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We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its
relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations
are based on the infinite time-evolving block decimation (iTEBD) method and exact diagonalization. We clarify
that the HHG originates from the doublon-holon recombination, and the scaling of the cutoff frequency is
consistent with a linear dependence on the external field. We demonstrate that the subcycle features of the HHG
can be reasonably described by a phenomenological three step model for a doublon-holon pair. We argue that the
HHG in the one-dimensional Mott insulator is closely related to the dispersion of the doublon-holon pair with
respect to its relative momentum, which is not necessarily captured by the single-particle spectrum due to the
many-body nature of the elementary excitations. For the comparison to semiconductors, we introduce effective
models obtained from the Schrieffer-Wolff transformation, i.e., a strong-coupling expansion, which allows us to
disentangle the different processes involved in the Hubbard model: intraband dynamics of doublons and holons,
interband dipole excitations, and spin exchanges. These demonstrate the formal similarity of the Mott system
to the semiconductor models in the dipole gauge, and reveal that the spin dynamics, which does not directly
affect the charge dynamics, can reduce the HHG intensity. We also show that the long-range component of the
intraband dipole moment has a substantial effect on the HHG intensity, while the correlated hopping terms for
the doublons and holons essentially determine the shape of the HHG spectrum. A new numerical method to
evaluate single-particle spectra within the iTEBD method is also introduced.
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I. INTRODUCTION

High-harmonic generation (HHG) is an intriguing non-
linear phenomenon originating from strong light-matter cou-
pling. It has been originally observed and studied in atomic
and molecular gases [1,2] and is used in attosecond laser
sources as well as spectroscopies [3]. Recently, HHG has been
observed in semiconductors and semimetals [4–17], which
expands the scope of this field to condensed matter systems
[18–41]. It has been clarified that the HHG in semiconductors
and semimetals can be well understood from the dynamics of
independent electrons in the periodic lattice potential (single-
particle picture), since the interactions among the charges can
be neglected to a first approximation [18–33]. Hence HHG
can be a powerful tool to detect the dispersion of the con-
duction bands [4,6,42] as well as the Berry curvatures [43]
(HHG spectroscopy of condensed matter systems). Further
exploration of HHG has been carried out both experimentally
and theoretically in various other systems such as amorphous
materials [43,44], liquids [45,46], strongly correlated systems
[47–53], and spin or multiferroic systems [54,55].

In this paper, we focus on strongly correlated electron
systems (SCES), which provide a potentially interesting
playground for HHG. For example, it is known that the
third-harmonic generation (THG) signal is relatively large in
one-dimensional (1d) Mott insulators [56–58]. Furthermore,

the HHG spectrum sensitively reflects the properties of the
phase and can be utilized as a detector of phase transitions
in SCESs, e.g., the photoinduced melting of Mott insulators
[47]. One of the significant characteristics in SCESs is the
existence of many-body elementary excitations, which are
distinct from conventional electron- and hole-excitations in
semiconductors. The dynamics of such elementary excitations
under strong fields can result in nontrivial HHG in SCESs.
For HHG in Mott insulators, the signature of doublon and
holon dynamics [48,49] and string states characteristic of
SCESs [50] have been discussed. Moreover, in dimer Mott
systems, the dynamics of the kinks and anti-kinks has been
pointed out to be the origin of HHG [52]. However, the
understanding of HHG in SCESs is still limited compared
to semiconductors or semimetals and fundamental questions
remain to be answered: (i) How is HHG connected to the
dynamics of the elementary excitations in SCESs and what
information can be obtained from it? (ii) How is the HHG
in SCESs similar to or different from that of semiconductor
systems? (iii) What is the role of the characteristic degrees of
freedom in SCESs such as spins?

To address these fundamental questions, we study a 1d
Mott insulator described by the single-band Hubbard model
at half filling. The calculations are based on the infinite
time-evolving block decimation (iTEBD) [59] and the ex-
act diagonalization (ED) methods. We demonstrate that the
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doublon-holon recombination is dominant for the HHG and
that the cutoff frequency scaling is consistent with a linear
scaling against the field strength. In addition, we present the
subcycle features of the HHG spectrum in the Mott insula-
tor. We show that it can be reasonably described in terms
of a semiclassical trajectory analysis for a doublon-holon
pair, whose kinetics is ruled by its dispersion with respect
to the relative momentum. This dispersion is obtained from
the Bethe ansatz results, and can be reasonably extracted
from the single-particle spectrum in the case of the Hubbard
model. However, we point out that in general the dispersion
of the doublon-holon pair is not necessarily captured by the
single-particle spectrum due to the many-body nature of the
elementary excitations.

The formal similarities and differences compared to the
semiconductor model and the various processes involved
in the HHG of the Hubbard model become clear in the
effective models derived from the time-dependent Schrieffer-
Wolff transformation [60]. Using these models, we show that
the spin dynamics, which has no analog in semiconductor
systems, reduces the HHG intensity. We also reveal the im-
portance of the long-range component of the “dipole moment”
between doublon and holon bands for the HHG intensity, as
well as the role of the correlated hopping of doublons and
holons for the shape of the HHG spectrum.

This paper is organized as follows. In Sec. II, we introduce
the Hubbard model. Then, we briefly explain a new method
to evaluate the single-particle spectrum in iTEBD and derive
the effective models. The numerical results are presented in
Sec. III. We discuss the single-particle spectrum, which is
used for the semiclassical trajectory analysis, and present the
HHG spectrum obtained from iTEBD. The analysis based on
the effective model is also shown. Finally, we conclude the
discussions in Sec. IV.

II. FORMULATION

A. Model and method

We consider the 1d Hubbard model, with Hamiltonian

Ĥ (t ) = −v
∑
i,σ

[e−iA(t )ĉ†
i,σ ĉi+1,σ + H.c.] − μ

∑
i

n̂i

+ U
∑

i

n̂i,↑n̂i,↓ + hz

∑
i

(−)i ŝz,i, (1)

where ĉ†
i,σ is the creation operator of an electron with spin σ

at site i, n̂i,σ = ĉ†
i,σ ĉi,σ , n̂i = n̂i,↑ + n̂i,↓, and ŝz,i = 1

2 (n̂i,↑ −
n̂i,↓). v is the hopping parameter and U is the onsite Coulomb
interaction. μ is the chemical potential, which is set to U/2,
i.e., half filling. The last term in Eq. (1) represents the effect
of a staggered magnetic field hz. In the following simu-
lations with iTEBD, we apply a small staggered magnetic
field hz = 10−3v, which helps to converge the equilibrium
solution (the initial state) with smaller cutoff dimensions χ .
We have confirmed that the single-particle and HHG spec-
tra shown below are hardly affected by this field through
the comparison with the results for hz = 10−4v. The laser
excitation is incorporated via the Peierls phase of the hop-
ping parameter and A(t ) represents the vector potential. Note
that we set the lattice constant and the electron charge to

unity. The electric field E (t ) is equal to −∂t A(t ). We choose
A(t ) = E0/�e−(t−t0 )2/2σ 2

sin[�(t − t0)] with E0 the ampli-
tude of the electric field. For the following discussion, we
define Ĥkin(t ) = −v

∑
i,σ [e−iA(t )ĉ†

i,σ ĉi+1,σ + H.c.] and ĤU =
U

∑
i n̂i,↑n̂i,↓.

To discuss the HHG in the system, we introduce the current
operator as

ĵ(t ) = iv
∑

σ

[eiA(t )ĉ†
i+1,σ ĉi,σ − e−iA(t )ĉ†

i,σ ĉi+1,σ ]. (2)

We evaluate the HHG spectrum as

IHHG(ω) = |ω j(ω)|2, (3)

assuming that the emitted radiation originates from the
acceleration of charges by the external field [34]. Since
the numerical simulations are restricted to a finite time
range [0, tmax], it is useful to introduce a Gaussian win-
dow Fgauss(t ) = exp(− (t−t0 )2

2σ ′2 ), which is wide enough but
shorter than tmax. Then we calculate the Fourier transform
of Fgauss(t ) j(t ) to obtain j(ω). This allows us to suppress
artificial oscillations from the sudden cut of j(t ) at t = tmax.

