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Hole in the two-dimensional Ising antiferromagnet: Origin of the incoherent spectrum
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We develop a “self-avoiding walks” approximation and use it to calculate the spectral function of a single
hole introduced into a two-dimensional square lattice Ising antiferromagnet. The local spectral function obtained
qualitatively agrees with the exact diagonalization result and is largely incoherent. Such a result stays in contrast
with the spectrum obtained on a Bethe lattice, which consists of the well-separated quasiparticle-like peaks and
stems from the motion of a hole in an effective linear potential. We determine that this onset of the incoherent
spectrum on a square lattice (i) is not triggered by the so-called Trugman loops but (ii) originates in the warping
of the linear potential by the interactions between magnons created along the tangential paths of the moving
hole.

DOI: 10.1103/PhysRevB.103.035113

I. INTRODUCTION

The problem of a single hole doped into an Ising antifer-
romagnet, with its dynamics governed by the t-Jz model [1],
is one of the oldest problems of correlated electron systems.
The basic physics of this problem was already understood
about 50 years ago [2]: It is based on the idea that the hole
is subject to an effective potential originating from the energy
cost associated with the antiferromagnetic bonds being grad-
ually destroyed by the mobile hole. Because the number of
the broken bonds, originating in the “misalignment” of spins,
cf. top panels of Fig. 1, is assumed to be the same at each
time the hole hops between the nearest-neighbor sites, the
effective potential grows linearly with the distance covered
by the mobile hole. Consequently, the corresponding spectral
function of this problem is “ladder-like,” i.e., it consists of
the well-separated quasiparticle-like peaks with the low-lying
peaks split by a gap ∝(Jz/t )2/3 [2–4]. The above picture was
qualitatively confirmed by a number of works, for example,
by applying the retraceable path approximation [6] to this
problem [2,7], using the self-consistent Born approximation
[3,4,8], whose equations can be analytically written using
a closed form [9], extending the latter one to include the
magnon-magnon interactions [10,11], or designing the so-
called magnon expansion method [11].

To the best of our knowledge, the only qualitatively dif-
ferent scenario to the above picture came from the paper by
Trugman [5]. There it was suggested that the hole may go
along a loop (hereafter called Trugman loops), reverse the
misaligned spins and thus “liberate itself” from the linear
potential, cf. bottom panels of Fig. 1. It turned out that such a
process led to a momentum dependence of the spectral func-
tion, although, for instance, its contribution to the ground-state
energy is estimated to be relatively small [10–12]. Indeed, the
magnon expansion results [11], which include the Trugman
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loops, advocate that the ladder-like spectrum should not be
substantially affected by the closed-loop processes. Interest-
ingly, Macready and Jacobs [13] consider the t-Jz model in
the hopping basis and obtain a result that could suggest a
breakdown of the ladder spectrum in the t-Jz model on a
square lattice. However, they do not comment on this point.

Thus, one could think of this problem as solved and com-
pletely understood. However, a closer look at the spectral
functions of the half-filled t-Jz model calculated by using
exact diagonalization (ED), cf. Fig. 4 of Ref. [4] (or cf. Fig. 6
below), suggests that the spectrum does not at all seem to be
ladder-like. Note that such an incoherent spectrum is rather
not an artifact of the ED method. In fact, the spectrum of
a finite system considered by ED would look more coherent
than the one of the infinite system, for the former naturally
forms a discrete spectrum.

To resolve the above question we concentrate our attention
on a particular physical process caused by the motion of
the hole along the so-called “tangential paths,” as pictorially
shown in the middle panels of Fig. 1. Intuitively, a tangential
path is a path along which the hole has moved such that the
path touches “itself,” cf. middle panels of Fig. 1. Formally,
the tangential path is a path which includes at least one pair
of distinct lattice sites. These lattice sites fulfill the following
conditions: (i) They are nearest neighbors. (ii) They belong
to the path along which the hole has moved (i.e., they have
been visited by the hole). (iii) The hole has not moved along
the bond connecting the two sites forming the pair. As a side
note, we stress that a set of paths containing loops and the set
of paths containing tangents are not disjoint, i.e., there can be
a path which contains loops and has also tangential segments.

In this paper we show that including the tangential paths
leads to the onset of a largely incoherent spectral function for
higher energies and explains the difference between the ED
spectra and all the other approaches. This is due to the warping
of the linear potential caused by the distinct energy costs as-
sociated with the misaligned spins along the tangential paths.
To this end we solve the model using a self-avoiding walks
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FIG. 1. Cartoon picture of the motion of a hole (due to tunneling
of electrons) in the ground state of an Ising antiferromagnet on
a square lattice. Two antiferromagnetic sublattices are colored in
light blue and gray; electrons may jump over blue and green bonds;
red arrows depict spins with unsatisfied bonds and misaligned with
respect to the ground state as a result of the hole motion. Top panels
show the creation of one misaligned spin at each hole hop. Middle
and bottom panels show a partial or full reconstruction of the antifer-
romagnetic order either by moving along a path tangential to itself
(subfigures 4A → 5A → 6A → 7A; as discussed in this paper) or by
going around a loop (panels 4B → 5B → 6B → 7B; as discussed by
Trugman in Ref. [5]).

approximation, a semi-analytic approach which neglects all
walks with loops but otherwise is exact, i.e., in particular it
properly includes all tangential paths without loop segments.
Crucially, despite overlooking all loop paths, we show that
such an approximation reproduces surprisingly well the ED
spectrum.

