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Nonequilibrium phases and phase transitions of the XY model
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We obtain the steady-state phase diagram of a transverse-field XY spin chain coupled at its ends to magnetic
reservoirs held at different magnetic potentials. In the long-time limit, the magnetization bias across the system
generates a current-carrying nonequilibrium steady state. We characterize the different nonequilibrium phases
as functions of the chain’s parameters and magnetic potentials, in terms of their correlation functions and
entanglement content. The mixed-order transition, previously observed for the case of a transverse-field Ising
chain, is established to emerge as a generic feature of a wider class of out-of-equilibrium problems. The critical
exponents associated with this universality class are determined analytically. Results are also contrasted with
those obtained in the limit of Markovian reservoirs. Our findings should prove helpful in establishing the
properties of nonequilibrium phases and phase transitions of extended open quantum systems.
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I. INTRODUCTION

Quantum matter out of thermal equilibrium has become
a central research topic in recent years. An important class
of problems deal with nonequilibrium quantum states of sys-
tems that are in contact with multiple baths, which in turn
are held at specified thermodynamic potentials. Such states
are not bounded by equilibrium fluctuation relations and thus
may host phases of matter that are impossible to realize in
equilibrium. Therefore, phase changes far from equilibrium
may exist that lack equilibrium counterparts.

Far-from-equilibrium quantum states are routinely realized
in mesoscopic solid-state devices [1–3] and recently have also
become available in cold atomic gas settings [4]. Thus it is
timely to explore the properties of phases of current-carrying
matter and address the conditions which have to be met for
their emergence.

Nonequilibrium transport across quantum materials dates
back to Landauer and Büttiker [5], who were motivated by
the failure of semiclassical Boltzmann-like approaches to un-
derstand phenomena such as the conductance quantization
across mesoscopic conductors. For noninteracting systems,
quantum transport is, by now, well understood [6–8]. How-
ever, in systems where the physical properties are determined
by the electron-electron interaction, progress has been much
slower. Here, one often has to resort to either approximate
methods or numerically exact techniques [9] which, however,
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are often restricted to small systems or comparatively high
temperatures. Exact analytical results, available for integrable
models in one dimension, do not typically generalize to open
setups. Moreover, nonthermal steady states in Luttinger liq-
uids [10–12] seem to be less general than their equilibrium
counterparts.

Considerable progress has been made in the Markovian
case, where the environment lacks memory [13–16]. The
applicability of the Markovian case is, however, limited to
extreme nonequilibrium conditions (e.g., very large bias or
temperature) and is of restricted use for realistic transport
setups [17,18].

Other recent developments to study transport include the
study of so-called generalized hydrodynamic methods avail-
able for integrable systems [19,20] and hybrid approaches
involving Lindblad dynamics [21]. However, these methods
are not yet able to describe current-carrying steady states in
extended mesoscopic systems.

Our recent analysis of the exactly solvable transverse-
field Ising chain attached to macroscopic reservoirs has
allowed us to study a symmetry-breaking quantum phase
transition in the steady state of an extended nonequilibrium
system [22]. At the equilibrium level, this model can be
mapped onto that of noninteracting fermions via a Jordan-
Wigner transformation and is thus solvable by elementary
means.

The nonthermal steady state of this model is, however,
much richer and allows for a peculiar symmetry-breaking
quantum phase transition. In particular, we have shown this
transition to be of a mixed-order (or hybrid) nature, with a dis-
continuous order parameter and diverging correlation length.
These types of transitions were first discussed by Thouless
in 1969 [23] in the context of classical spin chains with
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long-range interactions and have since then been reported in
different environments [24–28].

Even though realistic systems are only approximately de-
scribed by exactly solvable models at best, exact solutions are
still of considerable value. Not only can they be important in
unveiling features of novel effects, but they are commonly
instrumental in benchmarking numerical and approximate
methods. Therefore, exact solutions are particularly helpful in
situations where no reliable numerical or approximate meth-
ods yet exist, such as in the description of current-carrying
steady states of interacting systems.

In this article, we provide a set of exact results of steady-
state phases and phase transitions of an XY spin chain in a
transverse field coupled to magnetic reservoirs held at dif-
ferent magnetizations. Our analysis extends and generalizes
the findings in Ref. [22] and points out regimes that are
not present in the Ising case. In the Markovian limit, we
recover previous results obtained for XY spin chains coupled
to free-of-memory reservoirs [13,29,30], where an out-of-
equilibrium phase transition with spontaneous emergence of
long-range order has been found.

The paper is organized as follows. In Sec. II, we define
the out-of-equilibrium model and briefly describe the meth-
ods used to solve it. In Sec. III, we describe in detail the
nonequilibrium phase diagram based on the energy current
and the properties of the occupation number. The correla-
tion functions in the various phases are analysed in Sec. IV,
where we also discuss the critical behavior at the mixed-
order phase transition and the characteristic oscillations in
the z-correlation function. Universal features of the entropy
and mutual information are discussed in Sec. V. Finally, we
summarize and conclude our work in Sec. VI.

II. MODEL AND METHOD

A. Hamiltonian and Jordan-Wigner mapping

We consider an XY -spin chain of N sites (labeled by r),
exchange coupling J , and coupled to a transverse field h. At its
ends, i.e., at r = 1 and r = N , the chain is coupled to magnetic
reservoirs which are kept at zero temperature (T = 0). The
Hamiltonian of the chain is given by

HC = −J

2

N−1∑
r=1

[
(1 + γ )σ x

r σ x
r+1 + (1−γ )σ y

r σ
y
r+1

] − h
N∑

r=1

σ z
r ,

(1)

where σ
x,y,z
r are the Pauli matrices at site r, and γ controls the

anisotropy. The total Hamiltonian is given by

H = HC +
∑

l=L,R

(Hl + HC-l ), (2)

where Hl and HC-l , with l = L,R, are, respectively, the Hamil-
tonians of the reservoirs and the system-reservoir coupling
terms. In the following, we assume that the reservoirs possess
bandwidths which are entirely determined by magnetic poten-
tial μl (l = L, R) and which are much larger than the energy
scales that characterize the chain.

In the wide-band limit, the results become independent
of the details of Hl and HC-l . For concreteness, we take the

FIG. 1. (a) Schematic picture of the XY-model spin chain in
contact with magnetic reservoirs and (b) the same system mapped
to its fermionic representation, i.e., a triplet superconducting chain
of spinless fermions in contact with fermionic reservoirs.

reservoirs to be isotropic XY chains, i.e.,

Hl = −Jl

∑
rl ∈�l

(
σ x

rl
σ x

rl +1 + σ y
rl
σ

y
rl +1

)
, (3)

with l = L, R, and we have defined �L ≡ {−∞, . . . , 0},
�R ≡ {N + 1, . . . ,∞}. Initially, the reservoirs are in an
equilibrium Gibbs state, ρl = e−β(Hl −μl Ml ), where Ml =∑

rl ∈�l
σ z

rl
is the reservoir magnetization (which is a good

quantum number in the absence of system-reservoir coupling,
i.e., [Hl , Ml ] = 0). The average value of Ml is set by the
magnetic potential μl . For finite μl , these are non-Markovian
reservoirs, with power-law decaying correlations, and a set
of gapless magnetic excitations within an energy bandwidth
Jl � J, h. The chain-reservoir coupling Hamiltonians are

HC-l = −JC-l
(
σ x

(rl )C
σ x

(r)l
+ σ

y
(r)l

σ
y
(rl )C

)
, (4)

with (rL)C = 1, (r)L = 0, (rR)C = N , and (r)R = N + 1.
A sketch of this system is shown in Fig. 1(a).

