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In this paper we continue with our analysis of the interplay between the pairing and the non-Fermi liquid
behavior in a metal for a set of quantum-critical (QC) systems with an effective dynamical electron-electron
interaction V (�m ) ∝ 1/|�m|γ , mediated by a critical massless boson (the γ -model). In previous papers we
considered the cases 0 < γ < 1 and γ ≈ 1. We argued that the pairing by a gapless boson is fundamentally
different from BCS/Eliashberg pairing by a massive boson as for the former there exists not one but an infinite
discrete set of topologically distinct solutions for the gap function �n(ωm ) at T = 0 (n = 0, 1, 2, . . .), each
with its own condensation energy Ec,n. Here we extend the analysis to larger 1 < γ < 2. We argue that the
discrete set of solutions survives, and the spectrum of Ec,n get progressively denser as γ increases towards 2 and
eventually becomes continuous at γ → 2. This increases the strength of “longitudinal” gap fluctuations, which
tend to reduce the actual superconducting Tc compared to the onset temperature for the pairing and give rise to a
pseudogap region of preformed pairs. We also detect two features on the real axis, which develop at γ > 1 and
also become critical at γ → 2. First, the density of states evolves towards a set of discrete δ-functions. Second,
an array of dynamical vortices emerges in the upper frequency half plane, near the real axis. We argue that
these two features come about because on a real axis, the real part of the dynamical electron-electron interaction,
V ′(�) ∝ cos(πγ /2)/|�|γ , becomes repulsive for γ > 1, and the imaginary V ′′(�) ∝ sin(πγ /2)/|�|γ , gets pro-
gressively smaller at γ → 2. We speculate that the features on the real axis are consistent with the development
of a continuum spectrum of the condensation energy, for which we used �n(ωm ) on the Matsubara axis. We
consider the case γ = 2 separately in the next paper.
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I. INTRODUCTION

In this paper, we continue our analysis of the competition
between non-Fermi liquid (NFL) physics and superconduc-
tivity (SC) near a quantum-critical point (QCP) of an itinerant
correlated electron system, whose low-energy properties are
described by an effective, momentum-integrated dynami-
cal four-fermion interaction V (�m). We consider a set of
quantum-critical systems, for which the effective interaction
has the form V (�m) = ḡγ /|�m|γ (the γ -model). This inter-
action gives rise to NFL behavior in the normal state, with
�(ωm) ∝ ω

1−γ
m , and at the same time mediates an attraction

in at least one pairing channel, specific to the underlying
microscopic model. The two tendencies compete with each
other as a NFL self-energy reduces the pairing strength, while
the feedback from the pairing reduces fermionic self-energy.
In Ref. [1] we listed quantum-critical systems, whose low-
energy physics is described by the γ -model with different γ ,
and presented a long list of references to earlier publications
on this subject. In that and subsequent papers, Refs. [2,3],
hereafter referred to as Papers I–III, respectively, our group
analyzed the behavior of the γ -model for 0 < γ < 1 (at T =
0 in Paper I and at a finite T in Paper II), and at around
γ = 1 (in Paper III). In Paper I, we found that the system does

become unstable towards pairing, i.e., in the ground state the
pairing gap �(ωm) is nonzero. However, in a qualitative dis-
tinction with BCS (Bardeen-Cooper-Schrieffer)/Eliashberg
theory of a pairing by a massive boson, we found an infi-
nite discrete set of solutions for the gap function, �n(ωm),
specified by an integer n = 0, 1, 2, . . .. All solutions have the
same spatial gap symmetry, but are topologically distinct in
the sense that �n(ωm) changes sign n times as a function
of Matsubara frequency (we discuss topological aspects in
this paper). A gap function �n(ωm) remains approximately
�n(0) at ωm � �n(0), oscillates n times at �n(0) < ωm < ḡ,
and at larger frequencies decays as 1/|ωm|γ . The magnitude
of �n(0) decreases with n and at large n scales as �n(0) ∝
e−An, where A is a function of γ . In the limit n → ∞, �∞
is infinitesimally small and is the solution of the linearized
gap equation. In Paper II we found that �n(ωm) emerge at
different onset temperatures Tp,n. The temperature Tp,n and
the condensation energy at T = 0, Ec,n, are the largest for
n = 0, yet the existence of an infinite set of minima of the free
energy is a qualitatively new feature of the pairing at a QCP.
In Paper III we argued that the system behavior is continuous
through γ = 1, despite that the fermionic self-energy and the
pairing vertex diverge at T = 0 for γ � 1. The divergencies
cancel out in the gap equation in a way similar to cancellation
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of contributions from nonmagnetic impurities in a BCS su-
perconductor. As the consequence, the gap functions �n(ωm)
and the condensation energies Ec,n still form a discrete set for
γ � 1, in which Ec,0 is the largest [4].

In this paper we study the γ -model for γ in the range 1 <

γ < 2. Our goal is to understand whether the presence of an
infinite number of gap functions has physical consequences.
The most natural conjecture is that the existence of the set
gives rise to a new branch of “longitudinal” gap fluctuations,
what increases the strength of phase fluctuations and may
create a pseudogap, preformed pair region between the onset
temperature for the pairing and the actual superconducting Tc.
However, this is by no means guaranteed first of all because
each Ec,n is proportional to the total number of particles in the
system, and potential barriers between minima with different
n are infinitely high. Strong fluctuating effects are possible
only if the spectrum of condensation energies gets dense and
eventually becomes a continuous one.

We argue that this happens when γ is larger than one. We
show that the spectrum of Ec,n gets denser when γ increases
and for γ � 2 splits into two subsets, one for n < ncr and
another for n > ncr , where ncr ∼ 1/(2 − γ ). Condensation
energies for n < ncr get progressively closer to Ec,0 as γ

approaches 2, while for n > ncr , Ec,n depends on the ratio
of two large numbers n and ncr , which is a near-continuous
quantity. In the limit γ → 2, ncr tends to infinity, and Ec,n for
all finite n collapse into a single Ec,0, while for n → ∞, the
condensation energy becomes a continuous function of n/ncr ,
whose value is determined by how the double limit n → ∞
and ncr → ∞ (i.e., γ → 2) is taken. This creates a continuous
gapless spectrum of longitudinal fluctuations.

We present the numerical evidence for the collapse of the
condensation energy obtained by analyzing how the func-
tional form of the eigenfunctions �n(ωm) with different finite
n evolve with γ We argue that the frequency range, where
�n(ωm) changes sign n times, shrinks, and moves to progres-
sively smaller frequencies at γ → 2, consistent our assertion
that in this limit Ec,n with finite n tend to Ec,0.

The transformation of the spectrum of �n(ωm) and Ec,n

from a discrete to a continuous one is a rather nontrivial
phenomenon, and we study it from different corners. We
find corroborative evidence by analyzing the gap function on
the Matsubara axis. We then analyze how the gap function
evolves on the real axis and in the upper half plane of fre-
quency. For a generic complex z = ω′ + iω′′ (ω′′ > 0), �n(z)
is a complex function: �n(z) = �′

n(z) + i�′′
n (z), and we can

define its phase as ηn(z) = Im log �n(z). Our reasoning to
focus on the real axis for γ between one and two stems
from the fact that the interaction there, V (�) ∝ eiπγ /2/|ω|γ ,
is complex, and its real part, V ′(�) = cos(πγ /2)/|ω|γ , be-
comes repulsive for γ > 1, while the imaginary part V ′′(�) =
sin(πγ /2)/|ω|γ vanishes at γ → 2. Meanwhile, on the Mat-
subara axis, V (�m) ∝ 1/|�m|γ remains attractive.

We show that this gives rise to a dichotomy between the
behavior of the gap function on the Matsubara and the real
axis at frequencies larger than ḡ. Namely, on the Matsubara
axis, all �n(ωm) decrease as 1/|ωm|γ [n sign changes of
�n(ωm) occur at ωm < ḡ]. On the real axis, �n(ω) display
this power-law behavior only at large enough ω > ωcr , where
ωcr ∼ ḡ/(2 − γ )1/2, while at ḡ < ω < ωcr , �n(ω) for all n

oscillate, and the phase of the gap winds up by 2πm, where
m is an integer. The value of m depends on γ , but not on n,
and approaches infinity when γ → 2. We trace these oscilla-
tions to the existence of an exponentially small and seemingly
irrelevant oscillating term in �n(ωm) on the Matsubara axis.
We argue that this term becomes the dominant one in the
gap function upon analytical continuation to the real axis. We
compute the density of state (DoS) and show that for γ > 1
it develops a set of maxima and minima, and for γ → 2 it
evolves towards a set of discrete δ-functions, i.e., for γ → 2,
the energy levels available to paired quasiparticles effectively
get quantized.

We next consider the gap function in the upper frequency
half plane. We show that the phase winding by 2πm along
the real axis between ḡ and ωcr implies the presence of m
dynamical vortices in the same range of |z| in the upper
frequency half plane. We identify the vortices as the points
where �(z) = 0 and show that each vortex crosses into the
upper frequency half plane from the lower one at some γi > 1.
The number of vortices is determined by γ and is the same for
all n. At γ → 2, the number of vortices increases, the location
of vortex points zi becomes independent on n, and the array
of vortices [points where �n(zi ) = 0] extends to |z| → ∞.
Simultaneously, oscillations of �n(ω) on the real axis also
extend to an infinite frequency. This implies that at γ → 2,
the value of �n(|z| → ∞) depends on the path, i.e., there is
an essential singularity at |z| → ∞.

The presence of an essential singularity is crucial by the
following reason. Once the set of vortices at zi becomes in-
finite and the points zi accumulate at |z| → ∞, one can use
it as an input and obtain �n(ωm) by analytically continuing
from the set onto the Matsubara axis. If an essential singular-
ity was not there, the analytic continuation would be unique
and one would obtain �n(z) = 0 everywhere. A finite �n(z)
emerges only because of essential singularity, whose presence
also makes the analytic continuation nonunique. The outcome
here is that the gap functions �n, which form a continuum
spectrum on the Matsubara axis and give rise to a continuum,
massless spectrum of the condensation energies, originate
from an essential singularity at |z| = ∞ on the complex fre-
quency half plane. At γ < 2, the number of vortices remains
finite, and the spectrum of �n(ωm) remains discrete.

The structure of the paper is the following. In Sec. II we
briefly review the model and the gap equation. In Sec. III we
analyze the structure of �n(ωm) along the Matsubara axis for
1 < γ < 2. In Sec. III A we clarify our assertion that the gap
functions �n(ωm) with different n are topologically distinct.
We show that each nodal point of �n(ωm) is a dynamical
vortex with circulation 2π , such that �n(ωm) is a gap function
with n dynamical vortices and is a dynamical analog of a
nodal topological superconductor. This holds for any γ > 0.
In Sec. III B we present the exact solution of the linearized
gap equation, �∞(ωm) for γ > 1 and show that it has a small
oscillating component, not present for smaller γ . In Sec. III C
we analyze the sign-preserving solution �n=0(ωm). We show
that at vanishing ωm, �0(ωm) tends to a finite �0(0) ∼ ḡ, and
at ωm > ḡ, it decreases as 1/|ωm|γ . In Sec. III D we analyze
�n(ωm) with a finite n and the corresponding condensation
energy Ec,n. We show that at ωm < ḡ, �n(ωm) oscillates n
times as function of log |ωm| and then saturates at �n(0),
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which decrease exponentially with n, while at ωm > ḡ, it
decreases as 1/|ωm|γ for all n. We show that as γ increases
towards 2, the spectrum of Ec,n progressively splits into two
subsets, one for n < ncr ∼ 1/(2 − γ ) and the other for n >

ncr . In Sec. III D 2 we discuss the evolution of �n(ωm) and
the corresponding onset temperatures Tp,n at γ → 2.

