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Electron localization function implementation in the exact muffin-tin orbitals method
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We report implementation of the electron localization function (ELF) within the exact muffin-tin orbitals
(EMTO) formalism. The ELF is often used to study the nature of electronic bonding in different types of
materials, and it is also an important ingredient in meta-generalized gradient approximations, which are one
of the classes of exchange-correlation functionals. The correctness of the ELF implementation is verified with
test calculations and comparison with previous literature results. The implementation supports not only regular
ordered systems but also disordered systems that have been calculated using the coherent potential approximation
method.
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I. INTRODUCTION

The electron localization function (ELF) was put forth
by Becke and Edgecombe [1], and it is used to understand
the nature of chemical bonding in molecules and periodic
systems [2–5]. Studying the ELF can reveal whether the
bond between two atoms is covalent, metallic, or ionic and
how many electrons each atom contributes to each bond. In
chemistry the ELF is often used to understand the topolog-
ical features of molecules [6]. In solid-state physics, it was
recently used to study the effect of local atomic environ-
ment on bonding in high-entropy alloys [7,8]. In the density
functional theory (DFT) [9,10] regime, ELF is also used to
describe exchange-correlation (XC) effects, where it serves as
one of the inputs to meta-generalized gradient approximations
(meta-GGAs) [11–13]. Meta-GGAs are gaining in popular-
ity compared to the standard local density approximations
(LDAs) [10,14–16] and generalized gradient approximations
(GGAs) [17–23]. The idea behind meta-GGAs is to incorpo-
rate the ELF information so that the resulting XC functional
can distinguish different parts of space based on the bonding
type. With this added flexibility, meta-GGAs are presumably
more accurate than LDA and GGA XC functionals, which are
not ELF aware.

Based on its usefulness, ELF is a welcome addition to
the capabilities of any DFT code. In this paper, we present
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an implementation of the ELF within the exact muffin-tin
orbitals (EMTO) DFT method. We derive equations that are
needed in EMTO formalism to compute the ELF and after
that present the results of a set of test calculations. These
results are compared with previously published literature data
in order to verify our implementation.

II. THEORETICAL FORMULATION

Here and in the following, all physical quantities are ex-
pressed in atomic Rydberg units. The ELF distribution is
defined as

η(r) = 1

1 + α2(r)
, (1)

where the α parameter is

α(r) = τ (r) − τW(r)

τunif(r)
(2)

and

τunif(r) = 3
10 (3π2)2/3n(r)5/3. (3)

This definition confines the ELF to always be within the range
0 � η(r) � 1 in such a way that η values close to 1 indicate
a high degree of electron localization, and the η(r) = 1/2
regime corresponds to homogeneous electron gas like Pauli
repulsion [24]. η(r) values close to zero are not completely
clear and should be carefully interpreted [24]. Regions of
strong covalent bonding are associated with large ELF values,
regions of metallic bonding are associated with η(r) ≈ 1/2,
and regions of weak bonding have η(r) < 1/2.

Equation (2) shows that ELF depends on three different
kinetic energy densities, which are τ (r), τW(r), and τunif (r).
τ (r) is the full kinetic energy density (KED) of the electrons,
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and τW(r) is the Weizsäcker KED, which serves as the lower
bound for τ (r), so that α(r) � 0 always. In a one-electron
system τ (r) and τW (r) cancel each other, so that α(r) = 0.
τunif(r) is the KED of the uniform electron gas and is used
to normalize α(r) and to make it a dimensionless quantity.
The α parameter was also used as a bonding information
descriptor in recent meta-GGA functionals, such as strongly
constrained and appropriately normed (SCAN), [25] and Tao-
Mo (TM) [26].

Since EMTO is a DFT-based method, here we outline some
of the basics of DFT before we get to the EMTO implemen-
tation of ELF. DFT uses as the basic variable the electron
density

n(r) =
∑

j, ε j�εF

�∗
j (r)� j (r), (4)

which is calculated as a sum of the occupied Kohn-Sham (KS)
orbitals � j up to the Fermi level εF . For simplicity, we leave
out spin indexing from our equations and assume that each KS
orbital is fully occupied up to the Fermi level. KS orbitals are
solutions to the KS equations{− 1

2∇2 + VKS(r)
}
� j (r) = ε j� j (r) (5)

for some specific KS orbital energies ε j . VKS(r) is the KS
effective potential. The total energy is a functional of the
density and is written as

E [n] = Ts[n]+
∫

Vext (r)n(r) dr+ EHartree[n]+ Exc[n] + EII ,

(6)
where Ts[n] is the noninteracting kinetic energy, Vext is the
external potential, EHartree is the Coulombic interaction of the
density with itself, Exc is the XC interaction energy, and EII is
the interaction energy between the static (Born-Oppenheimer
approximation) atomic nuclei. The KED τ (r) is defined as

Ts =
∫

τ (r) dr. (7)

