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Lucila Peralta Gavensky , Gonzalo Usaj , and C. A. Balseiro
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA)–Universidad Nacional de Cuyo

(UNCUYO), 8400 Bariloche, Argentina
and Instituto de Nanociencia y Nanotecnología (INN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),

8400 Bariloche, Argentina

(Received 29 October 2020; revised 31 December 2020; accepted 13 January 2021; published 25 January 2021)

We study the transport properties of a voltage-biased Josephson junction where the BCS superconducting
leads are coupled via the edges of a quantum Hall sample. In this scenario, an out-of-equilibrium Josephson
current develops, which is numerically studied within the Floquet-Keldysh Green’s function formalism. We
particularly focus on the time-averaged current as a function of both the bias voltage and the magnetic flux
threading the sample and analyze the resonant multiple Andreev reflection processes that lead to an enhancement
of the quasiparticle transmission. We find that a full tomography of the dc current in the voltage-flux plane allows
for a complete spectroscopy of the one-way edge modes and could be used as a hallmark of chiral edge mediated
transport in these hybrid devices.
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I. INTRODUCTION

The possibility of marrying superconductivity with the
quantum Hall (QH) effect has brought to the table a plethora
of novel physical phenomena: from the emergence of Andreev
edge states [1,2] and crossed Andreev conversion [3,4] to
realizations of non-Abelian anyons [5,6] and chiral Majorana
fermions [7,8]. In a series of recent experiments [9–15], su-
perconducting correlations were successfully induced at the
edges of integer quantum Hall samples, paving the way to a
new generation of such promising hybrid devices.

Several theoretical works have studied the mechanisms
by means of which an equilibrium supercurrent flow can be
established in Josephson junctions bridged by one-way edge
states [16–20]. The insulating nature of the bulk of the sample
and the breaking of time-reversal symmetry cause the transfer
of Cooper pairs to be realized via hybrid electron-hole edge
modes that propagate chirally along the perimeter of the Hall
bar [1,15]. In this scenario, the Josephson current-phase re-
lationship is expected to behave in a peculiar manner as a
function of the flux variations in the Hall device. In particular,
the Fraunhofer pattern—which reveals the behavior of the
critical current as a function of the magnetic field threading
the sample—is theoretically predicted to present periodic os-
cillations as a function of the normal flux quantum �0 = hc/e
[16–18], a clear hallmark of chiral edge mediated transport.

While much has been said about the equilibrium properties
of these Hall based junctions, their response to inherently out-
of-equilibrium transport experiments still remains a largely
unexplored field. Our main aim in this paper is to partially
fill this gap by analyzing the transport properties of a voltage-
driven superconductor (SC)-QH-SC Josephson junction such
as the one depicted in Fig. 1. The time-averaged current
of voltage-biased Josephson junctions is typically endowed
with a rich subharmonic gap structure due to the presence
of multiple Andreev reflection (MAR) processes that allow

the transfer of quasiparticles from one terminal to the other
[21–24]. These signatures in the current-voltage character-
istic have been widely employed as a spectroscopy of the
junction itself in a variety of superconducting devices in-
volving single-level quantum dots [25–27], molecules [28],
spin-split superconductors [29], and even topological excita-
tions [30–32].

In this paper, we theoretically investigate the current-
voltage characteristic in our proposed QH setup as a function
of the flux variations in the Hall bar and show how it could be
used to unveil the presence of chiral edge mediated transport
in the sample. We find that the time-averaged dc current of
the device exhibits a series of distinctive resonances which
are periodic with the superconducting flux quantum �s

0 =
�0/2, as opposed to the nondissipative equilibrium Josephson
supercurrent. We interpret the appearance of this enhanced
quasiparticle current within a Floquet multibarrier picture of
the resonant MAR processes. For voltages larger than the pair-
ing gap, these peaks disperse linearly with the flux enclosed
by the edge state due to resonant Cooper pair transfer between
the superconducting leads, providing direct information on the
drift velocity of the chiral channel.

The paper is organized as follows. In Sec. II we introduce
the low-energy effective model which is used to describe the
leads, the chiral edge state, and their respective coupling.
We include a discussion on the normal transmission of the
junction, which allows for its characterization in terms of
the microscopic parameters of the model. We also present
the Floquet-Keldysh Green’s function technique, which is
employed to calculate the two-terminal out-of-equilibrium
current when the terminals are superconducting. In Sec. III we
present the numerically obtained current-voltage characteris-
tic of this hybrid device and the interpretation of the results.
In Sec. IV we analyze the main differences in the behavior
of the time-averaged current when edge channels of both
left and right chirality are present in the sample, modeling
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FIG. 1. Schematic setup: Two superconductors are coupled to a
sample in the quantum Hall regime, and a voltage bias Vb is applied
between them. The chiral nature of the edge states ensures that both
the electrons and holes, depicted with arrows, flow with the same
drift velocity along the perimeter of the Hall bar.

a typical Aharonov-Bohm configuration. In this setup, the
chiral symmetry is broken when coupling the edge modes
with the superconducting leads, allowing for backscattering
to occur and thus changing drastically the flux dependence of
the current-voltage characteristic. In Sec. V we summarize our
main results and present some concluding remarks.

II. MODEL AND METHODS

A. Hamiltonian approach

The model is depicted in Fig. 1, where two BCS super-
conductors are coupled to a QH sample and a bias voltage
Vb = VL − VR is applied between them. We refer to VR and VL

as the corresponding voltage of the right and left leads, re-
spectively. Each superconducting terminal ν is modeled with
a time-dependent Hamiltonian given by

Ĥν =
∑
kσ

(ξk − eVν )ĉ†
kνσ

ĉkνσ

− �
∑

k

(
ĉ†

kν↑ĉ†
−kν↓ei 2eVν t

h̄ + H.c.
)
, (1)

where ξk = εk − μ and � is the superconducting pairing am-
plitude, which is assumed to be the same in both leads. We
have made use of the fact that the Cooper pair phase of each
condensate acquires a time dependence due to the voltage
drive, determined by the Josephson relation ϕ̇ν = 2eVν/h̄.

