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It is well known that the critical temperature of multigap superconducting three-dimensional (3D) heterostruc-
tures at atomic limit (HAL) made of a superlattice of atomic layers with an electron spectrum made of several
quantum subbands can be amplified by a shape resonance driven by the contact exchange interaction between
different gaps. The TC amplification is achieved tuning the Fermi level near the singular nodal point at a Lifshitz
transition for opening a neck. Recently high interest has been addressed to the breaking of inversion symmetry
which leads to a linear-in-momentum spin-orbit induced spin splitting, universally referred to as Rashba spin-
orbit coupling (RSOC) also in 3D layered metals. However the physics of multigap superconductivity near
unconventional Lifshitz transitions in 3D HAL with RSOC, being in a non-BCS regime, is not known. The key
result of this work getting the superconducting gaps by Bogoliubov theory and the 3D electron wave functions
by solution of the Dirac equation is the feasibility of tuning multigap superconductivity by suitably matching the
spin-orbit length with the 3D superlattice period. It is found that the presence of the RSOC amplifies both the k
dependent anisotropic gap function and the critical temperature when the Fermi energy is tuned near the circular
nodal line. Our results suggest a method to effectively vary the effect of RSOC on macroscopic superconductor
condensates via the tuning of the superlattice modulation parameter in a way potentially relevant for spintronics
functionalities in several existing experimental platforms and tunable materials needed for quantum devices for
quantum computing.

DOI: 10.1103/PhysRevB.103.024523

I. INTRODUCTION

It is known that the structure inversion asymmetry (SIA)
which stems from the inversion asymmetry of the confin-
ing potential in a two-dimensional (2D) electron gas induces
a spin-orbit band splitting with states of different helic-
ity [1–9]. Giant spin-orbit induced spin splitting in the range
150–450 meV has been found in metal alloys [10] and
transition-metal dichalcogenides [11]. A three-dimensional
Rashba spin splitting has been observed in PtBi2, BiTeX (X
= Br, Cl, or I), and GeTe which show dispersion along the
out-of-plane direction (kz) [12–14]. The realization of the
three-dimensional Rashba-like spin splitting [15] in quantum
materials and heterostructures potentially unfolds numerous
promising applications. Following the first theoretical study of
superconductivity [16] with spin-orbit band splitting in a 2D
metallic layer or at the surface of doped WOx oxides, several
theoretical works have studied the emergence of superconduc-
tivity in the presence of spin-orbit coupling in a 2D metallic
layer [17–23].

Recently, experimental evidence that the strength of spin-
orbit interaction is correlated with quasi-2D superconductivity
in the (111) LaAlO3/SrTiO3 interface has been reported [24]
and confirmed in several systems [25–28]. The spin polarized
energy bands near a topological Lifshitz transition can be de-

tected experimentally by ARPES spectroscopy as it has been
observed in a complex oxide heterostructure interface [29]
and in layered cuprate perovskite superconductors [30]. Today
there is a high interest in the physics of quantum complex
materials aimed at the realization of mesoscopic quantum
heterostructures for novel superconducting Josephson junc-
tions [31,32].

The theoretical studies of superconductivity coexisting
with spin-orbit coupling have been limited to a 2D supercon-
ducting layer and to a single band metal [16–23], while it is
not known how superconductivity will arise in a 3D Rashba
system. Moreover, previous theoretical investigations have
considered single-gap superconductors while, in multiband
3D superconductors, multiple-gap superconductivity, in the
clean limit, need to be considered in the presence of band spin
splitting due to spin-orbit coupling.

In fact, in multigap superconductivity, it is no longer
possible to neglect the key role of quantum configuration
interaction between superconducting gaps as, for example,
the BEC-BCS crossover gap at Lifshitz transitions near a
band edge and other gaps in the BCS limit far from band
edges [33–41]. Finally, all theoretical approaches have been
developed in the BCS regime where the Fermi energy is much
higher of both the spin-orbit energy band splitting and the

2469-9950/2021/103(2)/024523(17) 024523-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6615-2264
https://orcid.org/0000-0002-3901-9230
https://orcid.org/0000-0001-5174-6759
https://orcid.org/0000-0001-9795-3913
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.024523&domain=pdf&date_stamp=2021-01-22
https://doi.org/10.1103/PhysRevB.103.024523


MARIA VITTORIA MAZZIOTTI et al. PHYSICAL REVIEW B 103, 024523 (2021)

energy gap, while the most interesting physics occurs in the
regime where the Fermi energy is in the same energy range as
the superconducting energy gaps and the spin-orbit splitting.

The main result of this work is the theoretical description
of multigap superconductivity [33–42] at the unconventional
Lifshitz transition [43] in a 3D heterostructure at the atomic
limit with a periodicity of a few nanometers with tunable spin-
orbit strength.

We consider a 3D superlattice of metallic layers of thick-
ness L separated by spacers of thickness W and overall
periodicity d . Our aim is to show that the interplay between
the Rashba spin-orbit coupling (RSOC) and superlattice struc-
ture allows for a fine tuning of the critical temperature. To
appreciate this point, consider the energy splitting due to the
RSOC and the corresponding difference of the Fermi mo-
menta of the two spin eigenstates. This difference introduces
a typical SOC length scale lSOC, which may be compared with
the modulation of the superlattice d . In a bulk system lSOC

can be compared only with the Fermi wavelength, which is
typically of the order of 0.1 nm. In contrast in a superlattice,
the modulation is of the order of tens of nanometers, which
matches the order of magnitude of the RSOC. The RSOC
energy is linear in the wave vector ε ∼ αk, with the constant
α ∼ 0.01 eV nm. By defining lSOC = 2π h̄2/(αm), m being the
electron mass, one estimates lSOC ∼ 10 nm. As a result the
tuning of the RSOC may be achieved via the variation of the
modulation of the superlattice structure.

The layout of the paper is the following. In the next sec-
tion we introduce the model Hamiltonian of a 3D layered
superconductor in the presence of RSOC. In Sec. III we study
the normal phase paying special attention to the topology
of the Fermi surface and to the associated features in the
single-particle density of states (DOS). In Sec. IV we turn
our attention to the superconducting phase where we derive
the superconducting gap equation and discuss its numerical
solution in the multiband case. Finally, in Sec. V we state our
conclusions.

II. THE MODEL

The Hamiltonian of the system under study reads

H = H0 + HI , (1)

where H0 is the single-particle contribution, which includes
the RSOC

H0 = p‖2

2m
+ p2

z

2mz
+ V (z) − iα(σx h̄∂y − σyh̄∂x ). (2)

In the above equation, p = −ih̄∇ is the usual momentum op-
erator and p‖ its projection in the xy plane. V (z) = V (z + d )
is the periodic potential modeling the superlattice structure
V (z) = −V [θ (z − d ) − θ (z − L)], where d = L + W and V
is a positive constant. The single-particle Hamiltonian H0 has
solutions of the form

ψnkλ(r) = ϕnkz (z)
eik‖·r‖
√
A

ηλ(θ ), (3)

where the wave vector components k =(kx, ky, kz ) ≡ (k‖, kz )
label plane waves in the xy plane of area A and the Bloch
functions ϕnkz (z) along the z axis, n being a subband index.

The functions ϕnkz (z) and the corresponding eigenvalues are
obtained by imposing the continuity of the wave function and
its first derivative at the discontinuity points of the potential

ϕ(z + d ) = eikzdϕ(z), ϕ′(z + d ) = eikzdϕ′(z), (4)

where the phase factor is required by Bloch’s theorem. Finally
the effect of the RSOC is encoded in the spinors

ηλ(θ ) = 1√
2

(
1

iλeiθ

)
, λ = ±1, (5)

where θ is the angle which defines the direction of the wave
vector in the plane kx = k‖ cos (θ ), ky = k‖ sin (θ ). As a result
the single-particle energies read

εnkλ = εnkz + h̄2k2
‖

2m
+ λαk‖ ≡ εnkz + ελk‖ . (6)

As for the second contribution to the Hamiltonian in Eq. (1)
we adopt the standard contact interaction with a cut-off energy
h̄ω0,

HI = U0

2

∫
drΨ †

α (r)Ψ †
β (r)Ψβ (r)Ψα (r), (7)

where Ψα (r) is the annihilation fermion field operator and
summation over the repeated spin indices (α, β) is understood.

Before considering the superconducting phase in Sec. IV,
it is useful to analyze first in the next section the effects of the
RSOC in the normal phase and in particular on the density of
states. To this end we first consider a simplified tight-binding
model and then we turn our attention to the model defined in
Eq. (2), by confining to the two lowest subbands for numerical
reasons.

