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Real-space density functional theory adapted to cyclic and helical symmetry:
Application to torsional deformation of carbon nanotubes
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We present a cyclic and helical symmetry-adapted formulation and large-scale parallel implementation of
real-space Kohn-Sham density functional theory for one-dimensional (1D) nanostructures, with application to
the mechanical and electronic response of carbon nanotubes subject to torsional deformations. Specifically,
employing a semilocal exchange correlation and a local formulation of the electrostatics, we derive symmetry-
adapted variants for the energy functional, variational problem governing the electronic ground state, Kohn-Sham
equations, atomic forces, and axial stress, all posed on the fundamental domain. In addition, we develop a
representation for twisted nanotubes of arbitrary chirality within this framework. We also develop a high-order
finite-difference parallel implementation capable of performing accurate cyclic and helical symmetry-adapted
Kohn-Sham calculations in both the static and dynamic settings, and verify it through numerical tests and
comparisons with established codes. We use this implementation to perform twist-controlled simulations for
a representative set of achiral and chiral carbon nanotubes, in both the small and large deformation regimes.
In the linear regime, we find that the torsional moduli are proportional to the cube of the diameter; metallic
nanotubes undergo metal-insulator transitions; and both the band gap as well as effective mass of charge carriers
are proportional to the shear strain and sine of three times the chiral angle. In the nonlinear regime, we find that
there is significant Poynting effect, particularly at the ultimate strain, the value of which is determined by the
chiral angle; torsional deformations provide a possible mechanism for the irreversible phase transformation from
armchair to zigzag nanotubes; and both the band gap as well as effective mass have an oscillatory behavior, with
the period for metal-insulator transitions being inversely proportional to the square of the diameter and sine of
three times the chiral angle. Wherever available, the results are in good agreement with experimental observations
and measurements. Overall, this opens an avenue for the highly accurate and efficient first-principles study of
1D nanostructures that have cyclic and/or helical symmetry, as well as their response to torsional deformations.
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I. INTRODUCTION

Over the course of the past few decades, quantum me-
chanical calculations based on Kohn-Sham density functional
theory (DFT) [1,2] have become a cornerstone of materi-
als research by virtue of the unique insights they provide
and predictive power they afford. The widespread use of
Kohn-Sham DFT (calculations occupy a large fraction of
high-performance computing resources around the world ev-
ery day [3,4]) can be attributed to its generality, simplicity,
and high accuracy-to-cost ratio relative to other such ab initio
methods [5,6]. However, while less costly than wave-function-
based alternatives, the solution of the Kohn-Sham equations
remains a challenging task, severely restricting the range of
physical systems that can be studied from the first princi-
ples of quantum mechanics. In particular, the computational
cost and memory requirements for Kohn-Sham calculations
generally scale cubically and quadratically with system size,
respectively [7], the associated prefactor being particularly
large for systematically improvable discretizations, generally
the preferred choice for such simulations. In addition, the
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global nature of the orthonormality constraints on the orbitals
limits parallel scalability on large-scale supercomputers [8].
These restrictions become even more acute in structural re-
laxation and quantum molecular dynamics simulations [5],
wherein the Kohn-Sham equations may need to be solved tens
to several thousands of times.

The plane-wave pseudopotential method [7] has been
among the most widely used methods for the solution of the
Kohn-Sham problem [9–13]. This is because the associated
Fourier basis is complete, orthonormal, and provides spectral
convergence for smooth problems, making the plane-wave
method accurate, simple to use, and efficient on moderate
computational resources through access to effective precondi-
tioning schemes and highly optimized fast Fourier transforms.
However, the Fourier basis restricts the method to peri-
odic boundary conditions, whereby artificial periodicity is
introduced for finite systems such as clusters as well as
semi-infinite systems such as surfaces and nanotubes. More-
over, the global nature of the Fourier basis complicates the
development of linear-scaling methods [14–16] and hinders
scalability on parallel computing platforms, restricting the
length scales and timescales accessible. These limitations
have motivated the development of a number of alternative
solution strategies that employ systematically improvable,
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localized representations [17–37]. Among these, perhaps the
most mature and widely used to date are the finite-difference
methods [38,39], wherein computational locality is maxi-
mized by discretizing all quantities on a uniform real-space
grid. Convergence is therefore controlled by a single pa-
rameter and both periodic and Dirichlet boundary conditions
are naturally accommodated, thus enabling the efficient and
accurate treatment of finite, semi-infinite, and bulk systems
alike. Moreover, real-space methods are amenable to the de-
velopment of linear-scaling methods [40,41], and large-scale
parallel computational resources can be efficiently leveraged
by virtue of the method’s simplicity, locality, and free-
dom from communication-heavy transforms [22,33,40–42].
Notably, real-space methods can now achieve substantially
reduced solution times compared to established plane-wave
codes in applications to both finite and extended systems
[8,34,43].

The structural symmetry of atomic systems also provides
an attractive avenue for the significant reduction in both the
cost of Kohn-Sham DFT calculations as well as the com-
plexity associated with the analysis of its results. The most
common form of symmetry that is regularly exploited by DFT
implementations is translational symmetry, found in extended
systems of various dimensionalities, such as crystals, surfaces,
and nanotubes. In particular, the Kohn-Sham eigenproblem is
reduced to a unit cell through the introduction of Bloch peri-
odic boundary conditions on the orbitals, with the point-group
symmetries then used to reduce the region in reciprocal space
over which Brillouin zone integration needs to be performed
[7]. In so doing, the symmetry-adapted eigenproblems at the
different Brillouin zone wave vectors can be solved indepen-
dently of each other, which not only noticeably reduces the
cost of computations, but also significantly improves its scal-
ing on parallel machines. Since Kohn-Sham implementations
employing systematically improvable discretizations gener-
ally work in affine coordinate systems, translational symmetry
has been readily incorporated, given their underlying com-
patibility. However, most other symmetries commonly found
in clusters and molecules and one-dimensional nanostructures
are not compatible with affine coordinate systems, and there-
fore have not generally been incorporated and exploited. Note
that such issues do not arise when the linear combination of
atomic orbitals (LCAO) [44] approximation is used since the
basis is automatically compatible with the symmetry of the
system [45,46], and therefore nontranslational symmetries are
regularly exploited in quantum chemistry codes [47,48].

One-dimensional nanostructures such as nanotubes,
nanowires, and nanocoils have received increased attention
over the past three decades due to their fascinating
mechanical, electronic, optical, and thermal properties
[49]. Indeed, such structures are not just limited to those
synthesized in the laboratory, but are also commonly found
in nature, e.g., DNA, viruses, and proteins. It is common for
these systems to possess some form of nontranslational
symmetry, with cyclic and helical perhaps the most
frequent among the symmorphic and nonsymmorphic
groups, respectively [50,51]. Even otherwise, the close
association of bending deformations with cyclic symmetry
[51,52], and torsional deformations with helical symmetry
[51,52], make them ubiquitous while studying the response

of nanostructures to mechanical deformations. Indeed, the
tremendous simplification afforded by these symmetries
has been exploited even in relatively inexpensive atomistic
[51,53–56] and tight-binding [52,57–66] calculations. In the
context of Kohn-Sham DFT, cyclic and helical symmetry
adaption was first introduced within the real-space method as
part of application-focused studies [67–69], however, details
of the methodology are not available in literature. In view of
this, a cyclic symmetry-adapted real-space formulation and
implementation was recently developed for one-dimensional
(1D) nanostructures [70], which was subsequently extended
to cyclic and translational symmetry [71]. This framework
has most recently been modified, in concurrent development
with this work, to make it compatible with helical symmetry
[72]. However, the formulation is limited to static calculations
involving atomic relaxations alone, while being restricted
to achiral1 dipole-free2 1D nanostructures with atoms that
have spherically symmetric nonlocal projectors, all in the
context of local exchange-correlation functionals. Moreover,
the implementation is in MATLAB, which together with the
aforementioned limitations, places restrictions on the physical
applications that are accessible.

In this work, we present a cyclic and helical symmetry-
adapted formulation and large-scale parallel implementation
of real-space Kohn-Sham DFT for 1D nanostructures, with
application to the mechanical and electronic response of
carbon nanotubes subject to torsional deformations. Specif-
ically, we derive symmetry-adapted variants for the energy
functional, electronic ground state’s variational problem,
Kohn-Sham equations, atomic forces, and axial stress, all
posed on the fundamental domain, while employing a semilo-
cal exchange-correlation functional and a local electrostatic
formulation. Within this framework, we develop a represen-
tation for nanotubes of arbitrary chirality subject to external
twists. We develop a high-order finite-difference parallel
implementation capable of performing cyclic and helical
symmetry-adapted Kohn-Sham calculations in both the static
and dynamic settings, and verify its accuracy through numer-
ical tests and comparisons with standard codes. Using this
implementation, we study the mechanical and electronic re-
sponse of carbon nanotubes to twist-controlled deformations,
at both small and large deformations. In the linear regime,
we find the torsional moduli to be proportional to the cube
of the diameter; metallic nanotubes undergo metal-insulator
transitions; and the band gap as well as effective mass of
charge carriers to be proportional to the shear strain and the
sine of three times the chiral angle. In the nonlinear regime,
we find that there is significant Poynting effect, particularly
at the chiral angle-dependent ultimate strain; torsional de-
formations provide a possible mechanism for the irreversible
phase transformation from armchair to zigzag nanotubes; and

1Alhough 1D nanostructures subject to applied twists can be con-
sidered as chiral, this term in this work is used to represent the
internal twist of the system, as per the standard nomenclature adopted
in literature.

2Dipole moments are ubiquitous in 1D nanostructures as a con-
sequence of the flexoelectric effect, which represents a two-way
coupling between strain gradients and polarization.
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the band gap as well as effective mass have an oscillatory
behavior, with the period for metal-insulator transitions being
inversely proportional to the square of the diameter and sine of
three times the chiral angle. These results are obtained in the
context of ab initio methods, with this work making notable
contributions towards predicting the effective mass variations,
Poynting effect at large deformations, and phase transforma-
tions through torsion, considering any level of theory.

The remainder of this paper is organized as follows. In
Sec. II, we provide the background for real-space DFT, which
is used to develop the cyclic and helical symmetry-adapted
formulation in Sec. III. Next, we describe the symmetry-
adapted representation for twisted nanotubes of arbitrary
chirality in Sec. IV. We then discuss the implementation
of the proposed formulation in Sec. V, whose accuracy
and performance are verified in Sec. VI. Next, we use the
symmetry-adapted framework to study the effect of torsional
deformations on carbon nanotubes in Sec. VII. Finally, we end
with concluding remarks in Sec. VIII.

II. REAL-SPACE DFT

The energy functional in the framework of finite-
temperature Kohn-Sham DFT [2,73], while neglecting spin
and employing the pseudopotential frozen-core approxima-
tion [7], can be written in the real-space formalism as [43]

F (�, g, φ, R) = Ts(�, g) + Exc(ρ,∇ρ) + Enl (�, g, R)

+ Eel (ρ, φ, R) − S(g), (1)
where � = {ψ1, ψ2, . . .} is the collection of Kohn-Sham or-
bitals with occupations g = {g1, g2, . . .}, φ is the electrostatic
potential, R = {R1, R2, . . .} is the collection of atomic posi-
tions, and ρ is the electron density:

ρ(x) = 2
∑

n

gn|ψn(x)|2. (2)

In addition, Ts is the electronic kinetic energy, Exc is a semilo-
cal variant of the exchange-correlation energy, Enl is the
nonlocal pseudopotential energy, Eel is the total electrostatic
energy, and S is the electronic entropy energy:

Ts(�, g) = 2
∑

n

gn

ˆ
�

ψ∗
n (x)

(
−1

2
∇2

)
ψn(x) dx, (3)

Exc(ρ,∇ρ) =
ˆ

�

εxc(ρ(x), |∇ρ(x)|)ρ(x) dx, (4)

Enl (�, g, R) = 2
∑

n

gn

∑
J

PJ∑
p=1

γJ;p

∣∣∣∣ˆ
�

χ∗
J;p(x, RJ ) ψn(x) dx

∣∣∣∣2, (5)

Eel (ρ, φ, R) = − 1

8π

ˆ
�

|∇φ(x)|2 dx +
ˆ

�

[ρ(x) + b(x, R)]φ(x) dx + Esc(R), (6)

S(g) = −2kBT
∑

n

[gn log gn + (1 − gn) log(1 − gn)], (7)

where � denotes the domain (with size approaching infinity), the superscript (. . .)∗ represents the complex conjugate, εxc is
the exchange-correlation energy per particle, the summation index J runs over all atoms in �, PJ is the number of projectors
associated with the Jth atom (described by functions χJ;p with normalization factors γJ;p), b = ∑

J bJ is the total pseudocharge
density of the nuclei, Esc corrects for the self-interaction and overlap of the individual pseudocharge densities (Appendix A), and
kBT is the smearing, with kB and T denoting the Boltzmann constant and electronic temperature, respectively.

The constrained variational problem for the electronic ground state can be written as [43]

min
�,g

max
φ

F (�, g, φ, R) s.t.
ˆ

�

ψ∗
m(x)ψn(x) dx = δmn ∀ m, n ∈ N; and 2

∑
n

gn = Ne, (8)

where δmn is the Kronecker-delta function and Ne is the total number of electrons. The corresponding Kohn-Sham equations take
the form (

H ≡ − 1

2
∇2 + Vxc + φ + Vnl

)
ψn = λnψn , n = 1, 2, . . . (9)

gn =
[

1 + exp

(
λn − λF

kBT

)]−1

, λF is s.t. 2
∑

n

gn = Ne, (10)

− 1

4π
∇2φ(x, R) = ρ(x) + b(x, R), (11)

where H denotes the Hamiltonian with eigenfunctions ψn and eigenvalues λn, λF is the Fermi level, Vxc is the exchange-
correlation potential

Vxc = δExc

δρ
= εxc + ρ

∂εxc

∂ρ
− ∇ ·

(
ρ

∂εxc

∂ (∇ρ)

)
, (12)
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FIG. 1. Left: Illustration of a nanotube structure with cyclic and helical symmetry in Cartesian coordinates, where the fundamental atom is
colored red and its cyclic and helical images are colored blue and yellow, respectively. Middle: The nanotube structure in helical coordinates.
Right: Fundamental domain for the nanotube structure in the cyclic and helical symmetry-adapted real-space DFT formulation.

and Vnl is the nonlocal pseudopotential operator whose action on any function f is given by

[Vnl f ](x) =
∑

J

PJ∑
p=1

γJ;p χJ;p(x, RJ )
ˆ

�

χ∗
J;p(y, RJ ) f (y) dy . (13)

Once the ground state has been determined, the real-space Hellmann-Feynman atomic forces [43] and stress tensor [74], along
the directions in which the system is extended, can be calculated to determine the structural ground state or perform quantum
molecular dynamics (QMD) simulations.