As explained in detail in the paper such a mechanism works
only when the proper geometry of the lattice is taken into
account and requires solving the “full” t-Jz model. In other
words, approximating the square lattice by a Bethe lattice
with an appropriate coordinate number or performing the lin-
ear spin-wave approach (i.e., neglecting the magnon-magnon
interaction) would not lead to the collapse of the ladder spec-
trum. Thus, the mechanism presented here was not discussed
in several works mentioned above, for they either were based
on the Bethe lattice geometry or relied on the linear spin-wave
theory approximation.1

The paper is organized as follows. In Sec. II we write down
the t-Jz Hamiltonian and map it onto the polaronic Hamilto-

1Or, in the case of Ref. [11], the number of magnons was not
enough to properly calculate the energies of the high-energy states.

nian using the slave-fermion transformation. In Sec. III we
describe the self-avoiding walks approximation method. In
Sec. IV the spectra obtained using this method are success-
fully benchmarked against the ED results on a finite cluster.
The origin of such a good agreement is attributed to the low
significance of the (Trugman) loops in the regime considered
here of J/t ∈ [0.4, 2], as discussed in detail in Sec. V. Finally,
in Sec. VI we explain the origin of the largely incoherent
spectra obtained in Sec. IV as stemming from the warping of
the linear potential due to the interactions between magnons
along the tangential paths taken by the moving hole (we also
show in the Appendix that such an incoherent spectrum is
not triggered by an apparent superposition of the coherent
momentum-dependent spectral functions). We conclude the
paper in Sec. VII.

II. MODEL: FROM T -JZ TO POLARONIC HAMILTONIAN

A. t-Jz model

The Hamiltonian of the t-Jz model [1],

H = −t
∑

〈i, j〉,σ
(c̃†

iσ c̃ jσ + H.c.) + J
∑
〈i, j〉

(
Sz

i Sz
j − 1

4
ñiñ j

)
, (1)

describes the energy of the system of the “constrained elec-
trons” c̃†

iσ = c†
iσ (1 − niσ̄ ) tunneling with amplitude t to the

nearest unoccupied lattice sites. Note that if two nearest-
neighbor sites are occupied by electrons, then tunneling is
impossible (hence the term “constrained electrons”), but in-
stead the z components of the spins Sz

i carried by the electrons
interact with an exchange constant J .

In the half filled limit each site is occupied by exactly one
electron and for J > 0 the ground state of the system is an
Ising antiferromagnet. Here we consider a single hole injected
into the ground state of the half filled t-Jz model. The quantity
of interest is the local Green’s function,

Gσ (ω) = 〈GS|c̃†
iσ

1

ω − H + EGS

c̃iσ |GS〉, (2)

where EGS is the energy of the ground state (GS). From the
above Green’s function we calculate the local spectral func-
tion defined as

Aσ (ω) = − 1

π
lim

δ→0+
Im{Gσ (ω + iδ)}, (3)

which is the central object in this paper. In what follows we
are interested in the local spectral function A(ω) calculated
for two different lattice geometries: the Bethe lattice with the
coordinate number z and the square lattice.

B. Slave-fermion transformation

Let us reformulate the stated problem in the form of a pola-
ronic Hamiltonian, i.e., we express the (constrained) electron
and spin operators in terms of the (fermionic) hole h†

i and
(bosonic) magnon a†

i operators, cf. Refs. [3,4,9–11]. To this
end, we first split the lattice into two sublattices A and B, each
consisting respectively of spins up and down in the ground
state. Next, without loss of generality, we rotate all spins on
sublattice B,

∀ j∈B Sz
j → −Sz

j . (4)

035113-2



HOLE IN THE TWO-DIMENSIONAL ISING … PHYSICAL REVIEW B 103, 035113 (2021)

Finally, we introduce the hole and magnon operators in terms
of the following slave-fermion transformations:

c̃†
i↑ = hi, c̃i↑ = h†

i (1 − a†
i ai ),

c̃†
i↓ = hia

†
i , c̃i↓ = h†

i ai,
(5)

Sz
i = 1

2 − a†
i ai − 1

2 h†
i hi,

ñi = 1 − h†
i hi.

(6)

Let us stress that the above slave-fermion transformation is
very common to the “single hole in the antiferromagnet” prob-
lems [3,4,9–11], although note that, unlike, e.g., in Refs. [3,4],
below magnons are not subject to the linear spin-wave ap-
proximation. Thus, the eigenstates of the resulting polaronic
Hamiltonian (see below) are exactly the same as of those of
the original t-Jz Hamiltonian.

C. Polaronic model

Applying the slave-fermion transformation (4)–(6) to
Hamiltonian (1) leads to

H = Ht + HJ , (7)

where the kinetic energy in terms of hole and magnon opera-
tors reads

Ht = −t
∑
〈i, j〉

h†
i h j[ai + a†

j (1 − a†
i ai )]

− t
∑
〈i, j〉

h†
j hi[a j + a†

i (1 − a†
j a j )], (8)

and the potential energy of the system reads

HJ = EGS + J

2

∑
〈i, j〉

(h†
i hi + h†

j h j + a†
i ai + a†

j a j )

− J

2

∑
〈i, j〉

(h†
i hih

†
j h j + 2a†

i aia
†
j a j )

− J

2

∑
〈i, j〉

(h†
i hia

†
j a j + h†

j h ja
†
i ai ). (9)

The rotation on the ground state leads to a state that has all
the spins pointing up, i.e., |∅〉 = ∏

i c̃†
i↑|∅e〉, where |∅e〉 is

a vacuum state for electrons. Note that then |∅〉 is a vac-
uum state for both holes and magnons. This comes from the
transformation we use. There are no magnons in |∅〉 since we
associate magnons only with spins pointing down (c̃†

i↓ = hia
†
i )

and there are no holes in |∅〉 since we annihilate all of them
(c̃†

i↑ = hi ) starting from |∅e〉 which is fully occupied by holes.
Then we can define a state with a single hole at site i as

|ψ0〉 ≡ h†
i |∅〉 = h†

i (1 − a†
i ai )|∅〉 = c̃i↑|∅〉. (10)

The local Green’s function of a single hole may therefore be
written in the following way:

G(ω) = 〈ψ0|Ĝ|ψ0〉, (11)

where

Ĝ = (ω − H + EGS)−1. (12)

Crucially, by comparing Eq. (12) with Eq. (2) we observe that
either Gσ (ω) = 0 or Gσ (ω) = G(ω). The same applies to the
local spectral function,