For the following discussion it is useful to introduce two
dimensionless parameters: the Lifshitz parameter defined as

η = μ − E2

h̄ω0
(8)

and the rescaled Lifshitz parameter

ηR = μ − ER

h̄ω0
, with ER = E2 − �ERSOC, (9)

where μ is the chemical potential which at zero temperature
coincides with the Fermi energy, E2 is the band edge energy of
the second subband in the absence of RSOC, ω0 is the cutoff,
and �ERSOC is the energy shift due to the RSOC.

III. THE NORMAL PHASE

In the presence of a RSOC, the trend of the DOS can be
understood by considering the evolution of the Fermi surface.
In this context we will limit our analysis to a two-band system
obtained by taking the two lowest subbands.

The starting point is the single-particle energy disper-
sion (6), which we report here for the sake of clarity:

εnkλ = k2
‖

2m
+ λαk‖ + εnkz , (10)

where for simplicity we adopt units such that h̄ = 1.
For both the first and second subband, the energy dis-

persion along the z axis, which is numerically solved as
shown below, can be fitted in terms of a tight-binding model.
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In particular, for odd n the agreement is obtained with a
two-harmonic expansion, while for n even the agreement is
obtained with a three-harmonic expansion. All this can be
combined with the observation that, for the purpose of the
subsequent discussion, we do not need to specify the precise
form of the dispersion along the z axis, but for the fact the εnkz

increases (for n odd) or decreases (for n even) monotonically
between kz = 0 and kz = π/d and, furthermore, is an even
function with respect to kz −→ −kz, for both even and odd n.

Hence, in order to illustrate the key features of the DOS, we
start our analysis with a simplified expression of εnkz , namely

ε1kz = t[1 − cos(dkz )], t = 1 and 0 < kz < π/d (11)

for the first subband and

ε2kz = t[1 + cos(dkz )], t = 1 and 0 < kz < π/d (12)

for the second subband.
To simplify the notation in the following discussion, the

parameters of the in-plane dispersion in Eq. (10) are expressed
in units such that 2m = 1 and we define the spin-orbit typical
momentum k0 = mα.

For the sake of definiteness we assume that the minimum
energy for the z axis is zero and the maximum is εz, i.e.,
ε2n+1,0 = 0 and ε2n+1,π/d = εz for the odd subbands, while we
have ε2n,0 = εz and ε2n,π/d = 0 for the even subbands. Hence
from (10) we take the zero of the energy at the origin in the
in-plane momentum space. Thus the dispersion along z for
the first and second subband will be equal to �Ezn = εz.

The quasiparticle energy (10) has axial symmetry so that
we may first study it in the (k‖, kz ) plane. From the isoen-
ergetic curves in this plane one can obtain the isoenergetic
surfaces by performing a rotation around the kz axis. At a
given chemical potential μ, from the expression of the quasi-
particle energy, we derive the values of k‖ at fixed kz and
helicity λ,

k‖(kz, λ) = −λk0 ±
√

k2
0 + (μ − εn,kz ), (13)

from which we start our discussion. It is useful to distinguish
three separate regimes for the Fermi energy: (I) εz < μ; (II)
0 < μ < εz; and (III) −k2

0 < μ < 0, where, in this simplified
model, �ERSOC = −k2

0 is the energy shift due to RSOC cou-
pling (see Fig. 1).

Let us examine them in detail.

A. Regime I

When selecting the sign in Eq. (13) we must keep in mind
that k‖ � 0. Let us start with the helicity λ = 1. In this case
for both even and odd n the only allowed sign is the positive
one:

k‖(kz, 1) = −k0 +
√

k2
0 + (μ − εn,kz ). (14)

For n odd at kz = 0 one has k‖(0, 1) = −k0 +
√

k2
0 + μ,

whereas at kz = π/d one has k‖(π/d, 1) = −k0 +√
k2

0 + (μ − εz ), so that k‖(π/d, 1) < k‖(0, 1). Hence
the isoenergetic curve, when rotated around the kz axis,
generates a corrugated cylinder wider in kz = 0 and narrower
in kz = ±π/d . For n even we have a diametrically opposite

FIG. 1. The dispersion along kx is shown together with the dis-
persion along kz, in arbitrary units, both for n odd (bottom panel)
and for n even (top panel). In this figure �Ezn is the dispersion in
the z direction equal to εz for both n even and odd (in the numerical
model we will assume that �Ez2 is equal to the cut-off energy ω0).
�ERSOC = −k2

0 is, instead, the shift of the Dirac point (defined as the
point at which the in-plane dispersions with opposite helicity meet)
as a consequence of the dispersion along kz. The � and Z points are
the center and the edge of the first Brillouin zone (IBZ). We then
indicate the three different regimes in which to study the system:
(I) εz < μ (light-yellow box); (II) 0 < μ < εz (light-green box); and
(III) −k2

0 < μ < 0 (light-blue box).

situation, i.e., we still have a corrugated cylinder which,
however, is narrower in kz = 0 and wider in kz = ±π/d
(Fig. 2).

Let us consider next the case λ = −1. Since μ > εnkz , the
radicand is always greater than k0, and, therefore, the only
allowed sign is the positive one:

k‖(kz,−1) = k0 +
√

k2
0 + (μ − εn,kz ). (15)

For n odd at kz = 0, one has k‖(0,−1) = k0 +
√

k2
0 + μ,

whereas at kz = π/d one has k‖(π/d,−1) = k0 +√
k2

0 + (μ − εz ). Hence, also in this case, the isoenergetic
curve, when rotated around the kz axis, generates a corrugated
cylinder, which is bigger than the previous one.

For n even at kz = 0 one has k‖(0,−1) = k0 +√
k2

0 + (μ − εz ), whereas at kz = π/d one has k‖(π/d,−1) =
k0 +

√
k2

0 + μ. Hence, also in this case, the isoenergetic
curve, when rotated around the kz axis, generates a corrugated
cylinder, with opposite curvature compared to the case of odd
n (Fig. 2).

B. Regime II

Let us begin again by considering first the helicity λ = 1.
Clearly the only sign allowed is the positive one. One notices
that exactly at μ = εz one has k‖(π/d, 1) = 0, which implies
a Lifshitz transition for the Fermi surface. For the energies in
this regime we see that not all the values of kz are allowed. The
maximum kz = k∗

z is determined by the condition k‖(k∗
z , 1) =

0, i.e., k0 =
√

k2
0 + (μ − εnk∗

z
). For odd n, the isoenergetic
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FIG. 2. Top panel: Contour plots in the (k‖, kz ) plane for λ = −1 (left) and λ = +1 (right) for a single-harmonic tight-binding model for
the first subband of Eq. (11). Parameters are d = 1, t = 1 so that εz = 2. The RSOC momentum k0 = 1.5. On top of some of the isoenergetic
curves are shown the corresponding Fermi surfaces. Bottom panel: Contour plots as above for the second subband of Eq. (12). The orange
numbers are the values of the Lifshitz parameter, defined in Eq. (8) of the different level curves, for the choice of the parameters made in
this simplified model, while the dashed green curves on the 3D Fermi surfaces of (a) and (c) represent the nodal line of singular points at an
unusual van Hove singularity.

curve starts at a point (0, k∗
z ) on the kz axis and ends at a point

k‖(0, 1), 0 in the k‖ axis. The Fermi surface has a fuselike
shape (Fig. 2).

For even n, the isoenergetic curve starts at a point (0, k∗
z ) on

the kz axis and ends at a point k‖(π/d, 1), π/d on the k‖ axis.
In this case, for Fermi surfaces, we obtain half of a spindle
that has the tip in (0,0) and reaches the maximum diameter in
kz = π/d (Fig. 2).

In this regime the case for helicity λ = −1 is more com-
plex. The positive sign is of course allowed. The branch with
the positive sign starts at the point (k‖(π/d,−1), π/d ) and
ends at the point (k‖(0,−1), 0) for odd n, while per even n the
positive sign starts at the point (k‖(0,−1), 0) and ends at the
point (k‖(π/d,−1), π/d ). In both cases these curves generate
corrugated cylinders by rotation around kz (Fig. 2). For this
helicity there is also a possibility of the other branch with the
negative sign:

k‖(kz, λ) = k0 −
√

k2
0 + (μ − εn,kz ). (16)

However this branch is only allowed for a restricted range of
kz values, i.e., (k∗

z , π/d ) which is the complementary range

with respect to that allowed for the other helicity. Hence in
this regime of energies the helicity λ = 1 does not exist for the
range (k∗

z , π/d ), when the helicity λ = −1 develops another
branch exactly in this range. As a result the Fermi surface
for the λ = −1 gets an applelike shape with the poles pushed
inwards. This is due to the fact that the points where the phase
velocity vanishes are no longer isolated points, but due to the
rotation around kz they form circles with finite measure.