In Sec. IV we analyze the gap equation along real fre-
quency axis. We present the gap equation in Sec. IV A and
solve it for n = ∞ in Sec. IV B, for n = 0 in Sec. IV C, and for
a finite n in Sec. IV D. We show a complex �n(ω) oscillates n
times at ω < ḡ. This holds for all γ . Beyond that, for γ > 1,
�n(ω) with any n oscillates at ḡ < ω < ωcr , and the phase of
the gap function winds up by an integer number of 2π in this
region.

In Sec. V we analyze the gap function �(z) in the upper
frequency half plane, at z = ω′ + iω′′. We again consider sep-
arately the cases n = ∞ (Sec. V A), n = 0 (Sec. V B), and a
finite n (Sec. V C). We show that besides n vortices on the
Matsubara axis, which are present for all γ , another set of
vortices appears for γ > 1. These new dynamical vortices
are located near the real axis, at ḡ < |z| < ωcr , and cause
oscillations on the real axis in the same range of ω. Each
vortex from this new set moves into the upper half plane of
frequency from the lower one at a particular discrete γi. The
number of these vortices increases as γ → 2, and they line up
along a particular path in the upper frequency half plane.

We present our conclusions in Sec. VI. Some technical
details of calculations are presented in the Appendix. The case
γ = 2 requires special consideration and we will analyze it in
the next paper, where we also discuss in detail the behavior
of the superfluid stiffness and the interplay between the pair
formation and the true superconductivity.

II. γ-MODEL

We consider itinerant fermions at a QCP, interacting by
exchanging fluctuations of a critical order parameter. At a
QCP, the propagator of a soft boson becomes massless and
mediates singular interaction between fermions. We assume
that this interaction is attractive in at least one pairing chan-
nel and that a pairing boson can be treated as slow mode
compared to a fermion, i.e., at a given momentum q, typi-
cal fermionic frequency is much larger than typical bosonic
frequency. In this situation, the ratio of typical bosonic and
fermionic frequencies is a small parameter, analogous to the
Migdal parameter in the electron-phonon case. This small
parameter allows one to neglect vertex corrections and ex-
plicitly integrate feromionic and bosonic propagators over the
momentum components. As a result, the problem reduces to
a set of coupled integral equations for frequency dependent
fermionic self-energy and the pairing vertex, in which an in-
put is the effective, singular, frequency dependent interaction
V (�m) = ḡγ /|�m|γ . The exponent γ is different for different
microscopic systems. This model, nicknamed the γ−model,
has been introduced in Paper I, and we refer readers to the list
of references in that paper to earlier works on the justification
of the model and its relation to various microscopic quantum-
critical systems with momentum and frequency-dependent
interaction.

The local interaction V (�m) contributes to the fermionic
self-energy �(kF , ωm) = �(ωm) and the pairing vertex


(ωm). The coupled equations for �(ωm) and 
(ωm) have the
same structure as Eliashberg equations for a dispersion-less
phonon, albeit with the exponent γ , instead of 2, and for
shortness we will be calling them “Eliashberg equations.”

The superconducting gap function �(ωm) is defined as

�(ωm) = ωm

(ωm)

�̃(ωm)
= 
(ωm)

1 + �(ωm)/ωm
. (1)

At a finite T the Eliashberg gap equation is

�(ωm) = ḡγ πT
∑
m′ �=m

�(ω′
m) − �(ωm)ω′

m
ωm√

(ω′
m)2 + �2(ω′

m)

1

|ωm − ω′
m|γ . (2)

The gap function is defined up to an overall U (1) phase factor,
which we set to zero. The gap equation for infinitesimally
small �(ωm)

�(ωm) = ḡγ πT
∑

m′

�(ω′
m) − �(ωm)ω′

m
ωm

|ω′
m||ωm − ω′

m|γ (3)

determines the onset temperature for the pairing. As in pre-
vious papers, we label this temperature Tp. Within Eliashberg
theory, it is the same as superconducting Tc, but in the pres-
ence of fluctuations Tp is generally larger than Tc.

III. GAP FUNCTION ON THE MATSUBARA AXIS, T = 0

In Paper I we showed that at T = 0 and γ < 1, Eq. (2) has
an infinite number of topologically distant solutions, �n(ωm),
all with the same spatial gap symmetry. A gap function with
a given n tends to a finite value at ωm = 0 and decays as
1/|ωm|γ at ωm � ḡ, but in between it changes sign n times.
In Paper III we showed that each of the two terms in the rhs
of (2) (separate contributions from the pairing vertex and the
fermionic self-energy) diverges for γ � 1 as

∫
d�m/|�m|γ .

However, the two divergencies cancel out, and �n(ωm) at
T = 0 evolve smoothly through γ = 1. We now extend the
analysis to γ between 1 and 2. We show that the forms of
�n(ωm) remain qualitatively the same as for smaller γ , yet
the spectrum of condensation energies become progressively
more dense. We also argue that when γ increases towards 2,
the spectrum of condensation energy En,c becomes more and
more dense, and in the limit γ → 2 all En,c with finite n < ncr

become almost equal to E0,c, while En>ncr ,c form a continuous
spectrum.

A. Nodal points on the Matsubara axis as dynamical vortices

Before we discuss �n(ωm), we pause for a moment and
elaborate on the notion that �n(ωm) are topologically differ-
ent. We argue that each nodal point is a dynamical vortex, i.e.,
�n(ωm) is an n-vortex state—a dynamical analog of a nodal
topological superconductor.

For definiteness, let us compare the behavior of sign-
preserving �0(ωm) and of �1(ωm), and �2(ωm), which
change sign once and twice between ωm = 0 and ωm = ∞, re-
spectively. We show these functions in the left panel of Fig. 1.
Suppose that �1(ωm) changes sign at ωm = ω1. Near this
frequency, �1(ωm) = −c(ωm − ω1), where c > 0 for consis-
tency with the figure. Let us analytically continue �1(ωm)
to a near vicinity of the Matsubara axis, to z = ω′ + iω′′ (on
the Matsubara axis, z = iωm). Because �1(ωm) is nonsingular,
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FIG. 1. Left panel: The schematic forms of the first three solutions of the gap equation �0(ωm ), �1(ωm ) and �2(ωm ). A gap function
�n(ωm ) changes sign n times at ωm > 0. Right panel: Variation of the phase of �1(z) (z = ω′ + iω′′) around the nodal point at ωm = ωm1.
Anticlockwise circulation of the phase around iωm1 is 2π . The same holds for all other nodal points.

�1(z) = �1(iωm → ω′ + iω′′). For any nonzero ω′, �1(z) is
a complex function: �1(z) = �′

1(z) + i�′′
1 (z), and we can

introduce the phase of �1(z) as

η1(z) = Im[log �1(z)]. (4)

We plot the variation of η1(z) around z = iω1 in the right panel
of Fig. 1. We see that the phase varies by 2π upon anticlock-
wise circulation around ω1. This implies that the nodal point at
ω1 is in fact the center of a dynamical vortex. One can verify
that �n(ωm) with a generic n contains n vortices, each with
anticlockwise circulation 2π .

One can straightforwardly verify that n vortices on the
Matsubara axis give rise to 2πn phase variation on the real
axis, between −∞ and ∞. To see this, one should compute∫∞
−∞ dω∂η1(ω)/∂ω by closing the integration contour over

the upper half plane. The function ∂η1(ω)/∂ω is analytic in
the upper half plane except for the nodal points where it has
simple poles. Modifying the contour to circle out each nodal
point, one obtains 2πn phase variation from the vortices. In
addition, there is also the πγ from the integral over the upper
half-circle, due to the fact that at the largest frequencies,
�n(z) ∝ 1/(−z2)γ /2. This form is consistent with �n(ωm) ∝
1/|ωm|γ , as one can verify by Cauchy relation.

In Fig. 2 we show �n(z), where z = ω′ + iω′′, for n = 0, 1,
and 2, obtained by analytic continuation from �n(ωm) in
Fig. 1 using the Padé approximants method [5]. We see that
ηn(ω + i0+) indeed winds by 2πn.

We now analyze the full frequency dependence of �n(ωm)
for 1 < γ < 2. We first consider separately the opposite limits
n = ∞ and n = 0 and then discuss a finite n.

B. Frequency dependence of �n(ωm): The case n = ∞
The gap function �∞(ωm) is a potential solution of the

linearized gap equation

�∞(ωm) = ḡγ

2

∫
dω′

m

�∞(ω′
m) − �∞(ωm)ω′

m
ωm

|ω′
m|

1

|ωm − ω′
m|γ .

(5)

We found that the solution exists and obtained the exact form
of �∞(ωm). We emphasize that the solution exists despite that
T = 0 is not a critical point for superconductivity. We will
see below that nonlinear gap equation at T = 0 has solution(s)
with a finite gap magnitude. The solution exists only at a QCP,
when the pairing is mediated by a gapless boson.

We present technical details of the analysis of Eq. (5) in
the Appendix and here quote the result. It is convenient to
introduce

y =
( |ωm|

ḡ

)γ

. (6)

The gap function �(ωm) = �∞(y)

�∞(y) =
∫ ∞

−∞
dkbke−ik log y (7)

is the Fourier transform of bk given by

bk = e−i[Ik+k log (γ−1)]

{cosh[π (k − β )] cosh[π (k + β )]}1/2 . (8)

Here

Ik = 1

2

∫ ∞

−∞
dk′ log |εk′ − 1| tanh π (k′ − k), (9)

εk′ = 1 − γ

2

�
[

γ

2 (1+2ik′)
]
�
[

γ

2 (1−2ik′)
]

�(γ )

(
1 + cosh πγ k′

cos πγ /2

)
,

(10)

and β > 0 is the solution of εβ = 1. We plot εk′ in Fig. 3(a).
The value of β depends on γ and evolves between β ≈ 0.79
for γ = 1 and β ≈ 0.39 for γ = 2.

The gap function �∞(y) can be straightforwardly obtained
numerically. We show the results in Fig. 4 for γ = 1.91. At
small y, i.e., at ωm < ḡ, the gap function oscillates down to
the lowest frequencies with the period set by log y. At y > 1,
i.e., at ω > ḡ, oscillations end, and �∞(y) gradually decreases
with increasing y. By practical reasons, we set the lowest
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FIG. 2. Analytic continuation of �n(ωm ) in Fig. 1 to the upper half plane (iωm → z = ω′ + iω′′) using the Padé approximant. (a) The
accuracy of fitting �n(ωm ) by the Padé approximant. (b) The phase of the gap function in the upper frequency half plane, ηn(z) = Im[log �(z)].
The locations of the vortices are marked by red dots. (c) The gap function �n(ω) along the real axis. (d) Variation of ηn(ω) along the real axis.
Each vortex gives rise to 2π phase variation. For convenience of presentation, we confined ηn(ω) to (−π, π ). In this convention, ηn(ω) winds
by 2πn due to vortices.

frequency in Fig. 4 at 10−18ḡ. There are 10 zeros of �∞(ω)
(10 vortex points) above this frequency.