III. CYCLIC AND HELICAL SYMMETRY-ADAPTED REAL-SPACE DFT

In this section, we develop a cyclic and helical symmetry-adapted variant of the real-space Kohn-Sham DFT formulation
outlined in the previous section. Specifically, we first develop a representation for the structure in terms of the underlying
symmetry. Next, we discuss the impact of this symmetry on the electronic quantities, and use it to derive the symmetry-adapted
variational problem on the fundamental domain. Thereafter, we derive the symmetry-adapted Kohn-Sham equations, the
Hellmann-Feynman atomic forces, and the Hellmann-Feynman stress. Finally, we discuss the manifestation of time-reversal
symmetry in the current context.

A. Structural symmetry

Consider an atomic structure which has cyclic and helical symmetry, as illustrated in Fig. 1. In such a system, the complete
set of atoms can be represented as the orbit of the fundamental atoms under the action of the cyclic and helical symmetry group
G, i.e.,

R =
N⋃

J=1

G ◦ R̂J =
N⋃

J=1

{
�ζ,μ◦R̂J = R

ζ

�̃
Rμ

ϕ R̂J + tμ : ζ = 0, 1, 2, . . . ,N − 1, μ ∈ Z
}
, (14)

where R̂ is the set of fundamental atoms with cardinality N , G ◦ R̂J is the orbit of the atom R̂J ∈ R̂ under the action of the group:

G = {
�ζ,μ = (

R
ζ

�̃

∣∣t0
)(
Rμ

ϕ

∣∣tμ) :
(
R

ζ

�̃

∣∣t0
) ∈ C,

(
Rμ

ϕ

∣∣tμ) ∈ S, ζ = 0, 1, 2, . . . ,N − 1, μ ∈ Z
}
, (15)

written as the direct product of the cyclic and helical (or screw axis) symmetry groups C and S, respectively [75]:

C = {(
R

ζ

�̃

∣∣t0
)

: ζ = 0, 1, 2, . . . ,N − 1
}
, with R

ζ

�̃
=

⎛⎜⎝cos(ζ �̃) − sin(ζ �̃) 0

sin(ζ �̃) cos(ζ �̃) 0

0 0 1

⎞⎟⎠, (16)

S = {(
Rμ

ϕ

∣∣tμ) : μ ∈ Z
}
, with Rμ

ϕ =

⎛⎜⎝cos(μϕ) − sin(μϕ) 0

sin(μϕ) cos(μϕ) 0

0 0 1

⎞⎟⎠ and tμ =
⎛⎝ 0

0
μH

⎞⎠. (17)
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Above, (Rζ

�̃
|t0) associated with an integer ζ is a rigid body

rotation whose action on a point rotates it by an angle ζ �̃

in the counterclockwise sense about the screw axis, i.e, x3

direction. Similarly, (Rμ
ϕ |tμ) associated with the integer μ is

an isometry (i.e., rigid body motion) whose action on a point
rotates it by an angle μϕ in the counterclockwise sense about
the screw axis, while also simultaneously translating it by μH
along the same axis.

B. Electronic symmetry

The real-space Kohn-Sham DFT problem is formulated
in terms of the following electronic quantities: electron den-
sity ρ, pseudocharge density b, electrostatic potential φ, and
Kohn-Sham orbitals �. To develop a symmetry-adapted vari-
ant, it is necessary to understand the impact of the cyclic and
helical structural symmetry on these electronic quantities. To
do so, we start with the assumption that the electron density
is commensurate with the structural symmetry: ρ(�ζ,μ ◦ x) =
ρ(x) ∀ �ζ,μ ∈ G, an assumption that is necessary in the
current context because of the inherently nonlinear nature of
the Kohn-Sham problem. Indeed, as we show below, the cyclic
and helical symmetry is maintained throughout the DFT sim-
ulation, provided that the initial guess for the electron density
obeys this symmetry.

The pseudocharge density b can be shown to inherit the
symmetry of the structure

b(�ζ,μ ◦ x, R̂,G) =
N∑

J=1

∑
�ζ ′ ,μ′

bJ
(
�ζ,μ ◦ x, �−1

ζ ′,μ′ ◦ R̂J
)

=
N∑

J=1

∑
�ζ ′ ,μ′

bJ
(
x, �−1

ζ ′+ζ ,μ′+μ ◦ R̂J
)

=
N∑

J=1

∑
�ζ ′ ,μ′

bJ
(
x, �−1

ζ ′,μ′ ◦ R̂J
)

= b(x, R̂,G) ∀ �ζ,μ ∈ G , (18)

where the second and third equalities follow from the spher-
ical symmetry and closure property of the symmetry group,
respectively.

The electrostatic potential φ is the solution of the Poisson
problem given in Eq. (11). Since the electron and pseu-
docharge densities appearing on the right-hand side of this
equation are commensurate with the structural symmetry, it
follows that the electrostatic potential also inherits this sym-
metry:

φ(�ζ,μ ◦ x) = φ(x) ∀ �ζ,μ ∈ G, (19)

which can be shown using the fact that the Laplacian
commutes with the symmetry operations of the group G
(Appendix B), and that the solution to the Poisson equation
is unique [76].

The Kohn-Sham orbitals � are eigenfunctions of the
Hamiltonian H, as described by Eq. (9). Since H commutes
with the symmetry operations of the cyclic and helical group
G (Appendix B), it follows that the symmetry-adapted orbitals
transform as the irreducible representation of the group ele-

ments [75], satisfying the relation

ψn(�ζ,μ ◦ x, ν, η) = ei(νζ �̃+ημH )ψn(x, ν, η) ,

ν ∈ {0, 1, 2, . . . ,N − 1}, η ∈
[

− π

H
,

π

H

]
, (20)

where 1√|G|ψn(x, ν, η) ∈ � is an orbital characterized by the
wave vector (ν, η), with |G| denoting the order of G. It there-
fore follows that H can be block diagonalized using this
symmetry-adapted basis and the eigenvalue problems associ-
ated with distinct wave vectors can be solved independently
of one another. In view of this, we will henceforth label
the eigenvalue and occupation corresponding to the orbital
ψn(ν, η) by λn(ν, η) and gn(ν, η), respectively.

The symmetry in the orbitals can be used to develop the
following representation for the electron density:

ρ(x) = 2
∑

n

gn |ψn(x)|2

= 2

|G|
N−1∑
ν=0

∑
η

Nν,η∑
n=1

gn(ν, η) |ψn(x, ν, η)|2

= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η) |ψn(x, ν, η)|2 dη , (21)

where Nν,η represents the number of orbitals associated with
the (ν, η) wave vector and

ffl
denotes the average of the in-

tegral. The third equality in the above equation is obtained
by replacing the infinite summation over η with an integral, a
strategy that will used repeatedly henceforth. It then follows
that the electron density is commensurate with the cyclic and
helical symmetry of the structure, i.e.,

ρ(�ζ,μ ◦ x) = ρ(x) ∀ �ζ,μ ∈ G. (22)

Therefore, the symmetry in the electron density is maintained
throughout the solution of the symmetry-adapted Kohn-Sham
problem, provided that the initial electron density has this
symmetry, e.g., through superposition of isolated-atom elec-
tron densities, a strategy common to DFT implementations,
including the one developed here.

C. Fundamental domain

The symmetry in the electronic quantities is naturally
suited for implementation within a coordinate system that is
compatible with the underlying cyclic and helical symmetry.
In view of this, we choose a helical coordinate system [72,77]
in which the coordinates (r, θ̃ , z) are related to their Cartesian
counterparts (x1, x2, x3) through the relations

r =
√

x2
1 + x2

2,

θ̃ = tan−1

(
x2

x1

)
− αx3 + kπ ;

k =
⎧⎨⎩0, if x1, x2 � 0

1, if x1 < 0
2, otherwise

z = x3, (23)
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where α ∈ R is the screw displacement or twist parameter,
defined as the amount of counterclockwise rotation about the
screw axis as one translates along it in the positive direction
by a unit length. In this coordinate system, based on the
symmetry in the electronic quantities, the fundamental domain
can be identified to be the cuboid (Fig. 1):

�̂ := {(r, θ̃ , z) ∈ R3|0 < R1 � r � R2,

0 � θ̃ � �̃ � 2π, 0 � z � H}, (24)

where an annular region is chosen in the radial direction to
enable efficient solution for 1D nanostructures, the focus of
this work. In addition, the maximum polar angle �̃ = 2π/N,
where N ∈ N is the order of the cyclic group C. The boundary
of �, denoted by ∂�̂, is the union of six faces of �̂ (Fig. 1):

∂�̂ = ∂R1
⋃

∂R2
⋃

∂ϑ0
⋃

∂ϑ�̃

⋃
∂Z0

⋃
∂ZH , (25)

where ∂R1 and ∂R2 denote the surfaces r = R1 and R2, re-
spectively; ∂ϑ0 and ∂ϑ�̃ denote the surfaces θ̃ = 0 and �̃,

respectively; and ∂Z0 and ∂ZH denote the surfaces z = 0 and
H , respectively.

D. Symmetry-adapted energy functional

The symmetry in the electronic quantities is now used
to reformulate the real-space Kohn-Sham energy functional
[Eq. (1)]. Specifically, the symmetry-adapted energy func-
tional over the fundamental domain �̂ can be written as

F̂ (�̂, ĝ, φ, R̂,G)

= T̂s(�̂, ĝ) + Êxc(ρ,∇ρ)

+ Ênl (�̂, ĝ, R̂,G) + Êel (ρ, φ, R̂,G) + Ŝ(ĝ), (26)

where �̂ is the collection of symmetry-adapted orbitals
ψn(x, ν, η), and ĝ is the collection of the corresponding oc-
cupations gn(x, ν, η). We now derive the expressions for each
of these symmetry-adapted energy terms.

The symmetry-adapted electronic kinetic energy T̂s takes
the form

T̂s(�̂, ĝ) = 1

|G|Ts(�, g)

= 2

|G|2
N−1∑
ν=0

∑
η

Nν,η∑
n=1

gn(ν, η)
ˆ

�

ψ∗
n (x, ν, η)

(
−1

2
∇2

)
ψn(x, ν, η) dx

= 2

|G|N
N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
ˆ

�

ψ∗
n (x, ν, η)

(
−1

2
∇2

)
ψn(x, ν, η) dx dη

= 2

|G|N
N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)

(∑
�ζ,μ

ˆ
�ζ,μ◦�̂

ψ∗
n (x, ν, η)

(
−1

2
∇2

)
ψn(x, ν, η) dx

)
dη

= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
ˆ

�̂

ψ∗
n (x, ν, η)

(
−1

2
∇2

)
ψn(x, ν, η) dx dη, (27)

where the last equality is obtained by using the symmetry of the orbitals [Eq. (20)].
The symmetry-adapted exchange-correlation energy Êxc takes the form

Êxc(ρ,∇ρ) = 1

|G|Exc(ρ,∇ρ) = 1

|G|
∑
�ζ,μ

ˆ
�ζ,μ◦�̂

εxc(ρ(x), |∇ρ(x)|)ρ(x) dx =
ˆ

�̂

εxc(ρ(x), |∇ρ(x)|)ρ(x) dx, (28)

where the last equality is obtained by using the symmetry in the electron density [Eq. (22)].
The symmetry-adapted nonlocal pseudopotential energy Ênl takes the form

Ênl (�̂, ĝ, R̂,G) = 1

|G|Enl (�, g, R)

= 2

|G|2
N−1∑
ν=0

∑
η

Nν,η∑
n=1

gn(ν, η)
∑

J

PJ∑
p=1

γJ;p

∣∣∣∣ˆ
�

χ∗
J;p(x, RJ ) ψn(x, ν, η) dx

∣∣∣∣2

= 2

|G|
N−1∑
ν=0

∑
η

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;p

∣∣∣∣ˆ
�

χ∗
J;p(x, R̂J ) ψn(x, ν, η) dx

∣∣∣∣2

= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;p

∣∣∣∣ˆ
�

χ∗
J;p(x, R̂J ) ψn(x, ν, η) dx

∣∣∣∣2 dη
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= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;p

∣∣∣∣∣∑
�ζ,μ

ˆ
�ζ,μ◦�̂

χ∗
J;p(x, R̂J )ψn(x, ν, η)dx

∣∣∣∣∣
2

dη

= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;p

∣∣∣∣∣∑
�ζ,μ

ˆ
�̂

χ∗
J;p(�ζ,μ ◦ x, R̂J ) ei(νζ �̃+ημH )ψn(x, ν, η) dx

∣∣∣∣∣
2

dη

= 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;p

∣∣∣∣ˆ
�̂

χ̃∗
J;p(x, R̂J ,G, ν, η)ψn(x, ν, η) dx

∣∣∣∣2dη , (29)

where the symmetry-adapted nonlocal projector

χ̃J;p(x, R̂J ,G, ν, η) =
∑
�ζ,μ

R̂J′ =�−1
ζ ,μ ◦ R̂J

χJ;p(�ζ,μ ◦ x, R̂J ) e−i[ν(θ̃J −θ̃J′ )+η(zJ −zJ′ )], (30)

with �−1
ζ ,μ = �N−ζ ,−μ. In deriving Eq. (29), the third equality is obtained by using the identity that each atom and any of its

images, atoms outside the fundamental domain that can be obtained by action of the group G on the atom of interest, have the
same nonlocal pseudopotential energy (Appendix B), and the sixth equality is obtained using the symmetry in the Kohn-Sham
orbitals [Eq. (20)].

The symmetry-adapted electrostatic energy Êel takes the form

Êel (ρ, R̂,G) = 1

|G|Eel (ρ, R)

= 1

|G|
∑
�ζ,μ

(
− 1

8π

ˆ
�ζ,μ◦�̂

|∇φ(x)|2 dx +
ˆ

�ζ,μ◦�̂

[ρ(x) + b(x, R̂,G)] φ(x) dx + Êsc(R̂,G)

)

= − 1

8π

ˆ
�̂

|∇φ(x)|2 dx +
ˆ

�̂

[ρ(x) + b(x, R̂,G)] φ(x) dx + Êsc(R̂,G), (31)

where Êsc is the self-correction energy per unit cell (Appendix A), and the last equality is obtained by using the symmetry in the
electrostatic potential [Eq. (19)] and the electron density [Eq. (22)].