We will focus on a regime where the magnetic field in the
central region B = −Bz ẑ is high enough to reach the extreme
quantum limit. This being the case, the first Landau level is
occupied, and hence one chiral electronic and one holelike
edge state of both spin species bridge both terminals. The
central region is then described with a low-energy effective
Hamiltonian as

Ĥch =
∑

σ

∫ 	

0
h̄vd ψ̂

†
σ (s)

(
−i∂s − 2π

�0
A

)
ψ̂σ (s)ds

=
∑
nσ

ε0

(
n − �

�0

)
ψ̂†

nσ ψ̂nσ , (2)

where s is the coordinate along the edge of the sample,
−ih̄∂s is its canonical momentum, and the vector potential
A = Aŝ has been chosen in a gauge such that it remains

parallel to the edge. The perimeter of the sample is identi-
fied with the variable 	, and �0 = hc/e is the normal flux
quantum. The second equality is simply obtained by expand-
ing these fermionic fields in a plane-wave basis ψ̂σ (s) =

1√
	

∑
n ein 2πs

	 ψ̂nσ imposing periodic boundary conditions such

that ψ̂σ (0) = ψ̂σ (	). Here, ε0 = hvd/	 is the energy differ-
ence between consecutive levels of the isolated edge channel.
The total flux enclosed by the edge state is given by � =∫ 	

0 A · ds. Within this model, � = 0 should be interpreted as a
reference flux which is large enough to reach the quantum Hall
limit and where a chiral edge Hall mode is pinned at the Fermi
energy. In the simplified model described by Eq. (2) we have
neglected the Zeeman splitting between both occupied spin
flavors. As we shall discuss in Sec. V, taking into account this
effect does not lead to significant changes in our main results.

The tunneling Hamiltonian that couples the leads with the
Hall sample is given by

ĤT = −γ
∑
kσ

[ψ̂†
σ (0)ĉkLσ + ψ̂†

σ (sR)ĉkRσ + H.c.], (3)

where γ is the tunneling amplitude and sR indicates the coor-
dinate where the right superconducting terminal is attached.
The total Hamiltonian is then given by Ĥ = ∑

ν Ĥν + Ĥch +
ĤT . From here on we use a symmetric bias such that VL =
Vb/2 and VR = −Vb/2.

For technical reasons, it is convenient to perform a gauge
transformation Û (t ) by means of which the time dependence
of the leads is transferred to the tunneling matrix elements
between the superconductors and the Hall sample. In particu-
lar, the time-dependent part of the Hamiltonian can be solely
included in the hopping to the left lead by taking the following
transformation:

Û (t ) = exp

[
−i

∑
kνσ

eVνt

h̄
c†

kνσ
ckνσ

]

× exp

[
i
eVbt

2h̄

∑
σ

∫ 	

0
ψ̂†

σ (s)ψ̂σ (s)ds

]
. (4)

The total Hamiltonian transforms as ̂̃H = Û (t )ĤÛ †(t ) −
ih̄Û dÛ †

dt , effectively generating the leads to behave as time
independent̂̃H ν =

∑
kσ

ξkĉ†
kνσ

ĉkνσ − �
∑

k

(ĉ†
kν↑ĉ†

−kν↓ + H.c.), (5)

and the coupling Hamiltonian as time dependent̂̃HT = −γ
∑
kσ

[
ψ̂†

σ (0)ei
eVbt

h̄ ĉkLσ + ψ̂†
σ (sR)ĉkRσ + H.c.

]
, (6)

while adding a diagonal energy to the chiral Hamiltonian

̂̃H ch = Ĥch − eVb

2

∑
σ

∫ 	

0
ψ̂†

σ (s)ψ̂σ (s)ds. (7)

B. Normal transmission of the model

In this section we briefly discuss the transmission in the
setup of Fig. 1 with normal leads (� = 0). This allows for
a characterization of the transparency of the junction that will
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also prove to be useful when analyzing the transport properties
when � �= 0. Since in the normal case we are dealing with
a stationary situation (there is no time dependence arising
from the superconductivity), we will keep in this section the
ungauged Hamiltonian defined by Eqs. (1)–(3). Since we are
interested in energy scales eVb � 2�, which are small com-
pared with the variation of the leads’ normal density of states,
we take ρ(ω) = ρ(εF ).

The transmission between the left and right lead can
then be expressed in terms of the device Green’s functions
as [33]

T (ω) = �0Gr
0α (ω)�αGa

α0(ω), (8)

where Gr
0α (Ga

α0) is the retarded (advanced) Green’s function
of the edge state that propagates from the site located at s = 0
(sR = 	α/2π ) to the one at sR = 	α/2π (s = 0). Here, the
angle α measures the position of the right lead relative to the
left one, and �0 = �α = 2πρ(εF )γ 2. The nonlocal propaga-
tors in Eq. (8) can be written in terms of the uncoupled Green’s
functions of the system by means of the equations of motion
as

Gr
0α (ω) = gr

0α (ω)

1 − γ 2D1(ω) − γ 4D2(ω)
, (9)

where

D1(ω) = gr
00(ω)gr

LL(ω) + gr
αα (ω)gr

RR(ω) (10)

and

D2(ω) = gr
LL(ω)gr

RR(ω)
[
gr

0α (ω)gr
α0(ω) − gr

00(ω)gr
αα (ω)

]
.

