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Exactly solvable model of Fermi arcs and pseudogap
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We introduce a very simple and exactly solvable model that supports Fermi arcs in its ground state and
excitation spectrum. These arcs come in pairs, and merge into what we call a pseudo-Fermi surface along which
fermions are gapped; this fermion gap is naturally identified as a pseudogap. A comparison will be made with
the phenomenology of high-temperature cuprate superconductors.
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I. INTRODUCTION

High transition temperature (Tc) cuprate superconductors
remain a central topic of condensed matter research since
their discovery in the 1980s. Among their many fascinating
and mysterious properties [1], the existence of pseudogaps
and Fermi arcs in the underdoped regions of their phase di-
agrams is particularly intriguing [2]. Both of them indicate
the breakdown of the standard Fermi-liquid [3] description of
the nonsuperconducting state above Tc, on which the Bardeen-
Cooper-Schrieffer (BCS) theory [3] of the superconducting
state is founded. Such non-Fermi-liquid behavior is also seen
in many other properties including the lack of coherence in
quasiparticle excitations and unusual transport properties in
the normal state [1,2], which are likely related to the physics
of the neighboring Mott insulator phase. Undertanding such
non-Fermi-liquid physics, including (and in particular) the
origin of Fermi arcs and pseudogaps, is an exciting challenge
we face.

In this paper we present an extremely simple and exactly
solvable model, and show that Fermi arcs and pseudogaps
appear very naturally (and hand in hand) in its ground state
and excitation spectrum. Our model is a variant of a model
introduced by Hatsugai and Kohmoto (HK) [4] (a model sim-
ilar to that of HK was considered earlier by Baskaran [5]). We
note the HK model is also the basis of a recent theory of super-
conductivity in doped Mott insulators [6], building on earlier
phenomenological work [7]. We would like to emphasize
upfront that it is not our purpose to present a comprehensive
theory for the cuprate phenomenology based on such a simple
model, which, as we will explain in more detail below, misses
certain important aspects of the cuprate physics. Its value is
providing a proof of principle, namely that Fermi arcs and
pseudogaps can exist. Given their importance, we believe a
simple model that provides an existence proof is highly de-
sirable. It may also provide a starting point for building more
realistic models that can eventually lead to a comprehensive
understanding of the extremely rich phenomenology of the
cuprates.

II. MODEL AND ITS SOLUTION

We consider the following model,

H =
∑

k

[εk(nk↑ + nk↓) + uknk↑nk↓], (1)

where the single particle energy εk is measured from the
chemical potential, and nkσ is the fermion occupation for mo-
mentum k and spin σ =↑,↓. For simplicity and concreteness,
we consider, e.g., a square lattice with (anisotropic) nearest-
neighbor hopping, resulting in

εk = −2tx cos(kx ) − 2ty cos(ky) − μ, (2)

where tx and ty are hopping along the x and y directions, and μ

is the chemical potential. If the interaction energy uk = U is
a constant, (1) reduces to the HK model [4]. The momentum
dependence of uk breaks the very special center-of-mass con-
servation of the HK interaction, and can be understood as a
renormalization of the dispersion of the interacting pair. Since
such an interaction is expected to emerge at low energy from
the interplay of single particle dispersion and a more realistic
two-body interaction, the existence of such dispersion renor-
malization is physically very natural. Again, for simplicity
and concreteness, we consider

uk = −2Tx cos(kx ) − 2Ty cos(ky) + U, (3)

where Tx and Ty may be understood as the renormalization
of hopping of the center of mass of the interacting pair. The
solvability of the model lies in the fact that nk↑ and nk↓ are
conserved quantities. We emphasize the details of the momen-
tum dependence of Eqs. (2) and (3) are not important for our
discussions below.

If uk is either positive or negative definite, the solution
is qualitatively very similar to that of the HK model. In the
following, we show the situation is very different when uk
changes sign in momentum space. In particular, when the
uk = 0 surface intersects with the noninteracting Fermi sur-
face εk = 0, the ground state supports Fermi arcs.
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FIG. 1. (a) Solutions of Eqs. (5) (black line), (6) (red line), (7)
(blue line), and (8) (green line). We assume the quantities that vanish
along these loops are negative inside and positive outside. (b) Occu-
pation pattern corresponding to (a). The black and red lines are Fermi
arcs while the blue lines are pseudo-Fermi surfaces along which there
is a pseudogap.

Defining nk = nk↑ + nk↓, we find in the ground state

nk =
⎧⎨
⎩

0, εk > 0 and 2εk + uk > 0,

1, εk < 0 and εk + uk > 0,

2, εk + uk < 0 and 2εk + uk < 0.