The nonequilibrium dynamics of the Hubbard model is
simulated with the iTEBD [59,61] and the exact diagonal-
ization (ED) methods. In the implementation of iTEBD,
we make use of the conservation of the number of spin-
up and spin-down electrons, the fourth-order Trotter-Suzuki
decomposition and the fourth-order commutator-free matrix
exponential approximation [62]. In iTEBD, we prepare the
initial state with the cutoff dimension χ = 400, and compute
the time evolution with χ = 1000, which is sufficient for
obtaining converged results. In the following, we set v as the
unit of energy.

In this study, we discuss the single-particle spectrum
A(p, ω) = − 1

π
ImGR(p, ω) of the Hubbard model, where GR

is the retarded electron Green’s function and p is the mo-
mentum. We evaluate the single-particle Green’s function by
iTEBD using a new method. Firstly, we introduce auxiliary
bath sites. We then apply a weak-enough pulse to excite an
electron from the system (the Hubbard model) to the bath
and measure some nonlocal correlation between the system
and the auxiliary sites. One can show that this quantity corre-
sponds to the single-particle Green’s function of the system,
as explained in detail in Appendix A.

Similar strategies to measure the single-particle spectrum
by attaching auxiliary bath sites have been proposed previ-
ously and implemented for the density matrix renormalization
group (DMRG) [63] and ED [64] methods. Although these
strategies essentially mimic the photoemission experiments,
our method is different from the previous ones. The previous
schemes follow the evolution of the number of particles ex-
cited to the auxiliary baths, which is connected to A(p, ω).
On the other hand, we directly measure a nonlocal correlation
function equivalent to GR(p, t ). Secondly, in order to obtain
the full A(p, ω) with the previous schemes, one needs to repeat
the simulations, changing the energy levels of the bath sites
or the excitation frequency, while in the method used here,
only a single simulation is needed. We also note that our
approach can be easily extended to study the spectrum in a
nonequilibrium setup.
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B. Effective models

In order to clarify the nature of HHG in the Hubbard model,
we disentangle different processes involved. To this end, we
derive effective models in the strong coupling regime U � v

using the time-dependent Schrieffer-Wolff transformation
[60]. This transformation can be expressed as

Ĥ ′(t ) = eiŜ(t )Ĥe−iŜ(t ) + i(∂t e
iŜ(t ) )e−iŜ(t ), (4)

with

Ŝ(t ) = Ŝ(1)(t ) + Ŝ(2)(t ) + Ŝ(3)(t ) · · ·, (5)

where Ŝ(i) is Hermitian and of the order O(( v
U )i ). The term

Ŝ(i) is determined recursively from the terms Ŝ(1), . . . , Ŝ(i−1)

so that eiŜ(t )Ĥe−iŜ(t ) has no terms changing the doublon and
holon number up to O(U · ( v

U )i ). In the following, we denote

eiŜ(t )Ĥ (t )e−iŜ(t ) as ĤMott (t ) and i(∂t eiŜ(t ) )e−iŜ(t ) as Ĥex(t ). The
excitation (doublon-holon creation) is included in Ĥex(t ), and
can be expressed in the form of −E (t ) · D̂(t ). Note that D̂(t )
can be regarded as the dipole moment between the upper
and lower Hubbard bands, and is analogous to the dipole
moment between the different bands in the semiconductor
models in the length gauge [20,21,24,65] and the dipole gauge
[19,61,66]. Keeping the terms in ĤMott (t ) and Ĥex(t ) up to
given orders in v

U , we obtain different effective models. In the
following, we keep terms up to O(U · ( v

U )i ) [O(E0 · ( v
U )i )] for

ĤMott (t ) [Ĥex(t )], denoting the resulting operators by ĤMott,i(t )
[Ĥex,i(t )]. The effective model consisting of ĤMott,N1 (t ) and
Ĥex,N2 (t ) is expressed as Ĥeff,N1,N2 .

First, to determine Ŝ(1)(t ), we separate Ĥkin into four terms
depending on the dynamics of the doublons and holons:

Ĥkin,LHB(t ) = −v
∑

〈i, j〉,σ
eiA(t )ri j ĥi,σ ĥ†

j,σ , (6)

Ĥkin,UHB(t ) = −v
∑

〈i, j〉,σ
eiA(t )ri j d̂†

i,σ d̂ j,σ , (7)

Ĥkin,+(t ) = −v
∑

〈i, j〉,σ
eiA(t )ri j d̂†

i,σ̄ ĥ†
j,σ , (8)

Ĥkin,−(t ) = −v
∑

〈i, j〉,σ
eiA(t )ri j ĥi,σ d̂ j,σ̄ , (9)

where we introduced ĥ†
i,σ ≡ n̄i,σ̄ ĉi,σ and d̂†

i,σ ≡ ni,σ ĉ†
i,σ̄ with

n̄i,σ ≡ 1 − ni,σ . ĥ†
i,σ (d̂†

i,σ ) creates a holon (doublon) at site

i from ĉ†
i,σ |vac〉. Note that ĥ†

i,σ and d̂†
i,σ are not normal

fermionic operators. ri j indicates the space vector from site
j to site i and 〈i, j〉 indicates that i and j are nearest neigh-
bors. Here, Ĥkin,−(t ) = Ĥ†

kin,+(t ) and Ĥkin(t ) = Ĥkin,LHB(t ) +
Ĥkin,UHB(t ) + Ĥkin,+(t ) + Ĥkin,−(t ). Ĥkin,LHB(t ) changes the
position of a holon, while Ĥkin,UHB(t ) changes the position of
a doublon. Ĥkin,+(t ) creates a doublon-holon pair at neighbor-
ing sites, while Ĥkin,−(t ) annihilates a doublon-holon pair at
neighboring sites.

The component of ĤMott (t ) of order O(U · ( v
U )1) can be

expressed as

Ĥkin,LHB + Ĥkin,UHB + Ĥkin,+ + Ĥkin,− + i[Ŝ(1), ĤU ]. (10)

Thus, we require Ĥkin,+ + Ĥkin,− + i[Ŝ(1), ĤU ] = 0, which is
satisfied by

Ŝ(1) = −i

U
[Ĥkin,+ − Ĥkin,−]. (11)

As a result, we obtain

ĤMott,1(t ) = Ĥkin,LHB(t ) + Ĥkin,UHB(t ) + ĤU (12)

and Ĥex,1(t ) = −E (t )D̂(1)(t ) with

D̂(1)(t ) = v

U

∑
〈i, j〉,σ

[ri je
iA(t )ri j d̂†

i,σ̄ ĥ†
j,σ + H.c.]. (13)

The lowest-order effective model Ĥeff,1,1 = ĤMott,1(t ) +
Ĥex,1(t ) has a direct formal correspondence with the semi-
conductor models in the dipole gauge [19,61,66]. Namely,
Ĥkin,LHB(t ) corresponds to the kinetic term for the valence
band electrons with the intraband acceleration, Ĥkin,UHB(t ) to
the analogous term for the conduction band, ĤU corresponds
to the difference of the band energies, and D̂(1)(t ) corresponds
to the interband dipole moment in the semiconductor models,
see Eq. (C1) in Appendix C.