(11)

In this limit, the retarded propagators of the left and right leads
are simply given by gr

LL = gr
RR = −iπρ(εF ). On the other

hand, the required bare propagators of the central QH region
may be obtained as

gr
00(ω) = gr

αα (ω) = 1

	

∑
n

1

ω + iη − ε0
(
n − �

�0

)
= π

	ε0
cot

(
π

ω + iη

ε0
+ π

�

�0

)
, (12)

while the nonlocal ones are

gr
0α (ω) = 1

	

∑
n

e−inα

ω + iη − ε0
(
n − �

�0

)
= π

	ε0
ei(π−α)( ω+iη

ε0
+ �

�0
) csc

(
π

ω + iη

ε0
+ π

�

�0

)
.

(13)

The Green’s function gr
α0(ω) is obtained by changing α →

2π − α in Eq. (13). Replacing these expressions in Eq. (8),
we finally obtain that the normal transmission between the
leads in terms of the microscopic parameters of the model is
given by

T (ω) = 8ε̃2
0

8ε̃2
0 + (

ε̃2
0 − 1

)2{
1 − cos

[
2π

(
�
�0

+ ω
ε0

)]} , (14)

where we have defined ε̃0 = ε0/π�, with � = πρ(εF )γ 2/	.

FIG. 2. (a) Normal transmission of the junction as a function of
energy. The flux is chosen to be an integer number of flux quanta
�/�0 ∈ Z. Each curve has a different value of � = πρ(εF )γ 2/	.
(b) Transmission as a function of � for ω = ε0/2 and the same flux
quanta as in (a).

It is worth pointing out that this transmission is completely
independent of the distance between the contacts, an expected
result for chiral transport. Note that there is perfect transmis-
sion T (ωn) = 1 for all energies matching the eigenenergies
of the uncoupled QH state ωn = ε0(n − �/�0) with n ∈ Z.
There is also a particular value of � = ε0/π (ε̃0 = 1) where
the transmission becomes perfect for all energies and fluxes.
It can be shown that this value corresponds to the one that
produces a perfect matching between the chiral edge state
and each lead. This condition can be thought of as a Z = 0
barrier strength in a Blonder-Tinkham-Klapwijk (BTK) model
of the junction [34] and will then translate into a condition of
perfect Andreev reflection when the leads are considered as
superconducting. In Fig. 2 we show a plot of the transmis-
sion as a function of energy for different hybridizations and
�/�0 ∈ Z [Fig. 2(a)] and its behavior as a function of � for
a fixed energy ω = ε0/2 [Fig. 2(b)]. It is clearly seen that the
transmission bears a maximum at � = ε0/π and the tunneling
regime is recovered for � � ε0/π or � 	 ε0/π .
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C. Floquet-Keldysh Green’s function method

We here discuss the methods for the calculation of the
out-of-equilibrium current in the Hall device when the leads
are taken to be superconductors. From now on we will work
with the gauged transformed Hamiltonian defined by Eqs. (5)–
(7). The time-dependent charge current flowing from the left
lead to the Hall bar is obtained by means of the Heisenberg
equation of motion as

J (t ) = e〈 ˙̂NL〉 = i
e

h̄

〈[̂̃H (t ),
∑
kσ

ĉ†
kLσ

ĉkLσ

]〉

= i
γ e

h̄

∑
kσ

(
e−i

eVbt
h̄ 〈ĉ†

kLσ
ψ̂σ (0)〉 − ei

eVbt
h̄ 〈ψ̂†

σ (0)ĉkLσ 〉),
(15)

where the averaged quantities 〈· · · 〉 can be represented in
terms of the nonequilibrium Keldysh Green’s functions. In
order to do so, it is practical to make use of the Nambu no-
tation by introducing the spinors describing the QH edge state
�̂(s) = (ψ̂↑(s), ψ̂†

↓(s))T and the superconducting leads χ̂kν =
(ĉkν↑, ĉ†

−kν↓)T . In this way, the current may be expressed in
terms of 2 × 2 matrices as

J (t ) = −2e

h̄
Re Tr[τzV̌L0(t )Ǧ<

0L(t, t )], (16)

where τz is the Pauli matrix acting in particle-hole space,

V̌L0(t ) = −γ e−i
eVbτzt

h̄ τz, and the lesser Green’s function matrix
elements are [Ǧ<

0L]αβ (t, t ) = i
∑

k>0〈χ̂†β

kL �̂α (0)〉.
Even though time-translation invariance is lost due to the

voltage drive, the periodicity of the Hamiltonian in the pe-
riod defined by the bias voltage T = 2π h̄/eVb allows for the
description of the Green’s functions within the Floquet for-
malism [35]. In this case, all the Nambu two-time propagators
can be expressed as

Ǧ(t, t ′) =
∑
mn

∫ �

0

dω

2π
e−i(ω+m�)t ei(ω+n�)t ′

Ǧ
mn

(ω), (17)

with � = 2π/T . Here, Ǧ
mn

refers to the corresponding 2 ×
2 block of the Floquet Green’s function G(ω), which in
principle has an infinite-dimensional representation. Notice

that Ǧ
m+l,n+l

(ω) = Ǧ
mn

(ω + l�), reflecting the invariance
under translations in multiples of the frequency of the drive.
This approach considerably simplifies the Dyson equations
of motion: When Fourier-transforming the time convolution
products, the Floquet representation preserves an algebraic
multiplicative structure [36]. After some analytical manipu-
lations, we can finally obtain through this method the average
dc current JDC = 1

T

∫ T
0 J (t )dt as

JDC = −2e

h
Re

∑
mn

∫ �

0
dω Tr

[
τzV̌

nm
L0 Ǧ

<mn
0L (ω)

]
. (18)

The block components of the hopping in Floquet space are
here defined as

V̌nm
L0 = 1

T

∫ T

0
ei(n−m)�t V̌L0(t )dt

= V̌−δm,n+1 + V̌+δm,n−1, (19)

FIG. 3. Current-voltage characteristics for an integer number of
flux quanta threading the sample �/�0 ∈ Z and different hybridiza-
tion parameters � = πρ(εF )γ 2/	 expressed as a fraction of the level
spacing ε0 = 0.3�.

with V̌± = ∓ γ

2 (τ0 ± τz ). The block elements of the lesser
Green’s function Ǧ

<mn
0L (ω) can be easily obtained by applying

the Langreth rules in the Floquet-Dyson equations of motion
[37]. All that is eventually needed are the uncoupled Green’s
functions of the chiral edge state and the superconducting
leads, which, within our model, have closed analytical expres-
sions. We refer the reader to Appendix for technical details of
the calculation of the Floquet Green’s functions.