(4)

The surfaces (or lines) in momentum space across which n
jumps are given by

εk = 0, (5)

εk + uk = 0, (6)

2εk + uk = 0. (7)

Obviously all three lines intersect with the loop

uk = 0 (8)

at the same points. In Fig. 1(a) all four lines are plotted in a
simple representative case, resulting in the occupation pattern
shown in Fig. 1(b).

We now distinguish two different types of boundaries in
Fig. 1(b).

�nk = 2: This case looks (superficially) as the Fermi
surface of the noninteracting Fermi gas, but is not a Fermi sur-
face, because single fermion excitations are actually gapped
there with gap |uk|/2. As a result, we refer to such boundaries
as pseudo-Fermi surfaces, and identify the fermion gap there
as the pseudogap (to be distinguished from the superconduct-
ing gap; more on this point later).

�nk = 1: This case corresponds to our Fermi arcs, and are
Fermi surfaces in the sense that single fermion excitations are
gapless there.

Having identified the Fermi arcs and pseudogap regions in
our model, a few comments are in order.

As pointed out by HK [4], the region with nk = 1 (sur-
rounded by the Fermi arcs in our case) has a massive
degeneracy associated with a twofold degeneracy for each k.
This is an artifact of the model. In fact, this degeneracy can be
easily removed by introducing a Zeeman splitting �Z between

up- and down-spin fermions,

HZ = �Z

∑
k

nk↑ (9)

= �Z

2

∑
k

(nk↑ − nk↓) + �Z

2

∑
k

(nk↑ + nk↓), (10)

and our previous analysis goes through exactly the same way,
as long as one replaces uk by uk + �Z (note the last term
above results in a shift of chemical potential μ). Then the two
Fermi arcs surrounding the nk = 1 region are Fermi surfaces
for the up- and down-spin fermions, respectively. Even if
�Z = 0, as we will demonstrate later, ferromagnetic (Stoner)
instability will remove this degeneracy when a generic weak
repulsive interaction is present. For the ease of discussion
we will assume such a splitting is present (regardless of its
origin), although most of our conclusions hold even when the
massive degeneracy mentioned above is present.

The pseudogap is clearly a singlet pairing gap. However,
it is not due to a fluctuating BCS pairing order parameter. In
fact, to (literally) the opposite, the pairing here is between up-
and down-spin fermions at the same momentum, instead of
opposite momenta as in BCS. The pairing here could perhaps
be viewed as an extreme version of a fluctuating pair density
wave (PDW) [8], in which every pair has a different (and
very large) momentum. We note a fluctuating PDW has been
proposed by Lee and co-workers [9] to be the mother of many
competing states in underdoped cuprates, and holds the key to
Fermi arcs and pseudogaps.

As discussed earlier, Zeeman splitting results in an effec-
tive increase of uk. This widens the Fermi arcs at the expense
of the pseudo-Fermi surface (or pseudogap region). More
quantitatively, the pseudogap as well as pseudo-Fermi surface
are eliminated when

�Z = |umin| = �pseudo, (11)

where umin is the (negative) minimum value of uk along
the pseudo-Fermi surface, whose magnitude is the maxi-
mum value of pseudogap �pseudo. Such suppression of the
pseudogap by Zeeman splitting, and in particular the simple
linear scaling with �Z , have indeed been seen in the cuprates
[10].

III. ANGLE-RESOLVED PHOTOEMISSION
SPECTROSCOPY AND LUTTINGER SUM RULE

An angle-resolved photoemission spectroscopy (ARPES)
experiment [2] measures the negative energy portion (ω <

0, representing states occupied by electrons) of the electron
spectral function, which is the imaginary part of the retarded
electron Green’s function,

G(ω, k) = 1

ω − εk + iδ
, (12)

if nk = 0 in the ground state,

G(ω, k) = 1

ω − εk − uk + iδ
, (13)
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if nk = 2 in the ground state, and

G↑(ω, k) = 1

ω − εk − uk + iδ
, (14)

G↓(ω, k) = 1

ω − εk + iδ
, (15)

if nk = 1 in the ground state. In the above, δ is an infinitesimal
positive, and we took the limit �Z → 0 so that we do not need
to distinguish between up- and down-spin Green’s functions
in regions with nk = 0 and nk = 2 in the ground state. None
of the conclusions below depends on this simplification. Due
to the single pole structure, the spectral function contains a
single delta-function peak in our model.

ARPES will find the Fermi arcs exactly the same way
ordinary Fermi surfaces are identified. It will (in principle)
see both branches (and therefore a closed surface) if it is
not spin resolved, although not necessarily resolving them if
their separation is smaller than the momentum resolution of
ARPES. On the other hand, a spin-resolved ARPES will see
one branch but not the other, resulting in open arcs.