A(ω) = − 1

π
lim

δ→0+
Im{G(ω + iδ)}, (13)

i.e., either Aσ (ω) = 0 or Aσ (ω) = A(ω).
It is instructive to compare the propagation of a single hole

in the language of the original t-Jz and the obtained polaronic
Hamiltonian. To this end, we plot a cartoon picture of the hole
propagation on a square lattice in the polaronic language, cf.
Fig. 2, which exactly “mimics” the hole propagation shown in
the t-Jz model language on the five subfigures of Fig. 1. (Note
that Fig. 3 shows the same propagation as Fig. 2 but on a Bethe
lattice—the differences between the two are discussed in the
next section.) One can see that the propagating hole either
creates a magnon or annihilates one, depending on whether
the site to which the hole propagates contains a magnon or
not, as described by Eq. (8). Such a hole motion leads to the
changes in the potential energy associated with the cost of
having a magnon in the system (a†

i ai), which may be further
affected by the magnon-magnon interaction terms (a†

i aia
†
j a j)

and the hole-magnon proximity interaction terms (h†
i hia

†
j a j),

cf. Eq. (9). Note that, whereas adding a single hole always
costs energy ∝J due to the h†

i hi terms in Eq. (9), the hole-hole
interaction (h†

i hih
†
j h j ), also present in Eq. (9), does not play

any role in the case of a single hole.

III. METHODS: SELF-AVOIDING WALKS
APPROXIMATION

The central goal of this paper is to calculate the above-
defined local spectral function A(ω) on the square as well as
on the Bethe lattice. The subspace S of all states reachable
from the initial state |ψ0〉 through operator Ĝ can be obtained
in the same way for both lattices of interest provided that, in
the case of a square lattice we restrict the Hilbert space to
the states reachable by the so-called self-avoiding walks [14]
(hence the name: self-avoiding walks approximation). For
the square lattice this means that propagation via the dashed
bonds presented in Fig. 2 is forbidden, for the hole is not
allowed to cross its own path (i.e., the walk is self-avoiding).
Thus, all hops along the closed (Trugman) loops are naturally
excluded in this approximation. We note that, “physically,”
i.e., from the point of Hamiltonian (1) defined on a square
lattice, there is no difference between the “regular” vs the
“satellite” bonds (i.e., the red or blue solid vs dashed bonds
of Fig. 8). The distinction between these two types of bonds
is due to the self-avoiding walks approximation and thus it is
this approximation which defines the satellite bonds.

On the other hand, the Bethe lattice is a tree (i.e., a
connected acyclic graph). Thus, all walks form the one-
dimensional-like chains and by definition the walk on the
Bethe lattice is self-avoiding, cf. the lack of the dashed bonds
in Fig. 3.

We start by introducing the spanning operator A†:

A†|ψ〉 =
⋃
〈i, j〉

{h†
i h ja

†
j (1 − a†

i ai )|ψ〉 + h†
j hia

†
i

× (1 − a†
j a j )|ψ〉} \ {0}, (14)
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FIG. 2. Cartoon picture of the hole motion on a square lattice in terms of holes (h†
i hi ) and magnons (a†

i ai ). Blue squares represent the
hole, red squares represent magnons created by the hole, gray squares represent empty sites. Within the self-avoiding walks approximation,
propagation via the dashed bond is forbidden. In addition, panels (d) and (e) show a satellite hole-magnon proximity interaction (blue dashed
bond) and a satellite magnon-magnon interaction (red dashed bond), both are not possible on the Bethe lattice (cf. Fig. 3). See main text for
further details.

and we divide subspace S into the subsets consisting of states
with the given number of magnons n,

S =
⋃

n

Sn, (15)

where S0 = {|ψ0〉} and Sn = ⋃
|ψ〉∈Sn−1

A†|ψ〉. We also de-
note the index set of Sn as In. As already mentioned, the
above-defined set S of reachable states includes all states
reachable on the Bethe lattice, which allows us to calculate
G(ω) exactly in this case. In the square lattice case, it includes
all possible states that can be obtained provided that the hole
does not cross its own path.

A. Bethe lattice

Let us start with the Bethe lattice with the coordinate
number z. Note that any state |ψ (n)

i∈In
〉 ∈ Sn is then an eigen-

state of HJ with the eigenvalue λn. Consider a state |ψ (n)〉 =
1√||Sn||

∑
i∈In

|ψ (n)
i 〉 (cf. Fig. 4) which is also an eigenstate of

HJ ,

HJ

∣∣ψ (n)〉 = λn

∣∣ψ (n)〉. (16)

What is more, every term appearing in −Ht/t is included in
the spanning operator A† or is equivalent to the term in its

Hermitian conjugate A when acting on states within Sn. Thus,

Ht

∣∣ψ (n)〉 = bn

∣∣ψ (n−1)〉 + bn+1

∣∣ψ (n+1)〉, (17)

where |ψ (−1)〉 ≡ 0. In this way we obtain a convenient basis
for the states that are reachable by acting with the operator Ĝ,

B = {∣∣ψ (0)〉, ∣∣ψ (1)〉, ∣∣ψ (2)〉, . . .}. (18)

In this basis the matrix of the Hamiltonian is tridiagonal,

M(H − EGS) =

⎛
⎜⎜⎜⎜⎜⎝

a0 b1

b1 a1 b2

b2 a2 b3

b3 a3
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠, (19)

where an = λn − EGS.
In the next step, we calculate all the coefficients of the

above-defined Hamiltonian matrix, namely, an and bn. We
start with the latter ones. For n = 1 we have ||S1|| = z||S0||
thus, following Eq. (17) and the definition of |ψ (n)〉,

b1 = −t

√||S1||√||S0||
= −t

√
z. (20)

FIG. 3. Cartoon picture of the hole motion on a Bethe lattice with the coordinate number z = 4 in terms of holes (h†
i hi ) and magnons