III. CURRENT-VOLTAGE CHARACTERISTICS

We here discuss the main results of our work, namely, the
transport simulations of the voltage-biased Josephson junc-
tion. From here on we will focus on the zero-temperature
limit. In Fig. 3 we show the time-averaged dc current as
obtained by numerically evaluating Eq. (18) when varying
the bias voltage Vb in the case where there is an integer
number of fluxes threading the sample �/�0 ∈ Z. Each of
the curves has a different hybridization � = πρ(εF )γ 2/	

expressed as a fraction of the level spacing ε0 [see Eq. (2)],
which is here fixed at ε0 = 0.3�. This choice of parameters is
consistent with the typical orders of magnitude in experiments
done with graphene and MoRe contacts [10,38], where vd ∼
106 m/s, 	 ∼ 10 μm, and the pairing gap � � 1.3 meV. In
the lower x axis the voltage is normalized to ε0, and in the
upper axis it is normalized to the superconducting gap �, so
as to properly compare both scales. We have checked that
the current-voltage characteristic is completely independent
of the angle α appearing in the nonlocal propagators. This
is a consequence of the coherent and chiral quasiparticle
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FIG. 4. Time-averaged current JDC as a function of the bias voltage Vb and the number of fluxes enclosed by the edge state �/�0. Each
color map has been calculated with a different hybridization � of the edge modes with the leads: (a) � = ε0/30, (b) � = ε0/10, (c) � = ε0/6,
and (d) � = ε0/π . In (a), we highlight with white dashed lines the bias voltages corresponding to eVb = � and eVb = 2�.

transport, which makes the differential conductance of the
junction independent of the distance between the supercon-
ducting contacts. As a matter of fact, it can be shown that the
distance between leads plays the role of a superconducting
phase difference ϕ0 = 2(π − α)�/�0, which fixes a time
origin in the two-terminal out-of-equilibrium setup and hence
becomes irrelevant for the time-averaged dc current.

For low hybridizations a rich subgap structure is appar-
ent from Fig. 3, where a series of resonances occur each
time the bias eVb becomes a multiple (or harmonic) of the
level spacing ε0. As � grows larger, these features wash out
until the current-voltage characteristic reaches a completely
transparent limit for � = ε0/π . For hybridizations such that
� 	 ε0/π or � � ε0/π the tunneling regime is recovered, in
accordance with the behavior of the normal transmission of
the junction (see Fig. 2). Although not shown, we have also
verified that in the limit ε0 	 � we obtain the well-known
transport results of voltage-biased junctions with single-level
quantum dots [23,25,26]. In the opposite limit, ε0 � �, the dc
current becomes rather featureless as a function of voltage but
preserves a periodic structure with the superconducting flux
quantum.

The results shown in Fig. 4 are quite different from the
well-known current-voltage characteristic of other Josephson
junctions, where resonant features are expected to be present
at bias voltages which are subharmonics of the pairing gap
eVb = 2�/n [23,24,30,31]. In our case, the subgap structure
provides more information on the discreteness of the chiral
edge modes than on the BCS singularity. These findings may
be compared with the ones obtained in a recent work [39]
where a detailed analysis of the current-voltage characteristic
of a long junction was presented, though in a quite different
setup. When the junction’s length greatly exceeds the coher-
ence length ξ of the superconductor—typically of the order of
a few to a few hundred nanometers—it has been found that the
current shows characteristic peaks each time the bias voltage
is a multiple of the distance between the static Andreev levels.
This is expected to be precisely the case in a QH based
junction, where the effective length is given by the perimeter
of the Hall bar 	, which is usually a few micrometers, and
hence 	 	 ξ .

The fact that the current is carried by QH edge channels
offers an additional handle: the chirality imposed by the mag-
netic flux. To better visualize how these resonances evolve
when varying the flux enclosed by the edge state, we show
in Fig. 4 color maps of the dc current as a function of both
the bias voltage Vb and the number of flux quanta �/�0

threading the sample (recall that in our model, � actually
represents a departure from a reference flux). Each panel has
been calculated for a given value of �. For small couplings,
such as the one shown in Fig. 4(a), it is possible to appreciate a
series of well-defined peaks at low voltages that are located at

eVb =
{

nε0, if �/�0 ∈ Z or Z + 1
2(

n + 1
2

)
ε0 if �/�0 ∈ Z ± 1

4 ,
(20)

with n being an integer number. When the bias voltage
eVb > �, these resonances tend to disperse linearly with the
flux variations along the curves defined by

eVb = ε0(n ± 2�/�0). (21)

These well-defined peaks are blurred as the hybridization
grows larger [see Figs. 4(b) and 4(c)], in accordance with the
general tendency observed in Fig. 3. When the transparent
limit is reached, the current-voltage characteristic becomes
completely independent of the flux variations in the sample,
as shown in Fig. 4(d). For this particular hybridization, the
flux accumulated by an electron is completely canceled out
by the perfectly Andreev-reflected hole resulting in a flux-
independent current.