The full Hamiltonian H can be represented in terms of
fermions via the so-called Jordan-Wigner (JW) mapping [31],
σ+

r = eiπ
∑r−1

r′=1 ĉ†
r′ ĉr′ c†

r , where ĉ†
r /ĉr creates/annihilates a spin-

less fermion at site r. The JW-transformed system corresponds
to a Kitaev chain [32] in contact with two metallic reservoirs
of spinless fermions at chemical potentials μL,R, i.e.,

H = −J
N−1∑
r=1

(ĉ†
r ĉr+1 + γ ĉ†

r ĉ†
r+1 + H.c.) − 2h

N∑
r=1

ĉ†
r ĉr

−
∑

l=L,R

[
JC-l ĉ

†
(rl )C

ĉ(r)l
+ Jl

∑
rl ∈�l

ĉ†
rl

ĉrl +1 + H.c.

]
, (5)

where Jγ defines the superconducting coupling strength and
h plays the role of a potential applied on the chain. A sketch
of this system is shown in Fig. 1(b). In equilibrium, topo-
logically nontrivial phases of the Kitaev chain correspond to
magnetically ordered phases of the original XY-spin model,
whereas the topologically trivial cases correspond to dis-
ordered phases. With a magnetic bias, the transfer of spin
excitations between the reservoirs was studied rather exten-
sively (see, e.g., Refs. [33,34]), also considering transport
signatures of the topological phase in short junctions [35,36].
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Here, however, we will be mostly concerned with the bulk
properties at N → ∞, and after the reservoirs have been
traced out.

B. Nonequilibrium Green’s functions

As the JW-transformed Hamiltonian is quadratic in its
fermionic degrees of freedom, the nonequilibrium system ad-
mits an exact solution in terms of single-particle quantities. In
the following, we employ the nonequilibrium Green’s func-
tion formalism to compute correlation functions and related
observables. The procedure is described in the Supplemen-
tal Material of Ref. [22] and is briefly summarized here for
convenience.

We start by defining the Nambu vector, �̂
† =

(ĉ†
1, . . . , ĉ†

N , ĉ1, . . . , ĉN ), and the retarded, advanced, and
Keldysh components of the Green’s function, given by

GR
i, j (t − t ′) = −i�(t − t ′)〈{�̂i(t ), �̂

†
j (t

′)}〉, (6)

GA
i, j (t − t ′) = i�(t ′ − t )〈{�̂i(t ), �̂

†
j (t

′)}〉, (7)

GK
i, j (t − t ′) = −i〈[�̂i(t ), �̂

†
j (t

′)]〉. (8)

Using this notation, the Hamiltonians for the right and left
reservoirs and for the chain are given by Hl = 1

2 �̂
†
H l�̂, with

l = L, R,C. For the chain, HC is a 2N × 2N Hermitian ma-
trix respecting particle-hole symmetry, i.e., S−1HT

CS = −HC,
where S = τ x ⊗ 1N×N and τ x interchanges particle and hole
spaces. Similar definitions apply to the degrees of freedom
of the right and left reservoirs. The bare retarded and ad-
vanced Green’s functions, in the absence of chain-reservoir
couplings, are simply given by GR/A

l,0 (ω) = (ω − H l ± iη)−1.
Rewriting the chain-reservoir coupling in the same nota-
tion, HC-l = 1

2 (�̂
†
(l )T �̂ + �̂

†
T †�̂(l ) ). The self-energy of the

chain, induced by tracing out the reservoirs, is �R/A/K =∑
l=L,R �

R/A/K
l , where

�
R/A
l (ω) = T †GR/A

l,0 (ω)T , (9)

�K
l (ω) = [

�R
l (ω) − �A

l (ω)
]
[1 − 2nF,l (ω)] (10)

are the contributions of reservoir l , which obey equilib-
rium fluctuation-dissipation relations, and where nF,l (ω) =
(eβl (ω−μl ) + 1)−1 is the Fermi function with chemical poten-
tial μl and inverse temperature βl . The chain steady-state
Green’s functions are obtained from the Dyson’s equation,

GR/A
C (ω) = [

GR/A
C,0 (ω) − �R/A(ω)

]−1
, (11)

GK
C (ω) = GR

C(ω)�K (ω)GA
C(ω). (12)

As mentioned above, we consider the case where the band-
widths of the reservoirs, Jl=L,R, are much larger than the other
energy scales. In this wide-band limit, the coupling to reser-
voir l is completely determined by the hybridization energy
scale �l = πJ2

C-lDl . Here, Dl is the reservoir’s constant-local
density of states. In practice, the wide-band limit yields a
frequency-independent retarded self-energy, �R

l = i(γ l + γ̄ l ),
which substantially simplifies subsequent calculations, with
γ l = �l |rl〉〈rl | and γ̄ l = �l |r̄l〉〈r̄l |, and where |r〉 and |r̄〉 ≡
S|r〉 are single-particle and hole states.

In this case, it is convenient to define the non-Hermitian
single-particle operator,

K ≡ HC − i
∑

l=L,R

(γ l + γ̄ l ), (13)

which we assume to be diagonalizable, possessing right and
left eigenvectors |α〉 and 〈α̃|, and associated eigenvalues λα .
In terms of these quantities, the retarded Green’s function is
given by

GR(ω) = (ω − K )−1 =
∑

α

|α〉(ω − λα )−1〈α̃|, (14)

and the Keldysh Green’s function becomes

GK (ω) = −2i
∑

l

∑
αβ

|α〉〈β|

× 〈α′|γ l |β ′〉[1 − 2nF,l (ω)] − 〈α′|γ̄ l |β ′〉[1 − 2nF,l (−ω)]

(ω − λα )(ω − λ̄β )
.

(15)

Steady-state observables can be obtained from the single-
particle correlation function matrix, χ ≡ 〈�̂�̂

†〉, which is
obtained from the Keldysh Green’s function,

χ = 1

2

[
i
∫

dω

2π
GK (ω) + 1

]
. (16)

The explicit form of χ after performing the integration over
frequencies is provided in Eq. (A1). As the model is quadratic,
χ encodes all the information about the reduced density ma-
trix of the chain, ρ̂C = trL,R[ρ̂]. This quantity can itself be
expressed as the exponential of a quadratic operator, i.e., ρ̂C =
e�̂C/Z , where Z = tr[e�̂C ] and �̂C = 1

2 �̂
†
�C�̂ with �C being

a 2N × 2N matrix respecting the particle-hole symmetry con-
ditions. �̂C is related to the single-particle density matrix via

χ = (e�C + 1)−1. (17)

This relation allows the calculation of mean values of
quadratic observables, Ô = 1

2 �̂
†
O�̂, defined by the Hermi-

tian and particle-hole symmetric matrix O,

〈Ô〉 = Tr[ρ̂CÔ] = − 1
2 tr[O · χ], (18)

as well as all higher-order correlation functions.