The symmetry-adapted electronic entropy energy Ŝ takes the form

Ŝ(ĝ) = 1

|G|S(g)

= −2kBT

|G|
N−1∑
ν=0

∑
η

Nν,η∑
n=1

(gn(ν, η) log gn(ν, η) + [1 − gn(ν, η)] log[1 − gn(ν, η)])

= −2kBT

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

(gn(ν, η) log gn(ν, η) + [1 − gn(ν, η)] log[1 − gn(ν, η)]) dη. (32)

The derivation of the symmetry-adapted energy functional and its final form have some key differences and advances from
that proposed very recently [72]. First, the derivation here is for cyclic and helical symmetry, whereas only helical symmetry is
considered previously. Second, the current derivation considers semilocal exchange-correlation functionals, whereas only local
exchange-correlation functionals are considered previously. Third, rather than employing the density matrix, the derivation here
is in terms of the orbitals and their occupations, which we believe provides more physical insights into the symmetry adaption
since these are the quantities computed within a Kohn-Sham calculation. Fourth, we perform and derive symmetry adaption
for the electrostatic self-interaction and overlap correction term (Appendix A), which is found to be critical in obtaining the
accurate energy [34,43]. Fifth, we do not restrict the derivation for the symmetry-adapted nonlocal pseudopotential energy to
spherically symmetric projectors. Specifically, in previous work [72], as currently formulated, the action of symmetry operator
in the projector function is transferred from the spatial coordinate to the atomic position, which is only applicable for spherically
symmetric projectors, i.e., chemical elements that only have s-orbital projectors. Indeed, this symmetry-adapted formalism can
be generalized to nonspherically symmetric projectors using the strategy outlined here.
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E. Symmetry-adapted Kohn-Sham problem

The symmetry-adapted constrained variational problem for the electronic ground state can now be written as

min
�̂,ĝ

max
φ

F̂ (�̂, ĝ, φ, R̂,G) s.t.
ˆ

�̂

ψ∗
m(x, ν, η)ψn(x, ν, η) dx = δmn ∀ m, n = 1, . . . , Nν,η, ν ∈ {0, . . . ,N − 1}, η ∈

[
− π

H
,

π

H

]

and
2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η) dη = N̂e, (33)

where N̂e is the number of electrons in the fundamental domain. The corresponding Lagrangian [74] can be defined as

L̂(�̂, ĝ, φ, R̂,G) = F̂ (�̂, ĝ, φ, R̂,G) − 1

N

N−1∑
ν=0

 π
H

− π
H

∑
i, j

λi j (ν, η)

(ˆ
�̂

ψ∗
i (x, ν, η)ψ j (x, ν, η) dx − δi j

)
dη

− λF

(
2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η) dη − N̂e

)
, (34)

where λi j and λF are the Lagrange multipliers used to enforce the constraint of orthonormality on the symmetry-adapted orbitals
and the number of electrons in the fundamental domain, respectively.

The symmetry-adapted Kohn-Sham equations, obtained by taking variations of L̂ with respect to �̂ and ĝ, on the fundamental
domain �̂, with the prescribed boundary conditions on ∂�̂, take the form[

H(ν,η) ≡ −1

2
∇2 + Vxc + φ + V (ν,η)

nl

]
ψn(x, ν, η) = λn(ν, η) ψn(x, ν, η) , ν ∈ {0, . . . ,N − 1}, η ∈

[
− π

H
,

π

H

]
B.C. ψn(r � R1, θ̃ , z, ν, η) = ψn(r � R2, θ̃ , z, ν, η) = 0,

ψn(r, θ̃ + �̃, z, ν, η) = eiν�̃ψn(r, θ̃ , z, ν, η),

ψn(r, θ̃ , z + H, ν, η) = eiηHψn(r, θ̃ , z, ν, η); (35)

gn(ν, η) =
[

1 + exp

(
λn(ν, η) − λF

kBT

)]−1

, λF is s.t.
2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η) dη = N̂e; (36)

− 1

4π
∇2φ(x, R̂,G) = ρ(x) + b(x, R̂,G) ,

B.C. φ(r � R1, θ̃ , z, R̂,G) = φ1, φ(r � R2, θ̃ , z, R̂,G) = φ2,

φ(r, θ̃ + �̃, z, R̂,G) = φ(r, θ̃ , z, R̂,G),

φ(r, θ̃ , z + H, R̂,G) = φ(r, θ̃ , z, R̂,G); (37)

where the exchange-correlation potential

Vxc(x) = δÊxc(ρ,∇ρ)

δρ
= εxc(ρ(x), |∇ρ(x)|) + ρ(x)

∂εxc(ρ(x), |∇ρ(x)|)
∂ρ(x)

− ∇ ·
(

ρ(x)

|∇ρ(x)|
∂εxc(ρ(x), |∇ρ(x)|)

∂ (|∇ρ(x)|) ∇ρ(x)

)
, (38)

and the symmetry-adapted nonlocal pseudopotential operator

[
V (ν,η)

nl f
]
(x, ν, η) =

N∑
J=1

PJ∑
p=1

γJ;p χ̃J;p(x, R̂J ,G, ν, η)
ˆ

�̂

χ̃∗
J;p(y, R̂J ,G, ν, η) f (y, ν, η) dy. (39)

The zero-Dirichlet boundary conditions for the orbitals in the r direction are due to the exponential decay expected along any
finite direction [78,79], indeed, the values of R1 and R2 need to be chosen such that the radial boundaries are sufficiently far from
the atoms, whereas in the θ̃ and z directions, they follow from the symmetry in the orbitals [Eq. (20)]. The Dirichlet boundary
conditions for the electrostatic potential in the r direction account for the algebraic decay (if at all there is any decay) in that
direction; the values of φ1 and φ2 can be determined through a Fourier-based analysis, as shown in Appendix C, whereas in the
θ̃ and z directions, they follow from the symmetry in the electrostatic potential [Eq. (19)].

F. Symmetry-adapted atomic forces

The symmetry-adapted Hellmann-Feynman atomic force can be defined as

fJ (R̂,G) = −∂L̂(�̂, ĝ, φ, R̂,G)

∂R̂J

∣∣∣∣∣
G

, (40)
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where fJ denotes the force on the atom located at position R̂J , and G denotes the electronic ground state. The total force fJ can
be decomposed into the local (f l

J ) and nonlocal (fnl
J ) components, which arise from the electrostatic and nonlocal pseudopotential

energy terms, respectively.
The symmetry-adapted local component of the force can be derived as

f l
J (R̂,G) = −

ˆ
�̂

∂b(x, R̂,G)

∂R̂J
φ(x, R̂,G) dx + f sc

J (R̂,G)

= −
∑
�ζ,μ

ˆ
�̂

∂bJ
(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J
φ(x, R̂,G) dx + f sc

J (R̂,G)

=
∑
�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

∇bJ
(
x, �−1

ζ ,μ ◦ R̂J
)
φ(x, R̂,G) dx + f sc

J (R̂,G)

= −
∑
�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

bJ
(
x, �−1

ζ ,μ ◦ R̂J
)∇φ(x, R̂,G) dx + f sc

J (R̂,G), (41)

where f sc
J arises from the energy term Êsc (Appendix A), ∇ is the Cartesian gradient, the third equality is obtained using the

spherical symmetry of bJ , and the fourth equality is obtained by using divergence theorem and integration by parts. The last step
is motivated by the generally higher smoothness of φ relative to bJ and the increased efficiency for evaluation of forces on all
atoms.

The symmetry-adapted nonlocal component of the force can be derived as

fnl
J (R̂J ,G) = − 4

{
1

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
PJ∑
p=1

γJ;pRe

[( ˆ
�̂

χ̃J;p(x, R̂J ,G, ν, η)ψ∗
n (x, ν, η) dx

)

×
(  

�̂

∂χ̃∗
J;p(x, R̂J ,G, ν, η)

∂R̂J
ψn(x, ν, η) dx

)]
dη

}

= − 4

{
1

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
PJ∑
p=1

γJ;pRe

[( ˆ
�̂

χ̃J;p(x, R̂J ,G, ν, η)ψ∗
n (x, ν, η) dx

)

×
(∑

�ζ,μ

 
�̂

∂χ∗
J;p(�ζ,μ ◦ x, R̂J )

∂R̂J
ei(νζ �̃+ημH )ψn(x, ν, η) dx

)]
dη

}

= − 4

{
1

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
PJ∑
p=1

γJ;pRe

[( ˆ
�̂

χ̃J;p(x, R̂J ,G, ν, η)ψ∗
n (x, ν, η) dx

)

×
(∑

�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

χ∗
J;p(�ζ,μ ◦ x, R̂J )ei(νζ �̃+ημH )∇ψn(x, ν, η) dx

)]
dη

}
, (42)

where the last equality is obtained by using the fact that the projector functions χJ;p are defined with respect to the atomic
positions, i.e., χJ;p(x, R̂J ) = χJ;p(x − R̂J ). This step is motivated by the higher smoothness of the orbitals relative to the
projectors functions, which results in substantially more accurate atomic forces [34,43,80].

Therefore, the total symmetry-adapted atomic force along the Cartesian directions takes the form

fJ (R̂,G) = −
∑
�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

bJ
(
x, �−1

ζ ,μ ◦ R̂J
)∇φ(x, R̂,G) dx + f sc

J (R̂,G)

− 4

{
1

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
PJ∑
p=1

γJ;pRe

[( ˆ
�̂

χ̃J;p(x, R̂J ,G, ν, η)ψ∗
n (x, ν, η) dx

)

×
(∑

�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

χ∗
J;p(�ζ,μ ◦ x, R̂J )ei(νζ �̃+ημH )∇ψn(x, ν, η) dx

)]
dη

}
. (43)
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Note that once the forces on the atoms in the fundamental domain have been determined, the forces on any image atom in the
structure can be evaluated using the symmetry

fJ ′ = R−μ
ϕ R

N−ζ

�̃
fJ , (44)

where fJ ′ is the force on the atom located at R̂J ′ = �−1
ζ ,μ ◦ R̂J .

The symmetry-adapted force expression derived here has a number of key differences and advances from that proposed
recently [72]. First, in the local component of the force, we have the gradient on the electrostatic potential, rather than the
pseudocharge. This is desirable because it is not only more efficient, but also because the electrostatic potential is smoother than
the pseudocharge, given the limited smoothness of the local part of the pseudopotential [81,82]. Second, we perform and derive
symmetry adaption for the component arising from the electrostatic self-interaction and overlap correction term (Appendix A),
which is found to be critical in obtaining accurate forces [34,43]. Third, as discussed above, in the nonlocal component of the
force, we have derivatives on the orbitals rather than the projectors, which provides substantially more accurate forces [34,43,80].
Fourth, as discussed previously, we do not assume that the nonlocal projectors are spherical in nature, therefore not placing any
restrictions on the chemical elements that can be studied.

G. Symmetry-adapted axial stress

The symmetry-adapted Hellmann-Feynman stress along the axial direction (i.e., x3 direction) can be defined as

σ (R̂,G) = N

H

∂L̂β (�̂, ĝ, φ, R̂β,G)

∂β

∣∣∣∣∣
β=1,G

, (45)

where L̂β denotes the Lagrangian corresponding to an axial stretch by a factor β, with resultant atom positions denoted by R̂β .
The factor of N in the above expression is needed to account for all the unit cells in the angular direction. Note that since the
system is extended only along one direction, the stress has the units of force in the current context.

Proceeding along the lines of previous work [74], we arrive at the following expression for the symmetry-adapted axial stress:

σ (R̂,G) = N

H

(
− 2

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
ˆ

�̂

|∇3ψn(x, ν, η)|2 dx dη + Êxc(ρ,∇ρ) −
ˆ

�̂

Vxc(ρ(x),∇ρ(x))ρ(x) dx

−
ˆ

�̂

ρ(x)

|∇ρ(x)|
∂εxc(ρ(x), |∇ρ(x)|)

∂ (|∇ρ(x)|) |∇3ρ(x)|2 dx − Ênl (�̂, ĝ, R̂,G)

− 4

{
1

N

N−1∑
ν=0

 π
H

− π
H

Nν,η∑
n=1

gn(ν, η)
N∑

J=1

PJ∑
p=1

γJ;pRe

[( ˆ
�̂

χ̃J;p(x, R̂J ,G, ν, η)ψ∗
n (x, ν, η) dx

)

×
(∑

�ζ,μ

ˆ
�̂

χ∗
J;p(�ζ,μ ◦ x, R̂J )ei(νζ �̃+ημH )(x3 − zJ ′ )∇3ψn(x, ν, η) dx

)]
dη

}
+ 1

4π

ˆ
�̂

|∇3φ(x, R̂,G)|2 dx

− 1

2

N∑
J=1

∑
J ′

ˆ
�̂

∇3VJ (x, R̂J ′ )(x3 − zJ ′ )bJ (x, R̂J ′ ) dx +
N∑

J=1

∑
J ′

ˆ
�̂

∇3bJ (x, R̂J ′ )(x3 − zJ ′ )

×
(

φ(x, R̂,G) − 1

2
VJ (x, R̂J ′ )

)
dx + 1

2

ˆ
�̂

(
b(x, R̂,G) − ρ(x)

)
φ(x, R̂,G) dx

− 1

2

N∑
J=1

∑
J ′

ˆ
�̂

bJ (x, R̂J ′ )VJ (x, R̂J ′ ) dx + σ Êc

)
, (46)

where ∇3 = ∂
∂x3

denotes the partial derivative in the x3 direction, J ′ index runs over the Jth atom and all its images in �, and σ Êc

is the stress contribution arising from the energy correction due to the overlapping pseudocharges [74]. Note that this work is
the first to derive the symmetry-adapted stress, the relaxation of which is important in physical applications, particularly in the
context of large deformations.

H. Time-reversal symmetry

In the absence of magnetic fields, the cyclic and helical symmetry-adapted formulation presented above can be further reduced
by employing time-reversal symmetry [7]. In particular, we have the following relations:

λn(ν, η) = λn

(
N − ν,

2πs

H
− η

)
, ψn(x, ν, η) = ψ∗

n

(
x,N − ν,

2πs

H
− η

)
, s ∈ Z. (47)
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FIG. 2. Illustration depicting the construction of a (n, m) nanotube from a 2D honeycomb lattice, and identification of the nanotube’s
fundamental domain and atoms. The lattice vectors for the flat sheet are denoted by a1 and a2, with the out-of-plane displacement represented
by δ. The chiral vector along which the sheet is rolled is denoted by Ch, whose angle ω with the zigzag axis is referred to as the chiral angle.
The nanotube’s axially periodic unit cell that has been unrolled onto the plane is shown by the rectangle OABC, where T is the translational
vector. The corresponding fundamental domain, which is described by the screw displacement vector S and the vector Ch/ gcd(n, m), is shaded
gray. The front view and top view of the constructed nanotube of diameter dt are also shown, where H is the height of the fundamental domain,
�̃ is the angle subtended by the fundamental domain at the nanotube center, and the green helix connects the helical images of an atom in the
fundamental domain.

Consequently, the number of wave vectors (ν, η) in the first
Brillouin zone that need to be considered for the Kohn-Sham
equations as well as the calculation of the electron density,
energy, atomic forces, and axial stress are reduced by a factor
of 2, approximately.

IV. REPRESENTATION OF TWISTED NANOTUBES
IN CYCLIC AND HELICAL DFT

In this section, we provide a representation for twisted
nanotubes of arbitrary chirality, assumed to be constructed
from two-dimensional (2D) systems with honeycomb lattice
structure, within the aforedescribed cyclic and helical DFT
formalism. Specifically, adopting the helical-angular repre-
sentation for the untwisted nanotube [83], we identify the
fundamental domain parameters, location of the atoms within
the fundamental domain, and the wave vectors (ν, η) in the
first Brillouin zone. It is worth noting that the representation
for such nanotubes in the cyclic and helical symmetry-adapted
formalism is original to this work. In addition to the above, we
also find the connection between the Brillouin zone coordi-
nates for the untwisted nanotube and corresponding 2D sheet,
in the absence of curvature-induced effects. To the best of our
knowledge, such a connection is also unique to this work.