C. Regime III

In this regime there is only the helicity λ = −1, which
however has two branches:

k‖(kz,−1) = k0 −
√

k2
0 + (μ − εn,kz ), (17)

k‖(kz,−1) = k0 +
√

k2
0 + (μ − εn,kz ). (18)

If k2
0 + μ − εz = 0, then both branches start at the same point

(k0, π/d ) for odd n [(k0, 0) for even n] and from there depart

ending at the points (k0 +
√

k2
0 + μ, 0) and (k0 −

√
k2

0 + μ, 0)
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for odd n [(k0 +
√

k2
0 + μ,π/d ) and (k0 −

√
k2

0 + μ,π/d )
for even n] in the k‖ axis, respectively. This is the case when
the singularity in the phase velocity, which in the absence of
RSOC is at the isolated point (0, π/d ) for odd n or (π/d, 0)
for even n, becomes a finite-measure manifold and develops
a van Hove singularity in the DOS (Fig. 2). Hence we may
distinguish two cases: (IIIa) 0 < k2

0 + μ < εz and (IIIb) 0 <

k2
0 + μ > εz. In case (IIIa) the argument of the square root

is negative, hence the two branches start at a point (k0, k∗∗
z )

with k∗∗
z given by the condition k2

0 + μ = εnk∗∗
z

. Then the two
branches end on the k‖ axis. The Fermi surface generated by
these curves has a toruslike shape. In regime (IIIb) instead, the
two branches remain disconnected from each other. The Fermi
surface has an external and internal part and has a toruslike
shape, with the toruses of neighboring zones touching each
other (Fig. 2).

Our aim is to evaluate the density of states (DOS) in order
to compare it with the detailed calculations made with the
more realistic periodic potential model. Therefore, we derive
the analytical DOS expression for both helicity values λ =
±1:

N−(μ) = 1

2π2

∫ ∞

−k0

dx(x + k0)

× θ
(
μ + k2

0 − x2
)
θ
(
x2 + 2t − μ − k2

0

)
√(

μ + k2
0 − x2

)(
x2 + 2t − μ − k2

0

) , (19)

N+(μ) = 1

2π2

∫ ∞

k0

dx(x − k0)

× θ
(
μ + k2

0 − x2
)
θ
(
x2 + 2t − μ − k2

0

)
√(

μ + k2
0 − x2

)(
x2 + 2t − μ − k2

0

) , (20)

where x = k‖ ∓ k0 for λ = ∓1 and θ (x) is the Heaviside step
function.

Let us analyze the integral defined in Eq. (19) and in
Eq. (20). As a function of the variable x, the integrand has

singularities at x = ±
√

μ + k2
0 and x = ±

√
μ + k2

0 − 2t . All
singularities have index −1/2 and hence are integrable. When
μ + k2

0 = 2t , the denominator acquires a zero at the origin. In
the absence of spin-orbit interaction, the 1/|x| behavior of the
denominator is compensated by the numerator and the integral
is finite. However, in the presence of spin-orbit interaction,
there is a term proportional to k0 in the numerator and a van
Hove singularity develops. The singularity has a logarithmic
behavior.

The DOS expression can be computed with Mathematica
by using the built-in Heaviside function and numerical in-
tegration command. In Fig. 3 are reported the plots of N−,
N+ (partial DOS), and N− + N+ (total DOS), respectively, for
four values of k0 = 0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8
and t = 1. The partial and the total DOS are reported as
a function of the rescaled Lifshitz parameter defined in
Eq. (9) where, in this case, E2 = 0, �ERSOC = −k2

0 , and ω0 =
�Ez2 = εz = 2t .

The black curve corresponds to the case when there is no
spin-orbit present. Clearly the value ηR = 1 (in units of t)
marks the point of the band edge for the dispersion along

FIG. 3. Total and partial DOS as a function of ηR [Eq. (9)].
Top panel: The partial DOS N− [Eq. (19)] and N+ [Eq. (20)]
as a function of the rescaled Lifshitz parameter ηR. The black
curve is k0 = 0. The other curves have increasing values of k0 =
0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8. Here t = 1. Bottom
panel: The total DOS N− + N+ given in Eqs. (19) and (20) as
a function of rescaled Lifshitz parameter ηR. The black curve
is k0 = 0. The other curves have increasing values of k0 =
0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8. Here t = 1.

the z axis. The spin-orbit interaction develops a van Hove
singularity exactly at this point. This behavior, as we will see
below, appears in agreement with the more realistic model.
This point, ηR = 2t/�Ez2, corresponds to the singularity in
the two-dimensional Rashba model at the bottom of the lower
band with helicity λ = −1. In the 3D case the singularity
appears at the edge of the band due to the motion along z.

Figure 3 also shows that as k0 increases, N− increases while
N+ decreases, in the sum this involves a change only in the
proximity of the van Hove singularity. More precisely, while
at the Lifshitz transition the partial densities combine to yield
a strong change in the DOS, at high energies they compensate,
so that the total DOS coincides with the total DOS in the
absence of RSOC. This means that in the high-energy limit the
parameters of the normal phase and, as we will see below, of
the superconducting phase do not depend on k0, in accordance
with the work of Gorkov and Rashba [16].

D. Numerical results for the full model

After the analysis of the simplified tight-binding model,
we study the properties of the normal phase starting from the
solution of the model of Eq. (2) obtained numerically.
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FIG. 4. Isoenergetic curves, Fermi surfaces for the first and second subbands at three different values of Lifshitz parameter. The top panels
show the case of λ = 1 (left) and λ = −1 (right) for the first subband and for �ERSOC = �E2z (αSO = 0.41). The bottom panels show the same
analysis carried out for the second subband. The DOS maximum is observed at ηL where the system develops a van Hove singularity. In this
case the Fermi surface develops a nodal line highlighted in (a) and (c) with a dashed green line. For λ = 1, both for the first and for the second
subband, ηL is independent of the value of αSO and it is equal to −3.9 and 0.92 meV, respectively. While for λ = −1, ηL changes with αSO (as
underlined in Fig. 5), for the first subband ηL = −4.6 meV, for the second ηL = −0.11 meV. In (c) and (d), for η = ηL , we highlight the phase
factor with the colors of the rainbow and the nodal line (white dashed curve) of the singular points.

For the numerical solution of the normal phase the chosen
parameters are: the barrier V = 0.5 eV, the thicknesses of
the metallic and insulating layers L = 23 Å and W = 7 Å,
respectively, with total periodicity d = 30 Å, the effective
masses m = mz = me, the cut-off energy h̄ω0 = 30 meV, and
the coupling constant g = 0.4.

According to the works [3,6] we express the Rashba cou-
pling constant in the following form:

α = 2
h̄2

2m

2π

d
αSO, (21)

where αSO is a dimensionless parameter which describes the
strength of the Rashba momentum in units of the inverse
lattice spacing along the z direction.

Similarly to what has been done for the tight-binding
model, we carry out the analysis of the evolution of Fermi sur-
faces for ε2kz obtained numerically by distinguishing for each
of the listed regimes three distinct cases: �Ez2 � �ERSOC,

where �Ez2 = ε2kz,max − ε2kz,min is the bandwidth of the dis-
persion along the axis of confinement z in the presence of
a potential of the form Kronig-Penney, while in this case
�ERSOC = E0 = −(mα2)/(2h̄2) is the energy shift due to the
RSOC. The model parameters are chosen so that �Ez2 is of
the same order of magnitude as the cut-off energy.