III. PHASE DIAGRAM

This section discusses the nonequilibrium phase diagram
of the model, as well as the excitations and associated occupa-
tion numbers in the various different phases. To contextualize
our findings, the first two sections are devoted to a brief
description of the equilibrium properties of the XY chain and
a review of the nonequilibrium Markovian limit.

A. Equilibrium phases

The system in equilibrium is more conveniently studied
without considering the couplings to the leads and assuming
periodic boundary conditions. After performing the JW trans-
formation, the Hamiltonian of the translation-invariant chain
is diagonalized in the momentum representation by a suitable
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FIG. 2. (a) Phase diagram h/J × γ of the XY model in equilib-
rium. The black thick lines identify a gap closing. (b) Phase diagram
of the out-of-equilibrium XY model according to the presence (sensi-
tive) or absence (normal) of long-range correlations in the Markovian
limit. The vertical dashed line at γ = +1 (γ = −1) identifies the
Ising model with only XX(YY)-spin-coupling interactions.

Bogoliubov transformation, i.e., HC = ∑
k εk (γ̂ †

k γ̂k − 1/2),
where the operators (γ̂k, γ̂

†
−k )T = eiθkσx (ĉk, ĉ†

−k )T describe
excitations of energy

εk = 2J
√

(h/J + cos k)2 + (γ sin k)2, (19)

and sin (2θk ) = −2Jγ sin(k)/εk .
The ground state is characterized by a vanishing number of

Bogoliubov excitations, i.e., nk = 0, where

nk ≡ 〈γ̂ †
k γ̂k〉. (20)

For |h/J| < 1, the ground state is topologically nontrivial with
positive and negative anisotropies (γ > 0 or <0) correspond-
ing to opposite signs of the topological invariant, separated by
a critical gapless state for γ = 0. At |h/J| = 1, the spectral
gap vanishes and the system transitions into a topologically
trivial phase at large h.

A similar phase diagram is obtained in terms of the original
spin degrees of freedom. Figure 2(a) illustrates the zero-
temperature phase diagram of the equilibrium XY model.
For γ > 0, the system is magnetically ordered along the x
direction under a weak transverse field h, and possesses a fi-
nite magnetization [37] φ ≡ limhx→0 limL→∞ 1

N

∑
r 〈σ x

r 〉 �= 0,
where hx is a symmetry-breaking magnetic field along the x
direction. A negative anisotropy, i.e., γ < 0, yields a nonvan-
ishing magnetization along the y direction, whereas at γ = 0,
the system is critical and isotropic for |h/J| < 1. As the or-
dered phases for γ > 0 and <0 are equivalent to each other
and related via a simple rotation, only γ > 0 is considered in
the subsequent analysis. It is worth recalling that the special
cases γ = ±1 correspond to the transverse-field Ising model.
A strong h drives the magnetic phase through a second-order
phase transition into a phase of vanishing magnetization, i.e., a
phase with φ = 0. Near the transition, for |h/J| < 1, the mag-

netization behaves as φ �
√

2
1+|γ | {γ 2[1 − (h/J )2]}1/8

[37].

The computation of the order parameter, φ, directly from
the above definition is not possible via the JW mapping. In-
stead, one considers the two-point correlation functions (α =
x, y, z),

Cαα
r,r′ = 〈

σα
r σα

r′
〉 − 〈

σα
r

〉〈
σα

r′
〉
. (21)

For disordered phases in equilibrium, these correlators are
expected to show either exponential (EXP) or power-law (PL)
decay depending on whether the system is gapped or gapless.
In the ordered phase, the system has long-range order (LRO)
correlations, e.g., for γ > 0,

Cxx
r,r′ � Ae−|r−r′ |/ξ + φ2, (22)

where ξ is the characteristic correlation length and A is a nu-
meric coefficient. This expression allows one to obtain φ from
the correlation function Cxx

r,r′ , which in turn can be computed
in terms of a Toeplitz determinant [31,38]. In equilibrium,
all correlation functions, except Cxx

r,r′ , either vanish or decay
exponentially with |r − r′|.

For an open system connected to demagnetized baths, i.e.,
μL,R = 0, the same equilibrium bulk properties as those for
the closed system are found. It is natural to expect that bulk
properties pertain for distances greater than ξ away from the
leads. Our calculation of fermionic observables follows that
described in Sec. II. The calculation of the spin-spin correla-
tion functions is similar to those for the translation-invariant
system and is given in Appendix A in terms of the single-
particle correlation matrix χ.

B. Nonequilibrium phases in the Markovian limit

The nonequilibrium features of the XY model with Marko-
vian reservoirs were first reported in Refs. [13,39]. This limit
can be recovered from the present model by taking |μR|
or |μL| → ∞ [17]. The steady-state phase diagram in that
limit possesses two distinct phases, one characterized by an
exponential decay of all correlation functions with distance
and the other by an algebraic decay of Czz

r,r′ , concomitant
with a strong sensitivity to small variations of some control
parameters [13]. We dub these regimes as normal and sensitive
phases, respectively. Figure 2(b) depicts the phase diagram in
this Markovian limit and with its sensitive (white) and nor-
mal (light-yellow) phases. The dark-yellow lines mark critical
phase boundaries.

The quasiparticle dispersion relation, given by Eq. (19),
is shown in Figs. 3(a) and 3(c). The algebraic correlations
are associated to the presence of an inflection point in the
quasiparticle dispersion which appears for h/J � |1 − γ 2|.
In the normal region, the extrema of the energy are m1 =
εk=0 = 2J|1 + h/J| and m2 = εk=π = 2J|1 − h/J|, while for
the sensitive region, m3 = 2J|γ |

√
1 + (h/J )2(γ 2 − 1)−1 be-

comes a global extremum. Figures 3(b) and 3(d) show the
spectrum of the non-Hermitian single-particle operator K [see
Eq. (13)] for both normal and sensitive phases. It turns out
that the imaginary part of the eigenvalues scales with the
inverse system size, Imλα ∝ N−1 [40]. This is a reflection of
the fact that for the chain degrees of freedom, the dissipative
effects of the boundary become less important with increasing
system size. A key feature of the sensitive region is that for
energies [i.e., Re(λα )] where four momenta can propagate,
the spectrum does not converge to a line with increasing
system size, but becomes scattered within a finite area [13].
These effects are independent of the Markovian nature of
the reservoirs and remain for the non-Markovian case as the
operator K does not depend on the chemical potential of the
leads. Thus, as explicitly shown below, the normal-sensitive
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FIG. 3. Quasiparticle dispersion relation of the equilibrium XY
model in the (a) normal and (c) sensitive regions, with {γ , h/J} =
{1.0, 0.2} and {γ , h/J} = {0.5, 0.2}, respectively, which leads to
{m1, m2, m3} = {2.4, 1.6, 0.97}. ±km2 are the two momenta with en-
ergy m2. (b) and (d) depict the eigenvalues λα of the non-Hermitian
single-particle operator K in the complex plane.

transition, reported in Refs. [13,39] for the Markovian case,
also occurs for finite values of μL and μR.