Next, we consider the higher-order corrections. The higher-
order terms of Ŝ are iteratively determined as shown in
Appendix B, which yields the expressions for ĤMott,N1 (t ) and
Ĥex,N2 (t ) with N1 > 1 and N2 > 1. For example, the O(U ·
( v

U )2) component in ĤMott (t ), i.e., ĤMott,2(t ) − ĤMott,1(t ), can
be written as

Ĥ (2)
kin,LHB + Ĥ (2)

kin,UHB + Ĥ (2)
U,shift + Ĥspin,ex + Ĥdh,ex + Ĥ (2)

dh,slide.

(14)

Here, Ĥ (2)
kin,LHB (Ĥ (2)

kin,UHB) describes the correction to the holon
(doublon) hopping, which includes the second-neighbor hop-
ping. Ĥ (2)

U,shift describes the shift of the local interaction U ,
Ĥdh,ex is the exchange coupling of the doublon and holon, and
Ĥ (2)

dh,slide describes the simultaneous hopping of a doublon and
a holon to the neighboring sites. The expressions for these
terms are given in Appendix B. In particular,

Ĥspin,ex = Jex

∑
i

ŝi · ŝi+1 (15)

describes the spin exchange, where Jex = 4v2

U , ŝi =
1
2

∑
α,β ĉ†

i,ασα,β ĉi,β , and σ denotes the Pauli matrices. It
is noteworthy that the spin exchange term does not have any
direct correspondence in the semiconductor systems. Also
note that ĤMott,2(t ) becomes the well-known t-J model after
subtracting several terms which are irrelevant for a small
number of holes. In general, with increasing N1, ĤMott,N1 (t )
starts to develop N1th neighbor (correlated) hoppings of
doublons and holons. As for Ĥex,N2 (t ), the higher-order
corrections to D̂(t ) include the creation of doublon-holon
pairs on N2th nearest sites although the coefficient becomes
smaller. In the following discussion, we find that this
long-ranged dipole moment is important for the HHG
process.

In the evaluation of the current in the effective model,
we compute the expectation value of ĵ(t ). Strictly speaking,
under the unitary transformation, the current operator changes
as eiŜ(t ) ĵ(t )e−iŜ(t ) = ĵ(t ) + O( v

U ). However, it turns out that
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the O( v
U ) correction has minor effects on the HHG spectrum

in the parameter region considered here (U = 10), where its
shape, cutoff energy and intensity are hardly affected.

III. RESULTS

In the following, we mainly consider systems deep in the
Mott insulating phase (U = 10). We use pump frequencies
� = 0.5, 0.75 much smaller than the Mott gap to observe
many high-harmonic peaks. Small pump frequencies are usu-
ally used in the experiments in semiconductors to avoid
damaging the sample material. The center and width of the
applied pulse are set to t0 = 60 and σ = 15, respectively. The
convergence with respect to the cutoff dimension χ becomes
generally worse for smaller U due to the smaller gap.

A. Doublon/holon dispersion and single-particle spectrum

Before studying HHG, we first explain the nature of the
elementary excitations in the 1d Hubbard model and the
single-particle spectrum. This will be helpful for the following
analysis. The 1d Hubbard model in equilibrium can be solved
exactly using the Bethe ansatz [67,68]. At half filling, there
exist two types of elementary exictations: (i) gapped spinless
excitations called holons and anitiholons (doublons) and (ii)
gapless charge neutral excitations called spinons. Physical
excitations are constructed from these elementary excitations.
In particular, a holon (doublon) is parametrized by a quantity
called rapidity k, where the corresponding momentum ph(k)
(pd (k)) and the energy εh(k) (εd (k)) are given by

ph(k) = pd (k) + π = π

2
−k−2

∫ ∞

0

dω

ω

J0(ω) sin(ω sin k)

1 + exp
(

Uω
2

) ,

(16a)

εh(k) = εd (k)

= U

2
+ 2 cos k + 2

∫ ∞

0

dω

ω

J1(ω) cos(ω sin k)e− Uω
4

cosh
(

Uω
4

) ,

(16b)

respectively. Here, Jn is the Bessel function. We shall see that
this dispersion describes the kinetics of a doublon and a holon
under strong fields and is thus related to HHG, see Sec. III C.

Figure 1 shows how these many-body elementary exci-
tations are reflected in the single-particle spectrum A(p, ω).
The single-particle excitation consists of holons, spinons, and
doublons and as a result it exhibits multiple bands [69] with
a direct gap near p = π/2. In particular, one can see that the
peaks in the spectrum (red dashed lines) match well with the
doublon energy obtained from the Bethe ansatz [Eq. (16)],
see the black line. Note that this match is nontrivial since the
single-particle excitation consists of combinations of holons,
spinons, and doublons [64] and the weight for each state
is not a priori clear. The structure of the Hubbard bands is
qualitatively different from that obtained by the Hubbard-I
approximation [70] or the dynamical mean-field theory [48],
which gives dispersions of the upper and lower Hubbard bands
that are parallel. The Mott gap �Mott estimated from the
single-particle spectrum is about 6.7.

FIG. 1. Single-particle spectrum A(p, ω) in equilibrium calcu-
lated by iTEBD for U = 10 and hz = 0.001. The red dashed lines
indicate the peak positions of the spectrum at each p. The black
dot-dashed line indicates εd (pd ) [Eq. (16)]. To obtain A(p, ω) from
GR(p, t ), we apply a Gaussian window exp(− t2

2σ ′2 ) with σ ′ = 5.0 in
the Fourier transformation.

B. HHG spectra

Here, we study HHG in the 1d Mott insulator. In Figs. 2(a)
and 2(b), we show the HHG spectra for � = 0.75 and � =
0.5, respectively, with E0 = 0.5 and 0.7. For � = 0.75, we
see clear intensity peaks at the odd harmonics, as is expected
in the time-periodic steady states of a system with inversion
symmetry [71]. The HHG intensity decreases monotonically
for energies below the Mott gap, while above it, there exists a
HHG plateau. The cutoff of the plateau, which we extract by
the criterion [72], increases with increasing field intensity. For
� = 0.5, we see peaks in IHHG(ω), but they are not necessarily
located at the odd harmonics, in particular for ω 
 �Mott.
Interestingly, one can observe peaks at even harmonics, which
is unexpected in the present system with inversion symmetry.
We believe that this is because the pulse is not long enough,
and some potentially relevant dephasing channels (such as
electron-phonon couplings) are missing in the present model,
so that the system does not reach a time-periodic steady state.
Indeed, a standard semiconductor system with a similar band
gap and without dephasing also shows a HHG spectrum with
some peaks deviating from the odd harmonics for the same
pump pulse (see Appendix C). On the other hand, with a
longer pulse and a phenomenological dephasing, we obtain
clearer peaks at the odd harmonics. Figures 3(a) and 3(b) show
the color plot of the HHG intensity IHHG(ω) in the plane of
the frequency (ω) and the field strength (E0), and the circles
represent the cutoff frequencies of the plateau [72]. In contrast
to the case of atomic gases [1,2], the cutoff frequencies do
not scale as E2

0 . Rather, our results indicate a linear scaling
ωcut 
 �Mott + α(�)E0 as in the case of semiconductors [21].
This behavior is consistent with the previous DMFT study of
the higher dimensional Hubbard model [48]. α(�) decreases
with increasing excitation frequency �, and it roughly scales
as 1/�.