The limiting forms of �∞(y) at small and large y can be
obtained analytically. At y 	 1 we find

�∞(y) ∼ y1/2 cos (β log y + φ), (11)

where φ is a γ -dependent number. At y 
 1

�∞(y) ∼ 1

y
. (12)

The corrections to (11) hold in powers of y and form two
series, local and nonlocal, depending on whether they come

FIG. 3. Functions εk (a) and εik (b) for γ = 1.5. The red dots
show the solutions εβ = 1 and εiβm = 1 (m = 0, 1, 2, . . .).

from fermions with running frequencies of order ωm or much
larger frequencies, of order ḡ. The full �∞(y) for y < 1 is

�∞(y) = Re
∞∑

n=0

e(iβ log y+φ)C<
n yn+1/2+

∞∑
n,m=0

D<
n,my(n+βm+1/2),

(13)

FIG. 4. The exact solution �∞(ωm ) for γ = 1.91. To better dis-
play the distinctive power-law behavior, we use different scales for
ω > ḡ and ω < ḡ.
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where the first term describes the sum of the leading term and
the local corrections, and the second term describes the nonlo-
cal corrections. In the latter, βm > 0 are the solutions of εiβm =
1 for imaginary argument (the same as in Fig. 3). There is an
infinite set of such βm, specified by integer m = 0, 1, 2, . . .

and located at 1/2 + 2m/γ < βm < 1/2 + 2(m + 1)/γ ; see
Fig. 3(b).

For y > 1, the corrections to (12) hold in powers of 1/y and
also form two series:

�∞(y) =
∞∑

n=0

C>
n

(
1

y

)(n+1)

+
∞∑

n,m=0

D>
n,m

(
1

y

)[n+1+2(m+1)/γ ]

.

(14)
Equation (12) is the C>

0 term in this series.

1. Distinction between �∞(y) at γ < 1 and γ > 1

The limiting forms of �∞(y) at small and large y and the
general structure of �∞(ωm) for γ > 1 are the same as we
obtained earlier for γ < 1. However, on a more careful look,
we found that there is a qualitative distinction between the
two cases for y > 1. Namely, for γ < 1, the series in (14) are
convergent, while for γ > 1, series expansion in (14) holds
only up to a certain nmax ∼ y1/(γ−1), while instead of power
series with larger n, there appears an oscillating term (see
below). The value nmax is large for y 
 1, such that this term
has an exponentially small prefactor e−y1/(γ−1)

. Yet, we will
see below that once �∞ is analytically continued from the
Matsubara to real axis, the exponential smallness is reduced,
particularly near γ = 2, and the oscillating term becomes the
dominant contribution to �∞(ω) over a wide frequency range
and gives rise to the emergence of a new vortex structure in
the upper half plane of frequency.

The difference between �∞(y 
 1) for γ < 1 and γ > 1
originates from change of the behavior of εk′ in Eq. (9). At
γ < 1, εk′ vanishes at k′ → ∞, while at γ > 1, εk′ diverges at
large k′ as

εk′ = (Aγ |k′|)γ−1(γ − 1),

Aγ = γ

{
π

2�(γ ) cos[π (2 − γ )/2]

} 1
γ−1

. (15)

Substituting this form into (9) and integrating over k′, we find
that at large k,

Ik + k log (γ − 1) = −(γ − 1)k log
Aγ k

e
. (16)

The integral comes from k′ ∼ k, what justifies using the form
of εk′ at large k′. Substituting (16) into (8) and approximating
the denominator in (8) by its value at large k, we obtain

bk ≈ e−π |k|ei(γ−1)k log
Aγ k

e . (17)

Substituting this bk into (7), we find the contribution to �∞(y)
in the form

�∞(y) ∼
∫ ∞

kmin

e−πk cos

[
(γ − 1)k log

y1/(γ−1)e

Aγ k

]
, (18)

where kmin = O(1). The argument of the cos has a maximum
at k = k∗ = y1/(γ−1)/Aγ . For large y, this k∗ is well inside the
range of the integration. Expanding to quadratic order near

the maximum and substituting into (18), we find after some
algebra (see the Appendix) that the integral in (18) contains
the universal contribution, which we label as �u

∞:

�u
∞(y) ∼ y

1
2(γ−1) e− π

Aγ
y

1
(γ−1)

cos

{
y

1
(γ−1)

(γ − 1)

Aγ

×
[

1 − π2

2(γ − 1)2

]
− π

4

}
. (19)

In the actual Matsubara frequencies this formula reads

�u
∞(ωm) ∝ |ωm| γ

2(γ−1) e− π (|ωm |/ḡ)γ /(γ−1)

Aγ cos

{( |ωm|
ḡ

)γ /(γ−1)

× (γ − 1)

Aγ

[
1 − π2

2(γ − 1)2

]
− π

4

}
. (20)

The oscillating contribution is exponentially small at large
y. It vanishes at γ = 1 and does not exist at smaller γ . We
will return to this contribution in Sec. IV B, where we discuss
�u

∞(ω) on the real axis.

C. Frequency dependence of �n(ωm): The case n = 0

We now consider the solutions of the nonlinear gap equa-
tion (2) at T = 0. We begin with sign-preserving solution
�0(ω). To set the stage, we first quickly review the results
for γ < 1. For such γ , the term with m′ = m in the rhs of (2)
is nondivergent and can be neglected as it renormalizes the
prefactor for �0(ωm) in the rhs by at most O(1). Without this
term, we have

�0(ωm) = ḡγ

2

∫ ∞

−∞

dω′
m�0(ω′

m)

|ωm − ω′
m|γ
√

�2
0(ω′

m) + (ω′
m)2

. (21)

At small ωm, �0(ωm) ≈ �0(0), and we have

�0(0) = ḡγ

∫ ∞

0
dω′

m

�0(ω′
m)

|ω′
m|γ
√

�2
0(ω′

m) + (ω′
m)2

. (22)

The integral is determined by ω′
m ∼ �0(ω′

m). For such ω′
m, we

can approximate �0(ω′
m) by �0(0) up to O(1) corrections.

Evaluating the integral in (22), we then obtain �0(0) ∼ ḡ. In
the opposite limit ωm 
 ḡ, we can pull out 1/|ω|γ from the
rhs of (21) and obtain

�0(ωm) =
(

ḡ

|ωm|
)γ ∫ ∞

0
dω′

m

�0(ω′
m)√

�2
0(ω′

m) + (ω′
m)2

. (23)

The integral is determined by ω′
m = O(ḡ) and is O(ḡ), such

that at high frequencies, �0(ωm) ∼ ḡ(ḡ/|ωm|)γ . The low-
frequency and high-frequency forms of �0(ωm) then match
at ωm ∼ ḡ.

Now we do the same analysis for γ > 1. For γ > 1, there
is an identity

∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|γ = 0. (24)
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FIG. 5. (a) The solution of Eq. (27) for �0(ωm = 0). (b) The
onset temperature of the pairing Tp,0 vs γ . (c) The ratio 2�0(0)/Tp,0

vs γ . The ratio is slightly different from the one obtained numerically
in Ref. [6] as here we use Eq. (27) for �0(ωm = 0).

We use it to reexpress Eq. (2) as

�0(ωm)

⎧⎨
⎩1 − ḡγ

2

∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|γ

×
⎡
⎣ 1√

�2
0(ω′

m) + (ω′
m)2

− 1

�0(ωm)

⎤
⎦
⎫⎬
⎭

= ḡγ

2

∫ ∞

−∞
dω′

m

�0(ω′
m) − �0(ωm)

|ωm − ω′
m|γ
√

�2
0(ω′

m) + (ω′
m)2

. (25)

Each integral in (25) is infrared convergent and determined by
ω′

m ∼ �0(ω′
m).

In the limit ωm → 0, Eq. (25) reduces to

�0(0)

[
1−ḡγ (γ − 1)

∫ ∞

0
dω′

m

√
�2

0(ω′
m)+(ω′

m)2−�0(0)

�0(0)
√

�2
0(ω′

m)+(ω′
m)2|ω′

m|γ

]

= ḡγ

∫ ∞

0

dω′
m [�0(ω′

m) − �0(0)]√
�2

0(ω′
m) + (ω′

m)2|ω′
m|γ

. (26)

To estimate the magnitude of �0(0), assume that �0(ω′
m)

remains approximately equal to �0(0) for relevant ω′
m �

�0(ω′
m).

The rhs of (26) then vanishes, and we obtain

1 = ḡγ (γ − 1)
∫ ∞

0
dω′

m

√
�2

0(0) + (ω′
m)2 − �0(0)

�0(0)
√

�2
0(0) + (ω′

m)2|ω′
m|γ

= 1 − γ

2
√

π

[
ḡ

�0(0)

]γ

�

(
1 − γ

2

)
�

(
γ

2

)
. (27)

We plot �0(0)/ḡ as a function of γ in Fig. 5(a). We see that
�0(0) is of order ḡ and weakly depends on γ . One can further
expand �0(ωm) in frequency and find that the expansion is
analytic and holds in powers of ω2

m. For completeness, we also
show the onset temperature Tp,0 and the ratio 2�0(0)/Tp,0,
both as functions of γ . The results are consistent with earlier
calculations [6–9].

FIG. 6. Qγ , defined in Eq. (29), as a function of γ . To obtain
this function, we solved numerically the nonlinear gap equation for
sign-preserving �0(ωm ) at a small temperature.

In the opposite limit of large ωm, the prefactor for �0(ω) in
the lhs of (25) is approximately 1, and 1/|ωm|γ can be pulled
out from the integral in the rhs. This yields

�0(ωm) ≈ Qγ

(
ḡ

|ωm|
)γ

, (28)

where

Qγ =
∫ ∞

0

dω′
m�0(ω′

m)√
�2

0(ω′
m) + (ω′

m)2
. (29)

The integral is again determined by frequencies at which
�0(ω′

m) ∼ ω′
m and is of order �0(0). Then �0(ωm) ∼

�0(0)(ḡ/|ωm|)γ . In Fig. 6 we show Qγ , obtained by solving
numerically the nonlinear gap equation for various γ . We see
that Qγ is indeed of order Qγ ∼ �0(0) ∼ ḡ.

The high-frequency behavior of �0(ωm) in (28) is the same
as of �∞(ωm). This is expected because at such frequencies
�0(ωm) 	 ωm. This implies that �0(ωm) has the same expo-
nentially small oscillating term as in Eq. (19). In Sec. IV B we
will see how this term evolves upon analytical continuation to
the real axis.