This study concerns a two-band system, where the first
subband has an s symmetry, while the second one has p sym-
metry. The results are shown in Fig. 4: in Figs. 4(a), 4(b), 4(c),
and 4(d) we plot the isoenergetic curves in the (kx, kz ) plane
for λ = ±1 and for the first and the second subbands versus
the Lifshitz parameter η, Eq. (8), where E2 = 163.64 meV is
the band edge of the second subband in the absence of RSOC
and ω0 is the cut-off energy for h̄ = 1. In this figure we also
report the evolution of Fermi surfaces for three distinct values
of the parameter η. The analysis is made for αSO = 0.41 value
for which the condition �ERSOC = �Ez2 = ω0 is verified. In
the case of the second subband for an energy value close
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FIG. 5. Partial density of the states vs η and projection of the FS in the plane (kx, ky ) at kz = Z . In the left panel the continuous curves
represent the partial DOS for λ = −1, the dots those for λ = 1, the shades of blue refer to the first subband for three different values of
αSO = 0.20, 0.41, 0.50, while the shades of red to the second subband. The figure shows that the value of ηL , for which the FS have a nodal
line (Fig. 4), decreases as αSO increases by an amount equal to E0/ω0, while the peak of the partial DOS λ = +1 increases. In the right panel
the light blue curve represents the projection of the FS relative to λ = −1 in the plane for the first subband, the light blue dashed curve is
relative to λ = 1. Similarly, the orange curves refer to the second subband. This panel is built for αSO = 0.41 and η = 3.

to the van Hove singularity (ηL) we take into account that
in the presence of RSOC the spinor [Eq. (5)] and the gap
[Eq. (39)] depend on a phase factor eiϑ and the removal of
the spin degeneration splits the dispersion into two bands with
opposite helicity. To take this into account we plot the FS at
the Lifshitz transition with a color that varies with ϑ in panels
(c) and (d) of Fig 4. In particular, for λ = 1 it varies from red
to purple, while for λ = −1 it varies from purple to red.

We highlight the three regimes analyzed previously and a
change in symmetry in passing from the first to the second
subband. Such a change, for the first subband, occurs at the
point �, origin of the first Brillouin zone (IBZ), while, in the
second subband, it occurs at the point Z , edge of the IBZ
in the z direction. As the Rashba coupling changes (�Ez �
�ERSOC), only a flattening of the contour lines and Fermi
surfaces is observed to the left and a shift to the right of
the singular points. The latter are the points where the phase
velocity vanishes and which generate, for rotation around the
kz axis, circles whose radius increases with αSO. The energy in
which this van Hove unusual singularity occurs is indicated in
the figure with ηL and in the literature it is called neck opening
energy. We can note that for the bands with positive helicity
ηL is independent of the value of αSO, while for the bands with
negative helicity it varies as the RSOC varies.

This behavior is confirmed by Fig. 5 where we plot
the partial DOS for αSO = 0.20 (�ERSOC > �Ez2), αSO =
0.41 (�ERSOC > �Ez2), and αSO = 0.50 (�ERSOC > �Ez2).
In this figure ηL coincides with the value for which the partial
DOS relative to λ = −1 for the first and second subband
has a maximum. As you can see, as αSO increases, the ηL

parameter decreases while the value of the partial DOS peak
λ = −1 increases. In particular, in the case of the first subband
for λ = −1 ηL = −5.2 for αSO = 0.50, ηL = −4.6 for αSO =
0.41, and ηL = −4.0 for αSO = 0.20. Indeed, in the case of
the second subband for λ = −1 ηL = −0.37 for αSO = 0.50,
ηL = 0.11 for αSO = 0.41, and ηL = 0.78 for αSO = 0.20. In

the right panel of Fig. 5 we report the projection of the Fermi
surfaces in the plane (kx, ky) at the point Z of the IZB for
η = 3, where we have highlighted the two possible values
of helicity with different colors (light blue for λ = −1 and
orange for λ = 1).

What can be seen from the graphs in Fig. 5 is a peak in
the partial DOS, and then in the total DOS, corresponding to
an energy value equal to E0/ω0 = −(mα2)/(2ω0) which, as
the coupling constant Rashba increases, it increases and shifts
to gradually smaller Lifshitz parameter values, and the shift
involves only the negative helicity bands. This is underlined
in Fig. 6, in which we have reported the normalized band-
edge energy ER in Eq. (9), for the first and the second subband

FIG. 6. Normalized band-edge energy as a function of the RSOC
constant. The orange empty circles represent the band edge energy vs
αSO for the second subband and λ = 1, while the blue empty squares
are relative to the first subband at the same helicity value. The red
dots, on the other hand, represent the band edge energy for the second
subband at λ = −1, the light blue dots refer to the first subband for
the same helicity value. As noted earlier, a Rashba shift can only be
observed for negative helicity bands.
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FIG. 7. The DOS for the first and the second subband as the
αSO changes. In particular, we have chosen values for this parameter
between 0.2 and 0.8 in order to reproduce the three cases previously
discussed, �Ez � �ERSOC, and compare them with the case of no
RSOC, αSO = 0. What is observed is that as the RSOC increases, the
DOS peak becomes more pronounced and shifts to gradually smaller
energies, since the peak occurs at E0/ω0.

for the two distinct helicity values as a function of the RSOC
constant.

Finally, note that, for the values of the normalized band-
edge energy, from this point on we report the results in terms
of the rescaled Lifshitz parameter [Eq. (9)].

In the normal phase for a two-band system we plot the
total density of the states (DOS) and the partial DOS as the
Rashba coupling changes (�Ez � �ERSOC) and compare it
with the case without RSOC (Fig. 7). In Fig. 7 the DOS is
plotted versus the rescaled Lifshitz parameter ηR [Eq. (9)] for
different values of αSO.

In the case of positive helicity the DOS trend is that of a
sloped step, very similar to the trend observed in the absence
of RSOC, while in the case of negative helicity we can observe
a peak in the density of the states and a shift of the latter
towards the left as the parameter αSO increases. This confirms
what has been commented for Figs. 2, 3, 4, and 5, or that the
effects of a Rashba spin-orbit coupling become more marked
for the negative helicity subband.

In a generic 3D system with free-electron-like dispersion
relation, the DOS behaves as the square root of energy,
whereas in a quantum layer (2D) the DOS is constant and so
that it jumps sharply every time a new quantum number from

a new layer takes over. In the present case, the DOS shows
almost a 2D-like behavior for the first subband. In fact, these
are nearly pure 2D subbands with a negligible transversal
hopping between the layers. Instead, at the bottom of the
second subband appears a sharp step due to contribution of
the partial density of states of the second subband to the total
density of states. The total energy dispersion of the second
subband �Ez2 determines the energy separation between the
top and the band edge energy for the second subband. In the
energy range η2edge < η < η2top (where η2edge and η2top are,
respectively, the Lifshitz parameter at the edge and at the top
of the second subband), the electronic structure is like that of
an anisotropic 3D electron gas, while the 2D character appears
at higher energy η > η2top.

The observed Rashba shift can be understood by consider-
ing the simplified model previously introduced. In the absence
of RSOC the vanishing of the energy gradient occurs in an
isolated point and, therefore, there are no singularities in the
DOS. In contrast in the presence of RSOC, the energy gra-
dient vanishes at finite values of the absolute values in-plane
momentum k‖, therefore we have singular points distributed
on circumferences that generate van Hove peaks in the DOS.
As the RSOC increases, the energy at which van Hove peaks
occur moves to the left, but, as underlined in the discussion of
the tight-binding model, the difference in energy between the
band edge and the maximum DOS value remains constant and
equal to the dispersion along z.

The shape of the Fermi surface is crucial for understand-
ing the electronic properties of metals. As first noticed by
Lifshitz [44], changes in the Fermi surface topology cause
anomalous behavior of thermodynamic, transport, and elas-
tic properties of materials. Intuitively, the simplest way to
observe such an electronic topological transition, also known
as Lifshitz transition, is by tuning the Fermi level to the
singular point in the band structure where the change of topol-
ogy takes place. This requires considerable variations of the
electron density. A quantum critical point appears in the prox-
imity of a Lifshitz transition with typical quantum criticalities
and possible quantum tricritical behavior in itinerant electron
systems.

There are two types of Lifschitz transition: type I, the
appearing of a new detached Fermi surface region or appear-
ing or disappearing of a new Fermi surface (FS) spot, and
type II, the disrupting or the neck-collapsing type of Lifschitz
transition with a change of dimensionality that can be induced
by orbital symmetry breaking in lightly hole doped bands. In
Fig. 4 we show that a new 3D FS opens when the chemical
potential crosses the band edge energy, and the electron gas in
the metallic phase undergoes an electronic topological transi-
tion (ETT). When the chemical potential is beyond the band
edge in an anisotropic system at a higher energy threshold,
the electronic structure undergoes a second ETT, the 3D-2D
ETT, where the FS changes topology from 3D to 2D or vice
versa, called also the opening or closing of a neck in a tubular
FS or neck collapsing. This ETT is a common feature of all
existing high-temperature superconductors and novel mate-
rials synthesized by material design in the search for room
temperature superconductivity.