Now, we discuss the origin of HHG and analyze
the underlying processes in detail. We first identify the
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FIG. 2. HHG spectra of the Mott insulator for (a) � = 0.75 and
(b) 0.5 at field strengths E0 = 0.5 and 0.7. Solid lines indicate the
full HHG spectra, while the dashed lines indicate the contribution
from the doublon-holon hopping Ihop. Here, the Mott gap and the
maximum band-energy difference extracted from the single-particle
spectrum are 6.7 and 15.0, respectively. Inverted triangles indicate
the cutoff frequency determined by the criterion [72]. The solid
vertical lines correspond to even harmonics of �, while the dashed
ones show odd harmonics. The model parameters are U = 10 and
hz = 0.001. The pulse parameters are t0 = 60, and σ = 15, while
σ ′ = 20 is used for the Fourier transformation of the current.

different contributions to the HHG spectrum. The current in
semiconductors can be classified into an interband current
(particle-hole annihilation/creation) and an intraband current.
In the Hubbard model, we analogously consider the current
originating from the annihilation/creation of a doublon and
holon jac and the current associated with hopping of dou-
blons or holons jhop, which conserves the number of these
carriers. The operators corresponding to these currents can be
expressed as

ĵac(t ) = iv
∑
〈i j〉σ

ri, je
iA(t )ri j [d̂†

i,σ ĥ†
j,σ̄ + ĥi,σ d̂ j,σ̄ ],

ĵhop(t ) = iv
∑
〈i j〉σ

ri, je
iA(t )ri j [ĥi,σ ĥ†

j,σ + d̂†
i,σ d̂ j,σ ]. (17)

We denote the contribution to HHG from these currents
by Iac(ω) = |ω jac(ω)|2 and Ihop(ω) = |ω jhop(ω)|2. The eval-
uation of these contributions shows that Iac(ω) dominates
over Ihop(ω), in particular around the cutoff frequencies
[Figs. 2(a) and 2(b)]. Therefore the annihilation of doublon-

FIG. 3. HHG spectra in the plane of frequency ω and field
strength E0 for (a) � = 0.75 and (b) � = 0.5. The red circles in-
dicate the cutoff frequencies and the filled red triangle shows the
Mott gap. The solid vertical lines correspond to even harmonics of �,
while the dashed ones show odd harmonics. The model parameters
are U = 10 and hz = 0.001. The pulse parameters are t0 = 60, and
σ = 15, while σ ′ = 20 is used for the Fourier transformation of the
current.

holon pairs is the dominant source of HHG in large-gap Mott
insulators, which is consistent with the conclusion from a
previous DMFT analysis [48]. Thus, one can expect that the
frequency range of the plateau approximately corresponds
to the possible energies of the doublon-holon pairs (in the
presence of the external field) just before the recombination.

C. Subcycle analysis

Next, we address the dynamics of the doublons and holons
during the pulse. To gain insights into this, we perform a
subcycle analysis of the induced current j(t ) [see Figs. 4(a)
and 4(b)] by applying a short window function, Fwindow,
around tp. Specifically, we consider a windowed Fourier
transform j(ω, tp) = ∫

dteiωt Fwindow(t − tp) j(t ) and evaluate
IHHG(ω, tp) ≡ |ω j(ω, tp)|2. The latter function provides the
time-resolved spectral features of the emitted light around
tp. In the following, we choose Fwindow(t ) = exp(− t2

2σ ′2 ) and
σ ′ = 0.8. In Figs. 4(c) and 4(d), we plot IHHG(ω, tp) for the
Mott insulator. As in the case of semiconductors, the high
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FIG. 4. [(a) and (b)] Applied electric field and induced current
for (a) � = 0.75 and (b) 0.5. [(c) and (d)] Subcycle analysis of the
HHG, IHHG(ω, tp), for (c) � = 0.75 and (d) 0.5. The blue mark-
ers show the results of the semiclassical analysis (ωemit (trec )) with
εg(p) obtained from the Bethe ansatz results Eq. (16), while the
red markers correspond to those for the unrenormalized dispersion,
U − 4v sin(p). The pink markers are the results obtained using the
dispersion extracted from the single-particle spectrum, i.e., Fig. 1,
and they almost overlap with the blue markers. The vertical dashed
lines indicate the times when E (t ) = 0. The parameters of the system
and the pump field are the same as in Fig. 2.

frequency light is emitted around E (tp) = 0, i.e., where |A(t )|
is maximum (see Appendix C for semiconductor data).

In semiconductors, the features of IHHG(ω, tp) can be
explained by the three-step model formulated with the semi-
classical theory for electrons and holes [20,21]. In this picture,
(i) both an electron and a hole are simultaneously created at
the same position via tunneling; (ii) they move around; (iii)
they return back to the original position and recombine by
emitting the light. The dynamics can be described with the
equation of motion

dxrel(t )

dt
= ∂pεg(p)

∣∣
p=p(t ), (18a)

p(t ) = p0 − A(t ) + A(t0). (18b)

Here, xrel(t ) indicates the relative distance between the elec-
tron and the hole, and εg(p) = εc(p) − εv (p) with εc(p)
(εv (p)) denoting the energy of the conduction (valence) band
electron with momentum p. The velocity of an electron (hole)
is given by the derivative ∂pεc(p) [∂pεv (p)], and the effect of

the field is taken into account via the shift of the momentum.
Here, it is assumed that initially at t0 the electron-hole pair is
created with p0 and |xrel(t0)| = 0, where εg(p) becomes mini-
mum at p0. The light emission from the recombination occurs
at trec (> t0) when |xrel(trec)| = 0. The frequency of the emitted
light is assumed to be equal to the energy of the electron-hole
pair: ωemit (trec) = εg(p(trec)). Note that the photoexcitation
only produces electron-hole pairs with zero total momentum.
εg(p) describes the energy of such an electron-hole pair as
a function of half the relative momentum, p. Equation (18)
implies that the relative momentum is changed by the vector
potential, and the dispersion relation εg(p) dictates the relative
motion of the electron and the hole.

In the 1d Mott insulator, the relevant excitation process is
the creation of doublon-holon pairs with zero total momentum
pd + ph = 0, see Refs. [68,73]. Such a doublon-holon pair is
parametrized by half of the relative momentum between the
two charge carriers prel = (pd − ph)/2, and, under an adia-
batic change of the vector potential potential A, the relative
momentum is changed to prel − A [68,73]. This is the same
situation as for the electron-hole pair in the semiconductor.
Hence, we expect that the three-step model can be extended to
the Mott insulator by considering the dispersion of a doublon-
holon pair of zero total momentum with respect to the relative
momentum. In other words, the analogy suggests that the
kinetics of the relative position between the doublon and the
holon under strong fields is determined by this doublon-holon
pair dispersion.

We test this idea using the dispersion relation of the
doublon-holon pair, εg(prel ) ≡ εd (prel ) + εh(−prel ), obtained
from the Bethe ansatz solution Eq. (16) and substituting it into
Eq. (18). The process of computing trec for given t0 is the same
as in the semiconductor case [74]. The resulting ωemit (trec)
is shown by blue markers in Figs. 4(c) and 4(d) [75]. One
can see that the semiclassical analysis explains the fact that
the high-frequency light is emitted when A(t ) 
 0, and the
blue markers approximately overlap with the strong intensity
region in IHHG(ω, tp). In general, the semiclassical analysis
tends to underestimate the frequencies where the maxima
of IHHG(ω, tp) are located. The match between IHHG(ω, tp)
and the semiclassical result is worse for higher frequency
excitations as seen from the comparison between � = 0.75
and 0.5. Such disagreement is expected because the tunnel-
ing picture becomes worse for high frequency excitations. In
fact, the agreement between IHHG(ω, tp) and the semiclassical
result becomes better for smaller U and � (Fig. 5). We note
that the agreement with the semiclassical analysis is as good
as that between the standard semiconductor system and the
corresponding semiclassical analysis, see Fig. 9 in Appendix
C. Hence, we conclude that the present semiclassical analysis
for the 1d Mott insulator captures important aspects of the
doublon-holon dynamics and their recombination.