D. Frequency dependence of �n(ωm): Finite n

1. A generic γ from 1 < γ < 2

To analyze the behavior of �n(ωm) at a finite n, one has
to solve the nonlinear gap equation at T = 0 for a class of
functions which change sign n times. At ωm > ḡ, �n(ωm)
decreases as 1/|ωm|γ and has an exponentially small oscillat-
ing piece, the same as in (19). At ωm < ḡ, �n(ωm) oscillates
n times and saturates at the smallest ωm at �n(0), which
decreases with increasing n. To estimate the magnitude of
�n(0) and, more generally, understand why there is a discrete
set of solutions, we use the solution of the linearized gap
equation, Eq. (11), as an input, and treat the nonlinear terms
by expanding in powers of �n(ωm)/ωm. The gap function,
obtained in this way, is represented by the series

�n(y) = ḡy1/2
∞∑

m=0

C2m+1
n fm(y), y =

( |ωm|
ḡ

)γ

, (30)
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FIG. 7. A schematic dependence of �n on n at γ → 2, at some
fixed ωm. All �n with finite n tend to the same value, while the
magnitude of �n→∞ depends on the ratio n∗ = n/ncr , where ncr ∼
1/(2 − γ ).

where f0(y) = cos (β log y + φ), fm�1(y) are obtained in the
order-by-order expansion in �n(ωm)/ωm, and Cn is yet un-
known factor. Evaluating the few first fm(y), we obtain that
they are also oscillating functions of log y with y-dependent
prefactors of order (1/y2m)1/γ−1/2. The perturbative expan-
sion holds as long as Cn < y(1/γ−1/2). In this range, one can
approximate the rhs of (30) by the m = 0 term for order-by-
magnitude estimates. The function f0(y) changes sign n times
between y = O(1) and ymin ∼ e−nπ/β . It is natural to associate
ymin with the lower boundary of the perturbative expansion.
Doing this, we obtain a discrete set of Cn:

Cn ∼ e
−nπ

β
(1/γ−1/2)

. (31)

For large n, �n(y) ≈ ḡy1/2Cn cos (β log y + φ). For n = O(1),
Cn = O(1), and one needs to keep the full series in (30).
This reasoning also yields �n(0) ∼ ḡy1/2

minCn ∼ ḡ(ymin)1/γ ∼
ḡe−nπ/(βγ ).

2. �n(ωm) for γ close to 2

Equation (31) shows that for a generic γ , Cn = O(1) for
n = O(1), and decays exponentially at larger n. However,
for γ close to 2, the dependence on n in (31) is actually
via the product n∗ = n(2 − γ ) ∼ n/ncr . In the limit γ → 2,
n∗ → 0 for any finite n. The corresponding Cn then become
independent on n and coincide with C0 up to corrections,
which become relevant only at the smallest y. At the same
time, at n → ∞, n∗ becomes a continuous variable, whose
value depends on how the double limit n → ∞ and γ → 2 is
taken. Then Cn→∞ and �n→∞ become continuous functions
of n∗ [10]. We illustrate this in schematically in Fig. 7. We
show the numerical evidence for this behavior in Figs. 8
and 9. We use the fact that each �n(ωm) terminates at its
own Tp,n and analyze the functional forms of the eigenvalues
�n(ωm) at Tp,n, assuming that these forms do not change
significantly between Tp,n and T = 0. In Fig. 8 we plot the
largest frequency at which �2(ωm) changes sign. We see that
these frequencies get progressively smaller as γ approaches 2,
while at larger ωm the functional forms of �1(ωm) and �2(ωm)
are the same as of �0(ωm). We expect the same to hold for
other finite n. On a more careful look, we find that the shift
of oscillations to smaller frequencies is related to the reduction

FIG. 8. The positions of the second zero of �2(ωm ), as a func-
tions of γ . This frequency decreases as γ → 2, implying that sign
change at the highest ωm occurs at progressively smaller frequency.
The gap function �2(ωm ) has been obtained by solving the linearized
gap equation at the corresponding Tp,2. We conjecture that the func-
tional form of �2(ωm ) does not change substantially between Tp,2

and T = 0.

of the corresponding Tp,n. In Fig. 9 we show Tp,n for n = 1, 2
as a function of γ . We see that Tp,n decreases as γ increases
toward 2.

Now, each gap function �n(ωm) generates a certain con-
densation energy Ec,n. For a generic γ < 2, the spectrum
of Ec,n is discrete, and Ec,0 is the largest by magnitude.
Then, at low T 	 Tp,0, only the n = 0 solution matters, while
the existence of other Ec,n affects the system behavior only
at T � Tp,0. As γ increases towards two, the spectrum of
Ec,n becomes denser, and (Ec,0 − Ec,n)/Ec,0 progressively gets
smaller for any finite n. At γ → 2, the spectrum of Ec,n can
be viewed as almost continuous spectrum with a small gap,
i.e., there emerges a branch of low-energy “longitudinal” gap
fluctuations. These fluctuations affect the system behavior be-
ginning at a progressively smaller T , as γ approaches two. At
γ = 2 − 0, the spectrum of condensation energies becomes
a gapless continuous function Ec(n∗) with Ec(0) = Ec,0 and
Ec(∞) = Ec,∞. In the next Paper V, where we specifically an-
alyze the case γ = 2, we show there that gapless longitudinal
fluctuations give rise to singular downward renormalization of
the stiffness.

IV. GAP FUNCTION ON THE REAL AXIS

The analysis on the Matsubara axis is sufficient for the
computation of the condensation energy at T = 0 and thermo-
dynamic properties at T > 0. For the analysis of transport and
spectroscopic properties, one needs to know the gap function
on the real frequency axis. In this section we obtain �n(ω)
for real ω. The gap function on the real axis is complex:
�n(ω) = �′

n(ω) + i�′′(ω). It is convenient to introduce its
ω-dependent phase as �n(ω) = |�n(ω)|eiη(ω). As usual, η(ω)
is defined up to a constant.

A. Eliashberg gap equation on the real axis

The Eliashberg gap equation in real frequencies cannot be
obtained by simply replacing ωm by −iω in (2) as �n(ωm →
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FIG. 9. The onset temperature Tp,1(left) and Tp,2(right) vs γ . Other Tp,n with n > 2 are smaller than Tp,2.

−iω) would have branch cuts in the upper frequency half
plane, while the actual �(z) must be an analytic function.

Below we follow the approach, suggested in Refs [7,11–
13] for the electron-phonon problem, i.e., convert to
the real axis using the spectral representation f (iωm) =
(1/π )

∫
dx f ′′(x)/(x − iωm) and, where possible, use �(ωm),

which we treat as the known function. For our γ -model this
procedure yields

�(ω)B(ω) = A(ω) + C(ω), (32)

where, as before, D(ω) = �(ω)/ω, and

A(ω) = πT
∑
ωm>0

D(ωm)√
1 + D2(ωm)

× [V (ωm + iω) + V (ωm − iω)],

B(ω) = 1 + iπ

ω
T
∑
ωm>0

1√
1 + D2(ωm)

× [V (ωm + iω) − V (ωm − iω)],

C(ω) = i

2

∫ ∞

−∞
d�V ′′(�)

D(ω − �) − D(ω)√
1 − D2(ω − �)

×
(

tanh
ω − �

2T
+ coth

�

2T

)
. (33)

The functions A(ω) and B(ω) are obtained by just rotating the
gap equation from ωm to −iω, and the function C(ω) contains
the extra term that cancels out a parasitic contribution from
the branch cuts.

The interaction V (�) on the real axis is V (ω) = V ′(�) +
iV ′′(�), where

V ′(�) =
(

ḡ

|�|
)γ

cos
πγ

2
,

V ′′(�) =
(

ḡ

|�|
)γ

sin
πγ

2
sgnω. (34)

Observe that on the Matsubara axis, V (�m) = (ḡ/|�m|)γ is
positive (attractive in our notations), and on a real axis V ′(ω)
is negative (repulsive) for γ > 1.

Below we focus on the case of zero temperature. At T = 0,
the expressions for A, B, and C reduce to

A(ω) = ḡγ 2

π
sin

πγ

2

∫ ∞

0
dωm

D(ωm)√
1 + D2(ωm)

×
∫ ∞

0

d�

�γ−1

�2 − ω2 + ω2
m[

(� − ω)2 + ω2
m

][
(� + ω)2 + ω2

m

] ,
(35)

B(ω) =
{

1 + ḡγ 4

π
sin

πγ

2

∫ ∞

0

dωm√
1 + D2(ωm)

×
∫ ∞

0

d�

�γ−1

ωm[
(� − ω)2 + ω2

m

][
(� + ω)2 + ω2

m

]},

(36)

C(ω) = iḡγ sin
πγ

2
sgnω

∫ |ω|

0

d�

�γ

D(|ω| − �) − D(|ω|)√
1 − D2(|ω| − �)

.

(37)

At large ω,

B(ω) ≈ 1 +
(

ḡ

|ω|
)γ

Iγ , (38)

where

Iγ = i

2

∫ ∞

0

(x − i)γ − (x + i)γ

(x2 + 1)γ
= −cos πγ

2

γ − 1
. (39)

In the two limits, I1 = π/2, I2 = 1.

B. Frequency dependence of �n(ω): The case n = ∞
We verified that the exact �∞(ω) can be obtained

by converting Eq. (7) from the Matsubara to real axis
by a rotation, i.e., by replacing ωm by −iω + δ. Un-
der such rotation, e−ik log y = e−ikγ log |ωm|/ḡ transforms into
e−ikγ log |ω|/ḡe−(kπγ /2) sgnω. At small ω < ḡ, �′

∞(ω) and �′′
∞(ω)

oscillate as functions of log |ω| down to the lowest
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FIG. 10. The complex gap function �∞(ω) along the real fre-
quency axis and its phase η∞(ω), constrained to (−π, π ), for γ =
1.91. �∞(ω) oscillates an infinite number of times between ω = 0
and ω/ḡ = O(1). For better understanding of the total phase variation
δη, we count oscillations starting from a small but finite ωmin ∼
10−17ḡ. For this choice there are 10 oscillations at ω < ḡ (a). Ac-
cordingly, η∞(ω) changes by 2π five times (b) such that the total
phase variation is 10π .

frequencies. In explicit form, we have in this regime

�∞(ω) = C∞

( |ω|
ḡ

)γ /2

e− iπγ

4 sgnω

× cos

[
βγ

(
log

|ω|
ḡ

− i
π

2
sgnω

)
+ φ

]
, (40)

where C∞ is infinitesimally small. Separating real and imagi-
nary parts, we obtain

�′
∞(ω) = C∞

(
cos

πγ

4
cos D1 cosh D2

+ sin
πγ

4
sin D1 sinh D2sgnω

)
,

�′′
∞(ω) = C∞

(
cos

πγ

4
sin D1 sinh D2

− sin
πγ

4
cos D1 cosh D2sgnω

)
, (41)

where

D1 = β log

( |ω|
ḡ

)γ

+ φ, D2 = πβγ

2
sgnω. (42)

We show �′
∞(ω), �′′

∞(ω), and the phase η∞(ω) for ω < ḡ in
Fig. 10 for γ = 1.91. We set the lowest frequency at 10−17ḡ.
In this case the total phase variation up to O(ḡ) is 10π . This
is consistent with 10 vortices on the Matsubara axis (Fig. 20

below) as each vortex gives rise to a phase change of π for
positive ω on the real axis and another phase change of π for
negative ω.

We now move to ω > ḡ and use Eq. (32). At the largest ω,
we have B(ω) ≈ 1 and

A(ω) =
(

ḡ

|ω|
)γ

Qγ ,∞ cos
πγ

2
,

C(ω) ≈ i

(
ḡ

|ω|
)γ

sin
πγ

2
sgnωQ̄γ ,∞, (43)

where

Qγ ,∞ =
∫ ∞

0
dωm

�∞(ωm)

ωm
, Q̄γ ,∞ =

∫ ∞

0
dω

�∞(ω)

ω
.