On the other hand, ARPES will find a gap along the
pseudo-Fermi surface, which, for |uk| small compared to
Fermi energy, will be very close to the Fermi surface of
noninteracting fermions. ARPES cannot distinguish this gap
from the superconducting gap; since there is no supercon-
ducting order in our ground state, it should be identified as
a pseudogap. Indeed, it suppresses the density of states and
various thermodynamic response functions compared with
noninteracting fermions or a Fermi liquid.

It should be emphasized that ARPES finds very broad
electron spectral functions in the underdoped cuprates, with
very small weight in a coherent quasiparticle peak (if present)
[2]. This means there is very strong scattering that renders
single particle excitations incoherent. This important piece of
physics, which is related to the fact that underdoped cuprates
are doped Mott insulators, is missing in our model.

Since our Fermi arcs are not closed, Luttinger’s theorem
(also known as the Luttinger sum rule) [11] is not satisfied in
the same way as in a Fermi liquid, where the Fermi surfaces
are closed. This is, of course, just one of many indications
that we have a non-Fermi liquid here. The way the Luttinger
sum rule gets satisfied here involves a combination of the
Fermi arcs and the pseudo-Fermi surfaces. This is because the
fermion Green’s function at zero energy G(ω = 0, k) changes
sign across the pseudo-Fermi surfaces (just as real Fermi sur-
faces), even though the fermion spectral weight there is zero
(instead of a delta-function peak as for real Fermi surfaces of
a Fermi liquid, and reflecting the pseudogap). Reversing the
logic, the Luttinger sum rule requires the coexistence of open
Fermi arcs and pseudo-Fermi surface(s) of the type discussed
here.

IV. QUANTUM OSCILLATIONS

The conclusions above follow straightforwardly from the
exact solution of (1). In this section we discuss a more subtle
question, namely how the system responds to a perpendicu-
lar magnetic field, which gives rise to quantum oscillations
and represents another important probe of the pseudogap and
Fermi arcs [1,12]. Here, we focus on the orbital coupling

FIG. 2. The momentum space trajectories of the three types of
low-energy excitations of our model. Solid lines represent semiclas-
sical trajectories while dotted lines represent tunneling through a
forbidden region.

of the magnetic field, and ignore its (experimentally much
weaker) Zeeman effect which, as discussed earlier, is straight-
forward to include.

We have three types of low-energy excitations in our
model: (i) spin-up fermions, whose dispersion is

E↑
k = εk, (16)

living near the black Fermi arcs of Fig. 1(b); (ii) spin-down
fermions, whose dispersion is

E↓
k = εk + uk, (17)

living near the red Fermi arcs of Fig. 1(b); and (iii) singlet
fermion pairs, whose dispersion is

Epair
2k = 2εk + uk, (18)

living near the pseudo-Fermi surfaces (blue) of Fig. 1(b). In
the presence of a magnetic field B, each of them propagate
around their respective isoenergy contours following the semi-
classical equations of motion [3],

dk
dt

= − q

h̄c
vk × B, (19)

h̄vk = ∇k(Ek ), (20)

where q = e for single fermions and q = 2e for the singlet
pair. If there were no interaction/restriction among them,
these would be the contours illustrated in Fig. 1(a). Quantizing
such periodic motion gives rise to Landau levels and density
of states oscillating periodically with 1/B with a periodicity
determined by the area of these contours [3]. The situation
here is quite different: As each of them arrives at the point
where uk = 0, continuing with the trajectory given by their
dispersion would take them into a region forbidden either by
energy conservation or Pauli blocking. This is quite similar
to a quantum mechanical particle following a semiclassi-
cal trajectory hitting an energy barrier. The resolution is, of
course, that the particle quickly tunnels through the classically
forbidden region and lands at the closest classically allowed
point (due to the chirality imposed by the magnetic field,
backscattering is also forbidden), and then continues with the
semiclassical motion. This results in the momentum space
trajectories illustrated in Fig. 2. Since the tunneling process
is expected to be very quick, the periods of such motions are
much shorter because the particles traverse only a small part
of their semiclassical trajectories. As a result, the quantum os-
cillations resulting from such trajectories have much smaller
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effective “areas.” If interpreted in the same way as quantum
oscillations in Fermi liquids, one would conclude there exist
Fermi “pockets” that are much smaller than the original Fermi
surface satisfying the Luttinger sum rule. This is indeed what
is seen in the pseudogap region of the cuprate phase diagram
[12].