C. Nonequilibrium phase diagram: Energy current

We now present the phase diagram of the nonequilibrium
XY model and show that the energy current passing through
the chain can be used to discriminate between the different
phases.

Conservation of energy implies that the steady-state energy
current is equal across any cross section along the chain and
can be obtained from χ as

Je = − 1
2 tr[Jr · χ], (23)

where Jr is the single-particle current operator at link
(r, r + 1) which is explicitly given in Appendix A.

We have previously discussed the steady-state energy
current in a non-Markovian setting for the particular case
of the transverse-field Ising model, i.e., |γ | = 1, in Ref.
[22]. The nonequilibrium phase diagram, as a function of
μL and μR, in the normal phase is qualitatively similar
to the Ising case and is reproduced in Fig. 4(a). Two of
the phases which arise near μL = μR do not support en-
ergy transport, i.e., Je = 0: the ordered phase (O) and
the nonconducting phases (NC). Other phases may be fur-
ther characterized in terms of their energy conductance,
i.e., GL ≡ ∂μLJe and GR ≡ ∂μRJe. The current-saturated
(CS) phases are those with Je �= 0 and GR = GR = 0.

FIG. 4. Non-Markovian phase diagram μL × μR of two illustra-
tive settings inside the (a) normal and (b) sensitive regions, following
the same set of parameters in Fig. 3. The phases were defined as
ordered (O), conducting (C), conducting saturated (CS), and noncon-
ducting (NC). In the sensitive case, the phases which acquire a noise
in the occupation number are signed with a star ∗. The arrows at
the corners indicate the Markovian limit, i.e., |μR| and |μL| → ±∞.
(c) and (d) show the current of energy (Je) and the conductance
(GL ≡ ∂μLJe) computed across the red dotted lines drawn on the
phase diagrams (a) and (b), respectively.

They arise when one of the reservoir’s chemical potentials is
larger than m1, while the other lies inside the quasiparticle
excitation gap. The conducting phase (C) is characterized by
a nonzero conductance, i.e., GL �= 0 and/or GR �= 0, arising
whenever at least one of the chemical potentials lies within
the quasiparticle excitations band, i.e., |μL| and/or |μR| ∈
(m1, m2).

Figure 4(b) depicts the phase diagram for a generic XY
chain. Besides the phases found for γ = 1, an analysis of
the occupation numbers (see next section) shows that some
regions acquire a noiselike behavior. These phases, similar to
the sensitive regions of the Markovian case, are labeled NC∗,
CS∗, and C∗.

In Figs. 4(c) and 4(d), we show the current Je and con-
ductance GL for a fixed μR represented by the red dashed
lines in the phase diagrams. In the sensitive region, the C
phase is crossed by the transition line at μL = m2, where the
conductance becomes nonanalytic. It is worth noting that the
noiselike behavior found in the occupation numbers does not
appear in the current of energy.

In terms of the JW fermions, the present analysis is similar
to that of a transport across a tight-binding model in the sense
that when the chemical potentials cross the dispersion rela-
tion, nonanalytic properties of the current appear. However,
the existence of anomalous terms in the fermionic Hamilto-
nian inhibits a closer comparison with charge transport.

D. Occupation numbers

In the current-carrying steady-state regime of a Fermi gas,
fluctuations in the number of particles were shown to be
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FIG. 5. Distribution of occupations. (a),(b) The momenta kl=L,R at which the reservoir’s chemical potentials μl=L,R cross the dispersion
relation. (c)–(f) The excitation number nk at different phases inside the normal region. (g)–(l) nk in the sensitive region. km2 is such that
εkm2

= m2, with m2 given in Fig. 3(c).

intimately related to the entropy of a subsystem [41–44].
In analogy, the occupation number of the Bogoliubov ex-
citations, given by Eq. (20), can be used to describe the
properties of the asymptotic steady state away from the
boundaries. In the open system setting, nk can be approxi-
mated by numerically computing the Fourier transform χk =∑

r∈� e−ik(r−r0 )χr,r0
, where � = {r : L/4 < r < 3L/4} and

r0 = L/2, followed by a Bogoliubov transformation. In equi-
librium, μL = μR = 0, nk � 0 as expected, while in a generic
out-of-equilibrium situation, nk �= 0.

For the Ising model, it was shown that in the CS and
NC phases, the nk is a continuous function of k, while in
the C phase, it has discontinuities depending on the reser-
voir’s chemical potentials [22]. These discontinuities happen
at the momenta ±kl=L,R, where the chemical potential μl=L,R

crosses the dispersion relation; see Fig. 5(a). These results
extent straightforwardly to the XY model in the normal region;
see Figs. 5(c)–5(f). Within the O phase, the system behaves as
in equilibrium, i.e., nk � 0.

In the sensitive region, there may be two absolute values of
momenta, labeled ±kl=L,R and ±k′

l=L,R, for which each chem-
ical potential crosses the dispersion relation, as illustrated in
Fig. 5(b). Interestingly, we find that nk has an intrinsic noise
in the sensitive region; see Figs. 5(g)–5(j). The noise appears
in phases NC∗, C∗, and CS∗, for |k| > km2 , where εkm2

= m2

[see Fig. 3(c)]. In Appendix B, we check that the magnitude
of the noise in nk does not diminishes with increasing system
sizes. Curiously, the noise vanishes along the line μL = −μR,
as well as within phases C and CS crossed by this line, as
shown in Figs. 5(k) and 5(l), and studied in detail in Appendix
B.

Note that nk is asymmetric upon changing k → −k for
all conducting phases as required to maintain a net energy
flow through the chain, as ε(k) = ε(−k). Figures 5(c)–5(l)

illustrate this feature by showing a larger value of the
hybridization, which yields a larger current of energy and
consequently to a more asymmetric nk .

IV. CORRELATION FUNCTIONS

We now consider in more detail the properties of the spin
correlation functions, defined in Eq. (21). For Cxx

r,r′ , the generic
asymptotic dependence was already given in Eq. (20) and is
able to signal the presence of long-range order when φ �= 0.
We give, in Fig. 6(a), a numerical example of this case. On the
other hand, when φ = 0, we can extract the correlation length
ξ from the exponential decay of Cxx

r,r′ ; see Fig. 6(b). Table I
shows a summary of the asymptotic dependence of Cxx

r,r′ in
the different phases.

The typical dependence of φ and ξ on the chemical po-
tential of the reservoirs is illustrated in Figs. 6(c) and 6(d),
showing the remarkable property of a discontinuity in φ at the
critical point (after extrapolation to the thermodynamic limit)
accompanied by a diverging correlation length ξ . Further be-
low we will elaborate on the mixed-order transition in more
detail, by also providing an analytical description clarifying
its origin.