We show in Fig. 5 two horizontal cuts of Fig. 4(a) when
the bias voltage is tuned at eVb = 2ε0 and eVb = 5ε0/2. This
plot captures not only the resonant behavior but also the clear
periodicity of the quasiparticle current with the superconduct-
ing flux quantum �s

0 = �0/2, which is in stark contrast to the
�0 periodicity of the equilibrium nondissipative Josephson
supercurrent [16–18].

To understand the appearance of this structure, it is useful
to regard the elementary tunnel processes (for small hy-
bridizations) which give rise to the quasiparticle current in
the junction. To this end, we show in Fig. 6 two different
schemes to analyze the existence of resonant trajectories that
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FIG. 5. Time-averaged dc current at bias voltages eVb = 2ε0 and
eVb = 5ε0/2 as a function of the flux enclosed by the edge state. The
hybridization is � = ε0/30, as in Fig. 4(a). Note that the periodicity
is determined by the superconducting flux quantum �s

0 = �0/2.

eventually lead to the peaks in the current. We illustrate the
case of a bias voltage eVb = 2ε0 and an integer number of flux
quanta �/�0 ∈ Z. The short solid and dashed lines represent
the uncoupled electronic (−) and hole (+) states, respectively,
arising from the QH edge which are degenerate for these
particular values of the parameters. This set of discrete lev-
els is well described by the spectrum of Eq. (7), given by
E∓

n (�) = ε0(n ∓ �/�0) ∓ eVb/2. The static Andreev bound

states living inside the BCS gap are essentially located at
these energies for zero bias and very small hybridizations
(� � ε0). In Fig. 6(a) we show the usual diagram of the mul-
tiple Andreev reflection processes taking place throughout the
gapped region: Right-moving electrons (e→) and left-moving
holes (h←) gain an energy eVb when flowing from one ter-
minal to the other until they reach the continuum spectrum.
Note that this sketch is consistent with the bias voltage being
gauged away from the leads to the time-dependent tunneling
elements. For this choice of parameters, there is a perfect
ladder of equally spaced states in the QH region, leading to
quasiparticle transfer through trajectories which always cross
a resonant level. In junctions with single-level quantum dots, it
has been argued that this condition results in an enhancement
of the dc current [25].

An alternative description of the same process is shown
in Fig. 6(b), which is basically an unfolding of the MAR
trajectories shown in Fig. 6(a). In this schematic, we take
advantage of the Floquet space to represent the transport of
quasiparticles between superconductors as a fixed-energy pro-
cess. Each time an electron or a hole is transferred from one
terminal to the other, it switches to a consecutive replica of
the BCS superconducting leads (see Fig. 10 in Appendix for
details). Within this scheme, it is clearly seen that the reso-
nant trajectories bear a suggestive resemblance to a resonant
transfer in a multibarrier structure, in a similar fashion to the
mapping discussed in Ref. [40]. Indeed, when the bias and
fluxes are precisely tuned, the electronic and hole states can
be resonantly transmitted via the edge modes of the chiral
state throughout the whole process. When analyzing the trans-
port of electrons from the left to the right lead, a series of
conditions must be satisfied for the resonance to take place. It

FIG. 6. (a) Usual pictorial scheme of the multiple Andreev reflection processes that contribute to the quasiparticle current. The bias voltage
is such that eVb = 2ε0, and the flux enclosed by the edge state is an integer number of flux quanta. Blue arrows correspond to right-moving
electronic states, and red arrows correspond to left-moving holelike states. Short solid (dashed) lines indicate the position of the uncoupled
electron (hole) states. The path is to be understood sequentially. Each time an Andreev process occurs, a Cooper pair is transferred to the
corresponding condensate. (b) Alternative diagram of the MAR trajectories in the Floquet space of replicas. This is merely an unfolding of (a),
so that the interpretation of the transport process can be regarded at a fixed energy. Each time a right-moving electron or a left-moving hole is
transferred from one lead to the other, it switches to a different replica of the superconducting lead. The replica index of the QH region and
each superconductor is specified in the lower part of the figure. SCL and SCR refer to the left and right superconducting leads, respectively.
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is necessary to have degenerate electron and hole states at the
lth replica of the Hall device. Additionally, there must be an
electronic state in the l − 2 replica with the same energy as
that of the holelike state in the lth replica, which guarantees
the resonant condition throughout the entire path, as can be
seen from Fig. 6(b). This set of equations reads

E−
n,l (�) = E+

m,l (�), (22)

E+
m,l (�) = E−

r,l−2(�), (23)

where we define the spectrum of the lth Floquet replica
as E∓

n,l (�) = ε0(n ∓ �/�0) ∓ eVb/2 + leVb. The fluxes and
voltages which satisfy these constraints are precisely given
by Eq. (20). When taking into account the mirror processes
of transferring holes from the right to the left lead, the same
result can be found, indicating the degeneracy between these
two mechanisms. When these conditions are fulfilled, there is
a natural enhancement of the charge-transfer process which
generates, in turn, a well-defined peak in the dc current even
at very low voltages. As the hybridization grows larger, the
decoupled picture breaks down leading to a broadening of
these Lorentzian-shaped resonances. This mechanism of res-
onant transfer may be compared to what occurs in junctions
involving single [25] or several discrete levels [41]. The main
difference is that the linear dispersion of the edge state in-
herently provides a discrete set of states which may be tuned
to be completely equidistant from each other, allowing for
the resonant ladder to take place [39]. Alternatively, it can be
thought of as a perfect alignment of all resonant modes in the
Floquet multibarrier picture. It is also worth noticing that in
this QH setup it is not necessary to employ gate voltages in
the normal region to manipulate the spectrum, since the flux
enclosed by the chiral edge state controls the relative position
of the electronic and holelike levels.

