PHYSICAL REVIEW B 103, 024524 (2021)

Spin pumping between noncollinear ferromagnetic insulators through thin superconductors
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Dynamical magnets can pump spin currents into superconductors. To understand such a phenomenon, we
develop a method utilizing the generalized Usadel equation to describe time-dependent situations in supercon-

ductors in contact with dynamical ferromagnets. Our proof-of-concept theory is valid when there is sufficient
dephasing at finite temperatures, and when the ferromagnetic insulators are weakly polarized. We derive the
effective equation of motion for the Keldysh Green’s function focusing on a thin film superconductor sandwiched
between two noncollinear ferromagnetic insulators, one of which is dynamical. In turn, we compute the spin
currents in the system as a function of the temperature and the magnetizations’ relative orientations. When the
induced Zeeman splitting is weak, we find that the spin accumulation in the superconducting state is smaller than
in the normal states due to the lack of quasiparticle states inside the gap. This feature gives a lower backflow spin
current from the superconductor as compared to a normal metal. Furthermore, in superconductors, we find that
the ratio between the backflow spin current in the parallel and antiparallel magnetization configuration depends
strongly on temperature, in contrast to the constant ratio in normal metals.
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I. INTRODUCTION

Superconductivity and ferromagnetism are conventionally
considered antagonistic phenomena. Superconductors (SCs)
in contact with ferromagnets (FMs) lead to mutual suppres-
sion of both superconductivity and ferromagnetism [1,2].
Despite this apparent lack of compatibility, several intriguing
effects also emerge from the interplay between superconduc-
tivity and ferromagnetism [3,4]. A singlet s-wave SC either
in proximity with an inhomogeneous exchange field [5], or
experiencing a homogeneous exchange field and spin-orbit
coupling [6,7], induces spin-polarized triplet Cooper pairs.
The generation of spin-polarized Cooper pairs is of particu-
lar interest, paving the way for realizing dissipationless spin
transport [4]. In recent developments, the combination of
magnetization dynamics and superconductivity has gained
attention. This is motivated by spin-pumping experiments
reporting observations of pure spin supercurrents [8,9]. Ex-
hibiting a wide range of interesting effects and phenomena,
SC-FM hybrids are promising material combinations in the
emerging field of spintronics [10].

It is well known that the precessing magnetization in FMs
generates spin currents into neighboring materials via spin
pumping [11-13]. The injection of a spin current into a neigh-
boring material generates a spin accumulation, which in turn
gives rise to a backflow spin current into the FM. Spin pump-
ing has a reactive and a dissipative component, characterized
by how it affects the FM’s dynamics. Reactive spin currents
are polarized along the precession direction of the magnetiza-
tion, m, and they cause a shift in the ferromagnetic resonance
(FMR) frequency. Dissipative spin currents resemble Gilbert
damping and are polarized along m x m, relaxing the magne-
tization toward its principal axis. The dissipative spin current
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enhances the effective Gilbert damping coefficient [14], and
broadens the FMR linewidth [12,15].

In SCs, both quasiparticles and spin-polarized triplet
Cooper pairs can carry spin currents. In the absence of spin-
polarized triplet pairs, spin pumping is typically much weaker
through a superconducting contact than a normal metal (NM)
[16,17]. The reduced efficiency is because the supercon-
ducting gap A prevents the excitation of quasiparticles by
precession frequencies w < 2A. When spin-polarized triplet
pairs are present, spins can flow even for low FMR fre-
quencies as pure spin supercurrents. Reference [8] reported
evidence for such pure spin supercurrents. An enhanced FMR
linewidth was measured in a FM-SC-heavy-metal hybrid
system as it entered the superconducting state, which is a sig-
nature of an enlarged dissipative spin current [18]. The authors
attributed this observation to spin transport by spin-polarized
triplet pairs. These findings and the rapid development of
spintronics have lately sparked a renewed interest in spin
transport through FM|SC interfaces [9,19-27]. Several earlier
works have also considered spin transport resulting from mag-
netization dynamics in SC-FM hybrids [28-35].

Progress has been made in developing a theoretical under-
standing of the spin pumping through SCs [17,19,21-23,25].
For instance, assuming suppression of the gap at the interface,
Ref. [17] computed the reduced spin-pumping efficiency in
the superconducting state using quasiclassical theory. How-
ever, to the best of our knowledge, a full understanding of
the boundary conditions’ complicated time dependence be-
tween dynamical ferromagnets and superconductors is not
yet in place. This development is required to give improved
spin-pumping predictions in multilayers of FMs, SCs, and
NMs. Furthermore, spin-pumping in superconducting sys-
tems with a noncollinear magnetization configuration remains
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theoretically underexplored, but it can provide additional in-
sight into spin-transport properties.

We present a self-consistent method designed to solve the
explicit time dependence arising from magnetization dynam-
ics by using the generalized Usadel equation. The explicit
time dependence complicates the treatment and understanding
of spin-transport properties. We aim to describe a consistent
proof-of-concept approach that is as simple as possible to
understand. We will therefore use simplifying assumptions
that are justified in weak insulating ferromagnets. Hopefully,
the main message is then less hindered by subtleties. (i) We
explore trilayers with a thin film SC between two noncollinear
ferromagnetic insulators (FMIs). (ii)) We exclusively consider
the imaginary part of the spin-mixing conductance in the
contacts between the FMIs and the SC film. (iii) We consider
insulating ferromagnets. The first assumption requires that the
interface resistance is larger than the superconductor’s bulk
resistance in the normal state, and that the superconductor is
thinner than the coherence length. The second assumption is
valid in weak ferromagnets.