However, the analysis made in this section highlights some
surprising results, the first is that there is a change in sym-
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metry of the evolution of the FS topology in passing from
the first to the second subband. The second is that in the
proximity of a type II Lifshitz transition we have a curve of
critical points and no longer an isolated point, a fact which
explains the appearance of a very pronounced peak in DOS
values. The radius of this curve increases with the intensity of
the RSOC and this is reflected in an increase and at the same
time a true right shift of the DOS maximum. In this situation,
the variation in the Fermi surface (FS) topology is absolutely
nontrivial.

Clearly we want to see how the above features of the
electron spectrum and DOS are reflected in the properties of
the superconducting phase. Therefore, after having analyzed
in detail the structure of the FS and the DOS in the normal
phase, we turn, in the next section, to the study of the super-
conducting phase.

IV. THE SUPERCONDUCTING PHASE

To investigate how the shape of the Fermi surface and the
behavior of the DOS manifest in the superconducting proper-
ties of the system with RSOC, we first derive the equations
for computing the energy gap. The approach used is the one
originally introduced by Innocenti et al. [36] and successively
developed in Refs. [37–42], where the Bogoliubov equations
are solved analytically and numerically without the typical
approximations of the BCS theory. The entirely new thing in
the following discussion, however, consists of using nonrela-
tivistic Dirac wave functions in order to take into account the
additional spin degree of freedom.

The field operators of Eq. (7) can be written in terms of the
single-particles states:

ψnkα (r) = ϕnkz (z)
eik‖·r‖
√
A

χα ≡ ψ̃nk(r)χα, (22)

where χα with α =↑,↓ are the usual spinors associated with
the quantization of the spin along the z axis. This is a legit-
imate expression for the field operators since the functions
ψnkα (r) are the eigenfunctions of the Hamiltonian H0 ob-
tained by setting α = 0 in Eq. (2), i.e., completely neglecting
the Rashba term. If we indicate with cnkα the operators that
destroy a particle in the state (22), then the field operators
become

�α (r) =
∑
n,k

ψnkα (r)cnkα (23)

and the interaction term can be written as

HI =U0

2

∑
k1,k2,k3,k4

∑
α,β

In1,k1;n2,k2
n3,k3;n4,k4

× c†
n1,k1,α

c†
n2,k2,β

cn3,k3,βcn4,k4,α,

(24)

with the overlap integrals defined by

In1,k1;n2,k2
n3,k3;n4,k4

=
∫

ψ̃∗
n1,k1

(r)ψ̃∗
n2,k2

(r)

× ψ̃n3,k3 (r)ψ̃n4,k4 (r)dr.
(25)

The integrals in Eq. (25) appear in the treatment of the
superconductive phase transition in the presence of a periodic

potential and have been extensively discussed [36]. The oper-
ators a†

n,k,λ that create a particle in state Eq. (3) are related to

the c†
n,k,α operators by an unitary transformation

a†
n,k,λ =

∑
α

c†
n,k,αUα,λ(k), (26)

where the matrix element of the change of basis is equal to
Uα,λ(k) = χ†

α · ηλ(θk‖ ). As a result, the four operator products
that appear in the expansion of the right-hand side of Eq. (7)
can be written as

c†
n1,k1,α

c†
n2,k2,β

cn3,k3,βcn4,k4,α

=
∑

λ1,λ2,λ3,λ4

Mλ1,λ4

(
θk1‖ − θk4‖

)
Mλ2,λ3

(
θk2‖ − θk3‖

)

× a†
n1,k1,λ1

a†
n2,k2,λ2

an3,k3,λ3 an4,k4,λ4 ,

(27)

where we have defined

Mλ1,λ4

(
θk1‖ − θk4‖

) =
∑

α

U †
λ1,α

(k1)Uλ4,α (k4), (28)

and similarly for Mλ2,λ3 (θk2,‖ − θk3,‖ ). Since the ϕn,kz are Bloch
wave functions, the integral (25) is different from zero only for
k1 + k2 = k3 + k4 and the expression for HI becomes

HI =1

2

∑
n1,n2,n3,n4,k1,k2,K

U n1,λ1;n2,λ2
n3,λ3;n4,λ4

(k1, k2; K)

× a†
n1,k1,λ1

a†
n2,−k1+K,λ2

an3,−k2+K,λ3 an4,k2,λ4 ,

(29)

where the effective potential reads

U n1,λ1;n2,λ2
n3,λ3;n4,λ4

(k1, k2; K) = U0In1,k1;n2,−k1+K
n3,−k2+K;n4,k2

× Mλ1,λ4

(
θk1‖ − θk2‖

)
Mλ2,λ3

(
θ−k1‖+K‖ − θ−k2‖+K‖

)
.

(30)

Equation (29) is the expression of the interaction term when
both RSOC and a periodic potential are present. It can be
viewed as the natural extension to a multiband system of
Eq. (4) of [16] and, from this point on, the computation of
the superconducting gap follows the same steps. In agree-
ment with Gor’kov and Rashba [16] we assume that the
normal and the anomalous Green’s functions are diagonal in
the helicity base. Hence we consider only Cooper pairs with
zero net momentum (K = 0), formed with particles in the
same band and with the same helicity {(n, k, λ), (n,−k, λ)},
which are connected by the time reversal symmetry op-
erator. We allow for the contact exchange interaction HI

to connect pairs in different bands with different helicity:
the pair {(n, k, λ), (n,−k, λ)} can be scattered into the pair
{(l, q, ν), (l,−q, ν)} where n, λ, l , and ν can assume any al-
lowed value. We emphasize that, as discussed in Ref. [16], the
existence of a different pairing function in each helicity band
implies a mixture of singlet and triplet pairing. Symmetric and
antisymmetric combinations (see Eq. (22) of Ref. [16]) of the
pairing functions for the two helicity bands correspond to the
singlet and triplet component with respect to the original spin
quantization axis taken along the z direction. This can be seen
by using the transformation (26) connecting the electron op-
erators between the original spin basis and the helicity basis.

Following the standard Gor’kov approach at finite temper-
ature, we introduce the Matsubara imaginary time operators
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an,k,λ(τ ) that follow the imaginary time evolution equation
−∂τ an,k,λ(τ ) = [an,k,λ(τ ), H]. In terms of these operators the
normal [Gn,λ(k, τ − τ ′)] and the anomalous [F †

n,λ(k, τ − τ ′)
and F †

n,λ(k, τ − τ ′)] Green’s functions are defined as

Gn,λ(k, τ − τ ′) ≡ −〈Tτ an,k,λ(τ )a†
n,k,λ(τ ′)〉, (31)

F †
n,λ(k, τ − τ ′) ≡ 〈Tτ a†

n,−k,λ(τ )a†
n,k,λ(τ ′)〉, (32)

Fn,λ(k, τ − τ ′) ≡ 〈Tτ an,−k,λ(τ )an,k,λ(τ ′)〉, (33)

where Tτ denotes the imaginary-time ordering operator. By
using a mean-field approach, we arrive, after a lengthy alge-
bra, to the self-consistent gap equation:

�n,λ(k) = −1

2

∑
l,q,ν

U ′
n,λ;l,ν (k, q)

�l,ν (q)

2El,ν (q)
tanh

(
βEl,ν (q)

2

)
,

(34)
where �n,λ(k) is defined as

�n,λ(k) ≡ 1

2

∑
l,q,ν

U ′
n,λ;l,ν (k, q)Fl,ν (q, 0+), (35)

and the quasiparticle energy is

El,ν (q) =
√

(εν,q‖ + εl,qz − μ)2 + |�l,ν (q)|2, (36)

and the pairing potential reads

U ′
n,λ;l,ν (k, q) ≡ U n,λ;n,λ

l,ν;l,ν (k, q; 0) − U n,λ;n,λ
l,ν;l,ν (−k, q; 0)

= U0In,l (kz, qz )λνe−i(θk‖ −θq‖ )
,

(37)

with the overlap integral

In,l (kz, qz ) ≡ In,k;n,−k
l,q;l,−q . (38)

The matrix elements defined in the Eq. (38) depend on the
subband index (n and l) and on the wave vector transversal to
the layers (kz and qz). In the superposition integrals [Eq. (38)]
only the dependence on the transverse moment remains, since
the wave functions in the plane are plane waves which com-
pensate for the choice made on K. For a periodic potential
barrier associated with the superlattice of layers the density
histogram of pairing interaction matrix elements between sub-
bands is illustrated in Fig. 8. The intraband (diagonal elements
of matrix) and interband (off-diagonal elements of matrix)
distributions show different shapes and widths and have a
different range of values. In particular, the off-diagonal ele-
ments have a probability density function which is about half
of the diagonal elements which instead are of the same order
of magnitude.