(a†
i ai ). Symbols are the same as in Fig. 2. Note the lack of the satellite bonds (no dashed bonds) in contrast with Fig. 2. See main text for

further details.
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S0 = { 0
(0)}

S1 = { 0
(1), ..., 3

(1)}

S2 = { 0
(2), ..., 11

(2)}

S3 = { 0
(3), ..., 35

(3)}

S4 = { 0
(4), ..., 107

(4) }

0
(0)

{0,_,3}
(1)

{0,_,11}
(2)

{0,_,35}
(3)

{0,_,107}
(4)

2J

3.5J

4.5J

5.5J

6.5J

FIG. 4. Graph of the reachable states on the Bethe lattice case be-
longing to the corresponding sets Sn. The initial state ψ

(0)
0 is shown in

Fig. 3(a). The red arrows correspond to the three hopping processes
shown in Figs. 3(a)–3(d). The potential energy of the group of states
corresponding to a certain walk (and its symmetries) is denoted next
to each node. States with the same number of magnons are indistin-
guishable. Therefore, a tree-like structure connecting reachable states
on the Bethe lattice can be mapped onto a chain.

For n > 1 it is true that ||Sn|| = (z − 1)||Sn−1||, therefore,

bn>1 = −t

√||Sn||√||Sn−1||
= −t

√
z − 1. (21)

Calculation of the diagonal coefficients an is also rather
simple in the case of the Bethe lattice. A straightforward
calculation for n = 0 yields:

a0 = zJ

2
. (22)

Next, we restrict ourselves to n > 0 and proceed by mapping
HJ onto a noninteracting operator that has exactly the same
spectrum and eigenstates as HJ assuming there is exactly one
hole in the system (which is our case).

First, let us consider a state |ψ (n)〉 = 1√||Sn||
∑

i∈In
|ψ (n)

i 〉.
There is always a single hole in this state which costs zJ/2 due
to the term ∝h†

i hi. Moreover, we can forget about ∝h†
i hih

†
j h j

terms in HJ leaving the aforementioned constant zJ/2 unaf-
fected. In all considered states with n > 0 the hole is always
in the proximity of exactly one magnon and therefore the
energy of each state is lowered by J/2 due to the hole-magnon
proximity interaction, i.e., the terms ∝h†

i hia
†
j a j , cf. Fig. 3.

Second, for all states with n > 1 there is always more than
one magnon and the magnon-magnon interactions need to be
taken into account. Crucially, for any state |ψ (n)〉 it is true that
magnons form a kind of a one-dimensional chain, i.e., any
magnon that is neither the “first” nor the “last” one in such a
chain has exactly two magnons as the nearest neighbors, cf.
Fig. 3. (Note that here we defined the first magnon as the one
that is created in place of the hole in state |ψ (0)〉 once the hole
moves to another site and the last magnon is the one that is
in the proximity of the hole in state |ψ (n)〉.) The chain-like
structure with interactions appearing only on the path of the
hole (see Figs. 3 and 4) allows one to reduce the problem to
the noninteracting one by substituting

∑
〈i, j〉

2a†
i aia

†
j a j → 1

z

∑
〈i, j〉

(a†
i ai + a†

j a j ). (23)

Altogether, we can write down an equivalent potential-
energy operator in the following way:

Hequiv
J = EGS + J

2
(z + 1 − |ψ0〉〈ψ0|)

+ J
( z

2
− 1

) ∑
i

a†
i ai, (24)

which leads to

an>0 =
[

z + 1

2
+

( z

2
− 1

)
n

]
J, (25)

see also Fig. 4.
Let us stop now for a while and comment on the case of

interest in this paper, i.e., z = 4. We have

a0 = 2J and an>0 =
(

5

2
+ n

)
J. (26)

This equation can be understood in the following way: Effec-
tively, each magnon costs energy J and a propagating hole
costs energy 5J

2 . A static hole, remaining in the position of its
creation, effectively gains additional J/2 and therefore it costs
energy 2J with respect to the energy EGS of the Ising antiferro-
magnet. In comparison, in the true HJ both hole and magnon
cost 2J . If there is at least one magnon then the hole-magnon
proximity interaction lowers the energy by J/2. Every two
neighboring magnons interact, gaining energy J . We would
like to note here that, in the case of the square lattice, the
argument that magnons form a kind of a one-dimensional
chain will no longer be valid and such an effective “equivalent
potential-energy” operator cannot be introduced.

Coming back to the derivation of the local Green’s function
G(ω) of a single hole on the Bethe lattice, we note that all we
have to do is to calculate one single coefficient of the propaga-
tor Ĝ—namely, 〈ψ0|Ĝ|ψ0〉. Since Ĝ = (ω − H + EGS)−1 and
we know the matrix of the Hamiltonian in basis B, we have

G(ω) = [M(ω − H + EGS)−1]0,0, (27)

where [ · ]0,0 refers to the top-left coefficient of the matrix.
Now we can partition the matrix,

M(ω − H + EGS) =
(

ω − a0 BT
1

B1 ω − H1 + EGS

)
, (28)

in order to invert it,

[M(ω − H + EGS)−1]0,0

= (
ω − a0 − BT

1 M(ω − H1 + EGS)−1B1
)−1

= (
ω − a0 − b2

1[M(ω − H1 + EGS)−1]0,0
)−1

. (29)

Repeating the procedure for M(ω − Hn + EGS) we obtain

G(ω) = 1

ω − a0 − b2
1

ω−a1−
b2

2
ω−a2−···

. (30)

In particular, for z > 2, the above continued-fraction expan-
sion of G(ω) can be written in terms of the Bessel functions
of the first kind [10], leading to the analytic formula

Gz>2(ω) =
(

ω − zJ

2
+ zt√

z − 1

J�(ω)+1(2ξ )

J�(ω)(2ξ )

)−1

, (31)
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S0 = { 0
(0)}

S1 = { 0
(1), ..., 3

(1)}

S2 = { 0
(2), ..., 11

(2)}

S3 = { 0
(3), ..., 35

(3)}

S4 = { 0
(4), ..., 99

(4)}

0
(0)