Our first main result is the equation of motion for the
Green’s function in the SC film when the magnetization
precesses. Based on these results, we present quantitative
predictions for the spin current as a function of temperature
and the relative magnetization orientation between the FMIs.

II. THE GENERALIZED USADEL EQUATION AND ITS
SOLUTION

In this section, we will first present the generalized Usadel
equation, taking into account the magnetization precession.
We will demonstrate that it is possible to find an approxi-
mate solution to the time dependence when the precession
frequency is sufficiently slow. In superconductors, we will
discuss how this approach requires sufficient dephasing, since
otherwise the peaks in the density of states invalidate the
adiabatic assumption. Finally, we will solve the generalized
Usadel equation and compute the resulting spin-current driven
by the magnetization precession. Our analytical approach is
supplemented by a numerical solution demonstrating the con-
sistency of our assumptions.

A. The Generalized Usadel equation in a FMI|SC|FMI trilayer

The generalized Usadel equation determines the time evo-
lution of the electron Green’s function G in the dirty limit. In
a SC the generalized Usadel equation reads [36]

—iDVG o VG +id, 13G(t1, 1) + iG(t1, 1), T
+ [A@)St —1')s G, 12)] = 0, (1

where D is the diffusion coefficient and §(¢) is the Dirac delta
function. The symbol o denotes time convolution,

(aob)(tl,t2)=/ dt'a(t;, tHb(t', 1), 2)
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FIG. 1. FMI|SC|FMI trilayer. The superconductor is a thin film.
The large red arrows depict the magnetic moments of localized d
electrons in the FMIs. The green cloud illustrates a gas of s electrons
with spin up (red) and down (blue). An attractive interaction between
the s electrons (red sawtooth-like line) gives rise to superconductiv-
ity. The s-d exchange interaction at the interfaces gives rise to the
indirect exchange interaction between the left and right FMI (wiggly
gray lines). The precessing magnetization in the left FMI gives rise
to spin currents j; and ji from the FMIs into the SC.

and [a°bl=aob—boa. G and A are matrices,

0o 0 0 A
. (GRGK\ 0 0 -A 0
G:(o GA>’ A=l o a 0o of @

—-A* 0 0 0

where R, A, and K denote the retarded, advanced, and Keldysh
components, respectively. A is the superconducting gap. We
choose to work in the gauge where A = A* is real. In our
notation, the hat (e.g., G) denotes 4 x 4 matrices in the sub-
space of particle-hole ® spin space. The inverted hat (e.g.,
G) denotes matrices spanning Keldysh space as well. o; are
Pauli matrices spanning spin space, where i € {0, x, y, z},
and op is the identity matrix. 7; are Pauli matrices span-
ning particle-hole space, where i € {0, 1, 2, 3}, and 7y is the
identity matrix. To simplify the notation, we will omit outer
product notation between matrices in spin and particle-hole
space. Consequently, 7;0; should be interpreted as the outer
product of the matrices 7; and o;. Moreover, we use the
following notation for matrices that are identity matrices in
spin space: ; = 1;0.

We consider thin film SCs sandwiched between two iden-
tical, homogeneous, weakly magnetized FMIs, illustrated in
Fig. 1. Because of the insulating nature of the FMIs, we disre-
gard any tunneling through the FMIs. The interaction between
electrons in the SC region and the FMIs is therefore localized
at the interfaces. This s-d exchange interaction couples the
localized d electrons in the FMIs to the s electrons in the
SC at the interface. In thin film SCs, where the thickness of
the superconductor is much shorter than the coherence length,
Ls < &g, we can approximate the effect of the s-d exchange
interaction as an induced, homogeneous magnetic field in the
SC [37-40]. Furthermore, in computing the transport prop-
erties, this assumption requires that the interface resistances
(inverse “mixing” conductances) are larger than the SC’s bulk
resistance in the normal state. When Lg < &g, the Green’s
function changes little throughout the SC, and we therefore
neglect the gradient term in the generalized Usadel equation
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within the SC. The resulting effective generalized Usadel
equation for the FMI|SC|FMI trilayer then reads

id, 13G(t1, 1) + iG(t), 12)d, 15 + [A@)8(t — 1)) G(t', 12)]
+ mege[m(t) - 68t — 1) G(t', )] = 0, “4)

where m(t) = my(t) + mg(t), and where my jr is the magne-
tization unit vector for the left/right FMI. m.g is the effective
magnetic field that each of the two identical FMIs would
separately induce in the SC (in units of energy), and 6 =
diag(o, 0*), where o is the vector of Pauli matrices in spin
space. Note that when my = —myg, the effective magnetic
field in the superconductor vanishes, in agreement with the
conclusions of Ref. [41].

The effective generalized Usadel Eq. (4) was phenomeno-
logically derived. We find the same equation by including
boundary conditions to the FMIs [42,43], and then averaging
the Green’s function over the thickness of the superconductor.
In principle, one could also have included other terms that are
higher order in both the Green’s functions and magnetizations.
However, we consider weak ferromagnets, where the phase
difference Ag = ¢4 — ¢, in the spin-dependent reflection co-
efficients r4,, is small. Then it is sufficient to include the
imaginary part of the spin mixing conductance, which results
in Eq. (4). In other words, we disregard the real part of the
mixing conductance, which is central in strong ferromagnets
[17].