It is important to note that the definition of τ (r) in Eq. (7) is
not unique because we can add to τ (r) any function that inte-
grates to zero. There are two important forms for KED [27].
The first depends on the Laplacian of the KS orbitals � j (r):

τ L(r) = −1

2

∑
j, ε j�εF

� j (r)∗∇2� j (r), (8)

and it is derived directly from the KS equations. The second
one is positive definite:

τ (r) = 1

2

∑
j, ε j�εF

∇�∗
j (r) · ∇� j (r)

= 1

2

∑
j, ε j�εF

|∇� j (r)|2 = τ L(r) + 1

4
∇2n(r). (9)

Defining τ (r) using Eq. (9) is the popular choice because then
τ (r) is guaranteed to be positive everywhere, and for a single-
orbital system this definition leads to the so-called Weizsäcker
term,

τW (r) = 1

8

∇n(r) · ∇n(r)

n(r)
. (10)

Due to these desirable features we will define τ (r) using
Eq. (9) in our EMTO implementation.

A. EMTO formalism

The EMTO is part of the large family of muffin-tin orbital
methods. The muffin-tin approximation divides the space into
atom-centered spheres, called muffin-tins, and space outside
the spheres, called the interstitial region. Such a division
makes the problem of solving KS equations more manageable
because it is easier to solve the KS equations separately inside
the muffin-tin spheres and in the interstitial region and then
stitch the two solutions together at the boundaries. The EMTO
formalism is part of the third generation of muffin-tin orbitals
methods [28]. The first generation was the linear muffin-tin
orbitals (LMTO) method [29,30], which introduced a highly
efficient, minimal, energy-independent muffin-tin orbitals ba-
sis set. The second generation introduced screening for the
muffin-tin orbitals, which led to the computationally fast tight-
binding LMTO formalism [31]. The third generation fixes the
weak point of the earlier generations and solves the interstitial
region with a level of accuracy similar to that with which the
insides of the muffin-tin spheres are solved [28]. For more
information about the specifics of the EMTO formalism the
reader is referred to, e.g., Refs. [28,32–35].

In EMTO the KS orbitals are expanded in the basis of
EMTOs ψ̄a

RL(ε j, rR), so we write

� j (r) =
∑
RL

ψ̄a
RL(ε j, rR)va

RL, j, (11)

where va
RL, j are the expansion coefficients and the notation

rR = r − R defines coordinates relative to each lattice site R.
The EMTOs ψ̄a

RL(ε j, rR) are defined differently inside and
outside of the muffin-tin spheres. The total EMTO is then
constructed by fitting the different definitions together in such
a way that the EMTO is continuous everywhere, but the
derivative has a kink at the so-called hard-sphere boundaries.
Since a KS orbital is a sum of EMTOs and must be continuous
and differentiable everywhere, the coefficients va

RL, j in the
sum of EMTOs must be chosen in such a way that the sum of
EMTO kinks vanishes. Requiring the kink of the KS orbital
� j (r) to vanish leads to the kink-cancellation matrix equation

Ka(ε j ) · va
j = 0, (12)

where va
j is a column vector of the expansion coefficients va

RL, j
and Ka(ε j ) is known as the kink matrix. The elements of the
kink matrix describe the size of the derivative kink of each
EMTO.

In the current implementation of EMTO we use a Green’s
function [36] to solve the KS equations and to calculate phys-
ical observables. Even though the Green’s function formalism
is computationally demanding for ordered systems, the ben-
efit is that it provides, together with the coherent potential
approximation (CPA) [37–39], a highly elegant framework
to treat disordered systems. The Green’s function will be
constructed using the so-called path operator ga(z), which is
defined to be the inverse of the kink matrix,

Ka(z)ga(z) = I. (13)
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It can be shown that ga(z) has poles only at the KS eigenener-
gies z = ε j , which allows us to construct the Green’s function
using the path operator.

A properly normalized first-order density matrix within
one Wigner-Seitz (WS) cell is, in EMTO, written as

n(rR, r′
R) =

∑
j, ε j�εF

�∗
j (ε j, r′

R)� j (ε j, rR)∫
�∗

j (ε j, rR)� j (ε j, rR) dr

=
∑

j,ε j�εF

�∗
j (ε j, r′

R)� j (ε j, rR)∑
R′L′RL va∗

R′L′, j K̇R′L′RL(ε j )va
RL, j

, (14)

where the matrix K̇a(z) is the energy derivative of the kink
matrix but also gives the overlap between two EMTOs as
K̇a

R′L′RL(z) = ∫
ψ̄∗

R′L′ (z, r)ψ̄RL (z, r) dr. With the help of the
path operator and the residue theorem, the density matrix can
be calculated as

n(rR, r′
R) = 1

2π i

∮
εF

∑
L′′L′

Za
Rl ′ (z, r′

R)g̃a
RL′′L′ (z)