We also show the results of the semiclassical analysis using
the dispersion relation of the single-particle spectrum [the
red dashed lines in Figs. 1 and 5(a)], see the pink markers
in Figs. 4(c), 4(d), and 5(b). More specifically, we extract
the “εc(p)” and “εv (p)” in the three step model from the
dispersion of the upper and lower Hubbard bands in the
single-particle spectrum. Since they agree well with εd (p) and
−εh(p), respectively, the results of this semiclassical analysis
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FIG. 5. (a) Single-particle spectrum A(p, ω) in equilibrium cal-
culated by iTEBD for U = 7 and hz = 0.001. The red dashed
lines indicate the peak positions of the spectrum at each p. The
black dot-dashed line indicates εd (pd ) [Eq. (16)]. To obtain A(p, ω)
from GR(p, t ), we apply a Gaussian window exp(− t2

2σ ′2 ) with σ ′ =
5.0 for the Fourier transformation. (b) Subcycle analysis of the
HHG, IHHG(ω, tp) for U = 7 and hz = 0.001. The parameters of
the pump are � = 0.3, E0 = 0.4, t0 = 100 and σ = 30. The blue
markers show the results of the semiclassical analysis [ωemit (trec )]
with εg(p) obtained from the Bethe ansatz results Eq. (16), while the
red markers correspond to those for the unrenormalized dispersion,
U − 4v sin(p). The pink markers are the results obtained using the
dispersion extracted from the single-particle spectrum in (a), and
they almost overlap with the blue markers. The vertical dashed lines
indicate the times when E (t ) = 0.

also agree well with the above results (the blue markers). This
result demonstrates that, in the present case of the Hubbard
model, the dispersion obtained from the single-particle spec-
trum provides the relevant information on the kinetics of the
doublons and holons, as in the semiconductor. However, we
emphasize that this is not necessarily the case for general
SCESs. We will come back to this point in Sec. III E.

In addition, we show the results of the semiclassical anal-
ysis based on the unrenormalized dispersion εg(p) = U −
4v sin(p) in ĤMott,1 by the red markers in Figs. 4(c), 4(d), and
5(b). By comparing the red and blue makers, one realizes that
the renormalization of the Mott gap as well as the dispersion
are important for a reasonable agreement between the semi-
classical results and IHHG(ω, tp).

Finally, we note some major differences from the semicon-
ductor results: (i) the high-frequency signals remain even after
the pulse and (ii) the recombination is enhanced during the
period when |E (t )| increases. Interestingly, the latter observa-

tion indicates that the recombination happens more likely for
doublon-holon pairs, which move around for more than half a
period (π/�) after their creation by tunneling.

D. Analysis of the effective models

In this section, we study to what extent the effective models
explain the HHG in the 1d Mott insulator and clarify the role
of different processes. In Fig. 6(a), we show the single-particle
spectrum obtained by the iTEBD for the lowest-order model
Ĥeff,1,1(t ). The equilibrium spin configuration is determined
from the ground state of Ĥspin ≡ Ĥspin,ex + hz

∑
i(−)i ŝz,i. In

this model, the dispersion of the upper and lower Hubbard
bands matches well with ±U

2 ± 2v sin(p), see Fig. 6(a). Note
that this dispersion (±2v sin(p)) is exactly that of the doublon
(antiholon) and holon obtained from the Bethe ansatz for
U → ∞ [67] or from the direct construction of the wave
functions [76]. In Fig. 6(b), we show the corresponding HHG
spectrum. The HHG intensity and the cutoff are underesti-
mated compared to the full simulation (dashed lines), while
the response at low frequencies around ω = � is already
well described. The subcycle analysis for the effective model
shows that the transient signal is consistent with the semi-
classical analysis with the dispersion εg(p) = U − 4v sin(p),
see Fig. 6(c). This observation again indicates that the disper-
sion of the doublon-holon pair with respect to their relative
momentum is closely related to the HHG in the 1d Mott
insulator. Furthermore, the effective model already captures
the characteristic subcycle feature of the Mott HHG, points i)
and ii) mentioned in the last part of the previous subsection.

Now, we study the effects of the higher-order terms on
the HHG. First, we discuss the effect of the Heisenberg term
Ĥspin on the HHG signal. In Fig. 6(d), we compare the results
for Ĥeff,1,1(t ) and for Ĥeff,1,1(t ) + Ĥspin. One can see that the
HHG intensity is substantially suppressed by Ĥspin. One may
think that this is an unexpected effect, since Ĥspin applies
only to the singly occupied sites and it looks unrelated to
the dynamics of the doublons or holons. Moreover, unlike in
higher-dimensional systems, the doublon and holon dynamics
does not disturb the spin background directly (spin-charge
separation). We think that the reduction originates from a
reduced recombination probability for the doublon and holon.
While the doublon and holon move around, the spin back-
ground can change through the action of Ĥspin. Thus the spin
background can be substantially different when the doublon
and holon return back to neighboring positions for possible
recombination. If we denote such an excited state by |�ex〉
and the ground state by |�0〉, the matrix element 〈�ex| ĵ|�0〉
should be decreased compared to the case without Ĥspin due
to the mismatch of the spin background. This result shows
that the HHG intensity in Mott systems is sensitive to spin
dynamics, which raises interesting questions about the effects
of different types of spin couplings and external magnetic
fields on the HHG in Mott insulators. In a similar way, one
can study the effects of the exchange term for the doublon and
holon (Ĥdh,ex), which turn out to be minor, see Fig. 6(d).

The role of the other higher-order corrections is studied
with ED, since the terms involving sites beyond the nearest
neighbor are difficult to treat with iTEBD. First, we dis-
cuss the effects of corrections in ĤMott (t ). In Fig. 7(a), we
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FIG. 6. (a) Single-particle spectrum A(p, ω) of the effective
model ĤMott,1 in equilibrium evaluated with iTEBD for U = 10.
Here, the spin configuration of the equilibrium state is determined
by Ĥspin = Ĥspin,ex + hz

∑
i(−)i ŝz,i with hz = 0.001. The red lines

indicate ±U
2 ± 2v sin(p). (b) Comparison of the HHG spectra of

the Hubbard model and the effective model Ĥeff,1,1 for � = 0.5.
(c) Subcycle analysis of the HHG, IHHG(ω, tp), for Ĥeff,1,1. Here,
the excitation parameters are � = 0.5 and E0 = 0.7. The red mark-
ers indicate the result of the semiclassical theory (ωemit (trec )) with
the unrenormalized dispersion, U − 4v sin(p). (d) Comparison be-
tween the HHG spectra from Ĥeff,1,1, Ĥeff,1,1 + Ĥspin and Ĥeff,1,1 +
Ĥdh,ex. In (b)–(d), we use U = 10, hz = 0.001, � = 0.5, t0 = 60
and σ = 15. Here, the Mott gap and the maximum band-energy
difference extracted from the single-particle spectrum are 6.0 and
14.0, respectively.

FIG. 7. HHG spectra for the effective models evaluated with ED
for U = 10, hz = 0 and L = 10. The corresponding Hamiltonians are
indicated in the labels. In particular, the labels for the solid lines
in panel (b) indicate the correction added to Heff,1,1. For example,
“H (2)

hop” means that Ĥeff,1,1 + Ĥ (2)
hop is used in the simulation. The

parameters for the pump pulse are � = 0.5, E0 = 0.7, t0 = 60, and
σ = 15.

show the result of Ĥ (t ) [Eq. (1)], Ĥeff,1,1(t ), Ĥeff,2,1(t ), and
Ĥeff,3,1(t ) for L = 10. The cutoff is substantially increased
from Ĥeff,1,1(t ) to Ĥeff,2,1(t ), and already reproduces well
the cutoff in the ED results for the original Hubbard model.
The detailed information on the effects of each term in
Ĥeff,2,1(t ) (Eq. (14)) is shown in Fig. 7(b). As is expected,
the correction to the hopping of the doublons and holons,
i.e., Ĥ (2)

hop ≡ Ĥ (2)
kin,LHB + Ĥ (2)

kin,UHB, increases the intensity both
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at high frequencies and around the gap edge as well as the
cutoff frequency compared to Ĥeff,1,1(t ). Further inclusion of
Ĥ (2)

U,shift and Ĥspin,ex reduces the HHG intensity in general.