As shown in Table I, the behavior of Cxx
r,r′ is not affected by

the transition to the sensitive region. However, earlier studies
showed how, in the Markovian limit, the CS and NC phases
are characterized by a transition, from short- to long-range
correlations, when entering the sensitive region. This behavior
is reflected by a transition from exponential to power-law de-
cay in Czz

r,r′ [13,29]. We observe similar results in the present
case, with both nonconducting and saturated phases (CS and
NC) showing exponentially decaying correlations in the nor-
mal region and power-law decay in the sensitive one (CS∗ and
NC∗). Extending the analysis to the highly non-Markovian
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FIG. 6. (a), (b) The correlation Cxx
r,r′ behavior in the nonequilib-

rium phases of Fig. 4(b), with fixed μR = 0. Long-range order only
appears in the ordered phase (O), as exemplified in (a) at the point
|μL| = 0.3 < m3, while a typical exponential decay appears in all
other phases, as exemplified in (b) for the C∗ phase at m3 < |μL| =
1.3 < m2. (c),(d) The mixed-order behavior with a discontinuous
order parameter φ and diverging correlation length ξ , respectively,
in the thermodynamic limit. The straight line in (d) is a guide to
the critical exponent ν = 1/2. All panels share the same legends as
in (a).

setting, we find that long-range correlations also appear in
the conducting phase, with a power-law decay in both normal
(C) and sensitive (C∗) regions; see Figs. 7(c) and 7(d). These
results show that all phases with a noisy excitation number
distribution possess power-law decaying zz correlations. The
asymptotic behavior of Czz

r,r′ in the various phases is summa-
rized in Table I.

A. Mixed-order phase transition

As mentioned earlier, for γ > 1, the magnetization along
the x direction, φ, is a good order parameter for the broken-
symmetry equilibrium phase. In the open system, φ can still
be used as the order parameter. However, by changing the
chemical potential of the, say, left reservoir, φ drops to zero
discontinuously as soon as the system reaches the disordered
phase. Interestingly, this transition shows a mixed-order be-
havior where the discontinuity of φ is accompanied by a
divergence of the correlation length [22]. The divergence oc-
curs as ξ ∝ |μL ± mi|−ν when approaching the critical point
from the disordered phase (i = 2, 3 depending on the values of
γ and h). The critical exponent is ν = 1/2, except for special
values of the parameters (see Appendix C).

TABLE I. Classification of each phase according to the asymp-
totic behavior of the correlation functions; the possibilities are
exponential (EXP) or power law (PL) decay, and long-range order
(LRO).

Phase Cxx
r,r′ (γ > 0) Czz

r,r′

O LRO EXP
C/C∗ EXP PL/PL
CS/CS∗ EXP EXP/PL
NC/NC∗ EXP EXP/PL

FIG. 7. Correlations Czz
r,r′ for the normal (left column) and sen-

sitive (right column) regions; see Fig. 4. We have set (a),(b) μL =
μR = 0, (c) m2 < |{μL, μR} = {2.1,−2.1}| < m1, and (d) m3 <

|{μL, μR} = {1.3, −1.3}| < m2. These results are summarized in
Table I. All panels share the same legends as in (a).

We have numerically verified that this behavior survives
away from γ = 1, with the same type of dependence of
the order parameter and correlation length. In particular, the
mixed-order transition with ν = 1/2 is also present in the
sensitive region, e.g., at the transitions between O and C∗
phases in the phase diagram of Fig. 4(b). We show in Figs. 6(c)
and 6(d) an example of the numerical analysis of the order
parameter and correlation length in the sensitive region. The
main difference compared to the normal region is that here
finite-size effects are much stronger, which is consistent with
the sensitive dependence on N of the rapidity spectrum and
occupation numbers; see Figs. 3 and 5.

To derive the value of the critical exponent ν, we consider
the explicit form of the correlation function in terms of a
Toeplitz determinant [31,38],

〈
σ x

r σ x
r+n

〉 =

∣∣∣∣∣∣∣∣∣

D0 D−1 . . D−n+1

D1 D0 . . .

. . . . .

. . . D0 D−1

Dn−1 . . D1 D0

∣∣∣∣∣∣∣∣∣
, (24)

where Dn is given by

Dn =
∫

dk

2π
e−ink

√
1 − (h/J )eik

1 − (h/J )e−ik
(1 − nk − n−k ). (25)

The asymptotic dependence can be obtained from Szego’s
lemma, leading to the following expression for the correlation
length:

ξ−1 = − 1

2π

∫ 2π

0
ln [1 − nk − n−k]dk. (26)

Here, the difference from the standard treatment of the
transverse-field Ising chain [31,38] is simply that the occu-
pation numbers nk are kept generic, and thus are allowed
to assume any nonequilibrium distribution induced by the
external reservoirs. For example, Eq. (26) takes into account
that in general nk �= n−k , as shown by Fig. 5 with a large
hybridization energy. By substituting the Fermi distribution,
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FIG. 8. (a) The correlation length of the Ising model (γ = 1),
computed at weak transverse field (h/J = −0.05) and approaching
the critical point m1 = 1.9 from the disordered phase, with μR = 0.
The numerical results (dots) agree well with the blue (lower) curve,
given by Eq. (28). The red (upper) curve is from the equilibrium
relation ξ−1 = 2ρ, where ρ = ∫ 2π

0
dk
2π

nk is the density of excitations.
(b) Comparison between the numerically computed ρ (upper dots)
and the modified density ρξ (lower dots), defined in Eq. (30). The
solid curves were obtained by assuming a parabolic dispersion and
nk � nπ within the occupied region.

Eqs. (25) and (26) recover the known equilibrium expressions
at finite temperature [38,45].

Applying Eq. (26) to the critical point, we first assume,
as in Fig. 5(a), that the minimum of the quasiparticle dis-
persion occurs at k = π . Furthermore, if μR is inside the
gap, the critical point is at μL = m2. Close to the critical
point, the only occupied states are in a small range, k ∈
[π − �kL, π + �kL], around the minimum of εk , and thus
we can approximate the quasiparticle dispersion as parabolic,
giving �kL ∝ √

μL − m2. This dependence of �kL is directly
related to the critical exponent ν = 1/2. More precisely, �kL

close to the critical point is given by

�kL �
√

|1 + h/J|
γ 2 − h/J − 1

(μL − m2), (27)

and we can set nk � nk=π in the small integration interval of
Eq. (26), leading to

ξ−1 � −�kL

π
ln [1 − 2nπ ]. (28)

This expression clearly shows how the divergence of ξ is due
to the shrinking of the region of nonzero occupation. We show
in Fig. 8 that this theory is accurate by a direct comparison to
the numerical results.