For eVb > �, there is a direct process to transfer Cooper
pairs. This process is related to the so-called resonant Cooper
pair transfer mechanism that occurs in junctions with single-
level quantum dots when the chemical potential of either
of the leads is aligned with the bound state [26,27]. Under
these circumstances, an electronic state can tunnel resonantly
through this level and the Andreev-reflected hole as well, ef-
fectively transferring a Cooper pair from one lead to the other.
In our case, for this two-step trajectory to become resonant, it
is only necessary to ask for a unique constraint between the
voltage and the flux enclosed by the edge channel, leading
to peaks in the dc current that disperse linearly with flux [cf.
Eq. (21)]. In fact, when taking into account the processes that
tunnel electrons or holes, one finds that Eqs. (22) and (23)
independently lead to a current enhancement in agreement
with the condition given by Eq. (21).

Interestingly, a full reconstruction of the dc current in the
flux-voltage plane allows for a complete spectroscopy of the
chiral modes. Indeed, for eVb > � the resonant Cooper pair
transfer processes provide a clear trail of the dispersion of the
edge state with flux, allowing for a direct characterization of
its drift velocity.

Having identified the resonant processes that lead to the
quasiparticle current enhancement, it is instructive to look at
the scaling of each peak with the hybridization parameter �.
In Fig. 7 we show the evolution of the height of the dc current

FIG. 7. Dependence of the quasiparticle current peaks for low
hybridizations as a function of � for an integer number of fluxes
threading the system. Each curve has been calculated for different
values of the resonant bias voltage eVb = nε0 and thus represents a
different peak.

peaks as a function of � for an integer number of fluxes
threading the sample. Each curve has been calculated for dif-
ferent values of the resonant voltage eVb = nε0 and hence rep-
resents the magnitude of the nth current peak (n = 1, . . . , 7)
shown in Fig. 3, which is well defined for � � ε0/π . Notably,
every resonance scales linearly with �, a fact which stands in
contrast to the usual picture of quasiparticle transport between
superconductors in the tunneling regime. Indeed, in Josephson
junctions with weak links, N quasiparticles are expected to be
shuttled from one lead to the other in the voltage bias range
defined by 2�/N < eVb < 2�/N − 1, giving rise to a dc cur-
rent with a dominant order scaling given by �N [24]. The
linear scaling in � is known to occur in junctions with single-
level quantum dots only when Cooper pairs are transferred
resonantly through the single level. In fact, by analyzing the
equivalent three-barrier structure in energy space, Ref. [26]
reported that the height of these peaks in the dc current is pro-
portional to the hybridization. In our case, the universal lineal
scaling of all current peaks is a peculiarity of the resonant
transfer of quasiparticles throughout the whole Floquet multi-
barrier structure. Indeed, all the energy-conserving processes,
like the one depicted in Fig. 6(b), lead to the same scaling
independently of the number of barriers in the MAR path. This
is another distinguishing feature of the linear spectrum of the
chiral edge state, which provides a discrete set of equidistant
energy levels which may be tuned with magnetic flux to allow
for the resonant (order �) quasiparticle transport to occur.

IV. COMPARISON WITH NONCHIRAL TRANSPORT

A natural follow-up question is whether these results
would change if the system were to admit the existence of
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FIG. 8. Time-averaged current JDC as a function of the bias voltage Vb and the number of fluxes enclosed by movers with left chirality �/�0

in the Aharonov-Bohm setup where the central Hamiltonian is described by Eq. (24). The movers with right chirality enclose the opposite flux.
Each color map has been calculated with a different hybridization � of the edge modes of each chirality with the leads: (a) � = ε0/60,
(b) � = ε0/20, (c) � = ε0/12, and (d) � = ε0/2π .

counterpropagating edge states. In this section, we will briefly
discuss the main differences in the current-voltage charac-
teristics when both modes of left chirality (ψ̂nLσ ) and right
chirality (ψ̂nRσ ) are present in the system. To this end, we
redefine the central region to be described with a Aharonov-
Bohm-like Hamiltonian given by

ĤA-B =
∑
nLσ

ε0

(
nL − �

�0

)
ψ̂†

nLσ ψ̂nLσ

+
∑
nRσ

ε0

(
nR + �

�0

)
ψ̂†

nRσ ψ̂nRσ . (24)

It is then straightforward to generalize the electronic local and
nonlocal retarded Green’s functions to this case as

gr
00 = π

	ε0

[
cot

(
π

ω + iη

ε0
+ π

�

�0

)

+ cot

(
π

ω + iη

ε0
− π

�

�0

)]
, (25)

with gr
αα = gr

00 and

gr
0α = π

	ε0

[
ei(π−α)( ω+iη

ε0
+ �

�0
) csc

(
π

ω + iη

ε0
+ π

�

�0

)
+ e−i(π−α)( ω+iη

ε0
− �

�0
) csc

(
π

ω + iη

ε0
− π

�

�0

)]
. (26)

The propagator gr
α0 is obtained by changing α → 2π − α in

gr
0α . The normal transmission of this model can be obtained

by simply replacing the uncoupled propagators defined by
Eqs. (25) and (26) in Eq. (8). In this model, the transmission
is strongly dependent on the angle α that determines the
distance between the leads, as opposed to the chiral model.
For the sake of concreteness, we shall work with the most
symmetric case, namely, α = π . In such circumstances, the
normal transmission is exactly zero for half an integer number
of fluxes threading the system (�/�0 ∈ Z + 1/2), since the
nonlocal propagator vanishes exactly [see Eq. (26)].