(44)

The two integrals in (44) are actually identical. To
prove this, we recall that D∞(ω) = �∞(ω)/ω satisfies
KK relation D′′(ω) = −(2/π )P

∫∞
0 dxD′(x)x/(x2 − ω2),

where P stands for principle part, and that D∞(ωm) =
(2/π )

∫∞
0 dxD′(x)x/(x2 + ω2

m). Using these relations, we
obtain

∫∞
0 dωmD∞(ωm) = ∫∞

0 dωD′(ω). Using further that∫∞
0 dωD′′(ω) = (2/π )

∫∞
0 dxxD′(x)P

∫∞
0 dω/(x2 − ω2) = 0

we find Q̄γ ,∞ = ∫∞
0 dωD∞(ω) = ∫∞

0 dωD′(ω) =∫∞
0 dωmD∞(ωm) = Qγ . Hence, at the largest ω,

A(ω) + C(ω) = ei(πγ /2)sgnω

(
ḡ

|ω|
)γ

. (45)

Substituting into (32) and using (38), we obtain

�∞(ω) ∝
(

ḡ

|ω|
)γ

e(iπγ /2)sgnωQ∞,γ . (46)

This result could also be obtained by a direct rotation of
�∞(ωm) ∝ 1/|ωm|γ from the Matsubara to real axis.

For γ � 1 there is a single crossover between the two
limiting forms of �∞(ω), Eqs. (6) and (46). However, for
γ � 2, the new intermediate regime emerges at ω > ḡ, as we
now demonstrate. In this regime, �′

∞(ω) and �′′
∞(ω) again

oscillate, but with the period set by a power of ω rather than
by log |ω|.

To show this, we recall that in Sec. III B we found an
exponentially small oscillating component of �∞(ωm) on the
Matsubara axis at ωm > ḡ. We now convert this component
onto the real axis. Replacing ωm by −iω + δ, we obtain for
ω > 0:

�∞(ω) =
∫ ∞

kmin

dk(e−πk(1+γ /2)e−ikSk (ω) + e−πk(1−γ /2)eikSk (ω) ),

(47)

where kmin = O(1) and Sk (ω) = log [(|ω|/ḡ)γ (e/Aγ k)γ−1]
Comparing this result with Eq. (17) we see that the exponen-
tially small factor e−π |k| splits into e−πk(1+γ /2) and e−πk(1−γ /2).
The first term is smaller and the second one is larger than the
original term. Keeping only the larger term and evaluating the
integral over k in the same way as in Sec. III B, we obtain

024522-10



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 103, 024522 (2021)

FIG. 11. (a) Comparison between the exact �∞(ω) along the real
frequency axis (blue and orange thick lines) and the universal con-
tribution to �∞(ω) from Eq. (51) (black dotted lines) for γ = 1.91.
The agreement is nearly perfect. (b) Variation of the phase of the gap
function, η∞(ω), between ω ∼ ḡ and ω = ∞. For convenience of
presentation we confined η∞(ω) to (−π, π ), up to small variations.
In the inset we plot the continuous η∞(ω). We see that the total phase
variation between ω ∼ ḡ and ω = ∞ is 16π + πγ /2.

the oscillating term on the real axis:

�∞(ω) ∝ |ω| 1
2

γ

γ−1 exp

{
−2 − γ

Aγ

( |ω|
ḡ

) γ

γ−1

×
[
π

2
− i

γ − 1

2 − γ

(
1 − π2

2(γ − 1)2

)]}
. (48)

For γ � 2, the exponential part of the prefactor is small in
2 − γ , and the power-law part increases with ω. As the result,
this oscillating contribution exceeds the one from Eq. (46) for
frequencies between O(ḡ) and ωcr , where

ωcr ∼ ḡ

[ | log (2 − γ )|
2 − γ

]1/2


 ḡ. (49)

As a result, at ḡ < ω < ωcr , �′(ω) and �′′(ω) oscillate as
functions of (|ω|/ḡ)γ /(γ−1) with weakly, yet exponentially
decaying prefactor. To the leading order in 2 − γ , Eq. (48)
gives

�∞(ω) ∝ |ω|e−(1−γ /2)(|ω|/ḡ)2
ei(|ω|/ḡ)2/π . (50)

We used A2 = π . For completeness, we computed the sub-
leading term under ei.... It changes Eq. (50) into

�∞(ω) ∝ |ω|e−(1−γ /2)(|ω|/ḡ)2
ei{(|ω|/ḡ)2+log [(|ω|/ḡ)2]}/π . (51)

In Fig. 11(a) we compare the exact �∞(ω) with Eq. (51) for
γ = 1.91. We see that the agreement is quite good, and the
range of ω2 oscillations is quite wide for this γ .

FIG. 12. The density of states N∞(ω), counted from the normal
state value NF . To better display oscillations we used different scales
at ω > ḡ and ω < ḡ.

In Fig. 11(b) we show the variation of the phase η(ω)
between ω ∼ ḡ and ω = ∞. We see that the phase changes
by 2πm, where m is an integer, and the total phase variation
is 2πm + πγ /2. The last piece just follows from (46), and
the first one is due to oscillations given by (50). The integer
m increases one by one as γ increases towards 2. In Sec. V
below we associate 2πm phase variation with the emergence
of m dynamical vortices in the upper half plane of frequency.

In Fig. 12 we plot the DoS N∞(ω) for several γ . The DoS
is defined as N (ω) = (−1/π )ImGl (ω), where

Gl (ω) = −iπ

√
ω2

ω2 − �2(ω)
(52)

is the retarded Green’s function, integrated over the dispersion
[14]. Because �∞(ω) is vanishingly small,

N∞(ω) = NF

[
1 − Re

�2
∞(ω)

ω2

]
, (53)

where NF is the DoS in the normal state. We see that N∞(ω)
oscillates around NF up to ω ∼ ωcr . At ω < ḡ, the period of
oscillations is set by log ω, and at ḡ < ω < ωmax, the period is
set by ωγ/(γ−1).

C. Frequency dependence of �n(ω): The case n = 0

We now consider the opposite limit n = 0. We remind that
on the Matsubara axis �0(ωm) is sign-preserving. We show
that on the real axis both real and imaginary parts of �0 again
oscillate in a finite frequency range at ω > ḡ, and the phase of
complex �0(ω) is winding by 2πm in this range.

At high frequencies ω 
 ḡ, the form of �0(ω) can be
readily obtained from (37) in the same way as it was done
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in the previous section. For the case n = 0 we have

A(ω) 
(

ḡ

|ω|
)γ

Qγ cos
πγ

2
,

C(ω) ≈ i

(
ḡ

|ω|
)γ

Qγ sin
πγ

2
sgnω, (54)

where Qγ is given by (29). Substituting these forms along with
B(ω) ≈ 1 into (32), we obtain at ω 
 ḡ,

�0(ω) ≈
(

ḡ

|ω|
)γ

e(iπγ /2)sgnωQγ . (55)

This is consistent with �0(ωm) ∝ (ḡ/|ωm|)γ on the Matsubara
axis.

At small ω, �0(ω) = [A(ω) + C(ω)]/B(ω) ≈ �0(0)
where �0(0) is the same as we found in the ωm → 0
limit on the Matsubara axis. We note, however, that
the relative strength of A(ω), B(ω), and C(ω) changes
between γ < 1 and γ > 1. For γ < 1, A(ω) and B(ω)
tend to finite values at ω → 0, while C(ω) ∝ ω1−γ

vanishes. Then �0(0) = A(0)/B(0). For γ > 1, B(ω) and
C(ω) scale as ω1−γ sin(πγ /2)/(2 − γ ) at ω → 0, while
A(ω) ∝ ω1−γ sin(πγ /2)/(1 − γ ) is smaller, at least for
γ � 2, and, moreover, its sign changes to negative at γ > 1.
The gap still tends to a finite positive value at ω = 0 because
once A(ω) 	 C(ω), �0(0) = limω→0 C(ω)/B(ω) = const.
However, we see that �0(0) now scales with C(ω), which, we
recall, is present in the gap equation on the real axis because
of the need to cancel out parasitic contributions from the
branch cut. This hints that for γ > 1 the behavior of �0(ω)
on the real axis may be quite different from that of �0(ωm).

We now show that this is indeed the case. We focus on
frequencies ω > ḡ, where we detected the new behavior at
n = ∞. Equation (54) for A(ω) is valid for all ω > ḡ as
typical ωm in (35) are of order ḡ. Similarly, B(ω) ≈ 1 for
all ω > ḡ. For C(ω), we have to be more careful and include
not only the contribution in (37) from ω − � = O(ḡ), which
yields (38), but also contributions from � immediately be-
low ω (i.e., ω − � 	 ḡ). These contributions are expressed
in terms of derivatives of D0(ω) = �0(ω)/ω. The leading
term here is the one with the first derivative: D0(ω − �) −
D0(ω) ≈ −�Ḋ0(ω). For γ � 2, the integral

∫ ω

0 d�/�γ−1 =
ω2−γ /(2 − γ ) is determined by small �, and the prefactor
1/(2 − γ ) compensates the smallness of the overall factor
sin(πγ /2) ≈ (π/2)(2 − γ ) in (37). This term then gives

−i
π

2
ω2−γ Ḋ0(ω)√

1 − D2
0(ω)

. (56)

We will also need terms of order 2 − γ . For this, we keep the
subleading terms with (Ḋ0)2 and D̈0. Evaluating the prefac-
tors, we obtain differential gap equation in the form (ω > 0)

−i
π

2
ḡγ ω2−γ√

1 − D2
0(ω)

[
Ḋ0(ω) − (2 − γ )ω

×
{

1

2
D̈0(ω) + D0(ω)[Ḋ0(ω)]2

1 − D2
0(ω)

}]

= D0(ω)ω − Qγ

( ḡ

ω

)γ

eiπγ /2. (57)

We follow Refs. [11,12] and introduce D0(ω) = 1/ sin(φ(ω)).
Both D0(ω) and φ(ω) are complex functions of ω. Substitut-
ing into (57) we obtain

φ̇ − (2 − γ )

2
ω[φ̈ + (φ̇)2 tan φ]

= 2

π ḡγ

(
ωγ−1 − Qγ

ḡγ

ω2
eiπγ /2 sin φ

)
. (58)

This equation is similar to the one for γ = 2 and a finite T ,
analyzed by Combescot in Ref. [12].

At the highest frequencies, the gap function must obey
Eq. (46). This gap function is reproduced if we choose

φ′(ω) = 2πm + π

2
(γ + 1), (59)

φ′′(ω) = log
2ḡ

Qγ

+ (γ + 1) log
ω

ḡ
, (60)

where m is integer. We see that at large enough ω, φ′′(ω) 

φ′(ω). On the other hand, at ω � ḡ, φ′(ω) ≈ (2/πγ )(ω/ḡ)γ ,
and φ′′ is small, of order 2 − γ . We use this to set the bound-
ary condition at ω = ḡ as

φ′ = 2

πγ
, φ′′ = a(2 − γ ), (61)

where a = O(1). We will argue that the solution of (58) is
largely independent of a, as long as a(2 − γ ) 	 1. To sim-
plify the calculation, below we neglect φ̈ term in Eq. (58) and
use the boundary condition (61) as the initial condition for the
first-order differential equation. We show that the solution of
(58) without φ̈ by itself satisfies the boundary condition (59)
and (60). We discuss the role of φ̈ and the validity of dropping
it at the end of this section.