While in Fig. 8 the dependence on the band indices of the
exchange integral is highlighted, in Fig. 9 the dependence on
wave vectors is highlighted. This last figure clearly shows that
the diagonal elements of the matrix defined by the superposi-
tion integral are greater than those off-diagonal, whatever the
value of the wave vectors. Furthermore, for both the intraband
and the interband there is a curve of values of kz and qz for
which I11 = I22 and I12 = I21, whereas on the right of this
curve I11 < I22 and I12 < I21, the opposite being true on the
left.

FIG. 8. Histogram of the matrix elements defining the superposi-
tion integral of Eq. (38). The green and blue bars refer, respectively,
to the intraband pairings I1,1(kz, qz ) and I2,2(kz, qz ), while the red
and yellow bars refer to, respectively, to the interband couplings
I1,2(kz, qz ) and I2,1(kz, qz ). The histogram shows a marked anisotropy.

The integral equation (34) shows a dependence of the gap
�n,λ(k), reminiscent of the Rashba spinors Eq. (5), upon
the helicity and the in-plane component of the wave vector
through a phase factor λeiθk‖ . To get rid of this dependence
in the self-consistent equation, we define an auxiliary gap
function �n(kz ) as

λeiθk‖ �n(kz ) ≡ �n,λ(k). (39)

Then the self-consistent equation for �n(kz ) can be cast in
the form

�n(kz ) = −U0

2

∑
l,qz

In,l (kz, qz )�l (qz )

×
∑

ν

∑
qx,qy

tanh
(

β

2 El,ν (q)
)

2El,ν (q)
,

(40)

where it is understood that the wave vector q appearing in
the last term is q = (qx, qy, qz ). The solution of Eq. (40) is

FIG. 9. Terms of the matrix of the exchange integral defined in
Eq. (38) as a function of the wave vectors in the direction of the
confinement potential. The green plan corresponds to I1,1(kz, qz ),
the blue plan corresponds to I2,2(kz, qz ), the red plan corresponds to
I1,2(kz, qz ), and the yellow plan corresponds to I2,1(kz, qz ).
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obtained numerically by starting with a guess for �n(kz ) and
iterating until convergence is reached. Since the computa-
tional effort is considerable, it becomes important to speed
up the calculations by reducing the dimensionality of the
summations. In fact, once qz has been fixed, the argument of
the last sum depends on q‖ only trough the in-plane dispersion
energy εν,q‖ . It is then convenient to define a partial density of
states gν (ε‖) that allows a transformation of the double sum in
Eq. (40) into a one-dimensional integral:

∑
qx,qy

f (εν,q‖ ) = A
4π2

∫ ε‖,max

ε‖,min

gν (ε‖) f (ε‖)dε‖. (41)

The integration extrema ε‖,min and ε‖,max are computed by
introducing the contact interaction energy cutoff in the sense
that the condition ε‖,min < ε‖ < ε‖,max implies the inequality
|ε‖ + εl,qz − μ| < h̄ω0.

It is worth to point out that gν (ε‖) cannot be formulated
as a single analytical function but it has to be defined with a
piecewise expression that reflects the topology change of the
Fermi surface when switching from one regime to another (see
Secs. III A, III B, and III C). In fact, the expression defining
the partial density of states is

A
4π2

gν (ε‖) =
∑
qx,qy

δ(ε‖ − εν,q‖ )

= A
4π2

∫ ∞

0
2πq‖δ(ε‖ − εν,q‖ )dq‖,

(42)

where the double sum has been transformed in a integral in
polar coordinates in the last line. This leads to the following
expression for gν (ε‖):

gν (ε‖)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4πm −2νk0√
2mε‖+k2

0

if − k2
0

2m � ε‖ < 0, ν = −1,

4πm
νk0+

√
2mε‖+k2

0√
2mε‖+k2

0

if ε‖ > 0,

0 otherwise,

(43)

where k0 is defined as in the discussion preceding Eq. (13),
but this time we do not set 2m = 1.

Equation (40) has been solved both in the limit T → 0
(that is β → ∞) and in the limit T → TC [that is �n(kz ) → 0
for every n and kz]. The first limit allows us to determine
the gaps while the second allows us to determine the critical
temperature.

The results of the numerical computations for the gaps are
shown in the Fig. 10(a), in which we plot both partial DOS
and �n(kz ) for the first and second subbands in kz = π/2d
as a function of the Lifshitz parameter rescaled ηR [Eq. (9)].
The numerical values of the shift due to the Rashba coupling
are indicated in the various panels which differ in the value of
the αSO parameter. Furthermore, in this discussion we set the
value of the superconducting coupling at g = 0.4, where g is
defined as g = g3D(μ)U0 with g3D = 1

(2π )2(
√

h̄2/2m)3

√
μ being

the DOS at the Fermi level for a homogeneous system (no
RSOC, no peridodic potential along z). In the numerical sim-
ulation we assume that g is a constant, so as the chemical po-

tential changes both g3D and U0 are continuously recalculated.
We emphasize that, in order to have the full gap, i.e.,

�λn(k), we must also consider the dependence on the phase
factor and on the helicity, for this purpose we keep in mind
Fig. 5.

Figure 10(a) shows that both for the gap of the first subband
(�1) and for the gap of the second subband (�2) it is possible
to distinguish three distinct regimes of multigap superconduc-
tivity as a function of the rescaled Lifshitz parameter when
it is tuned around the unusual van Hove singularity: an an-
tiresonance regime in which the gaps reach a minimum value
for ηR < ηL, where ηL is the value of the van Hove energy for
which the DOS shows a peak, a resonance regime for ηR = ηL

in which the gaps reach their maximum value, and, finally, a
multiband BCS-like regime for ηR > ηL.

In particular, it can be observed that �1 has a minimum
when the chemical potential is near the bottom of the sec-
ond subband. The partial DOS relative to the first subband,
both for λ = 1 and for λ = −1, does not change as the
chemical potential changes, therefore, the presence of such a
pronounced minimum may be due to the existence of a Fano-
type antiresonance in superconducting gaps. An antiresonance
can be due to an interband exchange term that generates
interference effects between the wave functions of a single
particle by coupling in a nontrivial way the parameters of the
superconducting phase relating to different bands. Both the
depth and the position of the minimum in the �1 depend on
this term.

A minimum in �1 appears below the band edge where the
DOS of the second subband changes abruptly and the Fermi
surfaces, as seen above, are in a Lifshitz transition of the
first type. That is, the partial filling of the second subband
is reflected in the appearance of two new three-dimensional
(3D) Fermi surfaces, one for each helicity.

As for the gap of the second subband (�2), Fig. 10(a)
shows that it starts to assume nonzero values when the chem-
ical potential has not yet reached the bottom of the second
subband. This effect emphasizes, once again, the nonbanal
role of interband coupling in a multicomponent system.

�2 reaches the maximum corresponding to the maximum
of the partial DOS relative to the second subband and to a
negative helicity, i.e., when the chemical potential is near the
unusual van Hove singularity, in which the Fermi surfaces
changes topology passing from a 3D to a two-dimensional
(2D) geometry. As the Rashba parameter αSO varies, as seen
previously, the radius of the circumference of the singular
points that characterizes the Fermi surface in a Lifshitz tran-
sition of the type II (3D-2D ETT) increases, and, as shown in
Fig. 10(a), the maximum values of �1 and �2 also increase.
By varying the parameter αSO, we distinguish three different
regimes: if αSO is such that �ERSOC < �Ez2 the maximum
of �1 has a value greater than the maximum of �2, for
�ERSOC = �Ez2 = ω0 the maxima of the two gaps coincide
within the limits of the numerical approximations made, and,
finally, for �ERSOC > �Ez2 the maximum of �2 exceeds the
value of the maximum of �1.