B. Gradient expansion in time and energy

The Green’s function G(z1, ;) correlates wave functions
at times #; and f,. By shifting variables to relative time
T =1t — t, and absolute time t = (t; + £,)/2, and performing
a Fourier transformation in the relative time coordinate, the
following identity holds [44,45]:

F{(aob)(t,2)} = exp {%(aga,” — a,“ag)}a(E, Hb(E, 1),
)

where  denotes Fourier transform in 7, a(E,t) and b(E, t)
are the Fourier transforms of a(z, t) and b(z, t) in the relative
time coordinate, and ag(? denotes partial differentiation of the
function a (b) with respect to the variable E (¢). We will now
Fourier transform and rewrite the generalized Usadel Eq. (4)
into (E, t) coordinates.

The first two terms of Eq. (4) contain time differential oper-
ators. After rewriting these terms as the relative and absolute
time coordinates, and Fourier-transforming the relative time
coordinate, we find [46]

Flio, 1:G(t1, ) + iG(t1, )3, T3}
N i N
= Elf3, GE. 0] + {5, 4 G(E. )} (6)

The remaining two terms in Eq. (4) contain commutators
of time convolutions of one-point functions A(#;) and m(t)
and the Green’s function G(#1, 1,). These two terms transform
equally. We will therefore consider only the term containing
the magnetization in detail. By straightforward substitution
into the term containing the magnetization of Eq. (4) into

Eq. (5), we find that
Film(t) - 68(ty — 1) G(t', )]}

- exp{ - %8{"8?}m(t) 6G(E, 1)

— exp {%a,’”aﬁ}é(lz,t)m(z) ‘0. )

In the following, we drop the arguments E and ¢ to ease the
notation.

We proceed by expanding the exponential function with
differential operators,

i maG > i maG | ~
expy — 53, O ((m - 0)G — exp Ea, g (G(m - o)
= [m-),G] - (%){at(m .6), 0:G)

Vi’ o s
+ (—) [97(m - &), 0;G]

21\2
V(i (s, o iz
-3l {07m - 6), G} + (- ). (8)
where {..., ...} denotes an anticommutator. Here and later

on, for ease of notation, we drop the superscript of the differ-
ential operators. Instead, we let the differential operators only
act on the factor directly to the right of it. We keep terms only
up to linear order in the gradients. This is justified when

1 y y
f[a,"(m - 6), 8§G]ij‘ <|[37720m-6),9;%G]|.,  ©

., (10

1 ¢ v
? {orom ). agG}z:f’ < |{o/*m - 6), 9;7>G})

ij

where 9;' denotes the nth partial derivative with respect to 7.
The magnetization precesses at a frequency w. Therefore, w
must be much smaller than the energy gradient of the Green’s
function. First, to avoid a diverging energy gradient of the
Green’s function, we assume finite temperatures. Second, we
add a phenomenological dephasing parameter § = 1/74, to
the Green’s function, E — E + i3, where T4p is a character-
istic dephasing time. We then find that the requirements (9)
and (10) are satisfied when (074ep)?/8 < 1 and (wB)?/8 < 1,
where 8 = 1/kgT is the inverse temperature.

To linear order, the effective generalized Usadel equation
in the FMI|SC|FMI trilayer reads

v i . Ny I o Y
E[t3, G] + E{f’3, oG} + [A,G] — 5{3tA, or G}
v IMetf

+ mege[m - 6, G| — 26“

In the next section, we will supplement this equation with
terms arising from spin-memory loss.

{(9m-6,0:G}=0. (11

C. Spin relaxation

To obtain a realistic model, we additionally need to include
some sort of spin relaxation mechanism in the generalized
Usadel Eq. (11). As a simple model, we model the relaxation
as a coupling to a NM reservoir, parametrized by the coupling
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coefficient V. This coupling relaxes the Green’s function in
the SC toward the equilibrium solution around the Fermi
level in the NM reservoir. The effective generalized Usadel
equation including this relaxation reads

. i o Ay i A Y
Elt3, G] + E{f3, oG} +[A, G] — E{a,A, 0 G}

I Meff

5 {3,m - &, 3G}

+ Megg[m - 0, G] —

+ V[N, G] — %{aEN, 3,G} =0, (12)
where N is the equilibrium Green’s function in the NM
reservoir. Additionally, this coupling gives a dephasing E —
E — iV in the Green’s function in the SC. This relaxation is
therefore a possible source of the dephasing which we have
already introduced in Sec. 11 B.

D. Parametrization

We now aim to express the generalized Usadel Eq. (12) in
a form that is easier to treat both analytically and numerically.
We use a parametrization [47] that maps the eight nonzero
components of GX, G*, and GX onto two scalars (charge

J

sector) and two vectors (spin sector), one of each reflecting
the normal and anomalous parts of the Green’s function. We
expand the Green’s function as (this applies to the R, A, and
K components)

G = Z Z Gijtiaja

i€{0,1,2,3} je{0,x,y,2}

(13)

where G;; = iTrGriaj. We gather the nonzero components
into the following functions:

Go = Gao,
G= [GOXa G3y’ G()Z],

(14)
F() = Gly,

F =[Gy, Gio, Goyl.