We note among the many competing theories of small
Fermi pockets [1], that ours belongs to the group in which
there is no broken translation symmetry (and the correspond-
ing Fermi-surface folding). Within this group the theory of
Ref. [13] is perhaps the closest to ours in spirit. We would like
to emphasize Ref. [13] models the pseudogap by a supercon-
ducting gap (which is argued to lose phase coherence at long
length scales so that the system is not a superconductor); in
our model the pseudogap has nothing to do with the super-
conducting gap, and (as noted earlier) can be viewed as due to
a pairing fluctuation of the PDW type instead.

V. ROBUSTNESS OF RESULTS AND POSSIBLE
SUPERCONDUCTING INSTABILITY

In this section we demonstrate the robustness of the results
that follow from the exact solution of (1) against more generic
repulsive interactions. To this end we consider a perturbing
Hubbard interaction,

H ′ = J
∑

i

ni↑ni↓ = J

N

∑
kk′q

c†
k+q↑c†

k′−q↓ck′↓ck↑, (21)

where i is a site index, J is the Hubbard interaction strength
(the unusual notation is going to be justified soon), and N is
the system size. To linear order in J , we only need to evaluate
H ′ in the Fock subspace in which H of (1) is degenerate,

H ′ = (J/N )
∑
(kk′ )

[ f (nk, nk′ ) − 2Sk · Sk′ ], (22)

where Sk is the spin operator associated with momen-
tum k, taking values s = 1/2 for nk = 1 and s = 0 for
nk = 0, 2; f (0, 0) = f (0, 1) = f (1, 0) = 0, f (1, 1) = 1/2,
f (1, 2) = f (2, 1) = 1, and f (2, 2) = 2. The summation is
over all pairs (kk′). The ferromagnetic coupling in (22) for
J > 0 results from the direct exchange in momentum space;
this is opposite to what happens in the usual Hubbard model
at half filling, where a superexchange in real space results
in an antiferromagnetic coupling [3]. As anticipated earlier,
this ferromagnetic coupling fully polarizes the fermion spins
in the nk = 1 region and removes the massive ground state
degeneracy of (1). Due to the long-range nature of the spin-
spin interaction (in momentum space) in (22), there are no
gapless spin-wave excitations here. The origin of such unusual
behavior can be traced to the long-range nature of the uk
interaction (in real space) in (1). As a result, this spontaneous
magnetization has essentially the same effect as a Zeeman
splitting. We thus expect our earlier results are robust for
J > 0.

The situation is quite different for J < 0 (attractive Hub-
bard interaction). In this case the spin-spin interaction in (22)

is antiferromagnetic, and highly frustrated due to its long-
range nature. Due to this frustration any state with Stot =∑

k Sk = 0 is a ground state, and the massive ground state
degeneracy is reduced but not lifted at linear order in J , and
remains exponentially large in system size. The fate of the
ground state is thus determined by higher-order processes in J .
To this end we expect the BCS pairing interaction considered
in Ref. [6] to dominate, resulting in a superconducting ground
state, in whose spectrum the superconducting gap coexists
with the pseudogap discussed earlier. We leave a detailed
analysis of this case to future work.

VI. SUMMARY AND DISCUSSIONS

To summarize, we have presented a simple model that
gives rise to Fermi arcs and pseudogaps, in ways that are qual-
itatively consistent with the phenomenology of underdoped
cuprates, especially those of ARPES and quantum oscillation
experiments. As emphasized earlier it is not our intention to
present a comprehensive theory of cuprate phenomenology
here. On the other hand, we believe such a simple model is
interesting in its own right, and may well contain the basic
ingredients of the strong correlation physics responsible for
the relevant phenomenology of cuprates and other systems.

We could attempt a more quantitative comparison with
cuprate phenomenology, by choosing an appropriate momen-
tum, doping, and perhaps even temperature dependence of the
parameters of our model. For example, Fig. 1 corresponds to
εk and uk with a C2 symmetry, instead of C4 symmetry that
is appropriate for (some of the) cuprates. It is straightforward
to enlarge their symmetry, which will result in four instead
of two pairs of Fermi arcs. One can in principle force a very
detailed agreement, by fine tuning εk and uk in ad hoc ways.
On the other hand, as stated before, the main point of the
present work is providing a proof of principle, and a possible
starting point for future work. Fine tuning would not add any
additional insight, but might dilute our main message instead.
On that note let us reiterate that there is also important cuprate
physics missing in our model, especially those associated with
the Mott insulator. In addition to those already mentioned,
we add that antiferromagnetism plays a very important role
in cuprates, while in our model it appears to be suppressed;
instead, ferromagnetism is found with generic repulsive in-
teractions. Understanding the possible interplay between the
Fermi arcs/pseudogap and Mott physics in the context of our
model is a very interesting direction for future work.
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