It can also be noted that in the high energy limit the values
of the gaps are to a good approximation close to the BCS limit,
i.e., in the high energy limit the gaps no longer depend on
α [16].
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FIG. 10. Properties of the normal phase and the superconductive phase vs the rescaled Lifshitz parameter without and with RSOC for
different αSO values such that �ERSOC � �E2z. Panel (a) left side Starting from the bottom, the first panel shows the DOS for the first subband
(blue curve) and the second subband (red curve) and the trend of the gap relative to the first subband (blue curve) and to the second subband
(red curve) as a function of the rescaled Lifshitz parameter. The other panels in (a) are related to the four values of αSO previously discussed,
αSO = 0.30, 0.41, 0.50, 0.70, and show the partial DOS for the first subband with positive helicity (light blue curves) and with negative
helicity (blue curves) and the partial DOS for the second subband with positive helicity (orange curve) and with negative helicity (red curves).
We also report the trend of the gap relative to the first subband (blue curve) and to the second subband (red curve) as a function of the rescaled
Lifshitz parameter. An anomalous behavior and an amplification of the parameters of the superconductive phase are observed in a range of
rescaled Lifshitz parameter 0 < ηR < 1. That is, in the proximity to the unusual van Hove singularity. Panel (b) right side The values of the
gaps for the second subbands at αSO = 0 and αSO = 0.41 vs the rescaled Lifshitz parameter for different values of kz = 0, π/2d, π/d show
a variation in a neighborhood of van Hove unusual singularity. We have highlighted the variation of the gap values on the Fermi surface at
different kz for three values of the Lifshitz parameter in ηR = ηL and ηR = ηL ± 0.5 by choosing the black color for the low gap values at
kz = π/d , the red color for kz = π/2d , and the orange color for the high gap values at kz = 0.

In Fig. 10(b) we plot the values of �2 as a function of ηR

for different values of kz. It can be observed that �1 does not
vary as kz varies from point � to point Z of the IBZ, while it
is possible to notice a variation of �2 in a neighborhood of
ηL, where the role of exchange integrals [Eq. (25)] becomes
crucial.

For values of the Lifshitz parameter close to the van Hove
singularity, for the second subband and for a helicity λ = −1
(the only one present) we plot the corresponding FS highlight-

ing the dependence of �2 from kz with three different colors
from low (black) to high (orange) gap values. In proximity of
the unusual van Hove singularity the gap is not constant in
kz since the partial filling of the second subband causes the
weight of εl,qz in Eq. (36) to be not negligible.

By solving Eq. (40) in the limit �n(kz ) → 0 we can be
compute the critical temperature TC .

In Fig. 11(a) we plot the values of the critical temperature
at different values of the Rashba parameter αSO as a function
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FIG. 11. (a) The critical temperature TC versus Lifshitz parame-
ter for different values of Rashba coupling αSO on a semilogarithmic
scale. The critical temperature appears as an asymmetric function of
the Lifshitz parameter and if αSO < 0.41 the maximum of TC grows
slowly, while if αSO > 0.41 it grows faster and faster. (b) In this
Uemura plot the critical temperature TC is plotted on a log-log scale
versus the Fermi temperature for different values of Rashba coupling
αSO. The white box refers to the Fano resonance appearing near the
BEC-BCS crossover indicated by the dashed line.

of the rescaled Lifshitz parameter. The critical temperature
appears as an asymmetric function of the Lifshitz parameter
regardless of the value of the αSO parameter and shows the
typical trend of a Fano antiresonance with a minimum at the
first Lifshitz transition and a maximum at the second Lifshitz
transition where the Fermi surfaces switch from 3D geometry
to 2D geometry. From Fig. 11(a) one can observe that in the
presence of RSOC the energies are shifted to the left by an
amount equal to E0 = −(mα2)/(2h̄2) and that the values of
the TC are amplified with respect to the case in which there
is no RSOC. In particular, a maximum TC value is observed
in correspondence with the van Hove singularity in the DOS
because we have assumed the energy cutoff and the energy
dispersion in the z direction to be the same. The BCS theory
predicts a value of about 32 K for the critical temperature,
with the model parameters chosen in this work, for αSO = 0.4
this value increases about four times.

In Fig. 11(b) we show in a log-log plot the critical tem-
perature TC as a function of the effective Fermi temperature
TF = EF /kB where the Fermi level is calculated from the bot-
tom of the first subband and kB is the Boltzmann constant. The
critical temperature is calculated for different values of the

FIG. 12. The maximum value of the critical temperature (red
curve) and critical temperature predicted by the BCS theory ratio
for different values of αSO parameter. What is observed is a marked
amplification of the maximum of the TC when a Rashba coupling is
introduced into the system. In particular, the maximum of the critical
temperature increases slowly for αSO < 0.41 and always becomes
faster for αSO > 0.41.

Rashba coupling constant, αSO = 0, 0.30, 0.41, 0.50, 0.70.
The Fano resonance at the bottom of the second subband
occurs in this so called Uemura plot [45] TC versus TF . In
this figure the dashed line indicates the BEC-BCS crossover
predicted to be TC = TF /(kF ξ0) [46–48]. The Fano resonance
clearly occurs on the BCS side of the BCS-BEC crossover
where the ratio between TF and TC is in the range between
10 and 20. The calculated Fano resonance in the white region
occurs on the BCS side up to the largest spin-orbit coupling. In
fact the Fano resonance occurs in the range between the BEC
crossover and the line TC = TF /20 in the BCS side. From the
figure it can be seen that the critical temperature values remain
included in a BCS regime although as αSO increases the Fano
resonance appears increasingly shifted towards the BEC limit.

Furthermore, it is possible to observe that the value of αSO

for which �ERSOC = �Ez2 = ω0, i.e., αSO = 0.41 marks the
boundary between two distinct situations: if αSO < 0.41 the
maximum of TC grows slowly, while if αSO > 0.41 it grows
faster and faster. All this is highlighted in Fig. 12 in which
we report the maximum of the TC as a function of the Rashba
coupling constant (red curve). The maximum of critical tem-
perature increases linearly with RSOC for αSO � 0.41.

Previously we stressed the fact that near ηL the gaps vary
with kz, this being strongly reflected in the calculation of the
gap ratio 2�/TC . Therefore, in order to plot this parameter
correctly we consider � averaged over kz. So, starting from
the bottom of Fig. 13 we plot the gap ratio 2�/TC , where TC

is the critical temperature, for the first and the second subband
for different values of the αSO parameter as a function of the
rescaled Lifshitz parameter.

We observe that the gap ratio differs from the constant
value 3.5 foreseen by the BCS theory when the rescaled
Lifshitz parameter is closed to 0 < ηR < 1. In particular, the
2�1/TC ratio for the first subband reaches a minimum, lower
than the value predicted by BCS theory, when the rescaled
Lifshitz parameter is approximately equal to zero. That is,
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FIG. 13. Properties of the superconductive phase vs the Lifshitz
parameter without and with RSOC for different αSO values such that
�ERSOC � �E2z. This figure shows both the trend of the gap ratio for
the first subband (blue curves) and the second subband (red curves)
compared to the constant value predicted by the BCS theory (black
curves).

when �1 is in an antiresonance regime and the system is
close to a Lifshitz transition of the first type. The 2�1/TC ratio
reaches a maximum value for ηR ≈ 1, when the superconduct-
ing parameter �1 is in a resonance regime, this occurs close
to the type II Lifshitz transition.

Regarding the gap ratio for the second subband 2�2/TC ,
we observe a significant deviation from the value predicted by
the BCS theory in a range of values of the rescaled Lifshitz
parameter equal to 0 < η < 1. In particular, when the system
is in an antiresonance regime 2�2/TC diverges, while when
�2 is in a resonance regime it shows a maximum. By contrast,
such a maximum is not present in the absence of the RSOC

FIG. 14. The trend of the critical temperature vs the �2/�1 ratio
for different values of the parameter αSO. The TC trend shows a
strong asymmetry which becomes maximum when the �2/�1 ratio
is maximum.

as the bottom panel of Fig. 13 shows. As the parameter αSO

changes, the maximum of 2�2/TC increases and, as in the case
of Fig. 10, we observe three distinct regimes: when �ERSOC <

�Ez2 we have 2�2/TC < 2�1/TC , when �ERSOC < �Ez2 =
ω0 the two gap ratios intersect, and, finally, for �ERSOC >

�Ez2 we have 2�2/TC > 2�1/TC .
We see in Fig. 13 that the gap ratio to the transition

temperature 2�2/TC < 3.9 in the second subband, at the max-
imum critical temperature, in spite of the peak of the partial
DOS in the second subband due the van Hove singularity
brought about by the largest spin-orbit coupling αSO = 0.7,
does not show a large deviation from the standard weak
coupling universal value 3.52 predicted by the single-band
BCS theory. This is in agreement with the corresponding gap
ratio 2�1/TC = 3.4 in the first subband. We plot TC versus
the �2/�1 ratio for different values of the parameter αSO
in Fig. 14, which shows that �2/�1 ratio is only 1.12, at
maximum TC , for αSO = 0.7. Moreover, we want to point
out that for αSO = 0.41 the gap ratio �2/�1 < 1 while the
ratio between the partial DOS N2/N1 > 1 due to the van
Hove singularity in the second subband. These results show
that the present superconducting scenario is in the weak cou-
pling regime where the mean-field approximation is valid.
In fact, the aim of this work is to show a scenario with
weak electron-phonon coupling, where the amplification of
the critical temperature has been driven by interband pairing
in the presence of strong spin-orbit coupling. It is well known
that in the multigap Bogoliubov superconductivity [49–51]
the �2/�1 ratio becomes proportional to N1/sN2 where the
contact nonretarded-exchange interaction (interband pairing)
becomes more relevant that the retarded bosonic exchange
pairing. From Fig. 14 we can see a marked anisotropy in
the trend of the critical temperature which shows a maximum
corresponding to the maximum value of the �2/�1 ratio.