The former is expected since Ĥ (2)
U,shift increases the Mott gap,

while the latter effect has already been pointed out above.
Ĥeff,3,1(t ) well reproduces the shape of the HHG spectrum
of the full Hubbard model. However, this model substantially
underestimates the HHG intensity.

In Fig. 7(c), we show the HHG spectra for
Ĥeff,3,1(t ), Ĥeff,3,2(t ), and Ĥeff,3,3(t ) to illustrate the effects
of the higher-order dipolelike terms, Ĥex(t ). Interestingly,
the shape of the HHG above the band gap is hardly changed
but its intensity substantially increases, while the response
around ω = � is only slightly affected. This shows that
although the higher-order corrections to the dipole term
are not relevant for the response around ω = �, they are
necessary to quantitatively reproduce the HHG signal above
the gap. The coefficients of the higher-order corrections in
Ĥex are small, but they include long-range terms, which help
the creation of doublon-holon pairs via tunneling.

E. Discussion: kinetics of doublons and holons

Here, we would like to discuss the kinetics of the doublons
and holons, and its relation with the single-particle spectrum.
First, although we showed that the band dispersion obtained
from the single-particle spectrum of the 1d Mott insulator
(Fig. 1) can be used in a phenomenological three step model
for the doublon-holon recombination, we note that the full
information on the doublon and holon dynamics may not be
obtainable from the single-particle spectrum in general. To
exemplify this, we consider Ĥeff,1,1 and choose the antifer-
romagnetic state (|↑,↓,↑,↓, · · · 〉) as the initial equilibrium
state. Remember that ĤMott,1 has degenerated ground states,
i.e., the states with no doublons and holons become the ground
states regardless of the spin configuration. In this case, the
single-particle spectrum is independent of momentum and
there is no clear dispersion relation, see Fig. 8(a). Thus, from
the single-particle spectrum, it is hard to extract useful in-
formation on the kinetics of the doublons and holons. On
the other hand, when the HHG spectrum is measured, one
finds almost the same result between the cases with the initial
state determined from Ĥspin = Ĥspin,ex + hz

∑
i(−)i ŝz,i and the

antiferromagnetic initial state, see Figs. 8(b) and 8(c). This
result is consistent with the fact that in ĤMott,1, the charge
dynamics related to the doublons and holons is independent
of the spin configuration [76]. The above results demonstrate
that the HHG spectrum directly reflects the doublon-holon
dynamics, but the single-particle relation does not necessar-
ily so. Thus the relation between the HHG spectrum and
the single-particle spectrum can be very different from what
we expect in a semiconductor system [48]. Our findings indi-
cate that the HHG spectrum is the more direct tool to study
the kinetics of the doublons and holons in a Mott insulator.

A lesson from our HHG analysis of the 1d Mott insulator is
that the three step model (18) can be useful even for strongly
correlated systems if we use a proper dispersion relation εg(p)
related to many-body elementary excitations. Here, the dis-
persion εg(p − A) describes the change of the energy under

FIG. 8. (a) Single-particle spectrum A(p, ω) of the effective
model ĤMott,1 in equilibrium evaluated with iTEBD for U = 10.
Here, the spin configuration of the equilibrium state is antiferromag-
netic. (b)(c) Comparison of the HHG spectra of the effective model,
Ĥeff,1,1 with U = 10, for the ground state of Ĥspin + hz

∑
i(−)i ŝz,i

and the antiferromagnetic state. Here, (b) � = 0.75 and (c) 0.5. The
parameters of the pump are t0 = 60 and σ = 15.

an adiabatic change of A, for the doublon-holon pair with
the half relative momentum p at A = 0. It is an interesting
question if the same idea applies to other types of SCESs.
Namely, one may obtain εg(−A) by following the change of
the energy of an excited state under an adiabatic change of
A and use it within the three step model to explain the HHG
features.
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IV. CONCLUSIONS

In this paper, we studied HHG in the 1d Mott insulator
described by the single-band Hubbard model using iTEBD
and ED. We pointed out that the HHG originates from the
doublon-holon recombination, at least when the gap is large
enough, and demonstrated that the subcycle features are rea-
sonably well captured by the semiclassical three step analysis
for doublon-holon pairs. The dynamics of a doublon-holon
pair is ruled by the dispersion of the doublon-holon pair
with respect to its relative momentum, which is not neces-
sarily captured by the single-particle spectrum due to the
many-body nature of the elementary excitations. Our results
indicate that HHG in Mott insulators can be used for a spec-
troscopy to directly measure the dispersion of the relevant
many-body elementary excitations, here the doublon-holon
pairs.

Moreover, we introduced effective models based on the
Schrieffer-Wolff transformation, which allows us to identify
processes similar to and different from the semiconductor
models, and to discuss the role of these individual processes.
We showed that the spin dynamics, which has no analog in
semiconductor systems, substantially reduces the HHG in-
tensity. This result indicates that the HHG intensity in Mott
systems can be sensitive to spin dynamics. It will be interest-
ing to study the effects of different types of spin couplings and
to discuss the controllability of the HHG spectrum via external
magnetic fields. Furthermore, we revealed the importance of
the long-range component of the “dipole moment” between
the doublon band and the holon band for the HHG intensity,
as well as the role of the correlated hopping of doublons and
holons for the shape of the HHG spectrum. We expect that our
results are also relevant for charge transfer (CT) insulators,
although a detailed study of HHG in these systems is required
for a precise statement. Candidates of 1d Mott insulators and
CT insulators range from organic crystals, e.g., ET-F2TCNQ,
to cuprates, e.g., Sr2CuO3 [68]. It would be interesting to
experimentally explore the HHG in these systems, and to
compare the measurements with our theoretical predictions.

For understanding the detailed relation between the el-
ementary excitations and HHG in various SCESs, it is an
interesting future problem to introduce concepts similar to
doublon-holon pairs with different relative momenta, i.e., a
series of states that is connected via adiabatic changes of the
vector potential and their dispersions, to other SCESs systems
such as dimer-Mott insulators [52]. This would help us to
explore the spectroscopic application of HHG to detect the
dynamics of these elementary excitations. Also, in many-body
systems, elementary excitations can strongly interact with
each other, as in the case of the doublon-holon dynamics
in a correlated spin background [77] or the singlon-triplon
string state in multi-orbital systems [50]. Such effects may
be taken into account as an extra potential between elemen-
tary excitations; for example, in the spin background, the
potential should be proportional to the distance between the
doublon and holon. How this affects the dynamics of elemen-
tary excitations under strong fields and consequently the HHG
spectrum is an interesting open question. In addition, it is also
important to understand the behavior of HHG in SCESs in a
wider range of excitation frequencies.

Last but not least, in this study, we have introduced a new
numerical method to measure the fermionic single-particle
spectrum within iTEBD. The method has advantages in that
(i) a momentum- and energy-resolved spectrum is obtained
from a single-shot calculation and (ii) it can be directly eval-
uated for a system in the thermodynamic limit. The idea can
be extended to nonequilibrium situations, and we expect fu-
ture applications to various nonequilibrium evolutions of the
single-particle spectrum.
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APPENDIX A: EVALUATION OF THE SINGLE-PARTICLE
SPECTRUM IN iTEBD

Here, we explain how to measure the single-particle
Green’s function for fermions,

GR
i j (t ) = −iθ (t )〈[ĉi(t ), ĉ†

j (0)]+〉, (A1)

within iTEBD. Using DMRG or ED for finite systems, one
can directly apply an operator ĉ†

j (0) to the wave-function and
measure ĉi(t ) to evaluate the single-particle Green’s function
of finite size systems in principle. In the case of iTEBD,
using the infinite boundary condition [78], we can calculate
the spectral functions in spin systems [79,80] without finite
size effects, which corresponds to applying a bosonic operator
to the system. However, it is not straightforward to apply a
fermionic operator to the matrix product state while keeping
its canonical form. In the following, we describe how to mea-
sure the single-particle Green’s function via a pump-probe
simulation by considering an auxiliary band and measuring
a nonlocal correlation function of fermionic operators.