After having clarified the origin of the critical exponent
ν = 1/2, it is interesting to compare the behavior of the open
chain to the temperature dependence of the equilibrium sys-
tem. In the latter case, an ordered phase is only allowed at
zero temperature and the order disappears at any arbitrarily
small temperature T > 0. The sudden disappearance of the
ordered state is related to the presence of thermal excita-
tions and is analogous to the vanishing of φ induced by the
nonequilibrium chemical potentials, as soon as either μL or
μR overcomes the gap. Furthermore, similarly to the nonequi-
librium system, the correlation length diverges when T → 0.
As it turns out, in the low-temperature limit, ξ can be related
in a simple way to the density of excitations ρ = ∫ 2π

0
dk
2π

nk:

ξ−1 = 2ρ (low temperature). (29)

This expression follows immediately from Eq. (26) since
nk = n−k � 1 when T → 0, and can also be understood by
a simple argument in terms of a dilute gas of domain-wall
excitations [45].

A naive application of Eq. (29) to the nonequilibrium sys-
tem is shown in Fig. 8. Although Eq. (29) predicts the correct
critical exponent ν = 1/2, there is a clear disagreement with
the numerical results. This failure of Eq. (29) can be explained
from the nonvanishing value of nk around the minimum of
εk (say, k = π ): in both the low-temperature limit and the
nonequilibrium system, we have ρ → 0 at the critical point,
which results in a diverging correlation length. However, in
the first case, we have nk → 0, while for the nonequilibrium
system, nπ remains finite and the vanishing of ρ is due to the
shrinking of �kL. Instead of the density ρ, we can consider a
“modified” density,

ρξ = − 1

4π

∫ 2π

0
ln [1 − nk − n−k]dk, (30)

which follows naturally from Eq. (26) by requiring that a
relation similar to the equilibrium system at low temperature
is satisfied, ξ−1 = 2ρξ . It is easy to see that close to the criti-
cal point, we have ρξ � −(ln [1 − 2nπ ]/2nπ )ρ, which differs
from ρ by a nontrivial multiplicative factor. An interesting
exception, discussed more extensively in Appendix C, occurs
for J = h/2, when nπ = 0 and the relation between ξ and
ρ is Eq. (29), as in equilibrium. At J = h/2, the vanishing
of nk also affects the value of the critical exponent, which is
ν = 5/2 instead of 1/2.

The above arguments can be adapted to other parameter
regimes. In particular, the discussion is almost unchanged
for h/J < min[0, γ 2 − 1], when the dispersion minimum is
at k = 0. Instead, the treatment of the sensitive phase with
|γ | < 1 is more delicate. First, as shown in Fig. 5(b), the
dispersion is characterized by two minima instead of one.
More importantly, nk appears to be highly pathological when
N → ∞, when the occupation numbers undergo wild oscil-
lations. Despite these differences, numerical evaluation of the
critical exponent still gives ν = 1/2, and thus we conjecture
that a suitable average of nk is well defined,

nk = lim
�k→0

lim
N→∞

1

�k

∫ k+ �k
2

k− �k
2

nk′dk′. (31)

Then, the critical exponent would be determined through
Eq. (28) in a way analogous to the regular case, i.e., the critical
exponent would correspond to the shrinking of the occupied
regions around the minima, explaining the persistence of ν =
1/2 in this phase.

B. z correlations

As summarized in Table I, Czz
r,r′ displays a power-law decay

in several of the allowed phases. We focus here on the the
nonsensitive region, where this behavior can be understood
from the well-known power-law decay of density-density
correlations of noninteracting fermions. In fact, through the
fermionic mapping, Czz

r,r′ is equivalent to a density-density
correlation function,

Czz
r,r′ = 4(〈ĉ†

r ĉr ĉ†
r′ ĉr′ 〉 − 〈ĉ†

r ĉr〉〈ĉ†
r′ ĉr′ 〉). (32)
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In the C phase, at least one of the reservoirs has its chemical
potential within the range of the quasiparticle energy spec-
trum. Then, the correlation function is expected to have a
power-lay decay with oscillating character, similar to a simple
one-dimensional (1D) Fermi gas where it decays as |r − r′|−2

and oscillates with wave vector 2kF, with kF the Fermi wave
vector (see, e.g., Ref. [46]).

In our case, we express the correlation function through
the Bogoliubov excitations γ̂k of the translational-invariant
system (which is appropriate in the thermodynamic limit).
The corresponding occupation numbers are defined in Eq. (20)
and give

Czz
r,0 =

∣∣∣∣
∫ π

−π

dk

2π
eikr (n−k + nk − 1) sin 2θk

∣∣∣∣
2

−
∣∣∣∣
∫ π

−π

dk

2π
eikr[(nk + n−k − 1) cos 2θk + (nk − n−k )]

∣∣∣∣
2

.

(33)

If, for simplicity, we assume nk � n−k (which is justified
in the limit of vanishing hybridization energy �), the oc-
cupation numbers have discontinuities at k = ±ki, induced
by the left and right reservoirs (i = L, R). When kir � 1,
we can extract the leading contribution to Eq. (33) induced
by the discontinuous jumps �nki of nk , defined by ∂knk =∑

i=L,R �nki [δ(k + ki ) − δ(k − ki )]:

Czz
r,0 � 4

π2r2

[( ∑
i=L,R

�nki sin 2θki cos kir

)2

−
( ∑

i=L,R

�nki cos 2θki sin kir

)2]
, (34)

which simplifies to

Czz
r,0 � 4�n2

kR

π2r2

(
cos2 kRr − cos2 2θkR

)
, (35)

when there is a single Fermi surface (here, induced by i = R).
The above expressions display the expected 1/r2 decay and
oscillatory dependence. As shown in Fig. 9, we find a good
agreement between Eq. (35) and the numerical results.

To better characterize the oscillatory dependence, we have
also studied the Fourier transform,

Czz
k ≡ 1√

N

∑
r−r′

e−ik(r−r′ )Czz
r,r′ , (36)

which is shown in Fig. 10 for two representative cases. With
a single Fermi surface (left panels), we find dominant nonan-
alytic features at k = 0, 2kR, in agreement with Eq. (35). We
also find smaller discontinuities in ∂kC

zz
k at higher harmonics,

k = 4kR, 6kR, which are not captured by the leading-order ap-
proximation given by Eq. (35). With two Fermi surfaces (right
panels), we find the expected singularities at k = 0, 2kL,R.
However, there are additional features at ∂kC

zz
k at k = kL ±

kR, which are in agreement with Eq. (34). As seen there, the
correlation function is not simply a sum of i = L, R contribu-
tions, but involves interference terms between the two Fermi
surfaces.

FIG. 9. Comparison between numerical results for Czz
r,r′ (dots)

and the analytic approximation given by Eq. (35) (red curve). The
values �nkR � 0.1 and kR � 2.85 were extracted numerically from
nk , as shown in the inset. We used h = 0.2, γ = 1, μL = 0.5 < m2,
and μR = 1.62 � m3.