Further work is in progress to study the cooperative role of
contact and retarded interactions in anisotropic superconduc-
tivity related to the anisotropic k-space pairing in the Fermi
surface topology at unconventional Lifshitz transitions.
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FIG. 15. Properties of the superconductive phase vs the Lifshitz
parameter without and with RSOC for different αSO values such
that �ERSOC � �E2z. This figure shows the variation of the critical
temperature with the cut-off energy via the isotope coefficient. The
constant value predicted by the BCS theory is the black line.

As we have just seen, Figs. 10 and 13 clearly show a
quantum resonance characterized by a Fano-type asymme-
try in the superconducting parameters and a considerable
deviation from the predictions of the BCS theory. To further
highlight this last aspect we graph the isotopic coefficient
γ = ∂ ln TC/∂ ln M as a function of the rescaled Lifshitz pa-
rameter for different values of the parameter αSO, assuming
that the cut-off energy depend on the isotopic mass as ω0 ∝
M−1/2 [52,53] (Fig. 15).

In the BCS theory, the isotope coefficient has a constant
value as the chemical potential changes to 0.5, in our case in-
stead we notice a considerable deviation from this value when
the rescaled Lifshitz parameter is in the range 0 < ηR < 1 (for

FIG. 16. The isotope coefficient as a function of the critical tem-
perature for different values of αSO.

this range of values, the behavior of the γ parameter is typical
of the Fano antiresonance), that is, when the system is close
to a Lifshitz transition. These deviations from the BCS theory
increase as the Rashba coupling αSO increases, therefore there
exists an unconventional dependence of the critical tempera-
ture on the cut-off energy unlike what is proposed in the BCS
theory.

In the high-energy limit, the gap ratio and the isotope
coefficient tend to the values predicted by the BCS theory, so
we are dealing with two BCS-like condensates.

In Fig. 16 we plot the isotope coefficient as a function
of the critical temperature for different values of αSO for the
range of energies delimited in Fig. 15 by the dashed lines. This
parameter, in this range of energies, can be measured and this
prediction can be experimentally verified.

These results confirm that in correspondence with the van
Hove singularity there is an amplification of the characteristic
parameters of the superconductive phase which becomes more
and more evident when the Rashba coupling exceeds a limit
value of 0.4.

The works [36,42] investigated the superconducting prop-
erties for a superlattice of quantum wells and observed that
there is an optimum condition for the amplification of the
critical temperature that is obtained when the cut-off energy
is equal to the dispersion along the confinement direction of
the higher energy band. The particular geometry considered
creates, in fact, a multicomponent system. Here, instead, by
introducing the degree of freedom of spin in the solution of
the Bogoliubov equations, as well as having the possibility
of dealing with realistic cases, we can overcome the limit
imposed by previous works simply by suitably increasing
the Rashba coupling that exists by definition at the interface
between different materials that make up a heterostructure.

V. CONCLUSIONS

The aim of this work has been to investigate theoretically
and numerically the electronic structure and the superconduct-
ing properties of a nanostructured superlattice of quantum
layers in the presence of RSOC. We have described the
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unconventional Lifshitz transition in a 3D superlattice of
metallic layers characterized by the length of the circular
nodal line increasing with RSOC in the negative helicity
states of the spin-orbit split electron spectrum. Here we have
provided the description of the tuning the multigap Bogoli-
ubov superconductivity near the bottom of the upper subband
with negative helicity shifted by the RSOC. Our theory over-
comes the limitations present so far due to common BCS
approximations used in previous theoretical works on super-
conductivity in the presence of spin-orbit interactions which
mostly describe superconductivity only at very high Fermi
energy. The work in Ref. [54] constitutes an important excep-
tion, focusing on superconductivity in low-density semimetals
in the presence of strong spin-orbit coupling and analyzing
the superconducting instability in different pairing channels.
This latter work clearly shows the need to systematically
develop the extension of the BCS theory in strongly spin-
orbit coupled systems (see also [55]). We have shown the
key role of the quantum configuration interaction between
the gaps in the self-consistent mean-field equation which re-
quires the calculation of the exchange interactions between
singlet pairs in subbands with different quantum number and
different helicity. The exchange interactions are key contact
interactions which have been shown to be essential in conden-
sation phenomena in fermionic quantum ultracold gases. In
our theory the contact interactions are in action together with
the phonon exchange cooper pairing. The key result of this
work has been the calculation of the overlap of the electron
wave.functions by solving the nonrelativistic Dirac equation.
The results of this work provide a roadmap for the quantum
material design of a superlattice of periodicity d made of
superconducting atomic flakes of thickness L separated by
spacers of thickness W where the energy dispersion in the
transversal direction is of the order the pairing energy cutoff
and the spin-orbit length is of the order of the 3D superlattice
period. Resonant and crossover phenomena in the normal
state are amplified when the transverse energy dispersion of
electrons in the superlattice is of the same order of magnitude
as the energy cutoff �Ez ∼ h̄ω0 of the effective pairing in-
teraction. Under these conditions the introduction of a RSOC
creates a completely unexpected variation in the topology of
the Fermi surface, especially for the negative helicity band.
In particular, the RSOC induces an unconventional Lifshitz
transition with an associated extended van Hove singularity.
For the non-BCS superconducting phase we have solved the
Bogoliubov equation for the multiple gaps numerically. The
unusual complexity in the properties of the normal phase
is reflected in an amplification of the gap and the critical
temperature in precise energy ranges. We have found that the
enhancement of the superconducting parameters takes place
when the chemical potential is tuned around the Lifshitz tran-
sition. Under these circumstances it is necessary to include the

configuration interaction between different gaps in different
subbands.

The issue of superconducting fluctuations in a multiband
and multigap configuration deserves a comment at this point.
Whereas amplitude and phase fluctuations of the order pa-
rameter are in general detrimental and a source of large
suppression of the (otherwise enhanced) critical temperature
in low dimensional and/or strongly coupled superconductors,
their effect can be reduced by the recently proposed mecha-
nism [56,57] of the screening of superconducting fluctuations
in a (at least) two-band system. References [56,57] demon-
strated that a coexistence of a shallow carrier band with strong
pairing and a deep band with weak pairing, together with the
exchangelike pair transfer between the bands to couple the
two condensates, realizes an optimal and robust multicompo-
nent superconductivity regime: it preserves strong pairing to
generate large gaps and a very high critical temperature but
screens the detrimental superconducting fluctuations, thereby
suppressing the pseudogap state. The screening is found to
be very efficient even when the pair exchange is very small.
Thus, a multiband superconductor with a coherent mixture
of condensates in the BCS regime (deep band) and in the
BCS-BEC crossover regime (shallow band) offers a promising
route to enhance critical temperatures, eliminating at the same
time the suppression effect due to fluctuations. In the light of
these considerations, a quantitative calculation of the screen-
ing in the system here considered, requiring the inclusion of
the spin-orbit coupling terms in the fluctuation propagator,
is postponed to a future work. The coexistence of at least
one large Fermi surface and at least one small Fermi surface
appearing or disappearing with small changes in the chemical
potential is the key ingredient for the shape resonance idea
in superconducting gaps [35,36] which is a type of Fano-
Feshbach resonance. By changing the chemical potential, the
critical temperature (TC) decreases towards 0 K when the
chemical potential is tuned to the band edge, because of the
Fano antiresonance, and the TC maximum appears (as in Fano
resonances) at higher energy, between one and two times the
pairing interaction above the band edge [35,36,38]. Finally,
one of the most interesting aspects highlighted by this work
is the existence of an optimal condition for the amplification
of the critical temperature when the band shift due to RSOC
is larger than the dispersion along z of the upper subband and
the cut-off energy.
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