× Za
Rl ′′ (z, rR)YL′ (r̂′

R)YL′′ (r̂R) dz, (15)

where the Za
Rl (z, rR) functions are defined in terms of the EM-

TOs ψ̄a
RL(z, rR), YL(r̂R) are the real harmonics, and g̃a

RL′′L′ (z)
is defined in terms of the path operator ga

R′L′RL(z) and the
so-called slope matrix Sa

R′L′RL(z), which is related to the
well-known Korringa-Kohn-Rostoker structure constant ma-
trix [34]. g̃a

RL′′L′ (z) also ensures that the so-called unphysical
poles are removed, so that only the poles caused by the
physically meaningful z = ε j KS solutions are processed by
the residue theorem. These unphysical poles are caused by a
normalization function in the Za

Rl (z, rR) term, and the scheme
for their removal can be found in Ref. [34]. Equation (15)
yields the electron density as n(rR) = n(rR, rR).

The KED matrix τ (rR, r′
R) can now be obtained from

the density matrix by applying a gradient operator 1
2∇rR∇r′

R
.

Hence, we can write

τ (rR, r′
R) = 1

2
∇rR∇r′

R
n(rR, r′

R)

= 1

2

∑
j,ε j�εF

∇r′
R
�∗

j (ε j, r′
R) · ∇rR� j (ε j, rR)∑

R′L′RL va∗
R′L′, j K̇R′L′RL(ε j )va

RL, j

. (16)

Using Eq. (15), we get

τ (rR, r′
R) = 1

4π i

∮
εF

∑
L′′L′

g̃a
RL′′L′ (z)∇r′

R

[
Za

Rl ′ (z, r′
R)YL′ (r̂′

R)
]

· ∇rR

[
Za

Rl ′′ (z, rR)YL′′ (r̂R)
]

dz. (17)

From Eq. (17) we obtain the KED within the WS cell by
setting r′

R = rR:

τ (rR) = 1

4π i

∮
εF

∑
L′′L′

g̃a
RL′′L′ (z)∇[

Za
Rl ′ (z, rR)YL′ (r̂R)

]

·∇[
Za

Rl ′′ (z, rR)YL′′ (r̂R)
]

dz. (18)

The gradient of Za
Rl (z, rR)YL(r̂R) is calculated in spherical

coordinates, and we can therefore write

∇[
Za

Rl ′ (z, rR)YL′ (r̂R)
]

= ∂Za
Rl ′ (z, rR)

∂rR
YL′ (r̂R)er + Za

Rl ′ (z, rR)

rR

∂YL′ (r̂R)

∂θR
eθ

+ Za
Rl ′ (z, rR)

rR sin θR

∂YL′ (r̂R)

∂φR
eφ. (19)

The dot product between the two gradients in Eq. (18) is
straightforwardly evaluated using Eq. (19).

Equation (18) gives the KED inside one WS cell as a
double-L sum, which can make evaluating the KED and ELF
in real space, e.g., for plotting purposes, quite slow. For
practical reasons we want to have the KED in one-center
form, which is to say, we expand τ (rR) in terms of real
harmonics as

τR(rR) =
∑

L

τRL(rR)YL(r̂R). (20)

The one-center form τR(rR) contains only a single-L sum,
which makes evaluating the KED in real space much faster.
Since the WS cells cover the whole space without any overlap,
the total KED is formally given by the sum of one-center
expansions as

τ (r) =
∑

R

τR(rR). (21)

The one-center expansion coefficients are calculated by pro-
jecting τ (rR) into each real harmonic YL, so the formula to
calculate the expansion coefficient is

τRL(rR) =
∫

τ (rR)YL(r̂R) d�, (22)

where d� means integrating over the θ and φ angles of the spherical coordinates. By inserting Eqs. (18) and (19) into Eq. (22)
we get

τRL(rR) = 1

4π i

∮
εF

∑
L′′L′

CLL′L′′ g̃a
RL′′L′ (z)

∂Za
Rl ′ (z, rR)

∂rR

∂Za
Rl ′′ (z, rR)

∂rR
dz (23)

+ 1

4π i

∮
εF

∑
L′′L′

g̃a
RL′′L′ (z)

Za
Rl ′ (z, rR)

rR

Za
Rl ′′ (z, rR)

rR

∫
∂YL′ (r̂R)

∂θR

∂YL′′ (r̂R)

∂θR
YL(r̂R) d� dz (24)

+ 1

4π i

∮
εF

∑
L′′L′

g̃a
RL′′L′ (z)

Za
Rl ′ (z, rR)

rR

Za
Rl ′′ (z, rR)

rR

∫
1

sin2 θR

∂YL′ (r̂R)

∂φR

∂YL′′ (r̂R)

∂φR
YL(r̂R) d� dz, (25)
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where CLL′L′′ are the real Gaunt numbers, which arise from the integral of three real harmonics as

CLL′L′′ =
∫

YL(r̂R)YL′ (r̂R)YL′′ (r̂R) d�. (26)

In principle the angular integrals in Eqs. (24) and (25) can be solved analytically using the definition of real harmonics and the
recursion formulas of the Legendre polynomials, but doing so would be rather tedious. Instead, we choose to solve these angle
integrals numerically, which is straightforward.