Finally, we comment on the power-law dependence of Czz
r,r′

in the sensitive region. Away from the ordered phase, we find
a power-law decay |r − r′|−s where, however, the exponent
is generally different from s = 2 (we often find s < 2) and
depends on system parameters. This behavior is most likely
related to the singular nature of nk , which from our numerical
evidence is characterized by a complex pattern of closely
spaced discontinuities (see, e.g., Fig. 5). Such discontinuities
will contribute to the square brackets of Eq. (34) in a way
that is difficult to compute explicitly (the summation index
i should become a continuous parameter) and might be able
to modify the exponent s. This interpretation is confirmed
by the survival of the power-lay decay in the NC∗ and CS∗

regions, where the chemical potentials μL,R do not cross the
quasiparticle bands, and thus an exponential decay might be
expected. Instead, Figs. 5(g) and 5(i) show that a discontinu-
ous dependence of nk can be found in these regions as well, in
agreement with the observed power-law dependence of Czz

r,r′ .
Finally, the simple discontinuities of Fig. 5(l) result in the
regular value s = 2.

FIG. 10. Within the phase diagram of Fig. 4(a), here (a) and
(b) show the Fourier transform of Czz

r,r′ [see Eq. (36)] for points
inside the C phase, namely, (a) at {μL, μR} = {−2.9,−2.1} and (b) at
{μL, μR} = {−1.9, −2.1}. (c),(d) Their respective derivatives. In the
left column, we considered the case with only nonzero kR, while the
right column considers nonzero kL and kR. We have computed these
results for a system size of N = 500 sites.

035108-9



PUEL, CHESI, KIRCHNER, AND RIBEIRO PHYSICAL REVIEW B 103, 035108 (2021)

V. ENTROPY AND MUTUAL INFORMATION

In this section, we study the entropy of the steady state
within the different phases identified above. For a segment of
� sites in the middle of the chain, the entropy is given by

E� = −Tr[ρ̂� ln (ρ̂�)] = −tr[χ� ln χ�], (37)

where ρ̂� is the reduced density matrix and χ� is the single-
particle correlation matrix restricted to the subsystem of �

sites. While, for the fermionic system the second equality
follows from the noninteracting nature of the problem, this
expression was also shown to hold for the spin chain [47].
In the thermodynamic limit (N → ∞), the entropy of the
segment of a translational-invariant system is expected to obey
the general scaling law [48]

E� = l0� + c0 ln (�) + c1, (38)

where l0, c0, and c1 are �-independent real constants. For the
ground state of gapped systems, l0 = c0 = 0, following the
so-called area law, while gapless fermions and spin chains
show a universal logarithmic behavior with c0 = 1/3. This
result is a consequence of the violation of the area law in
1 + 1 conformal theories, in which case c0 = c/3, where c is
the central charge [47,49]. For a nonequilibrium Fermi gas,
it was shown that both l0 and c0 can be nonzero [50,51],
and that c0 depends on the system-reservoir coupling and is
a nonanalytic function of the bias [51]. The coefficient c0 is
most easily extracted from the mutual information, I (A, B) ≡
E (ρ̂A) + E (ρ̂B) − E (ρ̂A+B), of two adjacent segments A and
B of size �/2, since

I� � c0 ln (�) + c2. (39)

For the transverse-field Ising model, in Fig. 4(a), all phases,
except O, have been shown to have extensive entropy (i.e.,
l0 �= 0) [22]. This is due to the presence of a finite fraction of
excitations, which are absent in the ordered phase. In addition,
it was found that c0 �= 0 in the C phase due to the presence of
discontinuities in nk .

In Fig. 11, we show the generalization of the previous
results to the XY chain and including the sensitive region
of the phase diagram. Figure 11(a) shows l0 for both normal
and sensitive regions. In both cases, l0 follows the expected
value [51]:

l0 =
∫

dk

2π
− [nk ln nk + (1 − nk ) ln(1 − nk )]. (40)

On the other hand, I� does differ qualitatively in the nor-
mal and sensitive regions. As mentioned earlier, logarithmic
corrections come from discontinuities in nk . If nk has no
discontinuities such as in the O and saturated normal phases,
c0 vanishes. Figure 11(b) depicts c0 in the normal re-
gion. The right inset shows that the leading term of I�

in Eq. (39) is indeed logarithmic in the large-� limit. In
principle, for conducting nonsaturated phases in the nor-
mal region, c0 can be computed using the Fisher-Hartwing
conjecture [48].

The presence of noise in nk within the sensitive region
changes the previous picture. The left inset of Fig. 11(b)
shows that I� is no longer of the form given in Eq. (39). It is

FIG. 11. (a) Linear coefficient l0, obtained from the entropy scal-
ing law, for a range of μL across the lines depicted in the phase
diagrams of Fig. 4. The inset illustrates the typical fitting E� × �,
where the value of μL used is denoted by the dotted red line. (b) Sim-
ilar results for the logarithmic coefficient c0, obtained from Eq. (39),
for the same range of μL. The inset on the right illustrates the typical
fitting I × ln (�), where the value of μL is denoted by the dotted
red line. In the sensitive region (left inset), the mutual information is
superlogarithmic.

tempting to interpret this result as a collection of discontinu-
ities of nk whose number increases with system size. However,
due to the noisy form of nk , it is difficult to give a precise
meaning to this picture. Moreover, with the system sizes that
we could attain, it was not possible to determine the functional
form of this correction with �. Note that a supralogarithmic
contribution in I� is always present in the sensitive region
even for the CS∗ and NC∗ phases.

VI. DISCUSSIONS

We have studied the steady state of a transverse-field XY -
spin chain at zero temperature in a nonequilibrium setting by
coupling the ends of the chain to reservoirs which can be
held at different magnetic potentials. Our approach is based
on a Jordan-Wigner mapping and a Keldysh Green’s func-
tion treatment of the resulting nonequilibrium interaction-free
fermionic system.

This allows us to study the steady states of the model
as a function of the magnetic potentials including the
equilibrium and Markovian limits. For magnetic potentials
whose magnitudes remain smaller than the spectral gap, the
equilibrium-ordered state persists and the correlation function
of the order parameter displays long-range order. Away from
this phase, the order parameter correlations decay exponen-
tially. As μL or μR reaches the spectral gap, the transition
from equilibrium to a current-carrying state occurs through
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a mixed-ordered transition, where the order parameter van-
ishes discontinuously while the correlation length diverges.
This out-of-equilibrium phenomena was previously observed
in Ref. [22]. Our present results establish that this behavior
is generic to all order/disorder phase transitions of the XY
chain.

For large |μL| and |μR|, we recover the Markovian limit.
We identify the two qualitatively different behaviors previ-
ously reported using a Lindblad master-equation approach
[13,39]. We refer to these as the (i) sensitive region, featuring
algebraic decaying correlations in the transverse (i.e., z) di-
rection, and (ii) normal region, where these correlations decay
exponentially.

Besides the equilibrium and Markovian phases, we iden-
tify additional current-carrying phases. Their properties can
be easily understood by studying the quasiparticle excitation
number nk . By analyzing this quantity, we were able to com-
pute the critical exponent of the diverging correlation length
at the transition, confirming analytically the results of Ref.
[22]. The behavior of the transverse correlation function in the
normal region is explained in terms of a physical effect, which
is similar to Friedel oscillations in metals, here observed in a
nonequilibrium setting.