The scalar Gy and the vector G describe the diagonal elements
in particle-hole space of G. The scalar Fy and the vector F
characterize the corresponding anomalous off-diagonal ele-
ments of G. By inserting the definitions (13) and (14) into
the effective generalized Usadel Eq. (12), we arrive at the
following parametrized differential equations for the normal
components:

aGH" AGRAN  rom\  [dFSM oA
=Mett\ — )\ =7 ) W\ S~ oal B (15)
at OE at OE ot
AGR/A AGKA\ [ om A\ [ IFRA
-2 GR/A - 0 )i = , 16
o Mefr Xm)+mett< 3 ” i\ 3E (16)
dGK AGK\ [ om IFK\ (oA y e BE B (dGE 9G] ,( BE
0 e — ) [ — ) =i =)= ) —2v|GK = (GR = G tanh (== ) | — iVE [ =2 + =2 }sech?®( = |,
a1 m"“(w)(a;) ’(aE o1 0~ (Go = Go) tanh = Yo\ T )
(17)
aGK AGK\ [ om A\ [ OFK
— = 2me(GX il —= [ — ) — i — | —
or = 2men(G Xm)+mff<8E)(8t> l(ar)(aE)
E aGR 3G E
—2V|GX — (GR — G*)tanh PE —ivé — + — |sech? PE . (18)
2 2\ ot at 2

We also obtain additional equations given in Appendix A
for the anomalous components Fy and F for the R, A, and
K components. These equations (A1)—-(A4) are large and less
transparent algebraic expressions. Lastly, we need the gap
equation,

NoA [P

A=—i— dE Ff, (19)

—wp

where wp is the Debye cutoff energy, Ny is the Fermi-level
electron density of states, and A is the BCS electron-phonon
coupling constant. We will hereafter refer to Ag as the gap
at zero temperature, and A as the gap at the temperature and
effective magnetic field that is being considered.

For a self-consistent solution, all of the equations (15)—
(18), (A1)—(A4), and (19) are needed. If we assume a static
gap, however, only Egs. (15)—(18) are needed to determine the
time evolution of the Green’s functions once we know their
solution at a given time .

02

(
E. Spin currents and effects on FMR

The magnetization dynamics in FMs generates spin cur-
rents into neighboring materials. In the trilayer FMI|SC|FMI
under consideration, these spin currents read

Nomes [ v
o= =" [ ap o nimy - 65 G 20
N Py 5
Sy =~ f dE Tr(oywlmy - 63 GI), 1)

—00
Nomes [~ v
foo = =R [ ap Tromtme 6261 @2
—00

where my is the magnetization at interface X € {L, R}, and
where positive signs indicate spin-currents going from the
FMIs into the SC. After expanding the convolution products
in Egs. (20)-(22) to first order in time and energy gradients,

we find
. Nomiege  ° 1 3G(]J< omy K
s — El=(Z0)(22) L ¢ .
Tx =74 /,oo [2( oE )\ ar ) TG xmx)
4524-4



SPIN PUMPING BETWEEN NONCOLLINEAR ...

PHYSICAL REVIEW B 103, 024524 (2021)

The first term in this expression is the so-called spin-
pumping current arising from the imaginary part of the
mixing conductance. The spin-pumping current equals
P = (Nomegr/2)dmy /9t both in SCs and NMs. The second
term in Eq. (23) is the backflow spin current j® due to spin-
accumulation in the SC [48]. The spin-pumping current is
independent of temperature, relative magnetization angles,
and of whether the system is superconducting or not. The
backflow spin current depends on these system parameters,
and it will therefore be our main focus henceforth.

If we assume that the magnetizations of the FMIs are
uniform, the Landau-Lifshitz-Gilbert equation for the left FMI
can be written

8mL
o —yomy X Begr + oo | my, x

(24)

mL\ Yo
Jat Md

where yy is the gyromagnetic ratio of the ferromagnetic spins,

B, is the effective field in the FMI, « is the Gilbert damping

parameter, M, is the saturation magnetization in the FMI, and

d is the thickness of the FMI. If we express j; in reactive

and dissipative components, j; = C; ":,';L + Cy(my, X 3'"L ),

we find the following renormalized properties in the FM
Yo

1+ r]/O ’
C,
a0—>a=l<oz dVO). (26)
Yo Mvd

For later convenience, we define the reactive and dissipative
spin currents, j* = e

Yo—>y = (25)

8m )
Cr dtL and]d = Cd(mL X el

III. RESULTS AND DISCUSSIONS

We will now use the equations of motion of (15)—(18),
(A1)—(A4), and the gap Eq. (19), to find the spin current
generated by FMR in a FMI|SC|FMI trilayer. We consider
homogeneous magnetizations my, and my in the left and right
FMIs, respectively. The angle between the principal axes of
the magnetizations is 6. The left magnetization is precessing
circularly around its principal axis at a precession angle ¢ with
angular frequency w. The right magnetization is static. The
system is illustrated in Fig. 1.

We will initially search for an analytical solution by treat-
ing the dynamic magnetization component as a perturbation
from an equilibrium solution. Due to the complexity of the
equations, we first assume that the gap is static. This approxi-
mation enables us to solve the problem for arbitrary relaxation
V. Section IIT A presents this analytical approach. In prin-
ciple, it is also possible to find a self-consistent analytical
solution. However, the solution becomes extremely complex
in the presence of relaxation due to the coupling between
the retarded/advanced and Keldysh Green’s functions. Hence,
the full self-consistent problem is better suited for numer-
ical treatments. In Sec. III B, we compare the results of a
self-consistent numerical solution to the analytical solution in
Sec. IIT A. We additionally outline a self-consistent analytical
solution in Appendix B in the absence of relaxation. This latter
solution has restricted physical relevance, but is supplied for
the convenience of further work in this framework.