{0,_,3}
(1)

{0,_,7}
(2)

{8,_,11}
(2)

{0,_}
(3)

{8,_}
(3)

{16,_,23}
(3)
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{56,_,63}
(4)

2J
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4.5J 4.5J
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3

5.5J 5J

5.5J (4)
5.5J

FIG. 5. Graph of the reachable states on the square lattice be-
longing to the corresponding sets Sn within the self-avoiding walks
approximation. Initial state ψ

(0)
0 is shown in Fig. 2(a). Red arrows

correspond to the three hopping processes shown in Figs. 2(a)–2(d).
The potential energy of the group of states corresponding to a certain
walk (and its symmetries) is denoted next to each node. States with
the same number of magnons are distinguishable, i.e., they may have
different energy. A tree-like structure connecting reachable states
cannot easily be mapped onto a chain.

where

�(ω) =
z+1

2 − ω
J

z
2 − 1

and ξ = t
√

z − 1(
z
2 − 1

)
J
. (32)

For z = 2, which is exactly the one-dimensional (1D) case,
one obtains

Gz=2(ω) =
⎛
⎝J

2
±

√(
ω − 3J

2

)2

− 4t2

⎞
⎠

−1

, (33)

where minus sign (−) in front of the square root applies for
ω < 3J

2 , otherwise the plus sign (+) applies. This way we
obtain an analytic solution for the local Green’s function on
the Bethe lattice with the coordinate number z = 2, 3, 4, . . ..

B. Square lattice

Even if the matrix of the Hamiltonian is not written in
basis B but in basis S instead, we still can obtain the desired
coefficient of the Greens’s function by partitioning the matrix
in Eq. (28). The procedure is then more involved, since the
Hamiltonian written in S is no longer tridiagonal. This is, for
example, the case of the square lattice, see Fig. 5, because
the states with the same number of magnons may have dif-
ferent energies due to the magnon-magnon and hole-magnon
interaction terms. Thus, an analytically closed form for the
local Greens’s function cannot a priori be easily obtained.
Nevertheless, we can write down the generic expressions for
the Green’s function in this case:

G(ω)−1 = G0(ω)−1 − 
ψ0 (ω), (34)

where G0(ω)−1 = ω − ωψ0 ,


ψ (ω) =
∑

|φ〉∈A†|ψ〉

t2

ω − ωφ − 
φ (ω)
, (35)

and ωψ = 〈ψ |HJ |ψ〉. The above-defined equation can be
understood as a generalization of a continued fraction to a
“tree-like” fraction. While the linear form of the continued
fraction in Eq. (30) resembles the chain-like graph of Fig. 4,
the tree-like structure of Eq. (35) corresponds to the tree graph
of Fig. 5. We use the above-defined equations to calculate the
local spectral function A(ω) for the square lattice within the
self-avoiding walks approximation.

IV. RESULTS: AGREEMENT WITH EXACT
DIAGONALIZATION

In the Methods section (Sec. III), we gave the exact expres-
sions for the single-hole Green’s function of the t-Jz model on
a square lattice in the self-avoiding walks approximation—cf.
Eqs. (34)–(35). As this is not a closed-form expression for
the Green’s function but rather a recurrence relation with the
nonlinear coefficients, the Green’s function has to be found
numerically. To this end, we consider all the possible states
that have up to 20 magnons, which gives over 1.4 × 109 of the
basis states that are taken into account. This is already enough
to obtain converged result of the spectral function A(ω) for
the “canonical” value of the coupling constant J = 0.4t . For
higher J values, an even lower number of magnons is enough.
On the other hand, for J � 0.4t , a much larger number of
magnons is required to obtain meaningful results. As we are
primarily interested in the results around the canonical value
of J/t as well as in the benchmarking of the method against
the ED, we decided to keep J � 0.4t in what follows.

The spectral function A(ω) calculated for six distinct val-
ues of the model parameter J/t ∈ [0.4, 2.0] is shown in Fig. 6.
In the limit of realistic of J < t the spectrum consists of
a well-separated quasiparticle peak at lowest energy and a
relatively large incoherent spectrum. The latter becomes far
less pronounced and gains more shape with increasing J/t for
J > t .

Last but not least, we compare the obtained approximate
spectra against the ED results on a finite cluster, cf Fig. 6.
(We note that the ED result is obtained on a 26-site cluster
and thus suffers from relatively small finite-size effects—as
is typical of the t-Jz model with respect to the t-J model, cf.
Ref. [15] and the Appendix.) Clearly, the self-avoiding walks
approximation gives results qualitatively comparable to the
ED calculations for all studied values of J/t . In particular,
the approximate method reproduces relatively well the overall
shape of the spectral function at higher energies. The same
applies to the ground-state energy and its spectral weight. For
the intermediate energies the self-avoiding walks approxima-
tion tends to give a more “jagged” spectrum than the ED.

To even further substantiate the above claim, we calculate
the following correlation function ξ between the two spectra:

ξ (A, B) =
∫ ∞
−∞ A(ω)B(ω)dω√∫ ∞

−∞ |A(ω)|2dω
∫ ∞
−∞ |B(ω)|2dω

. (36)

The dependence of ξ on the value of the model parameters
J/t is shown in Fig. 7. We observe that, indeed, the spec-
trum calculated using the self-avoiding walks approximation
on a square and the ED spectrum match very well, as the
correlation is always above 95%—we discuss in Appendix
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J = 1.2t (SAW)
J = 1.2t (ED)

−1 0 1 2 3 4 5 6 7 8 9 10
/ t

A
(
)

J = 1.6t (SAW)
J = 1.6t (ED)

0 1 2 3 4 5 6 7 8 9 10 11
/ t

J = 2.0t (SAW)
J = 2.0t (ED)

1 2 3 4 5 6 7 8 9 10 11 12
/ t

J = 0.4t (SAW)
J = 0.4t (ED)