In addition to τ (r) we also need τunif (r) and τW(r) to get the ELF. τunif (r) is easily calculated using Eq. (3) and the one-
center expansion of the density, which is already implemented in the EMTO code. In principle, the Weizsäcker term τW (rR) =
1/8[∇n(rR) · ∇n(rR)]/n(rR) could also be computed directly from the one-center expansion of n(r) by applying the gradient
operator ∇ defined in spherical coordinates. However, we have found that the direct evaluation of τW (r) from the one-center
expansion of n(r) can cause inconsistency in the τ (r) − τW(r) numerator expression that α(r) is calculated from in Eq. (2).
Maximum consistency is obtained by calculating τW (rR) the same way that the one-center expansion of τ (r) is calculated, in the
spirit of Eqs. (23)–(25). To this end, the gradient of n(rR) can be written as

∇n(rR) = 1

2π i

∮
εF

∑
L′′L′

[
∂Za

Rl ′ (z, rR)

∂rR
Za

Rl ′′ (z, rR) + Za
Rl ′ (z, rR)

∂Za
Rl ′′ (z, rR)

∂rR

]
g̃a

RL′′L′ (z)YL′ (r̂R)YL′′ (r̂R) dz er (27)

+ 1

2π i

∮
εF

∑
L′′L′

Za
Rl ′ (z, rR)Za

Rl ′′ (z, rR)

rR
g̃a

RL′′L′ (z)

[
∂YL′ (r̂R)

∂θR
YL′′ (r̂R) + YL′ (r̂R)

∂YL′′ (r̂R)

∂θR

]
dz eθ (28)

+ 1

2π i

∮
εF

∑
L′′L′

Za
Rl ′ (z, rR)Za

Rl ′′ (z, rR)

rR sin θR
g̃a

RL′′L′ (z)

[
∂YL′ (r̂R)

∂φR
YL′′ (r̂R) + YL′ (r̂R)

∂YL′′ (r̂R)

∂φR

]
dz eφ. (29)

∇n(rR) is symmetric with respect to the L′′ and L′ indices, which means we can save some computation time by calculating only
the L′′ > L′ terms and multiplying them by 2. The one-center coefficients of the components of the ∇n(rR) vector become

∇ner
RL(rR) = 1

2π i

∮
εF

∑
L′′L′

CLL′L′′

[
∂Za

Rl ′ (z, rR)

∂rR
Za

Rl ′′ (z, rR) + Za
Rl ′ (z, rR)

∂Za
Rl ′′ (z, rR)

∂rR

]
g̃a

RL′′L′ (z) dz, (30)

∇neθ

RL (rR) = 1

2π i

∮
εF

∑
L′′L′

Za
Rl ′ (z, rR)Za

Rl ′′ (z, rR)

rR
g̃a

RL′′L′ (z)
∫

YL(r̂R)

[
∂YL′ (r̂R)

∂θR
YL′′ (r̂R) + YL′ (r̂R)

∂YL′′ (r̂R)

∂θR

]
d� dz, (31)

∇neφ

RL (rR) = 1

2π i

∮
εF

∑
L′′L′

Za
Rl ′ (z, rR)Za

Rl ′′ (z, rR)

rR sin θR
g̃a

RL′′L′ (z)
∫

YL(r̂R)

[
∂YL′ (r̂R)

∂φR
YL′′ (r̂R) + YL′ (r̂R)

∂YL′′ (r̂R)

∂φR

]
d� dz. (32)

Only the radial ∇ner
RL(rR) component allows simplification us-

ing Gaunt numbers. The angular integrals of the ∇neθ

RL(rR) and
∇neφ

RL (rR) components are computed numerically. One can go
further and compute the one-center expansions for τW (rR) and
η(rR), but they are also quite easily evaluated at any given
point in space by using the one-center expansions of n(rR),
∇n(rR), and τ (rR).

The EMTO code allows one to simulate a disordered sys-
tem by using the CPA, which replaces the real disordered
system by an ordered effective medium [34]. It is therefore
possible to calculate the ELF of disordered systems using
the CPA. Since the symmetry of the underlying crystal struc-
ture is kept, the power of the CPA is that it allows one to
simulate disorder using minimal unit cell sizes. Within the
CPA, the total energy is a concentration weighted average of
the CPA component energies. The CPA electron density is de-
fined for each CPA component separately, and the one-center
density of component i is written as

ni
R(rR) =

∑
L

ni
RL(rR)YL(r̂R). (33)

The extension of ELF for CPA is thus straightforward. We
simply use the equations presented above and compute τ i

R(rR),
τ i

W,R(rR), τ i
unif,R(rR), and ηi

R(rR) for each CPA component. The

physical significance of CPA ELF will be discussed in a future
work.