A. Analytical solution with static gap approximation

We first separate the magnetization vector m into a
static and a dynamic component, m = m® + mD. The static
component m© = (0) + m(o) is the sum of the static magne-
tizations of the left and rlght FMIs. The dynamic component
m is the dynamic part of my. It has magnitude §m and
precesses around the z axis with angular frequency w, m'! =
dm[cos(wt), sin(wt), 0]. This decomposition of the magne-
tization vectors is illustrated in Fig. 1. We now assume the
following: (i) The dynamic magnetization component is much
smaller than the gap, mesdm < A. (ii)) The fluctuations in
the gap are much smaller than the dynamic magnetization
amplitude, §A K megdm.

Assumption (i) enables us to expand the Keldysh Green’s
function components in the perturbation dm,

GE =GKO 4 GEV 1 (.,

R 27)
G* =GV +G*V + (-,

where the nth-order terms are assumed to be «§m”. We con-
sider the first-order expansion in §m only, and we choose
therefore to disregard second- and higher-order terms. As-
sumption (ii) implies that the generalized Usadel equations
for the advanced and retarded Green’s functions [Egs. (15)
and (16)] decouple from the Keldysh component. In what fol-
lows, we will derive the solution for the Keldysh component.
The retarded/advanced Green’s functions can then be found
simply by substituting K — R/A and by setting V = 0 in the
Keldysh component solution.

To first order in dm, the effective generalized Usadel equa-
tions for the Keldysh component read

Gy " aGKO\  om"
= Meft .
ot oE ot
E
—2v [G{f“) — (G5 — G)") tanh (’%)]
(28)

dGKD
a1

= 2t (GKO s mD + GED . )y

N 9GO\ (om"
_—
"\ oE ot

A4 [G’“‘) — (G* — G*V) tanh (%)}

(29)
We propose the Ansdtze
GOK(l) — GK(I) it +GK(1) —lwt
GK(]) — Gi(l)elwt +GE(])€7ZM. (30)

After inserting the Ansdtze in Eq. (30) into Egs. (28) and (29),
we note that the differential equations separate into decoupled
equations for the +/— components. By solving for GK ! and
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G’f]), we obtain

GK 1 1

OE
2V R(1) A(l) ,BE

— = (GRM — GAD) tanh 1

Toiav G~ G )tanh{ 7). GD

K(1 —1 1
G:t( ) = meffAiniwm;)

+

E
+2VAZL(GRY — GAV) tanh (%) (32)

where the matrices Ay, and B, are defined as

Fio +2V  2megm?  2megm
A, = | 2megm®  Fio+2V —2meggm® |, (33)
—2meffm)(,0) 2megem?) +iow +2V
+iwC(E) —2GK© ZG;( ©
B., = | 2GX0  LiwCE) —2GKO | (34
—2G§,0) 2GKO +iwC(E)
and where

BE IGE? Gy
C(E) = tanh -0
2 )\ 9E OE

AGRO  HGA®
GRO _ A0 _ | 2% 0
+ ([ 0 0 ] l oE + 9E
E
X gsech2<ﬂ7>. 35)

The solution to GX!) is particularly simple when 6 = 0 or
6 = . For & = 0, we obtain

(dmegr + w)m™D + 22 2V 3m<1>

(2V)2 + (dmegr + w)2
2.(1) _V

2vim® — ¥ (dmeg + 0) 22— az GK(O)
(2QV)2 + (Amesr + w)? ‘

where we have inserted mgo) = 2. We observe that a finite V

introduces a component of GX parallel to dmy /3t. When we
insert this component into the spin current in Eq. (23), we
see that it generates both a reactive and a dissipative backflow
current, j° and jg. Hence, even though the spin pumping
current is purely reactive, the backflow spin current can indeed
carry a dissipative part due to relaxation in the SC. Moreover,
we note that the effective magnetic field 2meg suppresses the
amplitude of GXV). This feature is due to Hanle precession of
GXD around the effective magnetic field, which reduces the
effect of the excitation.

When 6 = mr, the Hanle precession is more or less absent
due to a very small effective magnetic field ocmeg sin . Under
the assumption that the precession angle is sufficiently small,
sin ¢ < /megr, We obtain

GEY) = mer (2GX© + wC(E))

(36)

m) 1+ 2V am)
om+ ) T (37)
V) + w?
As a control check, we can verify that we obtain the instanta-
neous equilibrium solution (G*V — G*") tanh(BE /2) when
V>o.

G = merwC(E)

In the second line of C(E) in Eq. (35), we have iso-
lated the source of nonequilibrium behavior of GX. This
nonequilibrium part arises from the energy gradient of
the distribution function, and is therefore proportional to
sechz(ﬁTE). In the normal metal limit, we have 8G§ JOE =0,

and f fooo dE C(E) = 4 is therefore constant and independent
of temperature. The spin current is therefore independent of
temperature in the NM limit.

The coefficient C(E) in Eq. (35) predicts that the nonequi-
librium effects mostly arise within a thermal energy interval
+p~! from the Fermi level. There are two tunable parame-
ters that affect the number of quasiparticle states within this
energy interval in a SC: First, at higher temperatures, the en-
ergy interval in which quasiparticles can be excited broadens.
The more overlap there is between this energy window and
the gap edge, the larger we expect the spin accumulation to
be. Another thermal effect is that the gap A decreases with
increasing temperature, which enhances the above-mentioned
effect. Second, the effective magnetic field introduces a spin-
split density of states, which pushes half of the quasiparticle
states closer to the Fermi level. An additional effect is that the
gap decreases with an increasing effective magnetic field, an
effect that moreover is temperature-dependent. Therefore, the
effective magnetic field also affects the number of quasipar-
ticle states within a thermal energy interval from the Fermi
level. Both the temperature and effective magnetic field can
hence be tuned to increase the spin accumulation. The spin
accumulation in turn generates a backflow spin current into
the FMIs. We therefore expect a larger backflow spin current
from a SC at higher temperatures and for stronger effective
magnetic fields.