−2 −1 0 1 2 3 4 5 6
/ t

A
(
)

J = 0.6t (SAW)
J = 0.6t (ED)

−2 −1 0 1 2 3 4 5 6 7
/ t

J = 0.8t (SAW)
J = 0.8t (ED)
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/ t

FIG. 6. Spectral function A(ω) of a single hole in the t-Jz model on the 2D square lattice calculated using self-avoiding walks approximation
(blue) and ED (red) for J = 0.4t (top left), J = 0.6t (top middle), J = 0.8t (top right), J = 1.2t (bottom left), J = 1.6t (bottom middle), and
J = 2.0t (bottom right). The self-avoiding walks approximation includes up to 20 magnons and ED calculations (red) are performed on a
26-site lattice with periodic boundary conditions. Broadening δ = 0.05t .

the physical origin of this result. On the other hand, it turns
out that a correlation between the self-avoiding walks approx-
imation spectrum calculated on a Bethe lattice and the ED
result is much worse—especially in the realistic regime of

SAW Square vs ED Square
SAW Bethe vs ED Square

0.0 0.5 1.0 1.5 2.0
0.80

0.85

0.90

0.95

1.00

J / t

( J
)

FIG. 7. Correlation ξ (J ) between the spectral functions A(ω)
calculated on a square and the Bethe lattice within the self-avoiding
walks approximation with the ED result on a 26-site square lattice.
Note that the self-avoiding walks approximation is an exact method
on the Bethe lattice.

J < t . We will come back to the latter result in Sec. VI in
which we explain the origin of the incoherent spectrum in the
approximate result on the square lattice.

V. DISCUSSION: ORIGIN OF THE AGREEMENT
WITH EXACT DIAGONALIZATION

We can address the (surprisingly) small quantitative dif-
ference between the approximate spectrum, i.e., calculated on
the square lattice using the self-avoiding walks approxima-
tion, and the ED spectrum to the loop (Trugman) processes
[5] possible in the ED. This is because the only difference
between the self-avoiding walks approximation and ED lies
in neglecting the paths containing loops. Below we intend to
explain in some detail why the loop processes give such a
small contribution to the spectrum—in general this is because
the number of such paths with loops is relatively small.

Let us first concentrate on the results obtained for large
J/t ∈ [1, 2]. In this case the spectrum calculated with ED
and with the self-avoiding walks approximation on the square
lattice match pretty well (see Fig. 7, showing the “correlation
between the spectral functions” with and without the loops,
as well as the spectra for J/t > 1 of Fig. 6). Crucially, the
best match is obtained for J/t = 2 and then this agreement
slightly decreases with decreasing J/t ∈ [1, 2]. Such behavior
can be best understood by invoking that the lowest-order loop
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corrections to the self-energy scale as t6/J5, cf. page 321
of Ref. [4]. We stress here that such a simple lowest-order
calculation should work in the regime of large J/t , since in this
case the perturbation theory works [4] and solely the lowest
order corrections should suffice.

On the other hand, the situation encountered for smaller
J/t is quite distinct. This is because for intermediate J/t ∈
[0.4, 1], the agreement between the two methods is still
relatively high, i.e., the correlation does not decrease with
decreasing J/t but instead, depending on the value of J/t , it
oscillates around 95%–97% (see Fig. 7). Here, a note of cau-
tion may be in order: the considered correlation function is a
very crude measure of the agreement between the two spectra
and therefore the observed small changes in the correlation
function for intermediate J/t ∈ [0.4, 1] should rather not be
interpreted as pointing towards important changes in the role
played by the loops.

We can rationalize the above observation, concerning the
J/t ∈ [0.4, 1] case, in the following manner. First, one should
stress that once J < t one ends up in the strong-coupling
limit and hence we should a priori take into account higher-
order corrections in t/J . For the paths without loops this
means that a “large” number of magnons have to be taken
into account in the self-avoiding walks approximation (e.g.,
for J/t = 0.4 all states with up to 20 magnons have to be
considered compared against eight magnons for J/t = 2.0) or
that all the “rainbow” diagrams have to be summed over in
the self-consistent Born approximation (SCBA) calculations.
However, as far as the paths with the loops are concerned, it
was suggested in the seminal paper by Trugman [5], that it is
expected that solely the lowest-order loop correction should
be considered—while the higher-order loop corrections (i.e.,
which lead to longer loops) could be neglected, see p. 1599 of
Ref. [5]. (While in principle such an important conjecture has
to be checked, it requires including the loop processes, e.g., in
the SCBA calculations, and thus is beyond the scope of this
paper.) Thus, we encounter here a situation where the paths
without loops should be summed to an (almost) infinite order
to give reasonable results, although only one type of a path
with a loop is probably relevant. Hence, we expect that, al-
though the contribution of the lowest-order loop correction to
the self-energy is ∝t6/J5 and thus grows with decreasing J/t ,
due to the relatively small number of loop paths (essentially
one type) with respect to the other paths (essentially infinite),
the relevance of the loop paths should not substantially in-
crease with decreasing J/t .

VI. DISCUSSION: ORIGIN OF THE INCOHERENT
SPECTRUM

What is the origin of the substantial incoherent spectrum
in the result of the self-avoiding walks approximation? First,
we note that the incoherent spectrum is not triggered by an
apparent superposition of the fully coherent (i.e., ladder-like)
spectral functions calculated for different momenta and sum-
ming up to an incoherent local spectral function. In fact,
we have verified that also the momentum-resolved spectral
function calculated using ED contains a substantial incoherent
spectrum, cf. the Appendix.

Bethe
Lattice

−2 −1 0 1 2 3 4 5
0.0

0.5

1.0

1.5

/ t

A
(
)

Square
Lattice

−2 −1 0 1 2 3 4 5
0.0

0.5

1.0

1.5

/ t

FIG. 8. Spectral function A(ω) of a single hole in the t-Jz model
on the Bethe lattice with the coordinate number z = 4 (left) and the
square lattice (right). Results are obtained using the self-avoiding
walks approximation with J = 0.4t and broadening δ = 0.05t .