B. Technical implementation details

Due to the approximations made in EMTO, specifically, the
l truncations in one-center expansions, the ELF may appear
discontinuous at the WS (Voronoi) cell boundaries between
atoms. Since EMTO uses overlapping potential spheres, the
ELF within the overlap regions that contain the WS bound-
aries is not, in a sense, uniquely defined. To get a “uniquely”
defined ELF we employ an averaging technique, which is
based on the fuzzy cells concept of Becke [40]. We present
the ELF as

η(r) =
∑

R

wR(r)η(rR), (34)

where each lattice site R has an appropriately chosen weight
function wR(r). These weight functions should satisfy the
condition

∑
R wR(r) = 1, so we define the weights to be

wR(r) = PR(r)∑
R′ PR′ (r)

, (35)

where PR(r) are lattice site centered partial weights. The
boundary conditions that PR(r) must obey are the require-
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ments that at the lattice site R PR(r) = 1 and far away from
the lattice site PR(r) decays to zero. The partial weights have
been defined many different ways in the literature, and here we
define them following one of our previous publications [41]
and write

PR(r) = exp

[
−

( |r − R|
λ

)2β]
, (36)

where β controls how sharply each PR(r) decays from 1 to 0
and λ controls the distance from the lattice site R where the de-
cay happens. Small β values make the partial weights longer
ranged, which increases the amount of averaging. When β is
large (� 1.8), the weight fields wR(r) divide the space sharply
into Voronoi cells, and there will be no averaging. The value
of λ should be chosen in such a way that PR(r) functions
have strong enough exponential decay close to the Voronoi
cell boundaries. Here we use the same parameter values as in
our earlier work [41] (λ = 1.2 bohr and β = 2.0) since they
fulfill the decay condition for solids close to their equilibrium
state.

C. Numerical details

All calculations used LDA to describe the exchange
and correlation effects. EMTO calculations were performed
within the scalar-relativistic and soft-core schemes. The
EMTO basis set included the s, p, d , and f orbitals, and
the one-center expansions were calculated up to cutoff value
lh
max = 28. The Green’s function was calculated for 16 com-

plex energy points distributed exponentially on a semicircular
contour. k-point meshes were selected in such a way that
there were ≈1500 k points in the irreducible wedge of the
Brillouin zone. In the fcc Cu and fcc CuZn CPA calculations
the muffin-tin zero has been shifted up by 0.2 Ry.

We also carried out reference calculations using the
full-potential linearized augmented plane wave method as im-
plemented in the ELK code [42]. The ELK calculations were
performed using conventional representations of the fcc and
B2 structures with 10 × 10 × 10 k-point meshes. Recom-
mended input settings for obtaining an accurate ELF were
used: LRADSTP = 1, RGKMAX = 11, GMAXVR = 22, MSMOOTH

= 4, LMAXAPW = 12, LMAXO = 12. Default species input
parameters were used in all ELK calculations.

D. About the l convergence of the one-center expansions

The accuracy of a one-center expansion, such as that for τ

in Eq. (20), is governed by the cutoff value lh
max, which defines

how many L = {l, m} terms are included in the expansion.
Because there are 2l + 1 magnetic quantum numbers m for
each value of l , the expansion becomes computationally in-
creasingly demanding to calculate when larger and larger l
terms are included in the expansion.

On the other hand, while the total energy is described with
adequate accuracy using a cutoff lh

max = 8, we have found that
obtaining an accurate ELF everywhere in real space requires
a noticeably larger l cutoff. The reason for this has to do with
the fact that the one-center expansion becomes less and less
accurate as we move away from the nucleus, which is the
center of the expansion. Therefore, if a crystal structure is de-

FIG. 1. Convergence of the density and KED one-center expan-
sions for fcc Cu as a function of the cutoff parameter lh

max. The curves
represent relative errors between EMTO and elk quantities plotted
along a line from the (0,0,0) coordinate to the (1,1,1) coordinate
of the conventional fcc unit cell. Only the critical region around
the center of the interstitial region (vertical dashed line) at unit cell
coordinate (1/2, 1/2, 1/2) is shown.

scribed by Voronoi cells that have elongated shapes, i.e., some
corners of the Voronoi cell are far away from the nucleus,
a large l cutoff will be needed to get an accurate ELF near
those far-away corners. This is the situation, for example, in
the fcc structure, where the corners of the Voronoi cells meet
in the center of the interstitial region and the shape of the fcc
Voronoi cell is somewhat elongated. In other structures, for
instance, bcc, the problem is much smaller because the shape
of the bcc Voronoi cell is quite round.