We will now evaluate the angular and temperature de-
pendence of the backflow spin current for a particular
FMI|SC|FMI trilayer. We choose the parameters in the
SC so that they match those of Nb. That is, we choose
1/V = 14/2m ~ 1071 s [49] and a critical temperature
T. = 9.26 K [50]. Moreover, we use an effective magnetic
field strength m. = 0.1A¢, and a magnetization precession
angle ¢ = arcsin(0.01). Last, we use a precession frequency
o = 0.005A¢ =~ 10 GHz, which is an appropriate frequency
for, e.g., yttrium iron garnet (YIG). The relaxation introduces
a dephasing V = 0.05A, which is sufficient to justify the
gradient expansion. The gap A = A(T, 6, meg) is found by
solving the gap equation self-consistently [51] to zeroth order
in the dynamic magnetization, as well as checking that the free
energy of the superconducting state is lower than in the normal
metal state. The assumptions (i) and (ii) underlying the static
gap approximation can be satisfied for any effective field m.g
providing we choose an appropriate precession amplitude, 5m,
which can be tuned with the ac magnetic field used to excite
FMR in the FMI.

In the FMI|SC|FMI trilayer, the expression for the backflow
spin current in Eq. (23) implies that there is a static RKKY
contribution to the spin current. This RKKY contribution is
due to the finite GX close to the Fermi level. However, other
terms also contribute to the RKKY interaction beyond the
quasiclassical theory. Therefore, we subtract the instantaneous
RKKY-like static contribution to the spin current.

Figure 2 plots the backflow spin current as a function of 6
for two different temperatures, T = 0.17. and T = 0.97... The
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FIG. 2. The reactive (red) and dissipative (blue) backflow spin
current, normalized to the density of states Ny, as a function of 6
through the left interface of a FMI|SC|FMI trilayer for two different
temperatures, 7 = 0.17 (upper plot) and T = 0.97; (lower plot). We
have used the parameters given in the main text, with me; = 0.1A,.
In the lower plot, we have also plotted the spin current through an
analogous FMIINM|FMI trilayer (dotted lines).

spin-pumping currents in both cases are purely reactive and
equal to jP/Ny = 1073 J?/m. The first striking observation
is that the spin current is much lower in the SC system at
T = 0.1T. than at T = 0.97... Singlet pair formation hinders
injection of spin currents into the superconductor. Next, we
observe that the total spin current grows as 6 approaches 7,
which is the case for both the SC and NM systems, and at both
temperatures. This is due to the decreased impact of Hanle
precession on the spin accumulation as the effective magnetic
field decreases. Moreover, we note that the reactive spin cur-
rent is favored close to 6 = 0, whereas the dissipative spin
current is favored close to 6 = m. This is because the Hanle
precession affects the reactive and dissipative spin current
differently. Inspecting Eq. (36), we see that the reactive and
dissipative spin current are suppressed by a factor o<(mmeg) ™!
and o«(meg) "2 close to 8 = 0, respectively. For large effective
magnetic fields, that is, close to 6 = 0, the dissipative spin
current is therefore strongly suppressed compared to the re-
active spin current. Close to 6 = 7, where Hanle precession
is negligible, the reactive and dissipative spin currents are
suppressed o<V =2 and ocV !, respectively, as can be seen in

p=] R — ——0=0,meg = 0.1A,
Z 1 0 =0, meg = 0.24¢
= ——60 =0, me = 0.3A
O\ 0 =m,meg = 0.14¢
A 0 =7, meg = 0.2
ma 6 =m, meg = 0.34

0 02 04 06 08 1
T/T,

—8C, meg = 0.1
—NM, meg = 0.14,
SC, meg = 0.24¢
NI\{. Meff = 02A0
——3SC, meg = 0.3
—= leVL Meff = 0.3A0

0
0 02 04 06 08 1
T/T,

FIG. 3. (a) The temperature dependence of the total spin current
in the superconducting system for two relative magnetization angles,
0 = 0and 6 = . The spin current is normalized to the normal metal
limit, where the spin current is independent of temperature. (b) The
ratio jj’gzo / j;ﬁ:n plotted as a function of temperature for both the
SC and NM systems. We have used the parameters given in the
main text. The lowest temperature included is 7 = 0.037; in order

to ensure that the gradient expansion is justified.

Eq. (37). Hence, the dissipative spin current dominates close
tof =m.

Let us now explore the temperature dependence in detail.
In Fig. 3(a) we plot the total spin current as a function of
temperature for two angles, 6 =0 and 8 = &, and for dif-
ferent effective field strengths meg. We have normalized the
spin currents with the respect to the analogous NM limit
spin currents. The latter are independent of temperature. Due
to the gradient expansion, the parameters must satisfy the
condition 87! > w/+/8 ~ 0.003kgT,. We therefore restrict
the temperature analysis to 7 > 0.03T.. First, we observe
that the spin currents approach the NM limit at the critical
fields for the respective effective magnetic fields. We have
already discussed this behavior, which is due to the amount of
quasiparticle states within a thermal energy interval from the
Fermi energy. This entails an overall decrease in the total spin
current for the & = 0 configuration, and an increase for the
6 = m configuration. This is due to the nature of the backflow
spin current. In the 6 = 0 configuration, the backflow spin
current is dominated by a reactive component that counteracts
the spin-pumping current. In the 6 = m configuration, the
backflow spin current is dominated by a dissipative compo-
nent. This spin current is oriented almost 90° relative to the
spin-pumping current, and therefore increases the total spin
current.
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Next, Fig. 3(a) demonstrates that the temperature depen-
dence of the normalized spin current for the 8 = 0and 6 = 7
states differ. To investigate this further, we plot the ratio
between the dissipative spin currents in the parallel and an-
tiparallel configurations, j57=°/j3°=", both in the NM and
SC state, in Fig. 3(b). Here, we observe that this ratio is a
constant function of temperature in the NM limit, whereas it
depends strongly on temperature in the superconducting state.
The ratio peaks at slightly different temperatures for different
effective fields meg in the superconducting state. The height
of the peak increases with an increasing effective field mi.
As the temperature approaches T¢, the ratio in the SC state
converges toward the NM limit result.