A. (n, m) nanotube

We first discuss the construction of a (n, m)-labeled un-
twisted nanotube from its flat sheet counterpart [84], as
illustrated in Fig. 2. Consider a honeycomb lattice with lattice

vectors chosen as

a1 = a

2
[
√

3 1]T, a2 = a

2
[
√

3 − 1]T, (48)

where a is the length of these vectors. The (n, m) nanotube
is constructed by rolling a strip of the infinite sheet into a
seamless cylinder along the direction of the chiral vector:

Ch = na1 + ma2, |Ch| = πdt = a
√

n2 + m2 + nm, (49)

where n, m ∈ Z uniquely characterize the nanotube, whose
diameter and circumference are denoted by dt and |Ch|, re-
spectively. The chiral angle is then defined as

cos ω = Ch · a1

Ch a
= 2n + m

2
√

n2 + m2 + nm
, 0 � ω � π

6
(50)

where the bounds between ω = 0 (zigzag nanotube) and ω =
π/6 (armchair nanotube) account for the symmetry of the
honeycomb lattice, i.e., any nanotube with chiral angle out-
side these bounds is equivalent to one within the bounds. In
terms of the (n, m) notation, this translates to considering only
nanotubes for which n � m � 0, with (n, 0) and (n, n) rep-
resenting zigzag and armchair variants, respectively. Zigzag
and armchair nanotubes are referred to as achiral nanotubes,
whereas all others are collectively referred to as chiral nan-
otubes.

The periodicity of the nanotube is determined by a vector
perpendicular to the chiral vector Ch, referred to as the trans-
lation vector

T = t1a1 + t2a2, t1, t2 ∈ Z, gcd(t1, t2) = 1, (51)
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where gcd is used to denote the greatest common divisor, and
the coefficients

t1 = (2m + n)/dR, t2 = −(2n + m)/dR, with

dR = gcd(2m + n, 2n + m). (52)

The length of the translational vector is

|T| =
√

3|Ch|
dR

. (53)

B. Fundamental domain and atoms

We now identify the fundamental domain parameters and
the location of the fundamental domain atoms for the twisted
(n, m) nanotube within the cyclic and helical symmetry-
adapted formalism, as illustrated in Fig. 2. Consider the
untwisted nanotube’s axially periodic unit cell that has been
unrolled onto the plane, defined by the vectors Ch and T.
This unit cell has additional symmetry that can be exploited to
define the (irreducible) fundamental domain. There are three
such possibilities, among which we choose the one defined by
the helical-angular construction [83], due to its compatibility
with the cyclic and helical symmetry.

The fundamental domain based on the helical-angular con-
struction of the nanotube is a parallelogram with one side as
the vector 1

N
Ch, where N = gcd(n, m) is the cyclic group

order of the nanotube. The other side, denoted by S, the flat
sheet equivalent of the screw displacement vector describing
the chirality of the nanotube, can be decomposed as

S = c1Ch + c2T = pa1 + qa2, c1, c2 ∈ (0, 1); p, q ∈ Z,

(54)

where the coefficients

c1 = S · Ch

|Ch|2 = (pa1 + qa2) · (na1 + ma2)

|Ch|2

= (2n + m)p + (2m + n)q

NcdR
, (55)

c2 = S · T
|T|2 = (pa1 + qa2) · (t1a1 + t2a2)

|T|2 = pm − qn

Nc
,

(56)

with Nc = 2(n2 + m2 + nm)/dR representing the number of
hexagons in the periodic unit cell. Since the area per atom in
the fundamental domain as well the periodic unit cell should
be the same [84], we arrive at the relation

|Ch|
N

c2|T| =
√

3a2

2
⇒ c2 =

√
3a2N

2|Ch||T| = N

Nc
. (57)

Thereafter, it follows from Eqs. (56) and (57) that

pm − qn = N , (58)

using which the coefficient c1 can be written as the following
minimization problem:

c1 = min
q∈Z

( (2n+m)N
mdR

+ qNc

m

Nc

)
s.t.

N+qn

m
∈ Z, 0<c1<1.

(59)

Therefore, the parameters describing the untwisted nanotube’s
fundamental domain �̂ in the cyclic and helical symmetry-
adapted formalism [Eq. (24)] are obtained as

�̃ = 2

dt

( |Ch|
N

)
= 2π

N
, H = S ·

(
T
|T|

)
= N|T|

Nc
,

α = 1

H

(
2

dt

)
S ·

(
Ch

|Ch|
)

= 2πc1

H
, (60)

where α represents the chirality of the tube. The values for the
inner radius R1 and the outer radius R2 of �̂ are chosen so as
to allow for sufficient decay of the orbitals. If an external twist
of αa is applied on the nanotube, the twist parameter takes the
form

α = 2πc1

H
+ αa (61)

with all fundamental domain parameters remaining the same.
Therefore, the cyclic and helical symmetry-adapted frame-
work allows for the handling of both chirality and applied
twist through the twist parameter. Indeed, the above strategy
of adding the applied twist to the chirality is not restricted to
nanotubes alone, but is generally applicable to 1D nanostruc-
tures subject to torsional deformations.

The locations of the atoms within the fundamental domain
of the nanotube are identified as follows. Consider the Jth
(J ∈ {1, 2, . . . , N}) atom in the fundamental domain of the
honeycomb lattice located at qJ

1a1 + qJ
2a2 + δJ ê3, where δJ is

the out-of-plane displacement of the atom. The corresponding
atom’s location within the fundamental domain of the unrolled
nanotube configuration can be written as pJ

1Ch + pJ
2T + δJ ê3,

where pJ
1 and pJ

2 are uniquely determined by l1, l2 ∈ Z that
satisfy the relations

0 �
[

pJ
1 :=

[(
l1 + qJ

1

)
a1 + (

l2 + qJ
2

)
a2
] · Ch

|Ch|2
]

<
1

N
, (62)

0 �
[

pJ
2 :=

[(
l1 + qJ

1

)
a1 + (

l2 + qJ
2

)
a2
] · T

|T|2
]

<
N

Nc
. (63)

It follows that the coordinates of the atom in helical coordi-
nates within the fundamental domain of the nanotube are

rJ = dt/2 + δJ , θ̃J = 2π pJ
1 − αpJ

2|T|, zJ = pJ
2|T|.

(64)

The above representation provides tremendous simplifi-
cation in both the computational cost and interpretation of
results, by significantly reducing the number of atoms in
the fundamental domain, particularly in the case of torsional
deformations and/or chiral tubes. Even for untwisted achiral
tubes, the representation provides simplification with respect
to the recent cyclic symmetry-adapted method [71], by re-
ducing the number of atoms in the fundamental domain by
a factor of 2. It is also worth noting that although the above
framework is restricted to nanotubes generated from honey-
comb lattices, which is the focus of this work, it can be easily
extended to other 2D lattices with chiralities that permit the
existence of translational symmetry in the direction perpen-
dicular to the chiral vector.
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FIG. 3. The first Brillouin zones corresponding to the (i) honey-
comb lattice (left, orange), with reciprocal lattice vectors kh

1 and kh
2 ;

(ii) nanotube’s axially periodic cell unrolled onto the plane (left, red),
with reciprocal lattice vectors kr

1 and kr
2; (iii) fundamental domain

of the nanotube’s axially periodic cell unrolled onto the plane (left,
blue), with reciprocal lattice vectors kp

1 and kp
2 ; and (iv) the nanotube

in the helical coordinate system (right), with reciprocal lattice vectors
kz and kθ̃ . The dashed lines are used to indicate the discrete nature
of the Brillouin zone, with the space between any two such lines
indicating nonexistent parts of the Brillouin zone.

C. Brillouin zone

In the cyclic and helical symmetry-adapted DFT formal-
ism, the first Brillouin zone of the (n, m) nanotube takes the
form

(ν, η) : ν ∈ {0, . . . ,N − 1}, η ∈
[

− π

H
,

π

H

]
, (65)

N = gcd(n, m), H = N|T|
Nc

, (66)

as illustrated in Fig. 3. In the absence of magnetic fields,
time-reversal symmetry can be used to reduce the Brillouin
zone to approximately half its size, as described in Sec. III H.
In certain circumstances, it is of interest to know the connec-
tion between the Brillouin zone coordinates for the nanotube
and the corresponding 2D honeycomb lattice structure since
it has the potential to provide fundamental insight into the
behavior of the nanotube. For example, identifying whether
the location of the Dirac cones in graphene’s Brillouin zone
exist in the nanotube’s Brillouin zone (discrete in the variable
ν) can be used to argue whether the nanotube is expected to
be metallic or an insulator [84]. In these cases, it also helps
identify important wave vectors at which the band structure
should be calculated.

In view of the above, we now identify the connection
between the untwisted Brillouin zone coordinates of the
(n, m) nanotube and the corresponding honeycomb lattice.
Let [ch

1 ch
2]T denote the fractional coordinates of the point of

interest in the Brillouin zone of the flat sheet with basis vectors

a1 and a2. It follows that[
ν

η

]
= (

MsM−1
r Mh

)[ch
1

ch
2

]
, (67)

where the transformation matrices

Ms =
⎛⎝ |Ch|

2π
0

c1Nc|Ch|
N|T| 1

⎞⎠,

Mr = a

2|Ch|

(√
3(n + m) m − n

n − m
√

3(n + m)

)
, (68)

Mh = 2π

a

( 1√
3

1√
3

1 −1

)
.

Note that in cases when [νη] is obtained outside the first
Brillouin zone, it needs to be mapped back to within it. In

obtaining the above, we have used the fact that Mh[ch
1

ch
2
] trans-

forms [ch
1

ch
2
] to absolute coordinates in the standard Cartesian

coordinate system, then the application of M−1
r transforms the

result to a rotated Cartesian coordinate system that is aligned
with the Brillouin zone of the unrolled nanotube’s axially
periodic unit cell, and then the application of Ms transforms
the result to the wave vector [νη] in the Brillouin zone of the
nanotube. In certain circumstances, it might be advantageous
to know the corresponding coordinates in the Brillouin zone
of the fundamental domain of the flat sheet:[

cp
1

cp
2

]
= (

M−1
p Mh

)[ch
1

ch
2

]
, (69)

where the transformation matrix

Mp = a

2|Ch|

⎛⎜⎜⎜⎜⎝
√

3(n+m)N− c1NcdR (m−n)√
3√

N2+ c2
1N2

c dR
2

3

m − n

N(n−m)−c1NcdR (n+m)√
N2+ c2

1N2
c dR

2

3

√
3(n + m)

⎞⎟⎟⎟⎟⎠. (70)

Note that the columns of the matrices Mr and Mp are nothing
but the corresponding reciprocal space unit vectors, and the
columns of Mh are the corresponding reciprocal lattice vec-
tors, all of which are illustrated in Fig. 3.

In going from the honeycomb lattice to the lattice gen-
erated by the unrolled cylinder, one of the directions with
infinite translational periodicity becomes finite, resulting in
the Brillouin zone of the nanotube corresponding to the cyclic
symmetry (i.e., ν component of the wave vector) being dis-

crete. Therefore, not all [ch
1

ch
2
] have a corresponding [νη], with the

condition for existence of the mapping being

nch
1 + mch

2 ∈ Z. (71)

Such a condition has practical utility in predicting the physical
behavior of the nanotubes, e.g., the Dirac point in graphene at

[ch
1

ch
2
] = [2/3

1/3] only gets mapped to the Brillouin zone of the nan-

otube for 2n+m
3 ∈ Z, which is the generally accepted condition

for carbon nanotubes to be metallic [84]. Note that the above
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analysis neglects curvature-induced effects, which in some
cases does shift the location of the point within the nanotube’s
Brillouin zone.

V. NUMERICAL IMPLEMENTATION

In this section, we describe the implementation of the
aforedescribed cyclic and helical symmetry-adapted formula-
tion within the massively parallel real-space DFT code SPARC

[8]. The developed implementation, which will be hence-
forth referred to as Cyclix-DFT, is capable of performing
spin-polarized and unpolarized calculations, in both the static
and dynamic settings, for both local and semilocal exchange-
correlation functionals.

A. Helical coordinate system

We work in the (r, θ̃ , z) helical coordinate system
[Eq. (23)], in which the fundamental domain �̂ takes a
cuboidal form [Eq. (24)]. The Laplacian operator in these
coordinates can easily be derived from the Laplacian in cylin-
drical polar coordinates as

∇2 ≡ ∂2

∂r2
+ 1

r

∂

∂r
+
(

1

r2
+ α2

)
∂2

∂θ̃2
+ ∂2

∂z2
− 2α

∂2

∂θ̃∂z
,

(72)

and the Cartesian gradient operator, when expressed in terms
of derivatives with respect to helical coordinate variables,

takes the form

∇ ≡
(

cos(θ̃ + αz)
∂

∂r
− sin(θ̃ + αz)

r

∂

∂θ̃

)
êx1

+
(

sin(θ̃ + αz)
∂

∂r
+ cos(θ̃ + αz)

r

∂

∂θ̃

)
êx2

+
(

−α
∂

∂θ̃
+ ∂

∂z

)
êx3 , (73)

where êx1 , êx2 , and êx3 are the Cartesian unit vectors.

B. Real-space discretization

A uniform real-space grid in helical coordinates is used to
discretize the fundamental domain �̂, which translates to a
nonuniform curvilinear grid in Cartesian coordinates that is
compatible with the symmetry of the system. Each grid point
is indexed using the triplet (i, j, k), where i = 0, 1, . . . , nr ,
j = 0, 1, . . . , nθ̃ − 1, and k = 0, 1, . . . , nz − 1, with nr + 1,
nθ̃ , and nz representing the number of nodes in the r, θ̃ , and z
directions, respectively. The coordinates of any arbitrary node
(i, j, k) are therefore given by (R1 + ihr, jhθ̃ , khz ), where
hr = ( R2−R1

nr
), hθ̃ = �̃

nθ̃
, and hz = H

nz
are the spacing in the r, θ̃ ,

and z directions, respectively. Although there is no restriction
on the choice of spacing, it is generally appropriate to employ
similar distances between grid points in the different coordi-

nate directions, i.e., h := hr ∼ R2+R1
2 hθ̃ ∼

√
1 + (R1+R2 )2

4 α2hz,
where h will henceforth be referred to as the mesh size.