Clearly, it is also not triggered by the closed (Trugman)
loops [5], for the latter are not included in this approximation,
as discussed in the Appendix. Finally, it can also be verified
rather easily that the incoherent spectrum is not obtained in the
Bethe lattice geometry. While the latter can be easily verified
based on the already published results [2–4,9–11], to make
the paper self-contained we calculate the spectrum for a single
hole in the t-Jz model on the Bethe lattice with the coordinate
number z = 4. To this end we make use of the analytic solu-
tion for the Bethe lattice case written in Eq. (31). We remind
the reader that the self-avoiding walks approximation is exact
in this case.

The local spectral function A(ω) obtained in this way for
the Bethe lattice is compared against the corresponding result
for the two-dimensional (2D) square lattice in Fig. 8. Whereas
the ground-state energy (−1.57t vs −1.57t) and its spectral
weight (0.2821 vs 0.2815) match extremely well in both cases,
the spectrum of the excited states is markedly different. As
already discussed in the Introduction (Sec. I), in the Bethe lat-
tice case the whole spectrum consists of the quasiparticle-like
peaks for all energies—a so-called ladder spectrum develops.
This is a signature of an (effective) linear potential acting on
the mobile hole [2,3] and suggests that, in the case of the
excited states, the single hole on the square lattice case is not
exactly subject to the linear potential.

To investigate the warping of the linear potential on the
square lattice, we list the three differences between the hole
motion on the Bethe and the square lattice antiferromagnet
(all within the self-avoiding walks approximation). First, the
number of sites to which the hole can propagate creating a
magnon is different in these two geometries. Whereas on the
Bethe lattice (with z = 4) the number of sites to which the
hole can propagate creating a magnon is constant μBethe = 3
(apart from the very first step, in which case the hole can hop
to four sites), for the square lattice this quantity varies with
the path of the hole and in the limit of the infinitely long walk
tends to the so-called connective constant μsquare ≈ 2.638 16
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FIG. 9. Spectral function A(ω) of a single hole in the t-Jz

model on the square lattice. Left (right) panel shows results without
(with) magnon-magnon interactions correctly included in the model
Hamiltonian. Darker (lighter) lines depict results with (without) the
hole-magnon proximity interaction properly included. All results are
obtained using self-avoiding walks approximation with J = 0.4t and
broadening δ = 0.05t .

[16]. However, this difference alone, without considering the
interactions discussed below, does not explain the collapse of
the ladder spectrum on the square lattice.

The second and third differences are far more important.
They are related to the hole-magnon proximity interaction
(P) as well as the magnon-magnon interaction (M), which
impacts the hole motion in these two geometries in different
ways. This is best visible on the cartoon figures showing the
hole motion on the square and Bethe lattice geometries, cf.
Figs. 2 and 3. We observe that P and M interactions may
appear along the path of the mobile hole in both lattices but
satellite (off-path) interactions are possible only in the case of
the square lattice. Such satellite interactions do not appear in
a concerted manner, i.e., not at an equal rate after each hole
hopping. In fact, they occur once there exists a site at which
the hole path becomes tangential to itself. This means that the
linear potential, which is induced by the ever growing number
of magnons created along the hole path, becomes warped, for
the satellite interactions may occur “here and there” (i.e., once
the path becomes tangential to itself) when the hole moves on
the square lattice.

We now test the above conjecture by calculating the
spectral function with and without the P as well as the M inter-
actions included in the Hamiltonian, cf. Fig. 9. Clearly, these
are the M (magnon-magnon) interactions which are primarily
responsible for the onset of the incoherent spectrum. On the
other hand, the P (hole-magnon proximity) interactions seem
to be far less important in inducing the incoherent spectrum:
albeit, on the qualitative level, they also destroy the ladder
spectrum, their impact is very small, see Fig. 9 (left). This can
be explained by noting that there is only one single hole in the
system while the number of magnons may grow much higher
in general and the strength of the interaction between the two

magnons is twice as large as the strength of the interaction
between the hole and the magnon. Altogether, we conclude
that, practically, these are the magnon-magnon interactions
created by the hole moving on the square lattice which are
responsible for the onset of the observed incoherent spectrum.

To even further understand the physics related to the mo-
tion of the hole along the tangential paths, we discuss how the
importance of the tangential paths depends on the model pa-
rameters J/t . To this end we study the relative contribution of
the tangential paths to the overall spectral weight, which can
be obtained by subtracting the two correlation functions pre-
sented in the Fig. 7. We observe that the role of the tangential
processes is, in general, gradually suppressed with increasing
J/t (except for the small but nonmonotonic changes in the
correlation function for J/t ∈ [0.8, 1.1]—which, we believe,
is largely due to the fact that the correlation function between
the two spectra is a very crude measure of the relative role
of the contribution of the particular processes to the spectra).
Such behavior can be understood in the following way: With
increasing J/t the energy cost of a single magnon grows.
This holds also for interacting magnons created by the hole
moving in a square lattice. At the same time, the longer the
hole path is, the more energy it costs due to the higher number
of magnons for longer paths (even once magnon interactions
are included). Thus, with increasing J/t the average length of
a path in a particular eigenstate decreases and this pertains
to every eigenstate of the problem. Next comes the crucial
argument: the shorter the length of such a path is, the lower
the number of possibilities of the path to be classified as
tangential (e.g., paths containing one or two magnons are
never tangential). Consequently, the tangential paths should
be suppressed with increasing J/t—as indeed inferred from
Fig. 7.