This behavior is due to the aforementioned effect of
temperature and effective magnetic field. In the parallel con-
figuration, the effective magnetic fields of the two FMIs add
constructively and cause a strong spin-splitting in the density
of states. In the antiparallel configuration, the effective fields
add destructively and cause only a weakly spin-split density
of states. At very low temperatures, the difference between
the parallel and antiparallel configurations is small for the
chosen values of meg. This is because neither state has a large
density of states close to the almost §-function-like thermal
energy interval around the Fermi level. At slightly higher tem-
peratures, the states that are pushed closer to the Fermi level
start overlapping with the thermal energy interval Eg &+ 7.
The difference between the two states is maximized for some
intermediate temperature, kg7 < A(T ), where we observe the
peaks in Fig. 3(b). At even higher temperatures, the thermal
energy interval broadens further. The difference between the
parallel and antiparallel states then starts decreasing for higher
temperatures, and eventually approaches the NM limit.

B. Numerical analysis

We aim here to briefly present a numerical solution to the
problem that was solved analytically in Sec. III A. Our main
goal is to evaluate whether the assumption of a static gap can
be justified to a good approximation. A subsidiary goal is to
show the time evolution of the gap, and the usefulness of a
numerical method in this framework also when the static gap
approximation is not valid.

We see from Eqgs. (16) and (18) that the vectors G*, G®,
and GX precess around the effective magnetic field. For such
a class of equations, employing a fourth-order Runge-Kutta
method is suitable for obtaining a numerical solution. To
test the validity of the static gap approximation, we want to
perform a simulation of the system where the oscillations
in the gap are maximized. This is expected to occur where
the magnitude of the effective field oscillates with the largest
amplitude. From Eq. (BY) one can show that this occurs at
0 = /2 in the absence of relaxation, and we hence expect it
to occur at 8 = /2 also with the inclusion of relaxation.

Figure 4(a) for & = 7 /2 shows the fluctuation of the gap
8A(t) normalized to Ay over one period 27 /w and for sev-
eral temperatures 7, with meg = 0.1A¢. The gap oscillates
harmonically with frequency w for all temperatures up to
T = 0.85T;. At temperatures close to the critical temperature
for the given effective magnetic field, the gap shows a non-
linear response to the dynamical magnetization. This effect

x107°
51 _ T =0.05T.
(2) O=m/2 | ot
= T =0.25T.
ﬂ T = 0.35T..
=0 M T = 0.45T.
—~ T = 0.55T.
ﬂ \ // T = 0.65T..
\ T = 0.75T..
-5 | N T =085T.
0 0.5 | T =095T,
t/3
6% 107°
- (b)
ﬂ n —9=1x/6
—~ ——60=2m/6
g 0=3n/6
9l —— 0 =4r/6
g 4 9 =571/6
E ;f ———
0

0 02 04 06 08 1
T/T,

FIG. 4. (a) The fluctuations of the gap §A(r) plotted over one
period 27 /w at different temperatures for 6 = 7 /2. (b) The detailed
temperature dependence of the gap fluctuation amplitude max|6A|
for different magnetization angles 6. The gap fluctuations are nor-
malized to the gap at zero temperature, A, and we have used
Megr = 0.1 Ao.

is visible for T = 0.957, and is due to the increased sensi-
tivity to fluctuations in the magnetic field as the temperature
approaches the critical temperature. In Fig. 4(b), we further
explore 6 and the temperature dependence of the gap fluc-
tuation amplitude, max|§A|, in the linear response regime.
We observe that the fluctuations are largest at 6 = 7 /2,
and that they are maximized at about 7 =~ 0.87.. Moreover,
we observe that the fluctuations are not larger than about
5.5 x 1073A¢. Let us now briefly remind the reader that
the formal requirement for the static gap approximation was
0A K megdm, where dm is the dynamic magnetization am-
plitude. We have meg8m =~ 0.001A > §A < 5.5 x 1072 A,
which implies that the static gap assumption is an excellent
approximation in this instance.

IV. CONCLUSION

We have derived an effective, time-dependent generalized
Usadel equation in noncollinear FMI|SC|FMI trilayers with
a thin superconducting layer and weakly magnetized FMIs.
We have provided analytical solutions to these equations in
terms of perturbations in the dynamic magnetization, first
under the assumption of a static gap, and then a self-consistent
solution in the absence of relaxation. Lastly, we have provided
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numerical procedures to obtain self-consistent solutions of the
full equations without any further simplifications.