We use centered finite differences to approximate deriva-
tives arising in the Laplacian and gradient operators:

∇2 f |(i, j,k) ≈
no∑

p=0

wp,r ( f (i+p, j,k) + f (i−p, j,k) ) + 1

r (i, j,k)

no∑
p=1

w̃p,r ( f (i+p, j,k) − f (i−p, j,k) ) +
no∑

p=0

wp,θ̃ ( f (i, j+p,k) + f (i, j−p,k) )

+
no∑

p=0

wp,z( f (i, j,k+p) + f (i, j,k−p) ) − 2α

no∑
p=1

w̃p,θ̃

(
∂ f

∂z

∣∣∣∣(i, j+p,k)

− ∂ f

∂z

∣∣∣∣(i, j−p,k))
, (74)

∇ f |(i, j,k) ≈
(

cos(θ̃ (i, j,k) + αz(i, j,k) )
no∑

p=1

w̃p,r ( f (i+p, j,k) − f (i−p, j,k) )

− sin(θ̃ (i, j,k) + αz(i, j,k) )

r (i, j,k)

no∑
p=1

w̃p,θ̃

(
f (i, j+p,k) − f (i, j−p,k)

))
êx1

+
(

sin(θ̃ (i, j,k) + αz(i, j,k) )
no∑

p=1

w̃p,r ( f (i+p, j,k) − f (i−p, j,k) )

+ cos(θ̃ (i, j,k) + αz(i, j,k) )

r (i, j,k)

no∑
p=1

w̃p,θ̃ ( f (i, j+p,k) − f (i, j−p,k) )

)
êx2

+
(

−α

no∑
p=1

w̃p,θ̃ ( f (i, j+p,k) − f (i, j−p,k) ) +
no∑

p=1

w̃p,z( f (i, j,k+p) − f (i, j,k−p) )

)
êx3 , (75)
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where the superscript (. . .)(i, j,k) denotes the value of the quan-
tity at the node (i, j, k), f is any arbitrary function, no is
half the order of the finite difference, and the weights for
s ∈ {r, θ̃ , z} can be written as [85,86]

w̃p,s = (−1)p+1

hs p

(no!)2

(no − p)!(no + p)!
, p = 1, 2, . . . , no

w0,s = − 1

h2
s

no∑
q=1

1

q2
, (76)

wp,s = 2w̃p,s

hs p
, p = 1, 2, . . . , no.

Note that as written in Eq. (74), the mixed derivative term in
the Laplacian is evaluated in O(no) fashion by the sequential
application of the associated first-order derivatives [87]. Also
note that the discrete Laplacian and therefore the Hamilto-
nian are non-Hermitian in the current setting, even though
the continuous operators from which they arise are Hermi-
tian. We have found that this artifact of the finite-difference
discretization does not impact the results, in agreement with
previous work that also employ curvilinear coordinates within
the real-space method [71,88].

We approximate integrals over the fundamental domain �̂

using the following quadrature rule:

ˆ
�̂

f (x) dx ≈
nr∑

i=0

nθ̃−1∑
j=0

nz−1∑
k=0

f (i, j,k)

∣∣∣∣∂ (x1, x2, x3)

∂ (r, θ̃ , z)

∣∣∣∣hrhθ̃hz

= hrhθ̃hz

nr∑
i=0

nθ̃ −1∑
j=0

nz−1∑
k=0

(R1 + ihr ) f (i, j,k), (77)

where | ∂ (x1,x2,x3 )
∂ (r,θ̃ ,z)

| denotes the Jacobian of the transformation
between Cartesian and helical coordinates.

C. Brillouin zone sampling

The Brillouin zone variables η and ν correspond to the
helical and cyclic symmetry, respectively. Integrals over η are
approximated using a Monkhorst-Pack–type [89] trapezoidal
quadrature rule:

 π
H

− π
H

f (η) dη ≈
Nη∑

b=1

wηb f (ηb), (78)

where Nη denotes the number of nodes in the grid (i.e., num-
ber of η points), with ηb and wηb denoting their locations
and weights, respectively. Although the Brilluoin zone corre-
sponding to the cyclic group symmetry is inherently discrete,
it can become very dense for the systems with large cyclic
group order. In such cases, given the expected smoothness of
the quantities over the variable ν, the following approximation
can be employed:

1

N

N−1∑
ν=0

f (ν) ≈
Nν∑

b=1

wνb f (νb), (79)

where νb ∈ V ⊂ {0, 1, . . . ,N − 1} are the nodes, wνb are the
quadrature weights, and Nν is the cardinality of the set V , i.e.,
number of ν points. Note that although this approximation has

not been employed in this work since the nanotubes studied
here have relatively small cyclic group order, its efficacy has
been verified for nanotubes with large cyclic group order. Also
note that time-reversal symmetry is used to reduce the total
number of Brillouin zone sampling points by a factor of ∼2,
as discussed in Sec. III H.

D. Electronic ground state

The electronic ground state is calculated using a fixed-point
iteration with respect to the density and potential, referred
to as the self-consistent field (SCF) method [7]. The super-
position of the isolated-atom electron densities is used as
an initial guess for the SCF iteration, which is accelerated
using the restarted variant [90] of the periodic Pulay mixing
scheme [91] in conjunction with a real-space preconditioner
[92]. The pseudocharges are placed on the grid by applying
the discrete Laplacian on the local part of the pseudopotential
[86]. In each SCF iteration, a partial diagonalization of the
linear eigenproblem is performed using the CheFSI method
[93,94], with multiple Chebyshev filtering steps performed
in the first iteration of the simulation [95]; and the linear
system corresponding to the Poisson problem solved using
the alternating Anderson-Richardson (AAR) iterative method
[96,97], with Laplacian-vector products performed in matrix-
free fashion and the Dirichlet boundary conditions imposed
by introducing a compensating charge density [43]. Within
the CheFSI method, we employ the Lanczos method for de-
termining the Chebyshev bounds, Brent’s method [98] for
calculation of the Fermi level, and LAPACK [99] routines for
solving the subspace eigenproblem. The Hamiltonian-vector
products are performed in a matrix-free fashion, using the
finite-difference stencil for the Laplacian and the outer prod-
uct nature of the nonlocal pseudopotential operator. Again,
boundary conditions on the orbitals are imposed for the Lapla-
cian during application of the stencil. The ground-state energy
is calculated using the symmetry-adapted energy functional in
Eq. (26), which is efficiently implemented via a correction [9]
to the Harris-Foulkes functional [100,101].

The generalized gradient approximation (GGA) exchange
correlation has a dependence on ∇ρ(x), which is not com-
mensurate with the underlying symmetry. In particular, it
satisfies the relation �ζ,μ ◦ (∇ρ(x)) = R

ζ

�̃
Rμ

ϕ (∇ρ(x)), which
is employed during implementation. If, instead, the standard
definition of the gradient is employed, highly inaccurate re-
sults can be obtained, particularly for the force, which can
then manifest itself in all ground-state quantities and prop-
erties. For example, consider GeS and GeSe nanotubes of
diameters dt = 7.28 and 7.22 nm, respectively, obtained by
rolling the corresponding atomic monolayers [102,103]. Upon
rolling, on using the standard and symmetry-adapted transfor-
mations for the real-space gradient, the error in the force with
respect to well-converged SPARC calculations is ∼1 × 10−2

and ∼5 × 10−5 Ha/bohrs, respectively. This shows that more
than two orders of magnitude inaccuracy in the force can
result from the use of the incorrect transformation for the
gradient. In terms of the bending modulus for 2D materials,
computed from the ground-state energy of nanotubes with
different radii [102], the values for GeS and GeSe obtained
using the standard definition of the gradient are 4.37 and

035101-15



ABHIRAJ SHARMA AND PHANISH SURYANARAYANA PHYSICAL REVIEW B 103, 035101 (2021)

4.45 eV, respectively, which are more then three times the
values reported [102] when the correct transformation for the
gradient is used.

E. Structural relaxation and QMD

Cyclix-DFT can perform simultaneous atom and cell re-
laxation to determine the structural ground state. The code is
equipped with a variety of atomic relaxation algorithms, in-
cluding nonlinear conjugate gradient [104], LBFGS [105], and
FIRE [106], with charge density extrapolated from previous
atomic configurations to accelerate SCF convergence [107].
While performing atomic relaxation, to avoid inconsistencies
with the search directions, positions and forces on the atoms
that were originally in the fundamental domain are used in
the relaxation algorithms, with Eq. (44) used to calculate the
forces on atoms that may have moved out during the simula-
tion. For cell relaxation, we use Brent’s method to calculate
the equilibrium length of the unit cell in the axial direction.

Cyclix DFT can also perform symmetry-adapted quantum
molecular dynamics (QMD) simulations to study the dynam-
ics of systems with cyclic and helical symmetry. Similar to
structural relaxation, charge extrapolation is used to accelerate
the SCF convergence in future QMD steps, and forces on
the atoms that were originally in the fundamental domain are
used for the dynamical evolution, with Eq. (44) again used
to calculate the forces on atoms that may have moved out
during the simulation. Note that in both structural relaxation
and QMD, the symmetry of the system with respect to the unit
cell is maintained throughout the simulation. Also note that,
though not demonstrated in this work, Cyclix-DFT is capable
of performing nonequilibrium molecular dynamics, wherein
the applied twist is varied during the QMD simulation [108].

F. Parallelization

Cyclix-DFT employs multiple levels of parallelization that
vary between different parts of the code to maximize paral-
lel scalability. Specifically, the charge densities and effective
potential (sum of the exchange-correlation potential and the
electrostatic potential obtained via the solution of the Pois-
son equation) are computed using a Cartesian topology of
processors that is formed by embedding a three-dimensional
processor grid into the MPI COMM WORLD communicator.
The CheFSI algorithm employs a DFT-specific eigensolver
topology that is created by first splitting the MPI COMM
WORLD communicator into multiple spin groups, then split-
ting each spin group into multiple Brillouin zone sampling
groups, then splitting each Brillouin zone sampling group
into multiple band groups, and finally, embedding each band
group with a Cartesian topology. Therefore, the total number
of processors employed in the eigensolver topology is split as

Np = NSpin
p × NBZ

p × NBand
p × NDomain

p , (80)

where NSpin
p , NBZ

p , NBand
p , and NDomain

p are the number of spin,
Brillouin zone integration, band, and domain communicators
(groups), respectively.

VI. ACCURACY AND PERFORMANCE

In this section, we study the accuracy and performance
of the Cyclix-DFT code using the chiral (18,9) single-walled
carbon nanotube (CNT) as the representative example. In
all calculations, we choose a two-atom unit cell, 12th-order
accurate finite-difference discretization, local density approx-
imation (LDA) [2] of the exchange-correlation functional
with the Perdew-Wang parametrization [109] of the corre-
lation energy as calculated by Ceperley and Alder [110],
Fermi-Dirac smearing of kBT = 0.001 Ha, and the optimized
norm-conserving Vanderbilt (ONCV) pseudopotential [81].

A. Accuracy and convergence

We start by verifying the convergence of the computed en-
ergy, atomic forces, and axial stress with respect to Brillouin
zone integration, vacuum in the radial direction, and spatial
discretization. In order to have numerically significant values
for the forces and stress, the unit cell is perturbed from its
equilibrium configuration along the axial direction. First, we
verify convergence with respect to Brillouin zone integration,
i.e., value of Nη, while choosing the mesh size and vacuum
to be h = 0.2 and 10 bohrs, respectively. It is clear from the
results in Fig. 4(a) that there is a systematic convergence in
all quantities to reference values obtained at Nη = 300. Next,
we verify convergence with vacuum, while choosing h = 0.2
bohrs and Nη = 30. We observe from the results presented in
Fig. 4(b) that there is exponential convergence in all quantities
to reference values obtained at a vacuum of 12 bohrs. Finally,
we verify convergence with respect to mesh size, while em-
ploying Nη = 30 and a vacuum of 10 bohrs. It is clear from the
results in Fig. 4(c) that there is a systematic convergence in all
quantities to reference values obtained at h = 0.1 bohrs. On
performing a linear fit to these data, we find convergence rates
of approximately O(9), O(11), and O(9) in the energy, forces,
and stress, respectively, similar to those obtained by SPARC

for affine coordinate systems [34,74,87]. These results verify
the effectiveness of the real-space formulation for nonuniform
curvilinear grids arising in the helical coordinate system, with
previous such studies generally restricted to uniform Cartesian
grids [34,74,87].

The energy, atomic forces, and axial stress computed by
Cyclix-DFT are in very good agreement with those com-
puted by the real-space DFT code SPARC [8,34,43] and the
plane-wave code ABINIT [111]. For instance, on choosing
h = 0.2 bohrs, Nη = 49, and a vacuum of 10 bohrs in Cyclix-
DFT, the agreement with well-converged SPARC results is 4 ×
10−5 Ha/atom, 4 × 10−4 Ha/bohrs, and 0.3% in the energy,
forces, and stress, respectively. The corresponding agreement
with well-converged ABINIT results is 3 × 10−5 Ha/atom,
4 × 10−4 Ha/bohrs, and 0.3%, respectively. The agreement is
equally good for the choice of the semilocal PBE [112] GGA
exchange-correlation functional, e.g., on choosing h = 0.175
bohrs, Nη = 49, and a vacuum of 10 bohrs in Cyclix-DFT,
the agreement with well-converged SPARC results is 3 × 10−6

Ha/atom, 5 × 10−4 Ha/bohrs, and 0.5% in the energy, forces
and stress, respectively. The corresponding agreement with
well-converged ABINIT results is 5 × 10−5 Ha/atom, 4 × 10−4

Ha/bohrs, and 0.5%, respectively. The agreement between
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FIG. 4. Convergence of energy, atomic forces, and axial stress with respect to number of η points, vacuum size in the radial direction, and
mesh size for the (18,9) CNT. The error in the energy, forces, and stress is defined to be the magnitude of the difference, maximum difference
in any component, and percentage difference, respectively.

Cyclix-DFT and SPARC/ABINIT gets even better on further
increasing the accuracy of computations in each code. Note
that the accuracy of Cyclix-DFT has been verified against
SPARC/ABINIT for many other nanotubes (e.g., transition metal
dichalcogenides), details of which have been omitted here for
the sake of brevity. To verify the applicability and accuracy of
Cyclix-DFT for other types of systems, we perform a similar
test for a carbon nanocoil in Appendix E.

B. Structural relaxation

Next, we study the capability of Cyclix-DFT in perform-
ing symmetry-adapted structural relaxations by verifying the
consistency of the computed energy, atomic forces, and ax-
ial stress. Specifically, we evaluate the numerical derivative
of the energy with respect to the atomic perturbations and
compare it with the computed forces, and also evaluate the
numerical derivative of the energy with respect to the per-
turbations in unit-cell length along the axial direction and
compare it with the computed stress. The results so obtained
are presented in Fig. 5, from which it is clear that there is
very good agreement between the numerical derivatives of the

FIG. 5. Consistency of the computed energy, atomic forces, and
axial stress in Cyclix-DFT for the (18,9) CNT. The markers represent
the computed forces ( f1, f2, and f3) and stress (σ ), whereas the
corresponding curves represent the derivatives of the cublic spline
fit to the energy with respect to the atomic position and perturbations
in the axial unit-cell length, respectively.
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FIG. 6. Parallel scaling of a single SCF iteration in Cyclix-DFT for the (18,9) CNT, with the dashed line representing the ideal scaling.
The number of points in Brillouin zone correspond to those obtained after time-reversal symmetry.

energy and the computed forces and stress, with negligible
eggbox effect [113], a phenomenon arising due to the spatial
discretization breaking the underlying symmetry of the sys-
tem. In particular, the energy minima with respect to atomic
positions and unit-cell length are in good agreement with the
zero force and stress configurations, respectively, verifying
the capability of Cyclix-DFT to perform symmetry-adapted
structural relaxations. Note that although this work focuses on
static calculations, Cyclix-DFT is also capable of performing
quantum molecular dynamics (QMD) simulations, as demon-
strated in Appendix D. Also note that this work makes a
notable contribution towards consistency studies when work-
ing in curvilinear coordinates.