A simple analysis of the Eq. (58) without the φ̈ term shows
that φ′′(ω) rapidly increases shortly before φ′(ω) reaches π/2.
To see this, we neglect momentarily the Qγ term in (58),
which gives rise to a small initial φ′′ and solve the remaining
equation as a quadratic equation on φ̇. We obtain

φ̇ =
1 −

√
1 − 4

π
(2 − γ )

(
ω
ḡ

)γ
tan φ(ω)

(2 − γ )ω tan φ(ω)
. (62)

(the sign is chosen to satisfy the initial condition). An elemen-
tary analysis shows that φ′′(ω) emerges at ω = ωa, where(

ωa

ḡ

)γ

tan[φ′(ωa)] = π

4

1

2 − γ
. (63)

This ωa is smaller than the one at which φ′(ω) reaches π/2.
This is essential as in the absence of φ′′, the behavior near
φ′(ω) = π/2 would be singular. Once φ′′ is nonzero, the
singularity is cut. Keeping the Qγ term, we find that φ′′ is
nonzero at all frequencies, where Eq. (58) is valid, but still
rapidly increases around ωa, specified by (63).

At larger ω, φ′′(ω) increases, and eventually eφ′′
becomes

larger than one. At such frequencies, tan φ ≈ i, and (58) sim-
plifies to

φ̇′(ω) ≈ 2

π

ωγ−1

ḡγ
, φ̇′′(ω) ≈ 2(2 − γ )

π2

ω2γ−1

ḡ2γ
. (64)

Solving, we find φ′(ω) ≈ (2/πγ )(ω/ḡ)γ , φ′′(ω) ≈ (2 −
γ )/(π2γ )(ω/ḡ)2γ . Note that these forms are universal and do
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(b)

(c)

FIG. 13. (a) The numerical solution of Eq. (58) for γ = 1.995. Frequency is in units of ḡ. The crossover at ωcr ≈ 15ḡ is clearly visible.
(b), (c) Zoom into regions ω < ωcr and ω > ωcr . At ω < ωcr , φ′ grows as ωγ , while φ′′ first increases steplike, and then behaves as ω2γ . At
ω > ωcr , φ′ saturates at 2πm + (γ + 1)π/2, where m = 9 for γ = 1.995, while φ′′ increases as (γ + 1) log ω/ḡ.

not depend on the boundary condition [i.e., on the factor a
in Eq. (61)]. For γ ≈ 2, φ′(ω) ≈ (ω/ḡ)2/π . To compare with
n = ∞ case, we computed the subleading term. It comes from
the second term in B(ω) in (38) and changes φ′(ω) to

φ′(ω) = 1

π

[(
ω

ḡ

)2

+ log

(
ω

ḡ

)2]
. (65)

Observe that the rhs of (65) is the same function as we
found for n = ∞, Eq. (51). Eq. (64) holds up to ω at which
eφ′′ ∼ (ω/ḡ)3. At larger frequencies, the second term in the
rhs of (58) cannot be neglected, and the functional form of
φ(ω) changes. In Fig. 13(a) we show the result of numerical
solution of (58) We see that there is a single crossover, at
ω = ωcr ∼ ḡ[| log (2 − γ )|/(2 − γ )]1/(2γ ), from φ(ω) given
by (64) to φ(ω) given by (59) and (60). In Figs. 13(b)
and 13(c) we show separately the behavior of φ′(ω) and
φ′′(ω) at ω < ωcr and ω > ωcr . The fits to Eq. (64), (59),
and (60), respectively, are almost perfect. Deviations from
the high-frequency forms decrease as 1/ωγ and oscillate as
trigonometric functions of (2/πγ )(ω/ḡ)γ . In Figs. 14(a) and
14(b) we show that the value of φ′ for ω > ωcr is independent
on the parameter a in the boundary condition (61), as long
as a = O(1). At the same time, the value of an integer m
in (59) changes if we change γ , as is shown in Fig. 14(c).
Specifically, m jumps to the nearest integer at a discrete set of
γi � 2 (the smaller is 2 − γ , the larger is m). We demonstrate
this in Fig. 14(d).

In Fig. 15(a) we show real and imaginary parts of the gap
function

�0(ω) = ω

sin φ(ω)
= 2ω

sin φ′ cosh φ′′ − i cos φ′ sinh φ′′

cosh 2φ′′ − cos 2φ′ .

(66)
We see that both �′

0(ω) and �′′
0 (ω) oscillate between

ω = O(ḡ) and ωcr and display sign-preserving 1/ωγ be-
havior at ω > ωcr . At ω � ḡ, �′(ω) varies roughly as

ω/ sin {[2/(πγ )](ω/ḡ)γ } and �′′(ω) has almost δ-functional
spikes in where sin{[2/(πγ )](ω/ḡ)γ } is small. At larger ω �
ωcr , both �′ and �′′ oscillate with progressively decreasing
magnitude.

In Fig. 15(b) we show the variation of the phase of the
gap function η(ω). The total variation of η between ω = 0
and ω = ∞ is 2πm + πγ /2. We emphasize that this is the
result for �0(ω), which is sign-preserving on the Matsubara
axis. We clearly see that there is a huge difference between the
forms of the gap function on the real and the Matsubara axis
in between ḡ and ωcr .

We now use more precise analysis to determine ωcr . In
Eq. (58) we included only the first two terms in the expansion
of C(ω) in powers of φ̇. Meanwhile, the expansion in deriva-
tives holds in powers of φ̇ω/ḡ without additional (2 − γ ) in
the prefactor. This implies that higher-order terms are not
negligible at ω > ḡ. We now use the fact that before φ(ω)
crosses over to (54) and (38), it shows the universal behav-
ior in the range where 1 < eφ′′

< (ω/ḡ)3. In this regime, (1)
φ̇ ≈ φ̇′ ≈ (2π )ωγ−1/ḡγ 
 ḡ, while higher-order derivatives
are smaller, and (2) D(ω) is small, such that

√
1 − D2 ≈ 1. In

this situation, one can sum up the full Taylor series for (2 − γ )
term in C(ω). We use that tan φ ≈ i and the nth detivative
Dn(ω) ≈ in(φ̇)nD. Integrating each term in Talor series over
�, we obtain the modified lhs of (58) in the form

φ̇ − i(2 − γ )φ̇F

(
ω

ḡ
φ̇

)
, (67)

where

F (x) =
∫ x

0

1 − cos y

y2
= SI(x) − 1 − cos x

x
(68)

and SI(x) is SinIntegral. Equation (58) is reproduced if we
approximate 1 − cos y by y2/2. Then F (x) ≈ x/2. If we use
the full expression, we find that at large x, which we are
interested in, F (x) ≈ π/2. The equation for φ then reduces
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FIG. 14. (a), (b) The functions φ′(ω) and φ′′(ω) for different boundary conditions, set by a parameter a in Eq. (61). The figure shows that
the value 2πm + (γ + 1)π/2, at which φ′(ω) saturates is independent on a. The behavior of φ′(ω) in the universal regime, where both φ′ and
φ′′ are continuous functions of ω, also does not depend on a. (c) Variation of the integer m with γ . There is a discrete set of γi, at which m
changes by 1. The set becomes progressively more dense at γ → 2. (d) The behavior of φ′(ω) near one of these γi ≈ 1.924. The value of φ′ at
large ω jumps by 2π as γ passes through γi and a new vortex moves into the upper half plane of frequency.

to

φ̇ = 2

π ḡγ

ωγ−1 − Qγ ḡγ

ω2 eiπγ /2 sin φ

1 − i(2 − γ )π/2
. (69)

We show the solution in Fig. 16 and present the plots of the
gap function �0(ω), the phase η0(ω), and the variation of m
with γ in Fig. 17.

The behavior of φ(ω) is qualitatively similar to the one in
Fig. 13, i.e., there is a single crossover frequency, and the total
variation of η(ω) between ω = 0 and ω = ∞ is 2πm + πγ /2.
However, the crossover scale ωcr has different dependence
on 2 − γ compared to Eq. (58), and also the dependence
of m on γ is different from that in Fig. 14(b) [and there
are no wiggles in φ(ω) at ω > ωcr]. To obtain the modified
crossover frequency, ωcr , we note that in the universal regime
1 < eφ′′

< (ω/ḡ)3, φ̇′(ω) is still given by (64), while

φ̇′′(ω) ≈ (2 − γ )
ωγ−1

ḡγ
. (70)

Accordingly, φ′(ω) ≈ (2πγ )(ω/ḡ)γ , φ′′(ω) = (2 −
γ )/γ (ω/ḡ)γ . The crossover frequency is then determined by
eφ′′ ∼ (ω/ḡ)3. Solving for ω, we obtain, for γ � 2,

ωcr ∼ ḡ

[ | log (2 − γ )|
2 − γ

]1/2

. (71)

This is the same scale as ωcr that we obtained for n = ∞,
Eq. (49).

We see therefore that for n = ∞ and n = 0 the new be-
havior of the gap function emerges in the same frequency
range ḡ < ω < ωcr . Moreover, the period of oscillations in

this range is the same function of frequency, Eqs. (51) and
(65).

In Fig. 18 we plot the DoS

N0(ω) = NF Re

√
ω2

ω2 − �2∞(ω)
(72)

for several γ . We see that N0(ω) vanishes below a certain
threshold frequency, and at ḡ < ω < ωmax has a set of maxima
and minima. The peaks in N0(ω) get progressively sharper
as γ approaches 2, while in between the peaks N0(ω) gets
smaller. The positions of the peaks almost coincide with the
maxima of N∞(ω).

Before we move to finite n, we pause to discuss the validity
of neglecting the φ̈ term in Eq. (58). This is justified if |φ̈|
is smaller than (φ̇)2| tan φ| for all frequencies. Of particular
relevance here are frequencies near ωa, specified by Eq. (63).
If we set a = 0 in the initial condition (61) and use Eq. (62),
we find that φ′′ initially increases as (ω − ω0)3/2. In this
situation, φ̈ diverges at ω = ω0 + 0, and the behavior of φ(ω),
which we found earlier in this section, is valid outside of the
vicinity of ω0, while near ω0, φ̈ and higher derivatives cannot
be neglected. Specifically, evaluating φ̈, φ̇, and tan φ near
ω0, we find that for γ � 2, the condition |φ̈| < (φ̇)2| tan φ|
is satisfied when

φ′′ > π (2 − γ ). (73)

For a = 0+, this holds outside a finite range near ω0. However,
if a = O(1), |φ̈| never becomes much larger than (φ̇)2| tan φ|,
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FIG. 15. Upper panel: frequency dependence of the gap function
�0(ω) = �′

0(ω) + i�′′
0 (ω), from Eq. (66). We set γ = 1.95. For

ḡ < ω < ωcr , both �′
0(ω) and �′′

0 (ω) display oscillations with a
decreasing magnitude. For ω � ωcr , �′

0(ω) becomes negative and
does not oscillate. Lower panel: Variation of the phase of the gap
η0(ω) as a function of ω. As before, we confined phase variation to
(−π, π ), up to small variations. The phase changes by 2π three times
between ω = O(ḡ) and ωcr . There are no more 2π phase variations,
despite that the phase shows wiggling at large frequencies. In the
inset we plot the continuous η0(ω). We see that the total phase
variation between ωm = ḡ and ωm = ∞ is 6π + πγ /2.

hence neglecting |φ̈| does not change the results qualitatively
even near ω0.