A proper l cutoff for an accurate ELF in the fcc structure
is therefore established here. Because the ELF is calculated
from the one-center expansions of the density and the KED,
we should make sure that both of those one-center expansions
are accurately described. Figure 1 depicts the l convergence
of the density and KED around the center of the interstitial
region in fcc Cu. We can see that compared to reference quan-
tities produced by the full-potential code ELK, while lh

max = 16
happens to give an acceptably low relative error with respect
to the density ([n(r)EMTO − n(r)elk]/n(r)elk), the relative error
of the KED has not yet converged. It can be seen that the cutoff
should be increased to lh

max = 28 to achieve good convergence
for both the density and the KED. Throughout the paper we
will therefore use a cutoff value lh

max = 28 in our calculations.

III. TEST CALCULATIONS

A. Kinetic energy of elemental metals

As a first test, we calculate the total kinetic energy Ts two
different ways: the way the EMTO code normally calculates
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TABLE I. Comparison of nonrelativistic kinetic energies calcu-
lated two different ways: (1) using the KS equations (EMTO) and (2)
integrating the KED [

∫
τ (r) dr]. The values reported are per unit cell

and in units of rydbergs.

EMTO
∫

τ (r) dr

bcc Li 14.6 14.6
fcc Al 481.4 481.6
fcc Ca 1349.3 1349.2
fcc Cu 3272.1 3272.7

it, i.e., by making use of the Kohn-Sham single-electron equa-
tions, and by numerically integrating the calculated one-center
expansion of τ (r) within the unit cell using the shape function
technique [34]. Table I provides the results per unit cell for Li
in a bcc structure and Al, Ca, and Cu in a fcc structure. Since
EMTO kinetic energy normally includes the scalar-relativistic
effects, while kinetic energy calculated by numerically inte-
grating τ (r) does not, EMTO calculations for this test have
been run nonrelativistically to make the kinetic energies com-
parable. The numerical integral used 100 grid points for the
angular θ and φ dimensions and 3000 grid points to describe
the radial part of the integral. We can see that the two kinetic
energies agree well within some error bars. The reason for
small differences is that while the EMTO kinetic energy is
computed as the difference between the one electron ener-
gies (computed via integration over the Brillouin zone) and
the potential term, the direct calculation is performed using
the shape function technique. In addition, the EMTO kinetic
energy suffers from the overlap error (one electron states are
normalized using a nonoverlapping overlap matrix), while the
direct calculation contains no explicit overlap contribution.

B. ELF for monoatomic and diatomic systems

To test the correctness and accuracy of the ELF, we plot
ELF isosurfaces for a set of systems for which reference
plots can be found in the literature or can be generated by
other well-tested DFT programs. The EMTO code outputs
the ELF as a text file in cube file format. Cube files describe
three-dimensional data which have typically been evaluated
on a uniform rectangular grid. One can analyze the cube file
to locate the critical points, which are either minima, saddle
points, or maxima. The local maxima somewhere between
the atoms are the bonding attractors (assuming they are not
spurious maxima caused by calculational approximations),
whose location and η value give the location and degree of
covalency of the bond, respectively. We will first consider
carbon in a diamond structure, as it is a prime example of
strong covalent bonding. Since EMTO relies on the muffin-tin
approximation, it is not the ideal method for systems with
open structures, like diamond. One can, however, introduce
so-called empty spheres in order to “fill the holes,” which
solves the problem in many cases. Figure 2 shows the ELF
isosurface η(r) = 0.8 for diamond, which has been calculated
with the help of empty spheres. We can see the strong covalent
bonds between carbon atoms and the EMTO figure closely
reproduce the results of Ref. [4].

FIG. 2. ELF isosurface η = 0.8 of carbon in a diamond structure.
The dark gray spheres represent “empty spheres” that are added in
the voids to improve the packing ratio and thus the computational
accuracy.

Modeling the ELF of metallic bonds can be tricky because
the ELF maxima of metallic bonds are shallower than, e.g.,
in the strongly covalent diamond case. It is known that the
resulting ELF topology can depend quite dramatically on
the computational method that is used to generate it. Full-
potential and non-full-potential methods sometimes disagree
on the number and location of ELF bonding maxima [3,4].
The choice of which electrons should be included as valence
electrons can also influence the ELF topology. The bulk ele-
ments that are tested include Li in a bcc structure and Al, Ca,
and Cu in a fcc structure. The lattice constants of Li, Al, Ca,
and Cu were 3.49, 4.05, 5.56, and 3.61 Å, respectively. We
also calculate the binary alloy AlRu in the B2 structure [43],
for which the lattice constant 3.00 Å was used. To showcase
the CPA ELF we calculate a fcc Cu0.75Zn0.25 random alloy
using both CPA and a supercell approach, and the results are
discussed in the next section.

The isosurfaces of the elemental metals are shown in
Fig. 3. Results for the same set of elements can be found
in Ref. [4], where three different methods, linear muffin-tin
orbital + atomic sphere approximation (LMTO-ASA), [29],
Hartree-Fock (HF) [44], and Full-Potential Local-Orbital
minimum-basis code (FPLO) [45], were compared. For bcc
Li we find attractors at the octahedral voids (cell coordi-
nates 1/2, 1/2, 0), and the ELF topology is the same as
that of the FPLO method in Refs. [3,4]. For fcc Al EMTO
predicts bonding attractors between the nearest-neighbor
pairs, in agreement with LMTO-ASA. For fcc Ca EMTO pre-
dicts attractors only in the octahedral voids (cell coordinates
1/2, 1/2, 1/2), again in agreement with LMTO-ASA. The
fact that in the Al and Ca cases EMTO agrees with LMTO-
ASA and not with the full-potential code FPLO is reasonable
given that EMTO is not full potential, just like LMTO-ASA.
For fcc Cu EMTO predicts attractors in the tetrahedral voids
(cell coordinates 1/4, 1/4, 1/4), which agrees with both the
LMTO-ASA and FPLO results.

The binary alloy AlRu is known as a good candidate for
high-temperature applications, and in Fig. 4 we plot the ELF
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FIG. 3. ELF isosurfaces of (a) bcc Li (η = 0.658), (b) fcc Al
(η = 0.565), (c) fcc Ca (η = 0.750), and (d) fcc Cu (η = 0.270).

maxima using both EMTO [Fig. 4(a)] and ELK [Fig. 4(b)]. We
can see that the EMTO and ELK ELF topologies are otherwise
the same, with the exception of Al-Al bonding maxima (green
isosurfaces, η ≈ 0.5) that EMTO finds and ELK does not.
These Al-Al maxima are the same as what can be seen in
Fig. 3(b), and similar to the bulk fcc Al case, they are not
predicted by full-potential methods [3]. The Ru-Ru maxima
in the octahedral voids are found by both methods (red iso-
surfaces, η ≈ 0.4), as are the maxima close to the Ru atoms
(blue isosurfaces, η ≈ 0.8). Both methods also produce the
fourfold maxima close to the octahedral holes (orange isosur-
faces, η ≈ 0.47), which together with the red isosurfaces at
the octahedral holes signify metallic multicenter bonding.

As discussed in Sec. II D, the interstitial region of the fcc
structure requires care to be treated accurately. The center of
the fcc interstitial region, where the corners of the Voronoi
cells touch, is not covered by the potential spheres, and in-
stead, the potential there is given by the constant muffin-tin
zero. We have noticed that for best ELF accuracy the value
of the muffin-tin zero should be checked as well. In our
current case, the muffin-tin zero of fcc Cu had to be raised
by 0.2 Ry above its default value in the self-consistent loop.
The motivation for this choice will be given later. Using
the default muffin-tin zero produces “unwanted” extra ELF
maxima in the octahedral voids (see fcc Ca in Fig. 3). The
reason for this is that the default muffin-tin zero does not
describe the real potential accurately in the octahedral void
centers in the fcc structure. Figure 5 illustrates this problem.
In the octahedral void center (vertical dashed line), where
the potential spheres do not overlap, the EMTO potential is
assumed to be constant, and its value is fixed to the muffin-tin
zero. The default muffin-tin zero produces a self-consistent
potential that severely underestimates the ELK full potential
in the void center (bottom panel). We have also plotted the
non-self-consistent EMTO full potential calculated from the

FIG. 4. The ELF bonding maxima of AlRu in the B2 structure
calculated with (a) EMTO and (b) elk methods.

converged density, and like the self-consistent potential, it also
underestimates the ELK full potential. As a consequence, the
EMTO density is overestimated in the void center, compared
to a density produced by the full-potential code ELK. On the
other hand, as Fig. 5 shows, the KED τ (and τW) is far less
affected by the value of the muffin-tin zero due to symmetry
and its dependence on the gradient operator (which vanishes
at the cell boundary due to the symmetry). The overestimated
density causes the denominator τunif in Eq. (2) to be too large
compared to the KED-based numerator τ − τW. Using the
default muffin-tin zero therefore causes α(r) to have spurious
minima in the octahedral void centers, which in turn means
that the ELF will have maxima or attractors there. If we shift
the muffin-tin zero up by 0.2 Ry, the interstitial potential is
brought to better agreement with a full potential calculated
with ELK (Fig. 5, bottom panel). Consequently, the agree-
ment between EMTO and elk densities (and potentials) is
dramatically improved, and the correct EMTO ELF topology
is recovered.

It should be noted that the fcc Cu ELF can also be fixed by
calculating it with empty spheres following the methodology
of Al-Zoubi et al. [46]. As shown in Fig. 5, empty sphere
calculation yields an EMTO full potential that is very similar
to the ELK full potential (see the bottom panel). The empty
sphere calculation can therefore be used to find the optimal
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FIG. 5. fcc Cu line plots from (0,0,0) to the (1,1,1) conventional
unit cell coordinate for the density, kinetic energy density, and self-
consistent potential around the octahedral void center region (dashed
vertical line). Elk and non-self-consistent EMTO full potentials are
also shown for comparison.

muffin-tin shift that is needed in the original nonempty sphere
case. We notice, however, that introducing empty spheres in a
close-packed lattice leads to additional problems (increased
overlap error, semicore states, basis set convergency, etc.).
Therefore, empty spheres are not a systematic way to improve
results, so here we have used empty spheres to justify, based
merely on EMTO calculations, why the 0.2 Ry muffin-tin zero
shift needs to be made.

C. ELF for random alloys

It is an interesting question how well the ELF calculated
with CPA compares to the ELF calculated using a supercell.
Since CPA is a single-site approximation and therefore does
not provide the full local environment around atomic sites the
way supercells do, some ELF information can be expected
to be lost. As a test case we have calculated fcc Cu0.75Zn0.25

with both CPA and a 32-atom special quasirandom structure
(SQS) supercell [47]. The SQS supercell coordinates are taken
from Ref. [48]. Both CPA and SQS calculations use the same
volume. Atomic coordinates are not relaxed in the SQS calcu-

FIG. 6. Top: ELF isosurfaces of the 32-atom Cu0.75Zn0.25 SQS
for isosurface level η = 0.315. Blue spheres are Cu atoms, and gray
spheres are Zn atoms. Bottom: Distribution of the SQS and CPA ELF
bonding center maxima.

lation in order to rule out the effect of local lattice relaxations
in the SQS results. As we did with bulk fcc Cu, the muffin-tin
zero is shifted up by 0.2 Ry.

The differences in CPA and supercell ELF are quantified
by comparing the values of the ELF maxima in the metallic
bonding centers at the tetrahedral voids. The local environ-
ment present in the supercell gives rise to a distribution of
ELF bonding maxima values, whereas CPA gives only a single
unique value for the maxima per CPA component due to the
symmetry-retaining single-site nature of CPA. The spread of
SQS ELF maxima is illustrated in the top panel of Fig. 6. The
image shows ELF isosurfaces drawn for the value η = 0.315.
Blue spheres are Cu atoms, and gray spheres are Zn atoms.
Each yellow surface in the image surrounds one of the metallic
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bonding centers. The smaller the size of the surface is, the
closer the ELF maximum value of that particular bonding cen-
ter is to the value 0.315. Large surface size indicates that the
ELF maximum value is above 0.315, and for empty locations
the maximum value is somewhere below 0.315. The distri-
bution of SQS ELF maxima is collected in the bottom panel
of Fig. 6, shown by orange crosses. Points are categorized to
Cu and Zn maxima based on whether the bonding maxima,
which are shared by four atoms, include Cu or Zn atoms. If the
maxima are shared by both types of atoms, they are counted
as both a Cu data point and a Zn data point. The gray area
gives a kernel-density estimate (KDE) fitted to the spread of
SQS ELF maxima. The CPA calculation yields just one unique
value for the ELF maximum (for both Cu and Zn), which in
Fig. 6 is shown by blue symbols. It can be seen that the Cu
CPA value agrees relatively well with the average of the SQS
values, aligning with the lower peak of the KDE distribution.
The lower peak corresponds to a Cu-rich environment, and
the upper peak corresponds to a mixed Cu-Zn environment.
For Zn the agreement is not as good, but CPA still gives an es-
timate for the ELF maximum that is within the spread of SQS
values. We are not sure what causes the discrepancy between
the SQS and CPA values for Zn. We note that the present
32-atom SQS supercell is relatively small, which might be one
of the reasons behind the discrepancy. In conclusion, the CPA
ELF can be seen as an approximation of the spatial average of
the SQS ELF. This is, perhaps, not surprising given that CPA
has been shown to agree well with average quantities extracted
from SQS calculations, for example, elastic constants [49].

IV. CONCLUSIONS

We have implemented the calculation of ELF in the EMTO
DFT code. The ELF can be plotted or otherwise analyzed to

study bonding characteristics or used internally by EMTO to
perform calculations at the meta-GGA level. Since EMTO
supports the simulation of disordered system using the CPA
formalism, we have implemented the ELF in such a way that
it can also accommodate CPA calculations.

EMTO predicts ELF topologies with accuracy that is some-
where between LMTO-ASA and full-potential methods (e.g.,
FPLO). In the bcc Li case EMTO agrees with FPLO, while
LMTO-ASA produces a different topology. For the rest of
the tested bulk elements EMTO agrees with LMTO-ASA. For
EMTO one of the most notable approximations that affect the
ELF is that EMTO assumes the potential inside the muffin-tin
spheres is spherically symmetric and constant outside; that
is, the currently employed EMTO code is not a full-potential
method. There are currently no robust rules to tell us which
method gives the “correct” ELF topology for which system.
However, it is thought that full-potential methods, such as
FPLO and ELK, that describe the potential without any shape
approximations should generally be able to give more accurate
ELF in the interstitial region far away from the Wigner-
Seitz sphere boundary than non-full-potential methods. The
true advantage of the present implementation is that it can
easily be applied to chemically and magnetically random
systems.
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