C. Scaling and performance

We finally study the parallel scaling and performance of
Cyclix-DFT to demonstrate the range and type of systems
and simulations that are accessible to Cyclix-DFT, as well as
the gains relative to state-of-the-art DFT codes. Rather than
perform a weak scaling test with respect to the number of
atoms, as is typically the norm, we perform it with respect
to the number of points sampled in the Brillouin zone. This
is because the scaling with the number of fundamental do-
main atoms, quadratic for small to moderate-sized systems,
while approaching cubic for larger system sizes [34,43], is
expected to be very similar to the underlying SPARC code,
and is therefore not repeated here for the sake of brevity.
Additionally, the number of Brillouin zone points sampled in
the cyclic and helical symmetry-adapted DFT formalism is
generally indicative of the size and complexity of the system
being studied.

The scaling tests are performed using a mesh size of h =
0.2 bohrs, Nν = 9, and a vacuum of 7 bohrs, values that are
representative of practical simulations. For the strong scaling
test, we choose Nη = 60, while increasing the number of
processors from 1 to 1080, whereas for the weak scaling test,
we increase the value of Nη from 2 to 2500, while propor-

tionally increasing the number of processors between 3 and
3750. In Fig. 6, we present the wall time per SCF iteration
so obtained, with O(6–8) iterations required to determine
the electronic ground state, the exact number determined by
the SCF tolerance. It is clear from Fig. 6 that Cyclix-DFT
demonstrates excellent strong scaling, with 50% efficiency
even on increasing the number of processors by three orders
of magnitude. In addition, Cyclix-DFT demonstrates excellent
weak scaling, with 80% efficiency even on increasing the
number of Brillouin zone points by three orders of magnitude.
The deviation from the ideal scaling, which increases with the
number of processors, can be attributed to the time associated
with global parallel communications.

The theoretical estimate for increase in efficiency within
Cyclix-DFT after cyclic and helical symmetry adaption is
at least a factor of O( |�|

|�̂| ), with larger factors appearing as
the system size increases, a consequence of different parts of
the DFT implementation having different scaling with system
size and that too with significantly different prefactors. Here,
|�| and |�̂| denote the volume of the original and funda-
mental domains, respectively. For the (18,9) nanotube studied
here, this translates to a O(126) speedup within Cyclix-DFT,
which is actually manifested in computations. In terms of its
comparison with SPARC, which itself outperforms established
state-of-the-art DFT codes by more than an order of mag-
nitude, Cyclix-DFT is faster by factor of O(13) in terms of
CPU time. The aforementioned theoretical estimate does not
directly translate between the two codes, a consequence of a
number of factors, including the following: the lesser vacuum
in Cyclix-DFT due to the domain being an annular region; the
larger number of states employed in Cyclix-DFT since precise
values for the number of occupied states at each wave vector
Nν,η are not known a priori; the fewer number of SCF iter-
ations required in Cyclix-DFT since charge sloshing effects
are reduced; the larger number of operations involved in the
Laplacian-vector/matrix products for Cyclix-DFT, a conse-
quence of the cylindrical nature of the coordinate system; and
the finer mesh in the z direction required by Cyclix-DFT as
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the twist parameter α increases, which in combination with
the cylindrical nature of the coordinate system results in the
requirement of a larger degree for the Chebyshev polynomial
within the CheFSI eigensolver. Indeed, as the inner radius
of the annular region increases, the theoretical estimate is
readily achieved, with an additional O( N

Nν
) speedup possible

by using Brillouin zone sampling for ν [Eq. (79)], making
Cyclix-DFT ideally suited for the study of large-diameter 1D
hollow nanostructures. It is worth noting that in the presence
of practically relevant applied twists, the speedups achieved
by Cyclix-DFT relative to standard codes are expected to be
many orders of magnitude and more, given the tremendously
large unit cells required for prescribing translational symme-
try.

As suggested by the results in Fig. 6, Cyclix-DFT can solve
the symmetry-adapted Kohn-Sham problem in O(1) minute
on O(100–1000) processors, resources that are commonly
available to researchers. In terms of time to solution, this
represents a O(100–1000) factor speedup over the recently
developed symmetry-adapted MATLAB implementation [72].
In particular, employing the same numerical parameters as in
previous work [72], i.e., mesh size h = 0.4 bohrs, Nη = 11,
and α = 0.001 rad/bohrs, Cyclix-DFT performs force relax-
ation for a phosphorene nanotube of diameter dt = 1.7 nm
in 62 s on 360 processors, while the MATLAB implementation
takes a few hours [72], indicating a O(100–1000) speedup.
Indeed, the exact speedup is dependent on the system of
interest and number of processors available.

VII. TORSIONAL DEFORMATION
OF CARBON NANOTUBES

In this section, we use Cyclix-DFT to study the mechanical
and electronic response of carbon nanotubes (CNTs) to tor-
sional deformations. Specifically, we perform twist-controlled
numerical experiments for the following representative set of
CNTs: (16,0), (20,0), and (27,0) zigzag nanotubes of type
I, type II, and type III, respectively [71], with diameters
dt = 1.25, 1.56, and 2.10 nm, respectively; (18,9) and (22,11)
chiral nanotubes with dt = 1.85 and 2.26 nm, respectively;
and (13,13) armchair nanotube with dt = 1.75 nm. In particu-
lar, we choose 2-atom unit cells described by the formalism
presented in Sec. IV, and determine the ground state for
the applied twist, while maintaining the total twist per unit
cell (i.e., αH) constant during cell relaxation. We initially
restrict the values of the applied twist to the small deformation
regime where CNTs are expected to be stable [54,62,114]
(Secs. VII A and VII B), before studying their response in
the large deformation regime (Sec. VII C). Note that such
calculations are beyond the reach of standard DFT methods.
Therefore, the ab initio results presented here are likely to be
quantitatively more accurate than previous efforts that employ
lower levels of theory.

In all calculations, we employ the LDA exchange-
correlation functional [2,109,110], which provides an accurate
representation of the mechanical and electronic response for
CNTs [115]. In addition, we employ the ONCV pseudopoten-
tial [81], whose transferability in the current context has been
verified through comparisons [11] with all-electron calcula-
tions [116] for the equilibrium structure of graphene, the flat

FIG. 7. Variation of torsional modulus Ktwist with the cube of the
diameter d3

t for the CNTs. The straight line represents the linear fit
to the data. The inset shows the variation of strain energy Etwist with
respect to square of the applied twist α2

a .

sheet analog of CNTs. Also, we perform spin-unpolarized cal-
culations, having verified that spin does not have any impact
on the results. For the numerical parameters, we choose mesh
size of h = 0.2 bohrs, vacuum size of 10 bohrs in the radial
direction, the number of η points for Brillouin zone integration
Nη = 70, Fermi-Dirac smearing of kBT = 0.001 Ha, atomic
relaxation tolerance on the force of 5 × 10−4 Ha/bohrs, and
cell relaxation tolerance on the stress of 1 × 10−5 Ha/bohrs.
Given the availability of resources and the relatively large
number of wave vectors that need to be considered, the simu-
lations are mainly parallelized over Brillouin zone sampling,
i.e., Np = NBZ

p .

A. Strain energy: Torsional modulus

The strain energy density Etwist associated with torsional
deformations can be defined as the increase in the ground-
state energy of the system upon applying the external twist
αa, divided by the length of the unit cell in the axial direction,
i.e., H . The corresponding torsional modulus Ktwist can then
be defined as

Ktwist (αa) = ∂2Etwist
∂α2

a
, (81)

where the dependence on αa is used to signify that the be-
havior might be nonlinear. We study the mechanical response
of the chosen CNTs by considering twists in the regime
0 � αa � 0.04 rad/nm, commensurate with those found in
experiments [114]. We find that the nanotubes demonstrate
linear response, i.e., strain energy has a quadratic dependence
on the external twist, as shown by results in the inset of Fig. 7.
Therefore, the torsional modulus for each nanotube is constant
for the twists considered, whereby its value can be interpreted
as that corresponding to the asymptotic zero-twist limit. We
evaluate this value of Ktwist for each of the CNTs using a
curve fit to the data, the variation of which with respect to
their diameter dt is presented in Fig. 7. In particular, we find

035101-19



ABHIRAJ SHARMA AND PHANISH SURYANARAYANA PHYSICAL REVIEW B 103, 035101 (2021)

FIG. 8. Variation of band gap Eg and effective mass of charge carriers m∗ with torsional deformation. The solid lines in (a) and
(b) correspond to the laws for band gap and effective mass that have been presented in Eqs. (85) and (86), respectively.

that

Ktwist ∼ Cd3
t , C = 0.733 156 keV/nm2, (82)

indicating that the torsional moduli vary cubically with
the diameter of the nanotubes, as predicted by continuum
mechanics. This suggests that the moduli of CNTs are inde-
pendent of their chirality, a result in agreement with previous
atomistic calculations [54]. Indeed, the above equation can be
used to estimate the torsional modulus of any CNT from first
principles, making it valuable in this regard. It can also be used
to predict the shear modulus, a quantity of interest for higher
scale theories such as continuum mechanics. In particular, we
obtain a value of 0.44 TPa, which is in good agreement with
experimental measurements (0.41 TPa [117]) as well as tight-
binding calculations (0.46 [61]). The significant difference
from atomistic calculations [54] of 0.25 TPa is likely due to
the inaccuracy of the chosen empirical potential. Note that in
calculating the shear modulus, the thickness of CNTs needs to
be assumed, which has been chosen to be the same [117] for
all shear moduli values discussed here.

B. Band gap and effective mass

We now study the electronic response of the CNTs to tor-
sional deformations. Specifically, we determine the variation
in band gap and effective mass of the charge carriers, i.e.,
electrons and holes, for external twists in the regime 0 �
αa � 0.04 rad/nm. In the current context, the band gap Eg

is defined to be the difference between the lowest unoccupied
and highest occupied orbitals, when all wave vectors (ν, η) in
the Brillouin zone are considered. In practice, this is achieved
by computing the band structure at the ground state on a
dense set of η points, chosen in the vicinity of the η point
that correlates with the Dirac cone in graphene’s Brillouin
zone, determined using the procedure outlined in Sec. IV C.
The effective mass of charge carriers in the cyclic and helical
symmetry-adapted formulation takes the form

m∗ = h̄2

(
∂2λn(ν, η)

∂η2

)−1
∣∣∣∣∣
(ν,η)=(ν∗,η∗ )

, (83)

where h̄ is the reduced Planck’s constant, n is an index
that corresponds to the highest occupied orbital for holes
and lowest unoccupied orbital for electrons, λn(ν, η) is the
eigenvalue of the symmetry-adapted Hamiltonian H(ν,η), and
(ν∗, η∗) corresponds to the location of the band gap. The
effective mass relates to the electrical transport properties of
semiconducting materials, as it is inversely proportional to the
mobility of the charge carriers, which in turn influences the
diffusivity of the charge carriers and the electrical conductiv-
ity of the material.

In Fig. 8(a), we plot the variation in band gap Eg with shear
strain

γ = 1
2αdt , (84)

from which the following observations can be made. First, in
the absence of torsional deformations, the (13,13), (27,0), and
(18,9) nanotubes are metallic, whereas the (16,0), (20,0), and
(22,11) nanotubes are insulating, which is in agreement with
the well-established criterion for predicting whether a nan-
otube is metallic or an insulator, i.e., a (n, m) CNT is metallic
if n − m is a multiple of 3, else it is an insulator [84]. Second,
all band gaps are direct, while following the following law for
the difference in band gap from the untwisted configuration:

�Eg ∼ 3t0γ sin(3ω), t0 = 3.14 eV, (85)

where t0 can be interpreted as the hopping parameter, and ω is
the chiral angle of the nanotube. This relationship is in good
agreement with that predicted using the Hückel tight-binding
model [118] as well as experimental measurements [114],
where the hopping parameters are determined to be 2.66 and
2.70 eV, respectively. Third and finally, we notice that zigzag
CNTs are inert to small torsional deformations, which is also
in agreement with literature [118].

In Fig. 8(b), we plot the variation in effective mass m∗ of
charge carriers with shear strain γ . Note that a common plot
is used for both charge carriers since we have found that the
effective mass of electrons and holes is nearly identical. It is
clear from the results that the variation in the effective mass
with twist for the chosen CNTs follows a similar trend as
the corresponding band gap. Therefore, we can arrive at the
following law for the difference in the effective mass from the
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FIG. 9. Band-structure diagram (left) and density of states (right) corresponding to the highest occupied and lowest unoccupied orbitals at
ν = 3 for the (18,9) CNT, at both the untwisted (γ = 0%) and highest twisted (γ = 2.8%) configurations.

untwisted configuration:

�m∗ = ±C̃γ sin(3ω), C̃ = 1.28 me, (86)

where me is the electron’s mass and ± signs correspond
to electrons and holes, respectively. Although the variation
of effective mass with uniaxial deformations of CNTs has
been studied before [119], to the best of our knowledge, the
corresponding study for torsional deformations has not been
performed heretofore. Note that the effective masses of the
charge carriers for untwisted zigzag type I and II nanotubes
are in good agreement with previous work [120]. Also note
that the effective mass is not well defined for the metallic
CNTs due to the linear nature of the dispersion relationship.
However, the first derivative can be used to calculate the
Fermi velocity, for which we obtain ∼8.3 × 105 m/s, a result
that is in good agreement with the experimental value of
8.1 × 105 m/s [121].

It is clear from the results above that the (13,13) and
(18,9) CNTs display a metal-to-insulator transition on appli-
cation of torsional deformations. In Fig. 9, choosing the (18,9)
nanotube as a representative example, while considering the
untwisted (γ = 0%) and highest twisted (γ = 2.8%) config-
urations, we plot at ν = 3 the band structure diagram and
density of states (DOS) corresponding to the highest occupied
and lowest unoccupied orbitals. For calculating the DOS, we
use the relation

D(λ) = 1

Nη

∑
Nη

∑
n

1

�
√

π
exp

[
−
(

λ − λn(ν, η)

�

)2]
, (87)

where Nη is the number of η points, the index n runs over the
orbitals for which the density of states is being plotted, and
� is the width of the Gaussian used to smear the Dirac delta
function, for which a value of 0.027 eV is employed here. It
is clear from the figure that the application of the torsional
deformation opens a band gap of 0.24 eV. The peaks in the
DOS correspond to van Hove singularities, which occur at the
extrema points of the band structure diagram. In particular, the
similar magnitudes of the two peaks at the band-gap location

provide further evidence that the effective mass of electrons
and holes is similar. Therefore, it can be concluded that tor-
sional deformations can cause metal-to-insulator transition
in CNTs without changing the relative effective mass of the
charge carriers, a result that has implications for nanoelec-
tromechanical devices [122].