D. Frequency dependence of �n(ω): Finite n

The behavior of �n(ω) at ω < ḡ on the real axis parallels
the one on the Matsubara axis. Namely, the phase varies by
nπ between ω = 0 and ḡ due to n vortices on the Matsubara
axis. At γ → 2, oscillations shift to smaller ω. At ω > ḡ, it
is natural to expect oscillations with the period set by (51)
at ḡ < ω < ωcr and eiπγ /2/ωγ behavior at ω > ωcr . The total
phase variation between ω = 0 and ω = ∞ is

nπ + 2πm + πγ

2
. (74)

The DoS at a finite n vanishes below a certain threshold
frequency. Above the threshold, it oscillates around NF with
a period set by log ω, and at larger ḡ < ω < ωcr has a set of
peaks and dips at about the same frequencies as N∞(ω) and
N0(ω).

V. VORTICES NEAR THE REAL AXIS

We now use the Cauchy relation

�(z) = 2

π

∫ ∞

0
dx

�′′(x)x

x2 − z2
(75)

and extend the gap functions �n(ω) into the upper frequency
half plane, to z = ω′ + iω′′ (ω′′ > 0). Earlier, we demon-
strated that �n(z) has n vortices on the Matsubara axis. Here,
we analyze the behavior of �n(z) between the Matsubara and
the real axis. We show that as γ increases from one to two,
new vortices appear one by one in the upper frequency half
plane, near the real axis. These vortices are located at |z| > ḡ,
and their number, m, is determined by γ and is the same for
all n. When γ → 2, m tends to infinity. The emergence of
vortices obviously correlates with the oscillations of �n(ω)
on the real axis, and as such is another consequence of the
change of sign of the real part of the interaction on the real
axis, V ′(�), which becomes repulsive at γ = 1. The increase
of the number of vortices as γ approaches 2 in turn correlates
with the decrease of V ′′(�).

That such vortices must be present can be understood by
comparing the behavior of �n(z) for |z| > ḡ near the Matsub-
ara axis and the real axis. Along the Matsubara axis, �n(ωm)
is real and does not change sign at |ωm| > ḡ. By continuity,
�′(z) near the Matsubra axis should remain sign-preserving,
hence η(z) does not wind. On the other hand, on the real axis,
the phase winds by 2πm, as we found in the previous section.
This number is topologically protected against perturbations
and can disappear only upon rotation from real to imaginary z
if there are vortices at some complex z. Indeed, let us compute

δη� = Im
∫

�

dz[∂ log �(z)/∂z] (76)

along the path �, which starts at the large negative real z =
−R, goes along the real axis up to +R, and then closes along
the large arc in the upper half plane (see Fig. 19). The arc
is chosen such that along it �n(z) ∝ ei(π/2−ψ )/|z|γ . The total
phase variation along the arc is −πγ , and the phase variation
along the real axis is 2π (n + 2m) + πγ . The contour integral
then gives

δη� = 2π (n + 2m). (77)

This δη� should be equal to the contribution from inside the
contour. Because ∂ log �(z)/∂z has a simple pole at each point
where �(z) vanishes, there must be n + 2m vortices inside
the contour (we recall that �(z) by itself has no poles in
the upper half plane). There are n vortices on the Matsubara
axis, the other 2m should be located in between the Matsubara
and the real axis. By symmetry, there must then be m vortices
in the first quadrant, and another m is in the second one.

To determine the location of the vortices, it is instructive to
again consider separately the cases n = ∞, n = 0, and a finite
n.

A. n = ∞
We first quickly verify that there are no vortices away from

Matsubara axis for |z| < ḡ. We express �(z) in terms of |z|
and ψ , defined via z = |z|eψ . Replacing ωm by −iz in Eq. (7)
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FIG. 16. (a) The solution of Eq. (69) for γ = 1.88. (b), (c) Zooms into the regions below and above the crossover frequency. The behavior
of φ′(ω) and φ′′(ω) is qualitatively similar to that in Fig. 14 but differs in detail. In particular, both φ′(ω) and φ′′(ω) approach asymptotic forms
12π + (γ + 1)π/2 and (γ + 1) log ω, respectively, without oscillations.

we obtain the expressions similar to (41) and (42):

�′
∞(z) ∝ cos

[γ

2

(π

2
− ψ

)]
cos D1 cosh D2

+ sin
[γ

2

(π

2
− ψ

)]
sin D1 sinh D2,

�′′
∞(z) ∝ cos

[γ

2

(π

2
− ψ

)]
sin D1 sinh D2

− sin
[γ

2

(π

2
− ψ

)]
cos D1 cosh D2, (78)

but D1 and D2 are now given by

D1 = β log (|z|/ḡ)γ + φ, (79)

D2 = β
[
(π − 2ψ )

γ

2

]
. (80)

The vortices are the points where �′
∞(z) = �′′

∞(z) = 0. For
�∞(z) given by (78) this is satisfied if D1 = π/2 + mπ and

D2 = 0. The second condition is satisfied only if ψ = π/2,
i.e., on the Matsubara axis. The first condition coincides with
�∞(ωm) = 0. In Fig. 20 we show that the phase η∞(z) of
�∞(z) = |�∞(z)|eiη∞(z) evolves in a “rectangular” way upon
rotation from the Matsubara to the real axis. The white curves
in this figure are determined by �′′(z) = 0 and �′(z) < 0. The
phase η(z) changes by 2π upon crossing each of these curves.
We see that the phase winds five times by 2π at Rez > 0,
consistent with the presence of 10 vortices on the Matsubara
axis.

We now consider the range |z| > ḡ. We recall that on the
real axis, �∞(ω) oscillates as a function of (|ω|/ḡ)γ /(γ−1)

between ḡ and a larger ωcr given by Eq. (49). We detected the
oscillating term on the Matsubara axis (ψ = π/2), where it is
exponentially small, and converted it to the real axis (ψ = 0),
where it becomes the largest piece in �∞(ω) at ḡ < ω < ωcr .
We now analyze this term at arbitrary ψ . Replacing ωm by
|z|e−i(π/2−ψ ) in (18) and using (6), we obtain the oscillating

FIG. 17. (a), (b) The same as in Fig. 15, but for φ′ and φ′′ from Eq.(69). At large frequencies, �(ω) ∝ eiπγ /2/ωγ . The total variation of
the phase of � is δη = 2πm + πγ /2. (c) Variation of m with γ . As before, there is a discrete set of γi, where m jumps by 1. The set becomes
progressively more dense at γ → 2.
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FIG. 18. The DoS N (ω) for the n = 0 solution, for several γ .
Peaks in N (ω) sharpen as γ → 2, while the weight between the
peaks is reduced.

component of �∞(z) in the form

�∞(z) =
∫ ∞

kmin

dk(e−(π+θ )ke−ikSk (|z|) + e−(π−θ )keikSk (|z|) ).

(81)
Here θ = (π/2 − ψ )γ and Sk (|z|) =
log [(|z|/ḡ)γ (e/Aγ k)γ−1], where Aγ is defined in (15).
For γ → 2, θ → π − 2ψ , and evaluating the integral over k
in the same way as in Sec. III B, we obtain

�∞(z) ∝ |z| 1
2

γ

γ−1 exp

{
i
γ − 1

Aγ

( |z|
ḡ

) γ

γ−1
[

1 − 1

2

(
π − θ

γ − 1

)2

+ i
π − θ

γ − 1

]}
+ (θ → −θ ). (82)

FIG. 19. The contour � used in Eq. (76). The contour consists
of a real axis and a semicircle (arc) at z = |z|eiψ , |z| → ∞ and
0 < ψ < π . Along the arc, �n(z) ∝ ei(π/2−ψ )γ /|z|γ , so the corre-
sponding contribution to δηL is −πγ . Along the real axis, δη� =
2π (n + 2m) + πγ . The total δη� along � is then 2π (n + 2m). The
same δη� must be obtained by counting contributions from the poles
inside �. Each vortex is a pole with residue 2π , hence there should be
n + 2m vortices. This is consistent with our analysis of �(z): there
are n vortices on the Matsubara axis, and 2m vortices in the upper
half plane near the real axis.

FIG. 20. The phase η∞(z) in the complex plane at |z| < O(ḡ),
for γ = 1.96. We set the lower boundary for |z| at ω0 ∼ 10−18ḡ, as in
Fig. 10. Along the white lines, �′′(z) = 0 and �′(z) < 0. The phase
of the gap then changes by 2π upon crossing each of these lines.
Observe that each white line starts in between a pair of vortices on
the Matsubara axis, and ends on the real axis. As a result, if there
are k vortices on the Matsubara axis, the phase variation δη on the
positive real axis is exactly kπ . In our case, k = 10.

We plot �∞(z) from Eq. (82) in Fig. 21 for several γ near
γ = 2. We see that there is an array of vortices near the
real axis, at |z| > ḡ. We now recall that Eq. (82) is valid in
a range ḡ < |z| < ωcr (θ ). At larger |z|, the oscillating term
becomes smaller than the regular piece eiθ /|z|γ and there are
no vortices. The boundary frequency for vortices is ωcr (θ ) ∼
ḡ[| log (π − θ )|/(π − θ )]1/2 for γ � 2. Because θ ≈ π − 2ψ

in this limit, the range of |z|, where Eq. (82) is valid, remains
wide for small ψ . The vortices move closer to the real axis at
larger |z| and for |z| � ωcr (θ ) escape into the lower half plane
of frequency. We see from Fig. 21 that the number of vortices
increases rapidly as γ → 2.

B. Case n = 0

We now show that the same vortex structure appears for
�0(z), which, we recall, is sign-preserving along the Matsub-
ata axis.

We obtain �0(z) by Cauchy relation, Eq. (75), using as an
input �′′(ω) from Eq. (66). In Fig. 22 we show the amplitude
of the gap |�0(z)| in the first quadrant of complex z = ω′ +
iω′′ for |z| > ḡ for γ = 1.75. We see that there are two vortices
at complex z. We verified that this is consistent with m = 2 in
Eq. (59) for this γ . In Fig. 23 we show that the number of
vortices increases when γ increases towards 2.

In Fig. 24 we show how vortices emerge in the upper
frequency half plane one by one at a set of γi. A given vortex
is located in the lower frequency half plane for γ < γi and
moves into the upper half plane at γ > γi. Right at γ = γi it
appears on the real axis. At this γ , both �′

0(ω) and �′′
0 (ω)

vanish at some frequency, hence |�0(ω)| = 0. We see from
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FIG. 21. The case n = ∞. We plot the phase of the gap function η∞(z) in the upper half plane (z = ω′ + iω′′) for different γ near γ = 2.
The locations of the vortices are marked by red dots. At the vortex core, �∞(z) = 0 and η∞ is undefined. This number of vortices m rapidly
increases as γ → 2.

Fig. 24 that this indeed happens for γi specified in this figure.
Once γ becomes larger than γi, m increases by one, and δη0

increases by 2π . We extended ω to ω ± iδ and verified that the
vortex indeed moves from the lower to the upper frequency
half plane as γ increases through γi.