For steady-state phases within the sensitive region, nk is
noisy, for k belonging to the intervals of momentum where
the dispersion relation allows four propagating modes. This
noise cannot be interpreted as a finite-size feature since nk ,
within these regions, does not converge to a thermodynamic
limit. Since the transverse correlation function is related to
the Fourier transform of nk , the pathologies of this function
explain the nonexponential decay of transverse correlations in
the sensitive region.

We have also analyzed the behavior of the entropy of a
segment of the steady state with its length. As expected for
a mixed state, the steady-state entropy is extensive and fol-
lows its predicted semiclassical value. In the normal region,
whenever the chemical potential lies within one of the bands,
there is a logarithmic component that is reminiscent of the
area-law violation occurring in equilibrium gapless states. As
reported for other nonequilibrium setups [51], the logarithmic
coefficient depends on the discontinuities of nk . In the sensi-
tive region, corrections to the extensive contribution turn out
to be superlogarithmic.

The analysis presented here generalizes our earlier findings
on the transverse-field Ising case to the anisotropic XY chain
and, thus, extends the class of spin chains which display
far-from-equilibrium critical behavior, reflected in a divergent
correlation length, that is absent in equilibrium. Thus, the
present work suggests that these findings may reflect com-
mon features of a wide class of quantum statistical models.
A common feature of the models discussed in the present
context is their equivalence to interaction-free fermions un-
der a Jordan-Wigner transformation. This naturally poses
the question if there exists a finite region in model space
around these XY chains where similar nonequilibrium behav-
ior ensues, or whether their nonthermal behavior is singular.
The Jordan-Wigner transformation is limited to 1D systems.
Yet, it would be desirable to understand how the nonequi-
librium phases that we have identified generalize in higher
dimensions.

FIG. 12. (a) Repeat of the phase diagram of Fig. 4(b). The blue
stars mark the parameters used in Fig. 13. (b) The persistent noise
in the occupation number, computed for different system sizes, with
the set of parameters indicated by the circled blue star on the phase
diagram.

In equilibrium, interaction-free or quadratic models are
commonly associated with fixed point behavior within a
field-theoretic description of criticality. This enables one to
categorize a wide class of systems into universality classes,
with respect to the fixed points. Away from equilibrium, such
a categorization is not available. Our results thus offer a van-
tage point for the construction of a wider class of models that
share the same out-of-equilibrium behavior. A better under-
standing of the universality of far-from-equilibrium critical
behavior should prove beneficial for the construction of a
field-theoretic description of quantum critical matter far from
equilibrium.
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FIG. 13. Excitation number nk in the sensitive region for different phases. Each plot represents a different set of parameters {μL, μR}
marked on the phase diagram in Fig. 12(a) disposed in the same order. We have computed it for a system size of N = 500 sites. The vertical
dashed lines represent either the momentum km2 or kL; see Figs. 3(c), 5(a), and 5(b).

APPENDIX A: METHOD DETAILED

The single-particle density matrix in Eq. (16) is explicitly
given by

χ = 1

2
+

∑
l=L,R

∑
αβ

|α〉〈β|〈α̃|[γ l Il (λα, λ∗
β )

− γ̂ l Il (−λα,−λ∗
β )]|β̃〉, (A1)

where Il (z, z′) = − 1
π

g(z−2ml )−g(z′−2ml )
z−z′ , with g(z) =

ln {−isgn[Im(z)]z}, and the matrices γ l are defined
in Eq. (13). Here we assumed that K in Eq. (13) is
diagonalizable, having right and left eigenvectors |α〉 and 〈α̃|
with associated eigenvalues λα .

The energy drained to the left reservoir is Je =
−i〈[H, HL]〉, which equals the steady-state energy current in
any cross section along the chain and thus can be obtained as
a function of χ. Explicitly, the energy flow can be obtained as
Je = − 1

2 Tr[Jrχ]∀ r, given by Eq. (23), with

Jr = −2ihJ[(1 + S)|r − 1〉〈r|(1 + S) − H.c.] . (A2)

The linear and nonlinear thermal conductivities, as well as
other thermoelectric properties of the chain, are determined
by Je.

Two-point correlation

Let us further analyze the two-point correlation function in
Eq. (21), which can also be found in terms of χ. To this end,
we have extended the equilibrium expressions [31] to general
nonequilibrium conditions,

Cxx
r,r′ = det[i(2χ[r,r′] − 1)]

1
2 , (A3)

for r > r′ + 1, where χ[r,r′] is a 2(r − r′) matrix obtained
as the restriction of χ to the subspace in which P T

rr′ =∑r−1
u=r′+1 (|u〉〈u| + |û〉〈û|) + |r+〉〈r+| + |r′

−〉〈r′
−|, with |r±〉 =

(|r〉 ± |r̂〉)/
√

2, acts as the identity, and |r〉 and |r̂〉 ≡ S|r〉 are
single-particle and hole states.

APPENDIX B: EXCITATION NUMBER

The intriguing results of the occupation number, computed
in Sec. III D, deserve a more detailed analysis, as follows. As
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FIG. 14. (a) Correlation length of the Ising model (γ = 1) for
the special case h/J = 0.5 and approaching the critical point m2 = 1
from the disordered phase (C), with μR = 0. The dots and continuous
line compare the numerical result, given by Eq. (22), to the analytic
result, given by Eq. (C2), respectively. (b) Density of excitations ρ

and ρξ , given by Eq. (30). The continuous line shows the analytic
result for ρ, computed from Eq. (C2) as ρ = ξ−1/2. In the analytic
formulas, we have used the educated guess c = π/5!.

discussed in the manuscript, the occupation number shows a
noise behavior in some of the phases. The marks in Fig. 12(a)
indicate the representative sets (μLμR) for which the occu-
pation numbers are given in Fig. 13, providing the reader
with a complete view of all possible cases. Here we have set
the system in the sensitive region with transverse magnetic
field h/J = 0.2 and anisotropy γ = 0.5. The marks are at the
points μL, μR = {±2.7,±1.9,±1.3,+0.3 or − 0.3}.

As discussed in the manuscript, here we clearly see that
the noise is present on the phases around the axis μL = μR,
while it vanishes around the axis μL = −μR. The noise only
appears for |k| > km2 ; see Fig. 3(c). In addition, it is persistent
even in the thermodynamic limit, as shown in Fig. 12(b).

APPENDIX C: CORRELATION LENGTH at h/J = 0.5

When h/J = 0.5, it was observed that nk=π = 0 [22], and
thus the derivation of Eq. (28) should be modified. Interest-
ingly, around k = π , we find that nk has a leading term of the
form

nk � c(k − π )4, (C1)

where the vanishing of the quadratic term and the value of
c could only be obtained numerically. In the limit of a small
�kL, Eq. (26) yields

ξ−1 � c

π

∫ �kL

−�kL

x4dx = 2c

5π
�k5

L. (C2)

Finally, from the expression of �kL in Eq. (27), we imme-
diately see that the critical exponent is ν = 5/2. It is also
worth mentioning that since nk becomes vanishingly small
approaching the critical point, Eq. (30) coincides with the reg-
ular density and the relation ξ−1 = 2ρ is still valid. Figure 14
shows the comparison of these results with the numerical
calculations.
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