 × 80.

Furthermore, it is necessary to compute an updated
(“fake”) impurity self-energy by the equation of motion. The
reason for this can be seen in Eq. (75) of Ref. [15]. There, the
DMFT self-energy appears as a separate term. However, in its
essence it is not the DMFT self-energy but rather the result
of the Schwinger-Dyson equation of motion for the impurity
[146]. In Ref. [15], this term is subtracted and substituted by
the actual DMFT self-energy, in order to mitigate effects of
finite frequency boxes. Therefore, we compute the impurity
self-energy from the equation of motion,

�
ν ( j)
con,m,I = 1

β

∑
ν ′ω

∑
lhn

UI,mlhnGν ′νω ( j)
con,I,nlhm/gν ( j)

I,m , (A3)

using both the new ( j) and the DMFT one- and two-particle
Green’s function. The index I labels the Ith impurity of the
unit cell. Importantly, the frequency boxes have to be iden-
tical. Then the difference of these two self-energies is added
to the DMFT self-energy and taken as the new (fake) impurity
self-energy. In this way the effects of finite-box summation are
canceled. We emphasize that the “fake” impurity self-energy
is merely an auxiliary quantity and never used to extract any
physical properties of the result. Only the lattice self-energy
is subject to physical interpretation in our computations.

APPENDIX B: EXTRAPOLATION OF THE
SUSCEPTIBILITY

Since we are quite limited in the number of q points that
we can use in our calculation, we have to do an extrapolation
of the magnetic susceptibility. This is possible due to
the observation that the inverse of the antiferromagnetic
susceptibility depends linearly on the inverse of the number
of q points. In particular, the extrapolation was necessary for
sc-D�A on the square-lattice Hubbard model with U = 2
at T = 0.05 and T = 0.04. There the D�A calculation was
done with 48 × 48, 64 × 64, 68 × 68, 72 × 72, 76 × 76,
80 × 80 k and q points. In Fig. 20 and Fig. 21 it is visible that
the extrapolation with the above-mentioned linear relation is
indeed possible. Although a deviation from this behavior is to

FIG. 21. Extrapolation of antiferromagnetic susceptibility of the
square-lattice Hubbard model with U = 2 at T = 0.04. The largest
q grid is 80 × 80.
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be expected as nq → ∞, it can only lead to a small change in
the logarithmic plot in Fig. 4 and thus our conclusions remain
unchanged. On the other hand, for k and q grids of 48 × 48 or

larger, we find that the self-energy is practically independent
on the number of k and q points, such that no extrapolation is
necessary there.
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