The emergence of the line of dynamical vortices (dynam-
ical in the sense that they are at complex z) can also be
analyzed within a semiphenomenological analytical model, in
which we combine oscillating behavior of �0(ω) at ḡ < ω <

ωcr and nonoscillating 1/ωγ form at ω > ωcr by approximat-

ing �0(ω) as the sum of the two terms:

�0(ω) = 2ω
sin φ′ cosh φ′′ − i cos φ′ sinh φ′′

cosh 2φ′′ − cos 2φ′

+Cḡ
( ḡ

ω

)γ

eiπγ /2, (83)

where φ′ and φ′ are some functions of ω. We treat C as a
phenomenological parameter, which controls the width of the
range where �0(ω) oscillates. We assume that C scales as
some power of 2 − γ and vanishes at γ = 2. The smaller C

FIG. 22. The case n = 0. Left panel: Plot of log |�0(z)| in the upper half plane, for γ = 1.75. The gap �0(z) for a generic z in the upper
half plane is obtained by analytic continuation from �′′(ω) on the real axis, Eq. (69). The two bright points z1 and z2 are the locations of the
vortices (points where |�0(z)| = 0). Right panel: Plot of η0(z) in the same region.
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FIG. 23. The case n = 0. The phase of the gap function η0(z) in the upper half plane (z = ω′ + iω′′) for different γ near γ = 2. The
locations of the vortices are marked by red dots. At the vortex core �0(z) = 0 and η0 is undefined. The number of vortices is set by m in (59).
This number rapidly increases as γ → 2.

is, the larger is the width of this range where �0(ω) oscillates.
The precise forms of φ′(ω) and φ′′(ω) are not essential for
this consideration, except that φ′(ω) must be odd in ω and
φ′′(ω) must be even, and KK relations for �0(ω) must be
satisfied with enough accuracy within the range where �0(ω)
oscillates. We use φ′(ω) = ω and φ′′(ω) = (2 − γ )|ω|1.5 to
generate the plots in Fig. 25. At large C, �′

0(ω) and �′′
0 (ω)

gradually decrease without changing sign (the top panel). This
models the behavior of the gap function for γ ∼ 1. As C
decreases, �′

0(ω) and �′′
0 (ω) evolve and start undergoing sign

changes. At first, this does not give rise to phase winding (sec-
ond panel from the top). Then, at some critical C = C1 ≈ 110,
there appears a point infinitesimally close to the real axis,
where �′

0(ω) and �′′
0 (ω) change sign at the same frequency.

FIG. 24. The gap amplitude |�0(ω)| as a function of ω for a set
of γi. For each of these γi, the gap amplitude vanishes at a particular
ω, indicating that a vortex crosses the real axis on its way from the
lower to the upper frequency half plane.

Once C becomes smaller than this value, a vortex appears in
the upper frequency half plane, and the phase η0(ω) rapidly
changes by 2π in a narrow frequency range. At a smaller
C = C2 ≈ 25, another vortex emerges on the real axis and
moves to the upper frequency half plane at smaller C, causing
another rapid change of η0(ω) by 2π (the third panel). The
third vortex emerges at C = C3  1.5 and so on (the lower
panels).

Comparing the results for n = 0 and n = ∞ we see that in
both cases a line of vortices emerges at complex z in the first
quadrant, and equal number of vortices forms in the second
quadrant. The vortices develop for γ > 1. The number of
vortices increases with γ and tends to infinity at γ → 2. In
this limit, the line of vortices extends to z = ∞. Comparing
Figs. 21 and 23, we see that the phase winding along the real
axis and the number of vortices in the upper frequency half
plane for any given γ are very likely the same for n = 0 and
n = ∞ A small difference in the values of γi, where the new
vortices appear in the two cases, is most probably related to
the fact that the n = 0 solution is an approximate one.

C. Finite n

Given the equivalence between the number of vortices at
complex z for n = 0 and n = ∞ and near-equivalence of their
position, we expect that the geometry of the vortices near the
real axis is determined solely by γ and is the same for all
values of n.

The emergence of the array of vortices is another indication
that the pairing at γ > 1, where V ′(ω) is repulsive, is quite
special. The argument for this goes as follows. Take the set
of m points, where �n(z) = 0, and make it infinite by adding
points zi at larger z > ωcr , for which �n(zi ) ∝ Cn/|zi|γ . As
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FIG. 25. Left panel: The plots of log |�′
0(ω)/ḡ| and log |�′′

0 (ω)/ḡ|, from Eq. (83). The form of �0(ω) is controlled by the parameter C. At
small C (which corresponds to larger γ ), the gap function oscillates, and the range of oscillations increases with decreasing C. Middle panel:
The phase η0(ω), constrained to (−π, π ), for different C. The winding number increases as C decreases. Right panel: The phase η0(z) in the
upper half plane of frequency. At large C, there are no vortices in the upper half plane. As C decreases, vortices appear one by one.

long as �n(z) vanishes at |z| = ∞ everywhere in the upper
half plane, one can continue analytically from such set and
obtain a unique �n(z) for all z. We see that �n(z) is nonzero
only because we extended the set of vortex points by adding
additional zi with |z| > ωcr . The implication is that �n(z) for
all z is actually determined by the set of complex frequencies,
above the crossover scale ωcr . At γ → 2, ωcr tends to infinity.
In this limit, the set of the gap functions on the Matsubara
axis is determined solely by an essential singularity at z = ∞.
This obviously points out that the pairing at γ > 1 is highly
unconventional and becomes more so as γ → 2.

VI. CONCLUSIONS

In this paper we continued with our analysis of the inter-
play between the pairing and the non-Fermi liquid behavior
in a metal for a set of quantum-critical (QC) systems with
an effective dynamical electron-electron interaction V (�m) ∝
1/|�m|γ , mediated by a critical massless boson (the γ -model).
In previous papers we considered the cases 0 < γ < 1 and
γ ≈ 1. We argued that the pairing by a gapless boson is funda-
mentally different from BCS/Eliashberg pairing by a massive
boson as for QC pairing there exists an infinite discrete set of
topologically distinct solutions for the gap function �n(ωm) at
T = 0 (n = 0, 1, 2, . . .), each with its own condensation en-
ergy Ec,n. Here we extended the analysis to larger 1 < γ < 2.
We argued that the discrete spectrum of Ec,n get progressively
denser as γ increases towards 2. This increases the strength
of “longitudinal” gap fluctuations, which tend to reduce the
actual superconducting Tc compared to the onset temperature

for the pairing. We also reported two new features on the real
axis, which again become critical at γ → 2. First, the density
of states evolves towards a set of discrete δ-functions. Second,
on a real axis, �n(ω) with all n, including n = 0, oscillate
between ḡ and ωcr > ḡ, and the phase of the gap ηn(ω) varies
in this range by an integer number of π . We associated this
variation with the presence of dynamical vortices in the up-
per half plane of frequency, at a complex z = ω′ + iω′′. The
vortices appear one by one at a discrete set of γi > 1, and
the number of vortices tends to infinity at γ → 2. We related
the emergence of oscillations on the real axis and vortices
at complex z with the fact that for real ω, the interaction
V ′(�) ∝ cos(πγ /2) = /|�|γ becomes repulsive for γ > 1,
and the imaginary part V ′(�) ∝ sin(πγ /2)/|�|γ gets pro-
gressively smaller as γ → 2. We speculated that there is the
emergence of an infinite number of vortices and a continuum
spectrum of Ec,n at γ → 2 are related phenomena.

The case γ = 2 requires separate consideration and will be
discussed in the next paper in the series. There we also discuss
in detail longitudinal gap fluctuations.
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APPENDIX: THE EXACT FORM OF �∞(ωm)

1. The linearized gap equation

We choose the unit for frequency to be ḡ and rewrite the
linearized Eliashberg equation at zero temperature in dimen-
sionless variable ω̄ = ω/ḡ as

�(ω̄) = 1

2

∫
dω̄′ �(ω̄′) − �(ω̄) ω̄′

ω̄

|ω̄′|
1

|ω̄ − ω̄′|γ . (A1)

To obtain �(ω̄), we will explore the same strategy as in Paper
I, where we found the exact solution for γ < 1. For this, we
introduce S(ω̄) = sgn(ω̄)(|ω̄| − 1

γ−1 |ω̄|1−γ + i0+) and


̃(ω̄) = S(ω̄)
�(ω̄)

ω̄
. (A2)

The choice of the sign of i0+ term in S(ω̄) is arbitrary. The
result for �(ω̄) is the same for either sign.

The gap equation in terms of 
̃(ω̄) takes the form


̃(ω̄) = 1

2

∫
dω̄′

[

̃(ω̄′)
S(ω̄′)

− 
̃(ω̄)

S(ω̄)

]
sgn(ω̄′)

|ω̄ − ω̄′|γ

− ω̄ − S(ω̄)

S(ω̄)

̃(ω̄). (A3)

Like for γ < 1, we introduce complete and orthogonal basis,
specified by


β (�) = |�|−2iβ+δ�

|�|γ /2
, (A4)

where β ∈ [−∞,∞] and δ� = δsgn(1 − |�|). The functions

β (�) satisfy the orthogonality and completeness relations∫ ∞

−∞

∗

β (ω)
β (�)
dβ

2π
= 1

2
|�|1−γ δ(|�| − |ω|), (A5)∫ ∞

−∞

∗

β (ω)
β ′ (ω)
dω

|ω|1−γ
= 2πδ(β − β ′). (A6)

The function 
̃(ω̄) is expressed via 
β (�) as


̃(ω̄) =
∫ ∞

−∞

dβ

2π
aβ
β (ω̄), (A7)

where

aβ =
∫

dω̄

|ω̄|1−γ

∗

β (ω̄)
̃(ω̄). (A8)

Multiplying both sides of Eq. (A3) by 
∗
β (ω̄) and integrating

over dω̄/|ω̄|1−γ , we obtain the integral equation on aβ in the
form

aβ = 1

2

∫ ∞

−∞

dβ ′

2π
Aβ,β ′aβ ′ −

∫ ∞

−∞

dβ ′

2π
Bβ,β ′aβ ′ , (A9)

where

Aββ ′ =
∫

dω̄

|ω̄|1−γ

∫
dω̄′

[

β ′ (ω̄′)
S(ω̄′)

− 
β ′ (ω̄)

S(ω̄)

]

× sgn(ω̄′)
|ω̄ − ω̄′|γ 
∗

β (ω̄), (A10)

Bβ,β ′ =
∫

dω̄

|ω̄|1−γ

ω̄ − S(ω̄)

S(ω̄)

β ′ (ω̄)
∗

β (ω̄). (A11)

One can verify that Aββ ′ = (γ − 1)Bββ ′Fβ , where

Fβ =
∫ ∞

−∞
dx

1

|x − 1|γ [|x|2iβ+γ /2−1 − sgn(x)]

= 2

γ − 1
(1 − εβ ) (A12)

and

εβ = 1 − γ

2

�(γ /2 − 2iβ )�(γ /2 + 2iβ )

�(γ )

[
1 + cosh(2πβ )

cos(πγ /2)

]
.

(A13)

Evaluating the integral for Bββ ′ , we obtain

Bββ ′ = 2

γ − 1

∫ ∞

0

dω̄

ω̄

ω̄2i(β−β ′ )+δω̄

(γ − 1)ω̄γ − i0+ (A14)

= 2iπ

γ

e−2π (β−β ′ )/γ−2i(β−β ′ )/γ log(γ−1)

sinh[2π (β − β ′)/γ − i0+]
. (A15)

The convergence factor δω̄ in the first line in (A14) is relevant
only at small ω̄, where it is positive. