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Striped electron fluid on (111) KTaO3
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A recent study has revealed that the low carrier density electron gas (2DEG) induced at the interface of EuO
and (111) KTaO3 exhibits a broken symmetry phase with a strong in-plane anisotropy of the resistivity. We
present a minimal tight-binding model of this (111) 2DEG, including the large spin-orbit coupling from the Ta
ions, which reveals a hexagonal Fermi surface with a highly enhanced 2kF electronic susceptibility. We argue that
repulsive electronic interactions, together with a ferromagnetic EuO substrate, favor a magnetic stripe instability
leading to a partially gapped Fermi surface. Such a stripe state, or its vestigial nematicity, could explain the
observed transport anisotropy. We propose a k · p theory for the low energy j = 3/2 states, which captures the
key results from our tight-binding study, and further reveals the intertwined dipolar and octupolar modulations
underlying this magnetic stripe order. We conclude by speculating on the relation of this stripe order to the
superconductivity seen in this material.
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I. INTRODUCTION

The superconducting 2DEG at the surface of SrTiO3 has
been the subject of much investigation since its observation
back in 2007 [1]. A few years later, its 5d analog, KTaO3

(KTO), was found to exhibit superconductivity (SC) at 50 mK
in an (001) 2DEG created using ionic liquid gating [2]. A
recent experiment discovered that for (111) oriented KTO,
Tc is dramatically enhanced, by a factor of 40, with SC oc-
curring up to ∼2 K at carrier densities n ∼1014 cm−2 [3].
Even more remarkably, at low carrier densities where SC
occurs with Tc ∼0.5 K, it descends from an apparent nematic
phase with a significant in-plane resistance anisotropy of ∼3
[3]. This anisotropy onsets abruptly at a higher temperature
2.2 K, suggesting a phase transition into an ordered state. At
zero magnetic field, the anisotropy is only observed if KTO
is in contact with EuO (for KTO on LaAlO3, an in-plane
magnetic field is required for its observation [3]). As EuO is
ferromagnetic, magnetism is likely to play an important role in
this phenomenon. The presence of charge, spin, and supercon-
ducting correlations as a function of carrier concentration for
(111) KTO is reminiscent of a number of other materials such
as cuprates [4,5], iron pnictides and chalcogenides [6], doped
Bi2Se3 [7–9], and twisted bilayer graphene near a magic
angle [10]. Furthermore, since the conduction band of KTO
arises from spin-orbit coupling (SOC) induced j = 3/2 states
[11,12], the broken symmetry nematic is expected to display
intertwined multipolar orders as conjectured for Cd2Re2O7

[13–16].
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KTO is a band insulator with a large gap ∼3.6 eV [17].
Experiments have realized both a (001) 2DEG [3,18–21] and
a (111) 2DEG [3,12,22] at the free surface of KTO, due to
oxygen vacancies induced by cleaving or by irradiating the
surface, as well as at KTO interfaces with oxides such as
LaAlO3 and EuO. Figure 1 shows the crystal structure of
(111) KTO, consisting of alternating layers of Ta and KO3,
with each Ta layer forming a triangular lattice. This structure
is highly polar given the 5+ nature of the Ta ions. Angle
resolved photoemission spectroscopy (ARPES) of the 2DEG
revealed sixfold symmetric Fermi surfaces (FSs) [12,22]. The
observed bands were found to be captured by a (111) bilayer
model [22], consisting of t2g orbitals from two Ta layers
forming a buckled honeycomb plane, a setting proposed for
realizing topological phases by Xiao et al. [23].

FIG. 1. Crystal structure of the top three (111) layers of KTO (Ta,
KO3, Ta), with the horizontal axis along (1, −1, 0) and the vertical
axis along (1, 1, −2). K ions are in purple, O ions in red, Ta ions in
the top layer in cyan, and Ta ions in the bottom layer in gold.
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In this work, we compute the Lindhard susceptibility of
(111) KTO using a similar approach to describe the low en-
ergy electronic excitations of the system with a simplified
tight-binding model that we fit to match the features seen
by ARPES measurements [12]. We also present an effective
k · p model around the Fermi energy and the � point for the
j = 3/2 manifold. We compare the Fermiology and the sus-
ceptibility obtained from both models and analyze the effect
of the different multipolar components in the possible insta-
bilities connected to the divergences seen in the susceptibility,
providing a plausible explanation for the recent experiments
in (111) KTO by Liu et al. [3]. Our k · p theory might be more
broadly applicable to other (111) 2DEGs.

The rest of the paper is organized as follows. In Sec. II, we
introduce our tight-binding approach, show its Fermi surface
and nesting properties, present the Lindhard susceptibility and
the role of matrix elements, contrast charge versus spin mod-
els, and discuss their influence on reconstructing the Fermi
surface and the resulting impact on transport. In Sec. III, we
propose an effective k · p model in the j = 3/2 basis, and
compare its results relative to the tight-binding one, emphasiz-
ing the new aspect of octupolar contributions to the Lindhard
susceptibility. Finally, in Sec. IV, we provide a brief summary
of the results and speculate on their connection to supercon-
ductivity.

II. TIGHT-BINDING APPROACH

A. Tight-binding model

The bilayer model for KTO oriented along the (111) direc-
tion that we use here consists of three orbitals per Ta site and
two layers [23]. The Hamiltonian at momentum k is

Ĥ(k) = [ξ�(k)d†
1,�α (k)d2,�α (k) + H.c.]

+ i
λ

2
ε�mnσ

n
αβd†

i,�α (k)di,mβ (k)

+ 


2
(1 − δ�,m)d†

i,�α (k)di,mα (k). (1)

Here, the subscript i = 1, 2 labels Ta 5d electrons in the
two layers, the orbital indices �/m = (1, 2, 3) correspond to
(yz, xz, xy), the Pauli matrix superscript n = (1, 2, 3) stands
for (x, y, z), and the spin components are labeled using α, β

each of which can be (↑,↓). We assume implicit summation
on repeated indices. The coefficient λ denotes the SOC, 
 is
the trigonal distortion, and ξ�(k) denote the orbital-dependent
interlayer hybridization, given by

ξ1 = −teik2c
[
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( √

3k1c
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2

)]
,
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)]
,
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2

)
e−i k2c

2 , (2)

where t is the hopping. Explicitly, the secular matrix has
the following form with the basis {|d1,yz↑〉, |d1,xz↑〉, |d1,xy↑〉,
|d2,yz↑〉, |d2,xz↑〉, |d2,xy↑〉, |d1,yz↓〉, |d1,xz↓〉, |d1,xy↓〉, |d2,yz↓〉,
|d2,xz↓〉, |d2,xy↓〉}:

Ĥ(k) =
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. (3)

Here, k1 ≡k[11̄0] and k2 ≡k[112̄] refer to orthogonal momenta
in the hexagonal surface Brillouin zone (BZ), with c being
the projection of the bulk lattice constant, a, onto the (111)
plane (i.e., c = √

2/3a with a = 3.99 Å). The in-plane (111)
lattice constant is

√
3c, which sets the scale for the surface

BZ. We chose t = −1 eV, which in the absence of other terms,
fixes the total bandwidth of the model to 4|t | (the value of t
being set by the bulk KTO bandwidth). The SOC term for t2g

orbitals has a value of 265 meV, leading to a bare quartet-
singlet splitting of 397.5 meV at � (i.e., when t is turned
off). This value has been chosen to match the large spin-orbit
splitting reported from ab initio calculations of KTO [12]. A
small on-site trigonal distortion (
 = 10 meV) is included,
motivated by the earlier studies mentioned above. We have
found that the other (smaller) hoppings, as well as the poten-
tial difference between the two layers, which were considered
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in Ref. [23], play only a minor role and are not included
here.

The Rashba term can be derived by generalizing the work
of Khalsa et al. [24] to the (111) case. As (111) is parallel
to x + y + z, more terms enter than in their (001) case. As
an example, the yz to xy hopping along the Ta-O-Ta cubic z
direction is of the form 〈yz| y〉 〈y| Ex |xy〉 where the first matrix
element is +tpd , with tpd the overlap integral between Ta 5d
and O 2p orbitals, and the second one is the inversion breaking
term due to the electric field along the x direction, Ex. This
results in the following matrix elements, γ , to be added to the
secular matrix:

γ1yz,2xz = 2itR sin

(√
3k1c

2

)
e−i k2c

2 ,

γ1yz,2xy = tReik2c
[
1 − e

−i
( √

3k1c
2 + 3k2c

2

)]
,

γ1xz,2xy = tReik2c
[
1 − e

i
( √

3k1c
2 − 3k2c

2

)]
, (4)

where diagonality in the spin index is implicit. (Note that
this corresponds to an orbital inversion symmetry breaking
and is thus spin-diagonal.) The spin-splitting arises from the
combination of this inversion breaking term and the atomic
SOC. We have found that a value of tR of 2 meV is needed to
reproduce the suggested Rashba splitting along �-K of Bruno
et al. [12]. This value leads to an almost uniform splitting of
around 0.005π/c for the outer surface of the lower density
case of Liu et al. [3].

B. Results from the tight-binding approach

The dominant scale is the Ta-O-Ta hopping, t ∼ 1 eV,
which is proportional to t2

pd/
pd where tpd is the hopping
between the Ta 5d t2g and O 2p orbitals, and 
pd is the
Ta-O charge transfer energy. Since each Ta t2g orbital hops
to only two of the three nearest neighbors on the honeycomb
lattice, the resulting bands exhibit 1D character. Indeed, a
t-only model generates a Fermi surface consisting of three
pairs of spin-degenerate parallel lines (one for each orbital)
along the �-M direction rotated with respect to each other by
120◦ [Fig. 2(a)], which are perfectly nested along �-K .

The inclusion of SOC, which is the next largest energy
scale, dramatically alters the electronic structure. SOC mixes
the different t2g orbitals, with the t2g manifold at the �-point
splitting into a lower j = 3/2 quartet and an upper j = 1/2
doublet, separated by ∼0.4 eV, as seen in Fig. 2(b). The net
result is that the parallel FS lines break up and reconstruct
into closed FSs, as seen in Figs. 2(c) and 2(d). Motivated by
Ref. [12], we supplement this minimal model with a small
trigonal distortion term so the j = 3/2 quartet at � splits
into two Kramers doublets separated by ∼15 meV. These two
bands refer to the lowest subset of bands in quantum well
language. There is weak evidence from ARPES for higher
level subbands, but as these are over 100 meV higher in
energy, they play no role in regards to the low energy physics
discussed here.

Overall, our model provides a reasonable description of the
recent ARPES data [12], at a density n∼1014 cm−2, which
reveals a larger outer star-shaped FS along with an inner
hexagonal FS, both centered at �, as seen in Fig. 2(c). How-

FIG. 2. (a) Fermi surface of (111) KTO in a t-only bilayer model,
with �-K along the horizontal axis and �-M along the vertical
axis. The bands are labeled by their t2g content, and the hexagon
marks the surface Brillouin zone boundary. (b) Electronic band
structure including spin-orbit coupling and a small trigonal distor-
tion. The two sets of curves correspond to two chemical potentials
adjusted to match the carrier densities reported by Bruno et al.
[12] (high density) and Liu et al. [3] (low density). Fermi surface
for the (c) high-density and (d) low-density cases. The horizontal
arrows indicate the nestings along �-K that were identified by the
susceptibility.

ever, the recent experiments which observe nematic transport
[3] correspond to lower densities n∼3.5×1013 cm−2. To ex-
plore this regime, we start from our well-motivated model
above, and lower the chemical potential to achieve this den-
sity. The resulting FS, shown in Fig. 2(d), reveals an inner
circular FS, and an outer hexagonal FS, which has flat faces
nested along the �-K directions. We examine below the con-
sequences of this nesting for 2kF stripe order and transport
anisotropy. The FSs shown in Figs. 2(c) and 2(d) are spin
degenerate; we later incorporate weak Rashba spin splitting
[12,22] due to broken inversion symmetry at the interface.

The susceptibility for such a hexagonal FS is expected to
resemble the 1D Lindhard function which diverges logarith-
mically in T at the nesting wave vector. Interestingly, the
nesting direction is along �-K [i.e., the (1,−1, 0) direction],
which corresponds precisely to the observed high resistivity
direction in the nematic phase [3]. We remark that currently,
the only evidence for “nematicity” is the transport data [3].
Therefore we do not know whether the phase is a true nematic,
or a broken translational symmetry phase. Given the above
observation, our model points to the latter. In a stripe model
for the nematic phase, one would indeed anticipate that the
resistivity is maximal along the stripe wave vector, qs. To in-
vestigate this further, we calculate the Lindhard susceptibility
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FIG. 3. (a) Lindhard susceptibility, χ0, along �-M and �-K for
the low density case with T = 0.5 meV. Subscripts 1,3 are band in-
dices (1 for the outer FS, 3 for the inner FS, noting that bands 1,2 and
3,4 are Kramers degenerate). (b) Evolution of the susceptibility with
temperature. (Inset) Detail of the cusp in χ11 along the �-K direction
associated with the outer FS. (c) Lindhard susceptibility including
spin matrix elements as defined in Eq. (6). x and z correspond to the
spin operators Sx and Sz. The strong (11) cusp is only found for the
zz component.

χ0, for the bilayer model (low-density case):

χ0(q) =
∑
k,n,m

fk,n − fk+q,m

εk+q,m − εk,n + iδ
, (5)

where m and n are band indices, f are Fermi functions, ε

are the band energies, and δ is a small broadening (set to
0.1 meV or smaller). Although the bilayer model has six
spin-degenerate pairs of bands (three t2g orbitals, two layers),
only the lowest two are relevant at low energy and we confine
our discussion to them. To begin with, we will be agnos-
tic concerning spin versus charge, and therefore not include
matrix elements until later. The resulting χ0, decomposed in
terms of n and m, is shown in Fig. 3(a). As expected, the outer
hexagon gives rise to a susceptibility maximum along �-K
due to nesting of each of the two parallel sides of the hexagon
[as indicated in Fig. 2(d)]. This is evident from the cusp-like

FIG. 4. Original FS from Fig. 2(d) (red,blue) as well as the re-
constructed outer FS (green) due to a spin density wave potential
V (qs) of strength 4.4 K, with qs = (qs, 0) and qs given by the peak
in χ0 along �-K for the outer FS.

behavior of the intraband χ0, indicating quasi-1D behavior.
Figure 3(b) shows that this cusp becomes better defined upon
lowering T , as expected.

To proceed further, we need to consider matrix elements.
In the experiments, the nematic phase at zero magnetic field is
found at the KTO-EuO interface, but not at the KTO-LaAlO3

interface. This indicates that magnetism is playing a key role.
This can be understood from the fact that the Eu 4 f electrons
exhibit ferromagnetic order with a large moment. These 4 f
electrons overlap with the Eu 5d orbitals which in turn overlap
with the Ta 5d electrons (the Ta to oxide layer spacing in
(111) KTO is only 1.15 Å, whereas 〈r〉Eu−4 f ∼ 0.9Å, 〈r〉Eu−5d

∼2.7 Å, and 〈r〉Ta−5d ∼2.2 Å [25]). Calculations for (001)
EuO-KTO find induced moments of ∼0.2 μB on the first TaO2

layer [26]. This motivates including spin matrix elements in
the numerator of Eq. (5):

g2 〈k, n| Si(q) |k + q, m〉 〈k + q, m| Sj (q) |k, n〉 , (6)

where g = 2, Si are spin- 1
2 operators (i=x, y, z), and |k, n〉 are

the band eigenvectors. Because of strong SOC, the suscepti-
bility is anisotropic even without the feedback from the energy
gap due to density wave formation. The results are shown
in Fig. 3(c). The cusp along �-K is associated with the zz
component of χ . As z is orthogonal to (1,−1, 0), this implies
a transverse spin density wave, which is typical for a magnetic
stripe model [27].

The mean field transition temperature is determined by
the divergence of the full interacting susceptibility. This is
given by the condition I (q)χ0(q, T ) = 1, where I (q) is the
interaction function. Based on the above considerations, we
expect I (q) would be induced by the combined effect of the
amorphous ferromagnetic EuO substrate and local Ta corre-
lations, rendering it a weak function of q. Thus, the ordering
vector would be determined by the cusp in χ0. The value of
I (q) would need to be sizable (on the scale of ∼1 eV) in order
to induce the transition, with the low value of Ts due to the log-
arithmic (BCS-like) rise in the cusp of χ0 with decreasing T
as can be seen in Fig. 3(b). In this scenario, the disappearance
of “nematicity” in higher carrier density samples could be due
to the reduction of I (q) from screening, or due to enhanced
disorder scattering as reflected by the lower mobility of such
samples [3].

We next consider the question of transport anisotropy
in this stripe state. In Fig. 4, we show the outer FS as
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reconstructed by a spin-density wave within a simple calcula-
tion [28] involving a 3 × 3 secular matrix where one couples
the states k − qs and k + qs with k, with k from the lowest
band (band 1) and a stripe potential, V (qs). Here, we take
qs = (qs, 0), and V (qs) to have a typical mean-field value of
2Ts where Ts ∼2.2 K from Ref. [3]. We find that the original
FS is wiped out along the nesting direction, leading to a
reconstructed open FS which is expected to exhibit a strong
resistive anisotropy. We remark that if the Fermi surface was a
perfect hexagon, the transport anisotropy ratio would be three,
which we verify is approximately true for our model Fermi
surface. This value is roughly consistent with the observed
anisotropy in the transport measurements [3].

We briefly comment on the energetic competition between
a single-q state versus a triple-q state. In the presence of SOC,
for a fixed spin direction, only one of the three equivalent
�-K directions would have a cusp, but not the other two
[as in Fig. 3(c)], leading to transport anisotropy. Based on
the above FS reconstruction, one might expect that a triple-q
state would gap out the entire outer FS (i.e., all hexagonal
faces), and thus would be energetically preferred over the
single-q one. Such a state would not have an in-plane transport
anisotropy. However, such noncoplanar spin crystals typically
arise for a nonzero perpendicular magnetization whereas the
EuO magnetization is expected to be in the plane of the in-
terface. In this case, SOC could favor the single-q state, with
the moment direction locked to the stripe wave vector. This
provides further support of a magnetic stripe rather than a
charge stripe order, as the latter should exhibit a triple-q state
with no anisotropy that would be inconsistent with the data. A
complete treatment of this problem would require calculating
the cubic and quartic terms in a Landau free-energy expansion
[29,30], but this time including the spin matrix elements. This
is an involved task, which we defer to future work.

We next consider the effect of the Rashba spin splitting.
In a single-layer model, the Rashba term for the (111) case
is given in Ref. [31]. As the Ta-Ta hopping in-plane is weak,
we instead consider the Rashba term given by the Ta-O-Ta
path connecting the layers, which is a (111) generalization
of the (001) case considered by Khalsa et al. [24]. Here,
the largest term is due to inversion breaking on one of the
Ta-O segments followed by a tpd hop along the other. The
functional form is given in Eq. (4). Both this form and the
one of Ref. [31], which are off-diagonal in the orbital index,
give similar results, with a relatively isotropic Rashba splitting
around the FS [Fig. 5(a)]. The effect of this is minor for χ0

without matrix elements given the small value of the Rashba
splitting (of order a few meV). However, once we include
their effect, the largest χ0 contribution comes from the inter-
band zz component associated with the Rashba-split outer FS
[Fig. 5(b)], which can be understood from the Rashba-induced
FS spin texture.

III. k·p APPROACH

A. j = 3/2 effective model

While our tight-binding model study captures the salient
observations for the (111) KTO 2DEG, it is nevertheless use-
ful to construct a continuum k ·p theory for the low-energy

FIG. 5. (a) Outer FS as in Fig. 2(d), but including a Rashba term
which lifts the Kramers degeneracy. (b) Resulting Lindhard sus-
ceptibility, χ0, computed with T = 0.5 meV, including spin matrix
elements as defined in Eq. (6) plotted along the (1, −1, 0) direction.
The cusp is again associated with the zz component but now is an
interband term between the two Rashba-split bands.

j = 3/2 states near the � point [32,33]. This allows us to
clearly expose the multipolar character of the magnetic stripe
order. For a cubic crystal like KTO, the symmetry-allowed
continuum four-band Luttinger model for the 3D bulk disper-
sion near the � point is given, to O(k2), by

HLutt
3D = α1k2Ĵ0 + α2(k · Ĵ)2 + α3

∑
i=x,y,z

k2
i Ĵ

2
i . (7)

Here, Ĵi refer to spin-3/2 angular momentum operators (with
i = x, y, z), Ĵ0 is the 4×4 identity matrix, and we measure
momenta in units of 1/a, where a is the cubic lattice constant.
In this case, we find that a single parameter model, with
α1 = α2 = 0 and α3 = 0.2 eV, captures the band dispersion
near the � point. We impose a momentum cutoff � = π/3. To
describe the (111) 2DEG, we take this dispersion and project
it to 2D, expressing it in terms of orthogonal momentum com-
ponents in the plane of the 2DEG, namely, k1 and k2 which
are respectively along the (11̄0) and (112̄) directions, so kx =
(k2 + √

3k1)/
√

6, ky = (k2 − √
3k1)/

√
6, and kz = −2k2/

√
6.

The projected 2D Hamiltonian is

H (0)
2D = α3

[
(
√

3k1+k2)2

6
Ĵ2

x + (
√

3k1−k2)2

6
Ĵ2

y + 2k2
2

3
Ĵ2

z

]
. (8)

Going beyond these terms which descend from the bulk dis-
persion, we need to incorporate additional symmetry allowed
terms in order to describe the 2DEG dispersion. We begin by
considering mirror symmetry M1, time reversal T , threefold
rotation R2π/3, and inversion I, and then incorporate Rashba
terms from breaking I. For convenience, we define k± =
k1 ± ik2. Under lattice symmetry operations, the momenta and
�J transform as

M1 :

{
(k1, k2) → (−k1, k2)
(Jx, Jy, Jz ) → (−Jy,−Jx,−Jz ) ,

R2π/3 :

{
k± → k±e±i2π/3

(Jx, Jy, Jz ) → (Jy, Jz, Jx )
,

I :

{
(k1, k2) → (−k1,−k2)
(Jx, Jy, Jz ) → (Jx, Jy, Jz ) . (9)
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TABLE I. The overline symbol indicates a sum over all the possi-
ble permutations of the operators, JxJ2

z = JxJ2
z + JzJxJz + J2

z Jx . This
table is adapted from Refs. [34,35] but with modified normalization.

Multipole Symmetry Operator

Dipole �4 Mx = Jx

My = Jy

Mz = Jz

Quadrupole �5 Myz =
√

5
12 JyJz

Mxz =
√

5
12 JxJz

Mxy =
√

5
12 JxJy

�3 Mx2−y2 =
√

5
12 (J2

x − J2
y )

M3z2 =
√

5
36 (3J2

z − J (J + 1))

Octupole �2 Mxyz =
√

5
27 JxJyJz

�4 Mα
x = 2

3 (J3
x − 1

2 (JxJ2
y + JxJ2

z ))

Mα
y = 2

3 (J3
y − 1

2 (JyJ2
x + JyJ2

z ))

Mα
z = 2

3 (J3
z − 1

2 (JzJ2
x + JzJ2

y ))

�5 Mβ
x =

√
5
27 Jx (J2

y − J2
z )

Mβ
y =

√
5
27 Jy(J2

z − J2
x )

Mβ
z =

√
5
27 Jz(J2

x − J2
y )

If inversion and time-reversal are unbroken, cubic terms in the
momenta are ruled out, and the next important terms which we
find capture the hexagonal shape of the 2DEG dispersion are
sixth order terms in momenta,

H (1)
2D = [

β1(k6
++k6

−)+β2(k3
++k3

−)2
]
Ĵ0

+β3(k3
+−k3

−)2Ĵ2
3 , (10)

where Ĵ3 = (Ĵx + Ĵy + Ĵz )/
√

3. Finally, we incorporate two
weaker terms: an effective trigonal distortion 
̃, and a Rashba
coupling γ̃ from inversion breaking, via

H (2)
2D = 
̃Ĵ2

3 + γ̃ (Ĵ1k2−Ĵ2k1), (11)

where J1 = (Jx −Jy )/
√

2 and J2 = (Jx +Jy−2Jz )/
√

6. We set
(β1, β2, β3) = (0.35, 0.6,−0.65) eV. Although {βi} naïvely
appear to be large energy scales, we note that these are co-
efficients of the sixth order terms, so the correct comparison
which shows their “smallness” is that βik4

F 
α1 for relevant
densities. Finally we fix the weaker terms to be (
̃, γ̃ ) =
(7, 7) meV in order to match the tight-binding results for the
spin splitting of the FSs and the splitting of the j = 3/2 quar-
tet at the � point. This Hamiltonian H2DEG =H (0)

2D +H (1)
2D +

H (2)
2D may be viewed as a simple continuum j = 3/2 model for

the KTO (111) 2DEG for low to moderate dopings. A similar
k · p approach might be valuable to understand the physics of
other (111) 2DEGs.

The multipole moments within the j = 3/2 quartet are
given in Table I. We have normalized these multipole oper-
ators such that Tr(M2

α ) = 4 j( j + 1)/3. This normalization is
chosen such that the dipole operator matrices are simply the
usual Ĵi matrices.

FIG. 6. k · p Fermi surfaces for the 2DEG upon including the
Rashba SOC and trigonal distortion, shown for chemical potential
μ = 150 meV (n ≈ 6.5 × 1013 cm−2) and μ = 60 meV (n ≈ 3.5 ×
1013 cm−2). In each case, the spin-split FSs are more clearly visible
for the outer pair of bands, with the splitting being slightly more
significant along the k2 ≡ k[1̄1̄2] direction which corresponds to the
�-M direction.

B. Results from the j = 3/2 model

The Fermi surfaces from this k · p Hamiltonian are shown
in Fig. 6 and are in reasonable agreement with the FSs from
the tight-binding model discussed in the previous section. For
the high-density case, we manage to reproduce the star-shaped
outer FS with an inner hexagon, and for the low-density case,
the outer hexagon with an inner circular surface.

The susceptibility matrix for this k ·p model involves the
full set of multipole operators constructed from the j = 3/2
quartet. In addition to dipole operators Ĵi, this includes five
quadrupoles (triplet: �5, doublet: �3) and seven octupoles
(singlet: �2, triplets: �4 and �5); see the table of operators.

As a check, we retain only the dipole operators and diag-
onalize the resulting 3 × 3 susceptibility matrix to obtain the
susceptibility eigenvalues for intraband and interband orders.
These results, shown in Fig. 7, are in qualitative agreement
with our tight-binding model result in Fig. 5(b).

Figure 8(a) show the largest eigenvalue of the full 15 × 15
matrix susceptibility, for both intraband χ11, χ22 and inter-
band χ12 + χ21 cases, for momentum along the nesting �-K
direction. The strongest response still occurs for the inter-
band χ between the two spin-split FSs. The key difference
is that the intraband χ11, χ22 also show strongly enhanced,
but nevertheless subdominant, peaks. Figure 8(b) plots the
magnitude of the eigenvector components of χ12 + χ21 for
the different multipoles at the peak momentum, showing that

0

2

4

6

8

KΓ

M
ax

E
ig

va
l
[χ

]

χ12 + χ21
χ11
χ22

FIG. 7. Largest eigenvalues of the 3 × 3 susceptibility matrix
truncated to just the dipole operators plotted as a function of mo-
mentum along �-K .
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FIG. 8. (a) Maximum eigenvalues of the susceptibility matrix
for j = 3/2 multipoles, showing that the interband instability (thick
solid line) slightly dominates over the intraband ones (thin solid
lines). (b) Magnitude of the eigenvector components for χ12+χ21

at qs [peak momentum in (a)], showing that the dominant order is
composed of intertwined time-reversal breaking dipolar (∼Jz) and
octupolar (�5) modulations.

the symmetry breaking corresponds to intertwined magnetic
dipolar and octupolar orders. As a consequence, the 2DEG
stripe should exhibit modulated loop currents from octupolar
order [36,37].

Figures 9(a)–9(f) show the real and imaginary components
of the eigenvectors corresponding to the peaks in χ where
we diagonalize the full 15 × 15 susceptibility matrix. Since
the quadrupoles are time-reversal (T ) invariant operators,
while the dipoles/octupoles are T -odd, the quadrupoles do
not mix with dipoles/octupoles in the computed susceptibility.
Our calculations show a tendency towards dipole/octupole
order rather than quadrupolar order. Furthermore, for the sus-
ceptibility at a nonzero wave vector q = (q1, q2), different
representations of the full point-group symmetry at the �

point are allowed to mix since the symmetry is reduced.
Below, we consider q = (q1, 0), going along the �-K direc-
tion, and implicitly set q2 = 0 to drop this momentum label.
The real and imaginary components of the eigenvectors in
Figs. 9(a)–9(f) then reflect odd/even properties under the
mirror operation M1, which interchanges q1 ↔ −q1, and also
transforms the dipole/octupole components. For instance,
considering χ11, the dipole components transform under M1 as
(Mx,My,Mz ) → −(My,Mx,Mz ) while the �2 octupole
Mxyz → −Mxyz. Evenness of the real part of the eigenvector
leads to (Mx,My) components with opposite signs while
the Mz component vanishes. On the other hand, the oddness
of the imaginary part of the eigenvector leads to (Mx,My)
components with the same sign while the Mz is now nonzero.
Similarly, the �2 octupole component Mxyz vanishes in the
real part of the eigenvector but not in the imaginary part.

Finally, we should note that different normalization
schemes for the multipoles are also possible, as in
Refs. [34,35]. Although those would lead to quantitative
changes in the susceptibility results, the key conclusions that
the dominant eigenvalue of χ stems from interband (12+21)
nesting, and that it involves dipoles and octupoles, would
however remain robust.

FIG. 9. Real and imaginary components of the dominant eigen-
vector corresponding to the peaks in χ for [(a) and (b)] intraband χ11,
[(c) and (d)] intraband χ22, and [(e) and (f)] interband χ12 + χ21. For
the leading instability, which corresponds to an interband order, the
symmetry breaking pattern involves time-reversal breaking dipolar
and octupolar modulations.

IV. CONCLUSIONS

We now discuss the implications of our work. Given that
the transport anisotropy is only seen with magnetic EuO, or
with LAO in a magnetic field, a magnetic stripe model is
a more natural explanation for the data than a charge-only
model. Moreover, the magnetic model has the advantage of
giving rise to a single-q state, as opposed to a triple-q state,
the latter not having any transport anisotropy. We therefore
conclude that the nematic phase seen by Liu et al. [3] be-
low Ts ∼2.2 K is a magnetic stripe. Experiments such as
linear optical dichroism, Raman scattering, and resonant x-ray
diffraction could shed further light on the nature of this bro-
ken symmetry state at the interface. The vestigial nematicity
associated with the stripe order is expected to have relatively
longer range correlations [38,39], so it is likely to be pinned
by the device geometry. The magnetic stripe state should also
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strongly impact the SC order. The gapped FS shown in Fig. 4
will reduce the number of states available for pairing, resulting
in a lower Tc in samples which exhibit nematicity. In addition,
it will cause the SC itself to be anisotropic. Furthermore, for a
spin-density wave state, the pairing in a paramagnetic basis
can be written as a linear combination of a spin singlet at
Q = 0 (here, Q refers to the center of mass momentum of
the pair), and one component of a spin triplet at the magnetic
wave vector, Q = qs [40]. As such, the superconducting state
will also exhibit spatial modulation, similar to a pair density
wave state [41], as suggested by Liu et al. [3]. A full treatment
of the pairing problem would involve explicitly considering
the Rashba splitting, given that its value exceeds both Ts and

Tc. Finally, the increase of Tc with carrier density could be
due to the suppression of the magnetic stripe phase. This
competition is commonly observed in density wave materials
such as CuxTiSe2 [42].
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