In general, the pump-probe approach allows us to directly
measure the linear response function,

χR
BA(t ) = −iθ (t )〈[B̂(t ), Â(0)]〉sys. (A2)

Here, we express the unperturbed Hamiltonian for the system
of interest as Ĥsys, 〈〉sys denotes the expectation value for
an equilibrium state of Ĥsys, and Â and B̂ are some opera-
tors. χR

BA(t ) dictates the change of the expectation value of B̂
(δB(t )) induced by the small perturbation from Ĥex = δF (t )Â:

δB(t ) =
∫

dt̄χR
BA(t − t̄ )δF (t̄ ). (A3)

The Fourier components satisfy δB(ω) = χR
BA(ω)δF (ω). One

can evaluate χR
BA(t ) directly by the real time evolution of a

weak-enough excitation. This can be utilized in any type of
real-time numerical simulation to evaluate the response func-
tions, see, e.g., Refs. [81,82] for applications in the context of
nonequilibrium Green’s function methods.
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On the other hand, with iTEBD, the wave function |�(t )〉 is
expressed as a matrix product state in the canonical form. Us-
ing this fact one can efficiently evaluate equal-time nonlocal
correlation functions,

Xβα,i j (t ) ≡ 〈�(t )|β̂iα̂ j |�(t )〉, (A4)

regardless of the type of β̂i and α̂ j , i.e., fermionic or bosonic.
We use the above two points to measure GR

i j (t ).
First, we separate GR

i j (t ) into two parts as GR
i j =

GR1
i j + GR2

i j , where GR1
i j (t ) = −iθ (t )〈ĉi(t )ĉ†

j (0)〉 and

GR2
i j (t ) = −iθ (t )〈ĉ†

j (0)ĉi(t )〉. Then, we consider an auxiliary

band of fermions Ĥaux = ω0
∑

i b̂†
i b̂i. The total Hamiltonian

without external perturbation is Ĥtot = Ĥsys + Ĥaux. We take
the initial state |�tot〉 as

|�tot〉 = |�sys〉 ⊗ |vac〉aux, (A5)

where |vac〉aux is the vacuum state of the auxiliary band
and |�sys〉 is the ground state of the system. Next, we
weakly excite the system by applying a homogeneous field
δF (t )

∑
l Âlwith Âl = b̂†

l ĉl + ĉ†
l b̂l at time 0 and observe B̂ ji =

b̂†
j ĉi at time t . This procedure enables us to measure

χ̃i j (t ) ≡ −iθ (t )
〈[

B̂ ji(t ),
∑

l

Âl (0)
]〉

tot

= iθ (t )eiω0t 〈ĉ†
j (0)ĉi(t )〉sys = −eiω0t GR2

i j (t ), (A6)

and we obtain GR2
i j (t ) by setting ω0 = 0. Note that since the

canonical form of the matrix product for |�sys〉 ⊗ |vac〉aux is
easily expressed by taking the direct product of the canoni-
cal representation for |�sys〉 and |vac〉aux, we do not need to
deal with Ĥtot. This fact saves the computational cost for the
preparation of the initial state.

In the same way, we can calculate GR1
i j (t ) by exciting the

system with δF (t )
∑

l Â′
l and Â′

l = b̂l ĉl + ĉ†
l b̂†

l at time 0 and
observing B̂ ji = b̂ j ĉi at time t . This process can be circum-
vented in special cases where GR1

i j (t ) can be related to GR2
i j (t ).

For example, the half-filled Hubbard model is symmetric
under ĉ†

iσ → (−)iĉiσ . If this symmetry is not broken in the
ground state, we have

GR1
i j (t ) = −iθ (t )〈ĉiσ (t )ĉ†

jσ (0)〉 = −(−) j−iGR2
i j

∗
(t ). (A7)

Although precise single-particle spectra in equilibrium can
be obtained by dynamical DMRG [83], its application is lim-
ited to finite systems. Our method has the advantage that it is
directly applicable to the thermodynamic limit and that it can
be easily extended to nonequilibrium situations.

APPENDIX B: HIGHER-ORDER CORRECTIONS
OF THE EFFECTIVE MODEL

The higher-order terms of Ŝ and ĤMott can be obtained
recursively using the following fact [60]: if an operator M̂n

changes the number of doublons by n and does not change the
total number of charges, we have

[ĤU , M̂n] = nUM̂n. (B1)

The procedure for determining Ŝ(i) and ĤMott,i is the fol-
lowing: (1) write down the components in ĤMott of the order

O(U ( v
U )i ), which involve i[Ŝ(i)(t ), ĤU ]. We denote the com-

ponents except for i[Ŝ(i)(t ), ĤU ] by M̂ (i)(t ). We use M̂ (i)
n (t )

to denote the terms in M̂ (i)(t ) that change the number of
doublons by n. Ŝ(i) is given by

Ŝ(i)(t ) = −i

U

∑
n �=0

1

n
M̂ (i)

n (t ). (B2)

ĤMott,i (t ) = ĤMott,i−1(t ) + M̂ (i)
0 (t ). One can directly see that

with Eq. (B2), i[Ŝ(i), ĤU ] cancels with M̂ (i)
n for n �= 0.

For example, the component of ĤMott for O(U ( v
U )2) can be

expressed as

i[Ŝ(1)(t ), Ĥkin,0(t )] + i

2
[Ŝ(1)(t ), Ĥkin,±(t )] + i[Ŝ(2)(t ), ĤU ]

(B3)

with Ĥkin,0 ≡ Ĥkin,LHB + Ĥkin,UHB and Ĥkin,± = Ĥkin,+ +
Ĥkin,−. Then, we have

M̂ (2)
1 (t ) = 1

U
[Ĥkin,+(t ), Ĥkin,0(t )],

M̂ (2)
0 (t ) = 1

U
[Ĥkin,+(t ), Ĥkin,−(t )], (B4)

M̂ (2)
−1 (t ) = M̂ (2)

1 (t )†.

More explicitly, we have

M̂ (2)
1 (t )

= −2
v2

U

∑
i,σ

[ĥ†
i+1,σ ĉ†

i,σ ĉ†
i,σ̄ ĥ†

i−1,σ̄ + d̂†
i+1,σ̄ ĉi,σ ĉi,σ̄ d̂†

i−1,σ ]

+ v2

U

∑
i,σ

∑
m=±1

e2iA·m[2d̂†
i+m,σ̄ ĉ†

i,σ̄ ci,σ ĥ†
i−m,σ̄ (B5)

+ (n̄i,σ̄ − ni,σ̄ )d̂†
i+m,σ̄ ĥ†

i−m,σ ].