VII. CONCLUSIONS

A. Summary

In summary, we compared the spectral function of a single
hole in the Ising antiferromagnet on a square and Bethe lat-
tices. Whereas the ground-state energy and its spectral weight
contribution are almost the same in both cases, the excited
parts are qualitatively distinct: unlike for the Bethe lattice, the
local spectral function on a square lattice is not ladder-like,
i.e., it does not consist of the well-separated quasiparticle-
like peaks for any energy. Instead, in the investigated range
of J/t ∈ [0.4, 2.0] the considered spectrum has an important
incoherent part (which is substantial in the realistic regime
of J < t , although it diminishes fast with increasing J/t in
the unrealistic limit of J > t). The replacement of the nicely
spaced peaks of the ladder-like spectral function by such an
incoherent spectrum is due to the warping of an effective
linear potential acting on the hole and is primarily attributed
to the magnon-magnon interactions. [It is not related to the
hole moving along the (Trugman) loops [5] because the latter
processes lead to a relatively smaller number of allowed paths,
give a much smaller contribution to the spectral function,
and, therefore, albeit non-negligible, can first be neglected,
cf. Sec. V.]
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The easiest way to understand this result is to consider that,
once the hole moves on a lattice, the cost of the magnons
created along the path of the hole can partially be lowered due
to the magnon-magnon interactions (i.e., the local antiferro-
magnetic correlations can be reconstructed). Crucially, on the
square lattice magnons interact not only along the hole path
but also on the bonds connecting the tangential points of the
path via the so-called satellite interactions (cf. Fig. 2).

By definition such satellite interactions cannot take place
on a Bethe lattice, since in this case the hole creates magnons
along an “isolated” chain and therefore the magnon-magnon
interaction just leads to a shift in the energy of the created
magnons. Consequently, unlike in the case of a square lattice,
the magnon-magnon interactions on the Bethe lattice do not
remove the degeneracy of the eigenstates of the t-Jz model
with a single hole and the exact spectral function is always
ladder-like [2–4,7,9–11].

B. Outlook

In general, this study shows that the often forgotten
magnon-magnon interactions affect the physics of the doped
t-Jz model quite drastically even in 2D (that such interactions
are important in 1D is shown, e.g., in Ref. [11]). Naturally, it
is interesting to ask what could be the impact of the magnon-
magnon interactions for the motion of a single hole in the
half-filled t-J model in 2D, as is relevant for the studies
of, e.g., the doped copper oxides (although, interestingly, the
extended t-Jz model might be enough for the cuprates [17]).
While a detailed understanding of this problem is beyond the
scope of this work, we suggest the following:

(i) For the Bethe lattice the role of the magnon-magnon
interactions in the motion of a hole in the t-J model is
probably only quantitative, since (as suggested by this paper)
the magnon-magnon interactions would merely “rescale” the
string potential—and the latter is anyway partially “erased” by
the spin-flip processes of the t-J Hamiltonian, cf. Ref. [18].

(ii) For the square lattice, adding the magnon-magnon
interactions to the t-J model problem treated on the linear
spin-wave approximation level might in principle lead to some
qualitative differences. In fact, in this case it would be both
the magnon-magnon interactions as well as the spin flip terms
which should “help” in reducing the strings created by the
hole. Thus, we expect that the hole should be able to move
even “more easily” and that the spectrum should be even less
ladder-like in this exact case than in the case of the 2D t-J
model calculated using the linear spin-wave approximation.

We also would like to point out a possible application
of the self-avoiding walks approximation to those numerical
methods, which are currently subject to the Bethe lattice ap-
proximation (but should rather be calculated on hypercubic
lattices). Moreover, one could think of a generalization of
this method to the more abstract spaces, such as the Hilbert
space itself, in order to track the desired quantities of a given
system, similarly to the addressed in this paper role of the
magnon-magnon interactions in the t-Jz model with a single
hole.

Finally, as a side message, the paper also shows: (i) that
the differences between the Bethe and square lattices should
not be disregarded; and (ii) how rather subtle, and often ne-
glected terms in the Hamiltonian, can completely alter the neat
quasiparticle-like behavior and lead to the “unparticle-like”
(incoherent) physics.

Note added in proof. Recently we became aware of two re-
cent studies that support some of the findings and suggestions
of this paper: (i) Results of Ref. [19] among other things show
that indeed the role of the Trugman loops in the t–Jz model
is relatively small, in agreement with the results of Sec. V of
this paper; and (ii) results of Ref. [20] show that indeed all but
first vibrational peaks are remarkably absent in the t–J model
spectra, in agreement with the suggestions of Sec. VII B where
we note that any signatures of the ladder spectrum should be
very weak in the t–J model.
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APPENDIX: MOMENTUM-RESOLVED SPECTRAL
FUNCTION

To show that the obtained in ED incoherent local spectral
function is not triggered by an apparent superposition of the
coherent momentum-dependent spectral functions calculated
for different momenta (which would sum up to an incoherent
local spectral function), we calculate the momentum-resolved
spectral function Aσ (k, ω) of the single hole doped to the Ising
antiferromagnet. The latter is defined as

Aσ (k, ω) = − 1

π
lim

δ→0+
Im{Gσ (k, ω + iδ)},

Gσ (k, ω) = 〈GS|c̃†
k,σ

1

ω − H + EGS

c̃k,σ |GS〉, (A1)

where EGS stands for the ground-state energy (and otherwise
the notation is as in the main text of the paper). The results
were obtained for the 20- and 26-sites square lattice using
the ED (Lanczos) method. Crucially, for all momenta k a
continuum of states can be observed in the calculated spectral
function, see Fig. 10. This suggests that, indeed, the incoher-
ent spectrum obtained in ED is not formed by a superposition
of the completely coherent (i.e., ladder-like) Aσ (k, ω). More-
over, these results also show the relatively small finite-size
effects of the 26-site cluster (as the differences between the
spectrum obtained on 20 and 26-sites are merely quantitative
and rather small). Finally, as a side note, we also confirm a
rather low momentum dependence of the ground state orig-
inating in the Trugman processes [5], i.e., when the hole is
allowed to walk along the loops.
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FIG. 10. Spectral function A(k, ω) of a single hole in the t-Jz model on the square lattice. Results obtained using exact diagonalization
(ED) on (a) a 26-site and (b) a 20-site square lattice with J = 0.4t and broadening δ = 0.05t .
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