From the solutions to the generalized Usadel equation, we
computed the spin currents generated by ferromagnetic reso-
nance in one of the FMIs. We have explored this spin current
as a function of both temperature and relative magnetization
angle between the FMIs. The spin current has been decom-
posed into a reactive and a dissipative part, which change
the effective gyromagnetic ratio and Gilbert damping coef-
ficient of the FMI. We found that the backflow spin current
is generally largest when the magnetization orientations of
the FMIs are antiparallel. The ratio between the spin current
in the parallel and antiparallel configuration strongly depends

J

on temperature in the SC. The origin is the Zeeman splitting
of the quasiparticles at the gap edge. Lastly, we performed a
numerical simulation to verify that the static gap assumption
is a good approximation in our regime, also showing the
usefulness of a numerical solution in this framework.
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APPENDIX A: ADDITIONAL PARAMETRIZED USADEL EQUATIONS

In the main text, we provided four of the generalized Usadel equations, Egs. (15)—(18), that were equations of motion for
the normal components of the Green’s functions. The remaining four equations that are needed to solve a system with nonzero
anomalous Green’s functions self-consistently are given as follows:

FRIA _ i(A(meffm -GM —(E - iv)Gy™) — e“m (57 = agg/AD (A1)
o m2;m? — (E — iV )2 ’
FRA iAGRA
T (E—iV)
il A (merm - GM — (B — V)G Ym — 5 [m - (G S5 Jm + 2 [mgm? — (B — iV 7] (5 x 22))
(E —iV)[m2um? — (E — iV )?] ’
(A2)
ik H(A(nam - GX — EGE) — “tm - (3 x BE)) iV tanh (%) [m - (F* + ) — E(F + )]
0 m?ym? — E? (m2em? — E?)
R A R aA
_pvseet()m - (%~ ) (5 - )] )
4(mZym? — E?)
FK — iAG* _ i(mese A (megrm - G* — EGf )m — %[’" ’ (%_'zn X B:E ) Jm + lmeff (meem® — Ez)( ot < Z%F_EK))
E E (m%ym* — E?)
+numhéﬁum-mR+Fh—EU§+Eﬁpn—mﬂ—E%w*+Fﬂ]
E (mgm? — E?)
| AVsee’ () [{m - (7 — ) - E(%E = %) }m — on? — E?)(£" — )] (Ad)
AE (m%;m? — E?) ’

where the notation is defined in the main text.

APPENDIX B: SELF-CONSISTENT SOLUTION IN THE ABSENCE OF SPIN RELAXATION

We will derive here a self-consistent solution to the generalized Usadel equations, Egs. (15)—(18), Eqs. (A1)—-(A4), and the
gap Eq. (19), in the absence of spin relaxation (V = 0). This solution has restricted physical relevance, and it only applies in the
limit where the precession frequency is much larger than the relaxation rate. However, it is included as a proof of concept that a

self-consistent solution is in principle possible.

The derivation follows the lines of what was presented in Sec. IIT A, with a few exceptions. In addition to the perturbation

expansion in Egs. (27), we also expand

Fo=F"+F"+F>+ ().

F=F"+FV4+F® (..,

B

A:A(O)—FA(I)—{—A(Z)—F(“').
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We have dropped the retarded/advanced and Keldysh superscript in order to keep the derivation as general as possible. This
derivation hence applies to all Green’s-function components. We also propose one additional Ansatz,

AW = AP - AV i, (B2)
If we insert this into the generalized Usadel equations to first order in §m, and with V = 0, we obtain the solutions
IG© IF,”
G\ = m'D — i =2 )AL, B3
0+ Meft BE + 14 8E ( )
(M 1R, D) -1 OFY
where
3 +iw 2Mess — m;()) 2meffm§0)
Ay, = Zmeffms)) tiw —Zmeffmio) (BS)
—2meffm§,°) 2meffm§c0) tiw
and
(0)
tio®- 260 26"
Bio=| 269 +io’ 26O (B6)
i ‘(O) 0 Yo
2Gy 2G§, ) :l:la)ﬁ

To solve for AW(¢), we look closer at the gap equation given in Eq. (19). If we insert the generalized Usadel equation for
Ff [Eq. (A3)] into the gap equation while using V = 0, divide both sides by A, and assume that |mgm')| < 8, the first- and

second-order gap equations read

Nok [©P marm©@ . GKO) _— EGK(O)
1:%[ dE( eff 0 )

m2,(m©)? — E2
wp 1
0= dE—————
-/—wn mgff(m(o))z —E?

’

aFKO
) = 0’

1) .
Here, we wused m©® . (22— x 2 since

{meﬁ,(mm GKO £ © . GKD) — EGED _ 22 in® - mD)

FKO [ m®.

(B7)

(meffm(o) . GK(O) — EGOK(O))
Mg (m®)> — E?

(B8)

We have moreover used E — E +i§ and

meir Mm@ - mV| <« 1m©@|8, ensuring that the expansion is also valid when Re{E} — ms|m®|. Eq. (B7) is simply the
zeroth-order gap equation, while Eq. (B8) must be used to find self-consistent solution to the first-order Green’s-function
components. All that remains now is to insert the Ansdtze Eqs. (30) and (B2) into Eq. (B8). The resulting solution for the

first-order components ASII) reads
1 / T
T:t —wp

AD
mgff(m(o))2 - E?

{(mg) . GK(O)) + Meff([A;;)Biwmg)] 'm(o)) - E(m?

(meffm(o) . GK(O) — EG(I]((O))

IGK©
 OE >

— 2meg(m - m©)
m(m0)> — E?

where T is defined by

—_1 9FK©® .
tome[ALL E] - m® 1 iE

(B9)

|

4K (0)
aF,

Ty =

@p
- / dE
—wp

dE

(B10)
m (m0)> — E?
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