C. Large deformation behavior

We now study the mechanical and electronic response
of the chosen CNTs to large torsional deformations. In this
regime, atomistic calculations suggest that instabilities can
develop, accompanied with the breaking of the underlying
symmetry [54,62]. However, we still employ the two-atom
unit cell, thereby maintaining the original cyclic and helical
symmetry throughout each simulation. This is motivated by
the desire to develop a fundamental understanding of the ideal
behavior of CNTs when subject to large twists, knowledge of
which is also likely important in experiments and applications
where these instabilities can be suppressed. Indeed, the ability
to perform linear response calculations within the current
first-principles symmetry-adapted formalism will provide an
avenue for identifying the onset and nature of the instabilities
from first principles, making it a worthy subject for future
research.

1. Mechanical response

First, we discuss the mechanical response of the CNTs
when subject to large torsional deformations, the results for
which are summarized in Fig. 10. The strain energy density
increases monotonically until it reaches a maximum value, the
corresponding twist is referred to as the ultimate twist, with
the rate of increase being higher for nanotubes with larger
diameter, suggesting that the torsional modulus also increases
with diameter in the nonlinear regime. The drop in strain
energy density beyond the ultimate twist can be attributed
to the use of the undeformed axial length (i.e., H ) in the
engineering definition of the energy density, which does not
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FIG. 10. Variation of strain energy density (hollow markers) and axial strain (filled markers) with respect to applied twist for the CNTs.
The phase transformation from the armchair to zigzag nanotube is illustrated at the bottom right of the figure.

account for the significant change in length that occurs during
large torsional deformations, particularly at the ultimate twist.

The appearance of axial strains during torsional deforma-
tions is a consequence of the Poynting effect [54]. This effect,
while negligible at small twists, continuously increases with
the applied twist, and has a sudden jump at the ultimate twist,
where a necking-type phenomenon is observed. The results
suggest that the amount of axial strain at the ultimate twist
is dependent on the chiral angle, as evidenced by the three
zigzag CNTs all having similar axial strain, and the two chiral
CNTs both having similar axial strain at the ultimate twist. We
also find that the ultimate strain, which is the shear strain at
the ultimate twist, decreases as the chiral angle increases, with
the ultimate twist being inversely proportional to the diameter
for zigzag nanotubes.

The drop in strain energy density and corresponding in-
crease in axial strain at the ultimate twist is noticeably larger
for the (13,13) nanotube relative to the other CNTs. This
is a consequence of the phase transformation of the (13,13)
armchair nanotube into the (13,0) zigzag nanotube, which
is irreversible from a geometric viewpoint in the context of
twist-controlled numerical experiments. We have verified that
such an irreversible phase transformation is not just restricted
to the (13,13) nanotube, but is also applicable to other arm-
chair nanotubes, namely, the (16,16) and (17,17) nanotubes.
This is in agreement with past studies that suggest CNTs
are susceptible to irreversible phase transformations [123],
with the plastic dilation arising from dislocations suggested
as a possible avenue [84]. It can therefore be concluded that
torsional deformations provide a possible mechanism for the
irreversible phase transformation from armchair to zigzag
nanotubes.

It is worth noting that, irrespective of the level of theory,
this work makes notable contributions towards (i) quantifying
the Poynting effect at large torsional deformations, particu-
larly at the ultimate strain, and (ii) discovering that irreversible
phase transformation from armchair to zigzag nanotubes can
be achieved via torsional deformations.

2. Electronic response

Finally, we discuss the electronic response of the chosen
CNTs when subject to large torsional deformations, the results
for which are presented in Fig. 11. Since the effective mass of
the charge carriers follows the same trend as the band gap,
it has been omitted from the figure for the sake of clarity. It
is clear that the band gap shows an oscillatory behavior, in
agreement with experiments [124]. In particular, the period
for the metal-insulator transition of the armchair and chiral
nanotubes follows the law

�α ≈ 4a

d2
t sin(3ω)

, (88)

which is also in good agreement with experimental measure-
ments [124]. Recall that a is the nearest-neighbor bond length
in the CNT. In addition to the above, it is worth noting that

FIG. 11. Variation of band gap with respect to applied twist for
the CNTs.
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among zigzag nanotubes, while type I [i.e., (16,0)] and type
III [i.e., (27,0)] display an increase followed by decrease of
band gap with twist, the type II [i.e., (20,0)] nanotube exhibits
the opposite behavior.

VIII. CONCLUDING REMARKS

In this work, we have developed a cyclic and heli-
cal symmetry-adapted formulation and large-scale parallel
implementation of real-space Kohn-Sham DFT for 1D nanos-
tructures, and applied it to study the mechanical and electronic
response of CNTs subject to torsional deformations. Specifi-
cally, utilizing a local electrostatic formulation and a semilo-
cal exchange correlation, we have derived symmetry-adapted
versions for the energy functional, variational problem gov-
erning the electronic ground state, Kohn-Sham equations,
Hellmann-Feynman atomic forces, and Hellmann-Feynman
axial stress, all written in terms of quantities restricted to
the fundamental domain. We have also developed a repre-
sentation for twisted nanotubes of arbitrary chirality within
this framework. In addition, we have developed a high-order
finite-difference parallel implementation capable of perform-
ing accurate cyclic and helical symmetry-adapted Kohn-Sham
calculations in both the static and dynamic settings, which
we have verified through numerical tests and comparisons
with traditional DFT codes. Using this implementation, we
have performed twist-controlled numerical experiments for a
representative set of chiral and achiral carbon nanotubes, in
both the small and large deformation regimes. In the linear
regime, we have found that the torsional moduli are propor-
tional to the cube of the diameter; metallic nanotubes undergo
metal-insulator transitions; and both the effective mass as well
as band gap are proportional to the shear strain and sine of
three times the chiral angle. In the nonlinear regime, we have
found that there is significant Poynting effect, particularly at
the chiral angle-dependent ultimate strain; torsional deforma-
tions provide a possible mechanism for the irreversible phase
transformation from armchair to zigzag nanotubes; and both
the effective mass as well as band gap have an oscillatory
behavior, with the period for metal-insulator transitions be-
ing inversely proportional to the square of the diameter and

sine of three times the chiral angle. Wherever available, we
have found that all the results are in good agreement with
literature, including theoretical and experimental studies. We
note that these results are obtained from DFT, with this work
making notable predictions towards predicting the effective
mass variations, Poynting effect at large strains, and phase
transformations through torsional deformations, considering
any level of theory.

This work opens an avenue for the accurate and highly
efficient first-principles study of 1D nanostructures that
have cyclic and/or helical symmetry. Applications of this
framework are not just limited to systems that inher-
ently have these symmetries [51,125], e.g., nanotubes,
nanowires, nanosprings, nanohelices, nanorings, nanocoils,
spirals, nanovines, DNA, proteins, and viruses, but also those
that result from the application of bending and torsional
deformations. In particular, the application of torsional defor-
mations for 1D nanostructures and the application of bending
deformations for 2D nanostructures results in systems with
these symmetries [51,70,71,102]. Given the large number
of such systems and their exotic properties, this work also
provides an avenue for the study of many interesting elec-
tromechanical couplings, e.g., the flexoelectric effect arising
due to the bending of 2D materials [103,126,127]. To this
end, a cyclic and helical symmetry-adapted linear response
formalism is likely to serve as an important tool, making it a
worthy topic for future work.
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APPENDIX A: ELECTROSTATIC SELF-INTERACTION
AND OVERLAP CORRECTION

The electrostatic energy term that corrects for the self-
interaction and overlap of the individual pseudocharge
densities can be written as [86,128]

Esc(R) = 1

2

ˆ
�

(b(x, R) + b̃(x, R))Vc(x, R) dx − 1

2

∑
J

ˆ
�

b̃J (x, RJ )ṼJ (x, RJ ) dx, (A1)

where b̃ = ∑
J b̃J is the total reference pseudocharge density due to all nuclei, with b̃J = − 1

4π
∇2ṼJ being the reference

pseudocharge density of the Jth nucleus corresponding to the potential ṼJ , and Vc = ∑
J (ṼJ − VJ ). Recall that b = ∑

J bJ is
the total pseudocharge density, where bJ = − 1

4π
∇2VJ is the pseudocharge density of the Jth nucleus with pseudopotential VJ .

The symmetry-adapted expression for the energy can be derived as follows:

Êsc(R̂,G) = 1

|G|Esc(R)

= 1

|G|

(
1

2

∑
�ζ,μ

ˆ
�ζ,μ◦�̂

(b(x, R̂,G) + b̃(x, R̂,G))Vc(x, R̂,G) dx

− 1

2

N∑
J=1

∑
�ζ ′ ,μ′

∑
�ζ,μ

ˆ
�ζ,μ◦�̂

b̃J
(
x, �−1

ζ ′,μ′ ◦ R̂J
)
ṼJ
(
x, �−1

ζ ′,μ′ ◦ R̂J
)

dx

)
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= 1

|G|

(
1

2

∑
�ζ,μ

ˆ
�̂

(b(�ζ,μ ◦ x, R̂,G) + b̃(�ζ,μ ◦ x, R̂,G))Vc(�ζ,μ ◦ x, R̂,G) dx

− 1

2

N∑
J=1

∑
�ζ ′ ,μ′

∑
�ζ,μ

ˆ
�̂

b̃J
(
�ζ,μ ◦ x, �−1

ζ ′,μ′ ◦ R̂J
)
ṼJ
(
�ζ,μ ◦ x, �−1

ζ ′,μ′ ◦ R̂J
)

dx

)

= 1

2

ˆ
�̂

(b(x, R̂,G) + b̃(x, R̂,G))Vc(x, R̂,G) dx

− 1

2|G|
N∑

J=1

∑
�ζ ′ ,μ′

∑
�ζ,μ

ˆ
�̂

b̃J
(
x, �−1

ζ+ζ ′,μ+μ′ ◦ R̂J
)
ṼJ
(
x, �−1

ζ+ζ ′,μ+μ′ ◦ R̂J
)

dx

= 1

2

ˆ
�̂

(b(x, R̂,G) + b̃(x, R̂,G))Vc(x, R̂,G) dx − 1

2

N∑
J=1

∑
�ζ,μ

ˆ
�̂

b̃J
(
x, �−1

ζ ,μ ◦ R̂J
)
ṼJ
(
x, �−1

ζ ,μ ◦ R̂J
)

dx, (A2)

where we have used the fact that b, b̃, and Vc inherit the symmetry of the structure, and that b̃J and ṼJ are spherically symmetric.
The symmetry-adapted expression for the corresponding atomic force can be derived as follows:

f sc
J (R̂,G) = − ∂Êsc(R̂,G)

∂R̂J

= − 1

2

ˆ
�̂

[(
∂b(x, R̂,G)

∂R̂J
+ ∂ b̃(x, R̂,G)

∂R̂J

)
Vc(x, R̂,G) + (b(x, R̂,G) + b̃(x, R̂,G))

∂Vc(x, R̂,G)

∂R̂J

]
dx

+ 1

2

∑
�ζ,μ

ˆ
�̂

(
∂ b̃J

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J
ṼJ
(
x, �−1

ζ ,μ ◦ R̂J
)+ b̃J

(
x, �−1

ζ ,μ ◦ R̂J
)∂ṼJ

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J

)
dx

= − 1

2

∑
�ζ,μ

ˆ
�̂

[(
∂bJ

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J
+ ∂ b̃J

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J

)
Vc(x, R̂,G)

+ (b(x, R̂,G) + b̃(x, R̂,G))
∂Vc,J

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J

]
dx+1

2

∑
�ζ,μ

ˆ
�̂

(
∂ b̃J

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J
ṼJ
(
x, �−1

ζ ,μ ◦ R̂J
)

+b̃J
(
x, �−1

ζ ,μ ◦ R̂J
)∂ṼJ

(
x, �−1

ζ ,μ ◦ R̂J
)

∂R̂J

)
dx

= 1

2

∑
�ζ,μ

Rμ
ϕR

ζ

�̃

{ ˆ
�̂

[(∇bJ
(
x, �−1

ζ ,μ ◦ R̂J
)+ ∇b̃J

(
x, �−1

ζ ,μ ◦ R̂J
))

Vc(x, R̂,G)

+ (b(x, R̂,G) + b̃(x, R̂,G))∇Vc,J
(
x, �−1

ζ ,μ ◦ R̂J
)]

dx −
ˆ

�̂

(∇b̃J
(
x, �−1

ζ ,μ ◦ R̂J
)
ṼJ
(
x, �−1

ζ ,μ ◦ R̂J
)

+b̃J
(
x, �−1

ζ ,μ ◦ R̂J
)∇ṼJ

(
x, �−1

ζ ,μ ◦ R̂J
))

dx

}

= − 1

2

∑
�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

(
bJ
(
x, �−1

ζ ,μ ◦ R̂J
)+ b̃J

(
x, �−1

ζ ,μ ◦ R̂J
))∇Vc(x, R̂,G)dx

+ 1

2

∑
�ζ,μ

Rμ
ϕR

ζ

�̃

ˆ
�̂

(b(x, R̂,G) + b̃(x, R̂,G))∇Vc,J
(
x, �−1

ζ ,μ ◦ R̂J
)

dx , (A3)

where we have used the fact that bJ and VJ are spherically symmetric. In addition, we have used integration by parts and the
divergence theorem.

It is worth noting that this work derives the cyclic and helical symmetry-adapted variants of the electrostatic overlap and
self-interaction correction energy, and the associated atomic force. In particular, symmetry adaption of this term is missing from
previous works based on cyclic [71] and helical symmetry [72]. As demonstrated previously [34,43], these terms are particularly
important in obtaining accurate results while employing the real-space local electrostatic formulation [86,128], a feature common
to all these works.
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APPENDIX B: COMMUTATION OF HAMILTONIAN AND CYCLIC AND HELICAL SYMMETRY OPERATOR

We now show that the Hamiltonian

H = − 1
2∇2 + Vxc + φ + Vnl (B1)

commutes with the cyclic and helical symmetry operator �ζ,μ ∈ G. To do so, we need to show that the commutator of H and
�ζ,μ,

[H , �ζ,μ] = H�ζ,μ − �ζ,μH
= (− 1

2∇2 + Vxc + φ + Vnl
)
�ζ,μ − �ζ,μ

(− 1
2∇2 + Vxc + φ + Vnl

)
= − 1

2 [∇2 , �ζ,μ] + [Vxc , �ζ,μ] + [φ , �ζ,μ] + [Vnl , �ζ,μ] , (B2)

is equal to zero. In proving this identity below, we use x to represent the position vector and f to denote any arbitrary function
on which the Hamiltonian and symmetry operators act.