When considering the driven system, we will make use
of the same gauge transformation as the one described in
Sec. II A so that the central Hamiltonian changes to

H̃A-B = HA-B − eVb

2

(∑
nR,σ

ψ̂†
nRσ ψ̂nRσ +

∑
nL,σ

ψ̂†
nLσ ψ̂nLσ

)
, (27)

and the time dependence is solely included in the hop-
ping to the left superconductor. The Floquet spectrum
of the uncoupled Aharonov-Bohm ring is then defined
by electronic and hole states with different chirality as
E∓

nL,l = ε0(nL ∓ �/�0) ∓ eVb/2 + leVb and E∓
nR,l = ε0(nR ±

�/�0) ∓ eVb/2 + leVb, with l being the replica index.
We show in Fig. 8 the current-voltage maps of this nonchi-

ral model as a function of the flux enclosed by the movers with
left chirality. Each panel has been calculated for a different
hybridization of the edge modes of each chirality with the
superconducting terminals. Since the number of channels is
increased by a factor of 2 with respect to the chiral setup, we
show color maps with hybridization parameters which are half
the ones used in Fig. 4 to better compare both results. A first
clear difference with the chiral model is the suppression of the
dc current whenever �/�0 ∈ Z + 1/2 due to the existence
of destructive interfering paths in the device. On the other
hand, the presence of counterpropagating states gives rise
to new resonances, which are mainly the horizontal lines in
Fig. 8 at bias voltages which are multiples of the discrete level
spacing. When considering the system parameters that allow
for a complete alignment of the resonant levels in the Floquet
multibarrier picture, a constraint similar to the one described
for the chiral model [Eqs. (22) and (23)] is found when tak-
ing into account separately the movers of each chirality. The
new condition emerges from backscattering processes where
the electronic channels with left (right) chirality become de-
generate with holelike channels with right (left) chirality in
the same replica, which automatically ensures the resonance
throughout the whole MAR path. In this case the alignment
condition reads

E−
nL,l (�) = E+

nR,l (�), (28)
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FIG. 9. Time-averaged dc current of the nonchiral model at bias
voltages eVb = 2ε0 and eVb = 5ε0/2 as a function of the flux en-
closed by movers with left chirality. The hybridization is � = ε0/60,
as in Fig. 8(a).

which is satisfied for eVb = nε0 with n ∈ Z and thus ex-
plains the extra horizontal resonances. We show in Fig. 9 two
horizontal cuts of Fig. 8(a) when the bias voltages are tuned
to be eVb = 2ε0 and eVb = 5ε0/2. The exact suppression of
the dc current at half an integer number of fluxes can be
appreciated for both curves. On the other hand, for eVb = 2ε0

the resonant features are dominated by backscattering in the
device bearing significant deviations from the quasiparticle
current in the chiral model at the same bias voltage (see
Fig. 5). When eVb = 5ε0/2, the chiral paths are the ones
that dictate the appearance of resonant peaks, and hence the
current has a resemblance to that of Fig. 5, setting aside the
suppression near the half-integer quanta.

It is then clear that it is possible to distinguish whether the
dissipative transport of quasiparticles is mediated by chiral or
nonchiral edge channels by performing current-voltage mea-
surements as a function of the flux threading the sample. The
main differences are due to the existence of backscattering
channels which are responsible for both the suppression of
the dc current at particular values of the fluxes and for the
emergence of new resonant paths.

V. SUMMARY AND CONCLUSIONS

We have presented numerical calculations of the current-
voltage characteristic of a SC-QH-SC junction where the
dissipative current is carried by a single spin-degenerate chiral
edge channel. The existence of resonant MAR trajectories
produces a distinctive subgap structure in the dc current which
is periodic with the superconducting flux quantum �s

0 =
�0/2, as opposed to the nondissipative Josephson supercur-
rent which is periodic with the normal flux quantum �0.

The presence of a chiral edge state with a constant drift
velocity ensures the existence of an equidistant spectrum of
electronic and hole modes in the normal region with a rel-
ative position which may be tuned with magnetic flux to

a condition where quasiparticles are resonantly transferred
through the junction. By means of an interpretation of the
transport processes as occurring in a multibarrier structure in
Floquet space, we have identified the specific values of bias
voltages where an enhancement of the dc current should be
expected as a function of the flux variations in the device.
Under these circumstances, the well-defined peaks developed
in the current-voltage characteristic scale linearly with the
hybridization parameter �, a manifestation of the resonant
transport of quasiparticles between superconductors. For volt-
ages eVb > �, the resonant Cooper pair tunneling processes
give rise to peaks that disperse with flux providing information
on the drift velocity of the quantum Hall edge channel. We
expect our results to remain valid for finite temperatures as
long as kBT � ε0, so that thermalization effects inside the
Hall sample can be safely ignored—this guarantees that the
coherence length is larger than the sample’s perimeter [14].

Throughout this paper we have neglected the Zeeman split-
ting between the two occupied spin species of the chiral
channel. Nonetheless, one can easily check that, since the
electronic levels of a given spin are shifted in the same amount
as the holelike levels of the opposite spin, the addition of a
Zeeman term does not alter the resonant condition determined
by Eq. (23). Although not shown, we have numerically veri-
fied that the position of the main peaks in the current-voltage
characteristic remains unaltered when taking into account this
spin-splitting term.

We have furthermore analyzed the role of chirality by com-
paring these transport results with an Aharonov-Bohm setup
where backscattering between movers of opposite chirality
is allowed. We found clear differences in the current-voltage
characteristics as a function of magnetic flux, such as the pres-
ence of destructive interference paths that suppress the current
at certain fluxes and the appearance of additional resonant
MAR trajectories which lead to new peaks in the dc current.

These results may be considered as a first step towards
the understanding of nonequilibrium transport in Josephson
junctions bridged by quantum Hall edge channels. A complete
tomography of the dissipative current as a function of the flux
threading the sample and the bias voltage between supercon-
ductors could also be used as evidence of chiral mediated
transport in these hybrid devices.
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APPENDIX: GREEN’S FUNCTIONS IN FLOQUET
REPRESENTATION

We present in this Appendix a detailed discussion of the
Floquet Green’s function method for the calculation of the
lesser Green’s functions between the leads and the chiral state,
which are ultimately needed to obtain the current flowing in
the device. As stated in the main text, these may be obtained
by applying the Langreth rules in the Floquet-Dyson equa-
tion of motion, as we will show in the following. All that is
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eventually needed are the uncoupled Green’s functions of the
edge state and the superconducting terminals.

One should bear in mind that the Floquet representation of
any equilibrium Green’s function g(ω) has a block-diagonal
form such that ǧmn(ω) = δm,nǧ(ω + n�), where ǧ(ω) is the
usual Fourier transform of a time-translationally invariant
propagator written in the Nambu basis. In particular, the
uncoupled lesser Green’s functions will bear Fermi-Dirac dis-
tributions shifted in multiples of the frequency, such that

ǧ<nn(ω) = f (ω + n�)[ǧa(ω + n�) − ǧr (ω + n�)], (A1)

with ǧa/r (ω) being the corresponding advanced and retarded
Green’s functions. We will focus on the zero-temperature

regime, so that f (ω) = �(−ω), with �(ω) being the Heav-
iside function.

In this case, the equilibrium Green’s functions of the super-
conducting leads are written in Nambu space as

ǧr/a
νν (ω) = πρ(εF )√

�2 − (ω ± iη)2

(−(ω ± iη) �

� −(ω ± iη)

)
,

(A2)

where ρ(εF ) is the leads’ normal density of states at the Fermi
energy and finite bandwidth effects have been neglected. On
the other hand, the equilibrium (uncoupled) Green’s functions
of the chiral state, which will be ultimately needed to obtain
the current, are found to be

ǧr/a
00 (ω) = ǧr/a

αα (ω) = π

	ε0

(
cot

(
π

ω+eVb/2±iη
ε0

+ π �
�0

)
0

0 cot
(
π

ω−eVb/2±iη
ε0

− π �
�0

)) (A3)

and

ǧr/a
0α (ω) = π

	ε0

⎛⎝ei(π−α)(
ω+eVb/2±iη

ε0
+ �

�0
) csc

(
π

ω+eVb/2±iη
ε0

+ π �
�0

)
0

0 ei(π−α)
(

ω−eVb/2±iη
ε0

− �
�0

)
csc

(
π

ω−eVb/2±iη
ε0

− π �
�0

)
⎞⎠. (A4)

Here, ǧ00(ω) and ǧαα (ω) are the local propagators at the
sites which are coupled to the left and right lead, respectively.
The nonlocal propagator ǧ0α (ω) goes from site s = 0 to the
one at site sR = 	α/2π , while ǧα0(ω) may be obtained by
changing α → 2π − α in ǧ0α (ω).

To better illustrate the method, we show in Fig. 10 a pic-
torial scheme of the Floquet replicas of the device, where
the nondiagonal couplings V̌± defined in Eq. (19) are only
present between the left superconducting lead and the s = 0
site of the Hall edge. The right lead, located at sR = 	α/2π ,
has a diagonal coupling in the Floquet representation due
to our choice of gauge [see Eq. (4)], which eliminated the
time dependence in this link. This makes feasible a procedure
where both the right lead and the entire perimeter of the Hall
bar are included in an effective Green’s function of the zeroth
site, which is given by

ˇ̃gr/a
00 (ω) = ǧr/a

00 (ω) + ǧr/a
0α (ω)�̌r/a

αα (ω)ǧr/a
α0 (ω), (A5)

where we have defined the self-energy

�̌r/a
αα (ω) = V̌αR

[
ǧr/a−1

RR (ω) − �̌
r/a
RR (ω)

]−1V̌Rα, (A6)

�̌
r/a
RR (ω) = V̌Rα ǧr/a

αα (ω)V̌αR,

and the hopping V̌αR = V̌Rα = −γ τz. The corresponding
lesser Green’s function is obtained as

ˇ̃g<
00(ω) = ˇ̃gr

0α (ω)�̌<
αα (ω) ˇ̃ga

α0(ω), (A7)

with �̌<
αα = V̌αRǧ<

RR(ω)V̌Rα .
The Floquet replicas of these effective sites ˇ̃gnn

00 = ˇ̃g00(ω +
n�) are depicted with circles in the lower panel of Fig. 10. We
also indicate their coupling to the replicas of the left super-
conducting lead, shown as diamonds. The problem has then
been reduced to solving two such one-dimensional chains,

one for even and another for odd n. The Floquet-Dyson
equations of motion, written in an infinite-dimensional matrix

FIG. 10. Top: a full scheme of the Floquet replicas of the device.
They are shifted in multiples of the driving frequency � = eVb/h.
The arrows indicate the hopping matrices between the leads and the
Hall sample: V̌+ transfers electronic states, and V̌− transfers holelike
states. The right lead possesses a diagonal coupling in Floquet space
due to the gauge transformation that eliminated its time dependence.
Bottom: the effective one-dimensional chains (one for even n and
another for odd n) that are finally numerically solved.
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representation, are finally given by

G<
0L(ω) = Gr

00(ω)V0Lg<
LL + G<

00(ω)V0Lga
LL, (A8)

with

Gr
00 = g̃r

00 + g̃r
00�

r
00Gr

00,

G<
00 = Gr

00�
<
00Ga

00 + (
1 + Gr

00�
r
00

)̃
g<

00

(
1 + �a

00Ga
00

)
(A9)

and where �
r/a/<

00 (ω) = V0Lgr/a/<
LL (ω)VL0. The block ele-

ments of VL0 have been defined in Eq. (19), and V0L =
V†

L0. This set of equations can be solved with standard
recursion techniques [24] by increasing the number of Flo-
quet replicas until numerical convergence of the results is
achieved.
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