Also, we have

M̂ (2)
0 (t ) = Ĥ (2)

kin,LHB + Ĥ (2)
kin,UHB + Ĥ (2)

U,shift

+ Ĥspin,ex + Ĥdh,ex + Ĥ (2)
dh,slide, (B6)

with

Ĥ (2)
kin,LHB = − Jex

4

∑
i,σ

∑
m=±1

e2iA·m

× [ni,σ̄ ĥi+m,σ ĥ†
i−m,σ − ĉ†

i,σ ĉi,σ̄ ĥi+m,σ̄ ĥ†
i−m,σ ],

(B7)

Ĥ (2)
kin,UHB = Jex

4

∑
i,σ

∑
m

e2iA·m

× [n̄i,σ̄ d̂†
i+m,σ̄ d̂i−m,σ̄ + ĉ†

i,σ̄ ĉi,σ d̂†
i+m,σ̄ d̂i−m,σ ],

(B8)

Ĥ (2)
U,shift = Jex

∑
i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (B9)

Ĥdh,ex = −Jex

2

∑
i

[
e−2iAη̂+

i η̂−
i+1 + e2iAη̂−

i η̂+
i+1 + 2η̂z

i η̂
z
i+1

]
,

(B10)
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Ĥ (2)
dh,slide = −Jex

4

∑
i,σ

∑
m=±1

[ĥ†
i+m,σ ĉ†

iσ ĉ†
i,σ̄ d̂i−m,σ + H.c.]. (B11)

Here, we introduced the η operators [84,85] as η̂+
i =

θiĉ
†
i↑ĉ†

i↓, η̂−
i = θiĉi↓ĉi↑, and η̂z

i = 1
2 (n̂i − 1), and Ĥspin,ex is

given in Eq. (15). The meaning of each term is as follows.
Ĥ (2)

kin,LHB describes the hopping of a holon and Ĥ (2)
kin,UHB de-

scribes the hopping of a doublon. Ĥ (2)
U,shift describes the shift of

the local interaction U , while Ĥdh,ex is the exchange coupling
of the doublon and holon. Ĥ (2)

dh,slide describes the simultaneous
hopping of a doublon and a holon to the neighboring sites.

For the case of i = 3, we have

M̂ (3)
+2 (t ) = 1

2U

[
M (2)

1 (t ), Hkin,+(t )
]
, (B12)

M̂ (3)
+1 (t ) = 2

3U

[
Ĥkin,+, M (2)

0 (t )
] + 1

U

[
M (2)

1 (t ), Hkin,0
]
,

M̂ (3)
0 (t ) = 1

2U

[
M̂ (2)

1 (t ), Hkin,−(t )
] − 1

2U

[
M̂ (2)

−1 (t ), Hkin,+(t )
]
,

and M̂ (3)
−1 (t ) = M̂ (3)

1 (t )† and M̂ (3)
−2 (t ) = M̂ (3)

2 (t )†.
As for Ĥex, we can expand it as

Ĥex(t ) = − ˙̂S − i

2
[Ŝ, ˙̂S] + 1

6
[ ˙̂SŜŜ − 2Ŝ ˙̂SŜ + ŜŜ ˙̂S] + · · ·,

(B13)

where ˙̂S = ∂t Ŝ(t ). Thus we have

− ˙̂S(1) (B14)

for O(E0 · v
U ),

− ˙̂S(2) − i

2
[Ŝ(1), ˙̂S(1)] (B15)

for O(E0 · ( v
U )2) and

− ˙̂S(3) − i

2
[Ŝ(1), ˙̂S(2)] − i

2
[Ŝ(2), ˙̂S(1)]

+ 1

6
[ ˙̂S(1)Ŝ(1)Ŝ(1) − 2Ŝ(1) ˙̂S(1)Ŝ(1) + Ŝ(1)Ŝ(1) ˙̂S(1)] (B16)

for O(E0 · ( v
U )3). Note that − ˙̂S(1) includes doublon-holon pair

creation at the nearest neighbor sites. As one can see from
the form of M̂ (2)

1 , − ˙̂S(2) includes doublon-holon pair creation

at the next-nearest neighbor sites. Similarly, − ˙̂S(3) includes
doublon-holon pair creation at the third-nearest neighbor sites.

APPENDIX C: SEMICONDUCTOR MODELS

In this section, we show how the HHG results of the
simplest but typical semiconductor model look like in the pa-
rameter regime relevant for this paper. As the semiconductor
model, we consider the spin-less two-band model in the dipole
gauge [19,61,66]

Ĥsemi = −
∑

i,a=c,v

[vae−iA(t )ĉ†
i,aĉi+1,a + H.c.]

+ D

2

∑
i

[n̂i,c − n̂i,v] − E (t )
∑
i,a

daĉ†
i,aĉi,ā. (C1)

Here, a is the index for the conduction band (c) or the va-
lence band (v), D is the band level difference and da is the
dipole moment, which is assumed to be local. The light-
matter coupling is taken into account by the Peierls phase
and the dipole excitation term (the last term). The size of
the latter determines the transitions between the conduction
band and the valence band, and the size of the dipole mo-
ment can be usually comparable but no more than the lattice
constant. Here, we assume that it is the same as the lat-
tice constant, da = 1. We study this model by solving the
equation of motion for the single-particle density matrix, i.e.,
the semiconductor Bloch equation [20,21,61]. Note that the
equations of motion in this gauge are essentially identical
to those for the Hamiltonian in the length gauge [20,21],
so that the semiclassical theory derived in Ref. [21] is di-
rectly applicable. Additionally, in the semiconductor Bloch
equation, one can phenomenologically take account of the
dephasing effects originating from electron-phonon coupling,
disorder and electron-electron interactions via the relaxation
time approximation, which involves the dephasing time T2

[20,21] (T2 = ∞ means no dephasing). In the following, we
set vc = 1 and vv = −1, where the system has a direct band

FIG. 9. [(a) and (b)] HHG spectra of the semiconductor with
Eg = 6.0 for (a) � = 0.75 and (b) 0.5 for the specified field strengths.
Here, we use t0 = 60 and σ = 15 for the pulse and σ ′ = 20 for the
Fourier transformation. (c) HHG spectra of the semiconductor with
Eg = 6.0 for � = 0.5, E0 = 0.7, t0 = 160, σ = 40 with and without
the phenomenological dephasing term (T2). Here, σ ′ = 60 is used
for the Fourier transformation. [(d) and (e)] Subcycle analysis of the
HHG signal. IHHG(ω, tp) is plotted for (d) � = 0.75 and (e) � = 0.5.
Here, we use Eg = 6.0, E0 = 0.7, t0 = 60, and σ = 15 for both
cases. (f) IHHG(ω, tp) for Eg = 3.0. The parameters of the pump are
� = 0.3, E0 = 0.4, t0 = 100, and σ = 30. For the subcycle analysis
σ ′ = 0.8 is used. The red markers indicate the results of the subcycle
analysis (ωemit (trec )) with the dispersion εa(p) = ± D

2 ± 2va cos(p).
The results in (a), (b), (d), (e), and (f) are obtained without phe-
nomenological dephasing term (T2 = ∞).
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gap. We note that, conceptually, the band level difference D
corresponds to the local Coulomb interaction U in the Hub-
bard model. The band gap Eg is D − 2(vc − vv ).

In Figs. 9(a), 9(b), 9(d), and 9(e), we show the HHG spec-
trum, which corresponds to Figs. 2(a) and 2(b), and the results
of the subcycle analysis, which correspond to Figs. 4(c) and
4(d). For � = 0.75, one can clearly see the HHG signals at
odd frequencies [Fig. 9(a)]. On the other hand, for � = 0.5 the
HHG peaks are less clear and some of them deviate from the
odd harmonics [Fig. 9(b)]. This can be attributed to the short
pulse and the lack of dephasing in the present model (C1),
i.e., T2 = ∞. Indeed, with a longer pulse, the peaks become

sharper around the upper edge of the plateau [Fig. 9(c)], while
the peaks around the gap edge become ill-defined without
the dephasing. With the dephasing, the latter peaks become
sharper [20,21]. As for the subcycle analysis, some subcy-
cle features are similar to those in the Mott insulators, see
Figs. 9(d) and 9(e). The semiclassical model captures several
features such as the timing of the emission of high-frequency
light, and the level of agreement with the actual results is
similar to the case of the Mott insulator. The agreement with
the semiclassical theory tends to become better as we de-
crease the gap and the excitation frequency, see for example
Fig. 9(f).
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