The commutation relationship for the first term in Eq. (B2) can be derived as follows:

〈x|[∇2 , �ζ,μ]| f 〉 = 〈x|∇2�ζ,μ| f 〉 − 〈x|�ζ,μ∇2| f 〉

=
ˆ

�

〈x|∇2|x′〉〈x′|�ζ,μ| f 〉 dx′ − 〈x|�ζ,μ|g〉
[ˆ

�

|x′〉〈x′| dx′ = I , |g〉 = ∇2| f 〉
]

=
ˆ

�

〈x|∇2|x′〉 f
(
�−1

ζ ,μ ◦ x′) dx′ − g
(
�−1

ζ ,μ ◦ x
)

= ∇2
x f
(
�−1

ζ ,μ ◦ x
)− g

(
�−1

ζ ,μ ◦ x
)[∇x = ∂

∂x1
êx1 + ∂

∂x2
êx2 + ∂

∂x3
êx3

]
= ∇2

x f
(
R−μ

ϕ R
−ζ

�̃
x
)− g

(
R−μ

ϕ R
−ζ

�̃
x
)

= ∇T
y

(
R−μ

ϕ R
−ζ

�̃

)(
R−μ

ϕ R
−ζ

�̃

)T ∇y f (y) − g(y)
[
y = R−μ

ϕ R
−ζ

�̃
x
]

= ∇2
y f (y) − g(y)

= 0, (B3)

where the sixth equality is obtained by using the chain rule, and the seventh equality is obtained by using the orthonormality of
the rotation matrices.

The commutation relationship for the second term in Eq. (B2) can be derived as follows:

〈x|[Vxc , �ζ,μ]| f 〉 = 〈x|Vxc�ζ,μ| f 〉 − 〈x|�ζ,μVxc| f 〉

=
ˆ

�

〈x|Vxc|x′〉〈x′|�ζ,μ| f 〉 dx′ − 〈x|�ζ,μ|g〉 [|g〉 = Vxc| f 〉]

=
ˆ

�

〈x|Vxc|x′〉 f
(
�−1

ζ ,μ ◦ x′) dx′ − g
(
�−1

ζ ,μ ◦ x
)

= Vxc(x) f
(
�−1

ζ ,μ ◦ x
)− g

(
�−1

ζ ,μ ◦ x
)

= Vxc(x) f
(
�−1

ζ ,μ ◦ x
)− Vxc

(
�−1

ζ ,μ ◦ x
)

f
(
�−1

ζ ,μ ◦ x
)

= Vxc(x) f (y) −
[
εxc(ρ(y), |∇yρ(y)|) + ρ(y)

∂εxc(ρ(y), |∇yρ(y)|)
∂ρ(y)

− ∇y ·
(

ρ(y)

|∇yρ(y)|
∂εxc(ρ(y), |∇yρ(y)|)

∂ (|∇yρ(y)|) ∇yρ(y)

)]
f (y)

[
y = �−1

ζ ,μ ◦ x
]

= Vxc(x) f (y) −
[
εxc(ρ(x), |∇xρ(x)|) + ρ(x)

∂εxc(ρ(x), |∇xρ(x)|)
∂ρ(x)

− (
R−μ

ϕ R
−ζ

�̃

)T ∇x ·
(

ρ(x)

|∇xρ(x)|
∂εxc(ρ(x), |∇xρ(x)|)

∂ (|∇xρ(x)|)
(
R−μ

ϕ R
−ζ

�̃

)T ∇xρ(x)

)]
f (y)

= Vxc(x) f (y) − εxc(ρ(x), |∇xρ(x)|) + ρ(x)
∂εxc(ρ(x), |∇xρ(x)|)

∂ρ(x)
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− ∇x ·
(

ρ(x)

|∇xρ(x)|
∂εxc(ρ(x), |∇xρ(x)|)

∂ (|∇xρ(x)|) ∇xρ(x)

)
f (y)

= Vxc(x) f (y) − Vxc(x) f (y)

= 0, (B4)

where the fourth equality is obtained using the fact that Vxc is a diagonal operator, and the seventh equality is obtained by using
the fact that electron density and the norm of its gradient are commensurate with the symmetry of the structure, while the gradient
of the electron density transforms as the position vector when acted upon by the symmetry operator.

The commutation relationship for the third term in Eq. (B2) can be derived as follows:

〈x|[φ , �ζ,μ]| f 〉 = 〈x|φ�ζ,μ| f 〉 − 〈x|�ζ,μφ| f 〉

=
ˆ

�

〈x|φ|x′〉〈x′|�ζ,μ| f 〉 dx′ − 〈x|�ζ,μ|g〉[|g〉 = φ| f 〉]

= φ(x) f
(
�−1

ζ ,μ ◦ x
)− φ

(
�−1

ζ ,μ ◦ x
)

f
(
�−1

ζ ,μ ◦ x
)

= φ(x) f
(
�−1

ζ ,μ ◦ x
)− φ(x) f

(
�−1

ζ ,μ ◦ x
)

= 0, (B5)

where the third equality is obtained using the fact that φ is a diagonal operator, and the fourth equality is obtained by using the
fact that φ is commensurate with the symmetry of the structure [Eq. (19)].

The commutation relationship for the fourth term in Eq. (B2) can be derived as follows:

〈x|[Vnl , �ζ,μ]| f 〉 = 〈x|Vnl�ζ,μ| f 〉 − 〈x|�ζ,μVnl | f 〉

= 〈x|
∑

J

PJ∑
p=1

γJ;p|χJ;p〉〈χJ;p|�ζ,μ f 〉 − 〈x|�ζ,μ

∑
J

PJ∑
p=1

γJ;p|χJ;p〉〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�

χ∗
J;p(y, RJ )�ζ,μ f (y) dy −

∑
J

PJ∑
p=1

γJ;p〈x|�ζ,μχJ;p〉〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�

χ∗
J;p(y, RJ ) f

(
�−1

ζ ,μ ◦ y
)

dy −
∑

J

PJ∑
p=1

γJ;pχJ;p
(
�−1

ζ ,μ ◦ x, RJ
)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�−1
ζ ,μ◦�

χ∗
J;p(�ζ,μ ◦ z, RJ ) f (z) dz −

∑
J

PJ∑
p=1

γJ;pχJ;p
(
�−1

ζ ,μ ◦ x, RJ
)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�

χ∗
J;p(�ζ,μ ◦ z, RJ ) f (z) dz −

∑
J

PJ∑
p=1

γJ;pχJ;p
(
�−1

ζ ,μ ◦ x, RJ
)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�

χ∗
J;p(�ζ,μ ◦ z, �ζ,μ ◦ RJ ′ ) f (z) dz −

∑
J

PJ∑
p=1

γJ;pχJ;p
(
�−1

ζ ,μ ◦ x, �−1
ζ ,μ ◦ RJ ′′

)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )
ˆ

�

χ∗
J ′;p(z, RJ ′ )e−imp(ζ �̃+μϕ) f (z)dz −

∑
J

PJ∑
p=1

γJ;pχJ ′′;p(x, RJ ′′ )eimp(−ζ �̃−μϕ)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ;p(x, RJ )e−imp(ζ �̃+μϕ)〈χJ ′;p| f 〉 −
∑

J

PJ∑
p=1

γJ;pχJ ′′;p(x, RJ ′′ )e−imp(ζ �̃+μϕ)〈χJ;p| f 〉

=
∑

J

PJ∑
p=1

γJ;pχJ ′′;p(x, RJ ′′ )e−imp(ζ �̃+μϕ)〈χJ;p| f 〉 −
∑

J

PJ∑
p=1

γJ;pχJ ′′;p(x, RJ ′′ )e−imp(ζ �̃+μϕ)〈χJ;p| f 〉,

= 0 , (B6)
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where the sixth equality is obtained by using the fact that the
domain remains unchanged upon the action of the symme-
try operator; the seventh equality is obtained by using the
fact that every atom can be uniquely written as the action
of a symmetry operator on some other atom in the system;
the eighth equality is obtained by using the fact that every
nonlocal projector can be written as the product of a radial
function and a spherical harmonic, and the action of �ζ,μ on
spherical harmonics results in picking up of a constant phase
factor eimp(ζ �̃+μϕ), where mp is the magnetic quantum number
associated with the pth projector of the atom; and the ninth
equality is obtained using the fact that all images of an atom
have the same normalization constant and projectors.

It therefore follows from Eqs. (B2)–(B5) that

[H , �ζ,μ] = 0, (B7)

thereby proving that the Hamiltonian operator commutes with
the cyclic and helical symmetry operators. This work proves
this result, with previous works on cyclic [71] and helical
[72] symmetry adaption assuming its validity. Indeed, the cur-
rent proof directly extends to the local exchange-correlation
functionals adopted there [71,72], which offers considerable
simplification in this regard.

APPENDIX C: RADIAL BOUNDARY CONDITIONS
FOR ELECTROSTATIC POTENTIAL

The Dirichlet boundary conditions prescribed on the
electrostatic potential φ, solution of the symmetry-adapted
Poisson problem [Eq. (37)], in the radial direction are of the
form

φ(r � R1, θ̃ , z, R̂,G) = φ1, φ(r � R2, θ̃ , z, R̂,G) = φ2,

(C1)

where appropriate values of φ1 and φ2 need to deter-
mined. The simplest choice is φ1 = φ2 = 0, an approximation
adopted in previous work [71,72], which is likely to work well
in systems that do not have a significant dipole moment across
the surfaces of the structure. However, when such a dipole mo-
ment exists, as is commonly encountered in 1D nanostructures
due to the flexoelectric effect [126,127,129], convergence of
the results with vacuum can be extremely slow, if at all. This
is a consequence of an artificial electric field being intro-
duced across the surfaces of the structure when zero-Dirichlet
boundary conditions are employed. To overcome this, here
we develop boundary conditions that account for the dipole
moment contribution to the electrostatic potential.

As shown in Sec. III B, the electrostatic potential φ,
electron density ρ, and pseudocharge density b inherit the
symmetry of the structure, i.e., for f ∈ {φ, ρ, b}, we have the
following relations in helical coordinates:

f (r, θ̃ + �̃, z) = f (r, θ̃ , z), f (r, θ̃ , z + H ) = f (r, θ̃ , z).
(C2)

Given the periodic nature of the function in the the θ̃

and z directions, it admits a Fourier decomposition of

the form

f (r, θ̃ , z) = f̄ (r) +
∑

m,n∈Z\0

f̄m,n(r) exp

(
i
2πmθ̃

�̃
+ i

2πnz

H

)
,

(C3)

where

f̄ (r) = 1

�̃H

ˆ
z

ˆ
θ̃

f (r, θ̃ , z) d θ̃ dz. (C4)

Substituting this expansion for ρ, b, and φ into the Poisson
equation [Eq. (37)], we arrive at the following differential
equation involving the first term in each Fourier expansion:

− 1

4π

(
d2φ̄(r)

dr2
+ 1

r

dφ̄(r)

dr

)
= ρ̄(r) + b̄(r), (C5)

whose solution in integral form can be written as

φ̄(r) = −4π

ˆ
[ρ̄(r′) + b̄(r′)]G(r, r′) dr′, (C6)

where the Green’s function

G(r, r′) = − 1

2π

{
ln r′, for r < r′

ln r, for r > r′.
(C7)

Thereafter, we arrive at the following boundary conditions:

φ1 = φ̄(r � R1) = 2
ˆ R2

R1

[ρ̄(r′) + b̄(r′)] ln r′ dr′, (C8)

φ2 = φ̄(r � R2) = 2 ln r
ˆ R2

R1

[ρ̄(r′) + b̄(r′)] dr′. (C9)

Note that we have neglected the higher-order terms in the
expansion since the current approximation already provides
rapid convergence with vacuum for systems with a dipole
moment. Also note that a procedure similar to the one de-
scribed here has been used previously to obtain the boundary
conditions for slabs in real-space DFT [130].

APPENDIX D: SYMMETRY-ADAPTED QUANTUM
MOLECULAR DYNAMICS

We now demonstrate that Cyclix-DFT is capable of
performing symmetry-adapted quantum molecular dynamics
(QMD) simulations. For this study, we perform a NVE mi-
crocanonical ensemble simulation for the (16,0) CNT with a
32-atom unit cell generated by applying the symmetry op-
eration �ζ,μ on the fundamental domain and atoms of the
nanotube, where ζ ∈ {0, 1} and μ ∈ {0, 1, . . . , 7}. Note that
even though the nanotube is achiral, the above choice results
in α �= 0, making it representative of general QMD simula-
tions within Cyclix-DFT. We employ a mesh size of 0.25
bohrs, vacuum of 7 bohrs, Nη = 1 for Brillouin zone integra-
tion, initial ionic temperature of 315.773 K, time step of 1
fs, initial velocities randomly assigned according to Maxwell-
Boltzmann distribution, and the Leapfrog method [131] to
integrate the equations of motion. In Fig. 12, we present the
evolution of the total energy of the system, which is the sum of
the electronic Helmholtz free energy and the ionic kinetic en-
ergy. It is clear that there is excellent conservation in the total
energy, with the standard deviation and drift being 5.2 × 10−5
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FIG. 12. Variation in total energy for a 32-atom unit cell of
a (16,0) carbon nanotube during a NVE symmetry-adapted QMD
simulation. The inset magnifies the variation in total energy between
0.5 and 0.7 ps.

Ha/atom and 6 × 10−5 Ha/atom-ps, respectively, further ver-
ifying that there is no systematic error in the formulation and
implementation of Cyclix DFT. Therefore, Cyclix-DFT can be
used to efficiently study the dynamic behavior of systems with
cyclic and helical symmetry. In particular, the highly efficient
nature of Cyclix-DFT, where the wall time associated with the
solution of the Kohn-Sham equations can be brought down
to a few seconds, enables simulations that were previously
intractable.

FIG. 13. Illustration of a carbon nanocoil.

APPENDIX E: CYCLIC AND HELICAL
SYMMETRY-ADAPTED STUDY OF CARBON NANOCOIL

In this work, we have focused on applying the cyclic
and helical symmetry-adapted formulation and implementa-
tion of Kohn-Sham DFT to carbon nanotubes. However, the
method is not restricted to this type of system, and is gen-
erally applicable to all 1D nanostructures that have cyclic
and/or helical symmetry. To demonstrate this, we now verify
the accuracy of Cyclix-DFT for carbon nanocoils [132,133].
Specifically, we consider a prototype carbon nanocoil with
N = 1 atom in the fundamental domain, N = 1 cyclic group
order, and intrinsic twist of α = 0.2094 rad/bohrs, as il-
lustrated in Fig. 13. We compare the results obtained by
Cyclix-DFT with highly converged SPARC [8,34,43] and
ABINIT [111] calculations, while employing a mesh size of
0.2 bohrs and 60 η points in Cyclix-DFT. In comparison
to SPARC, we find that there is very good agreement of
4 × 10−5 Ha/atom, 1 × 10−6 Ha/bohrs, and 0.1% in energy,
forces, and stress, respectively. The corresponding agreement
with ABINIT is 2 × 10−5 Ha/atom, 2 × 10−6 Ha/bohrs, and
0.1%, respectively. These differences are well within the ac-
curacy targeted in DFT calculations, further verifying the
accuracy of the proposed symmetry-adapted formulation and
implementation.
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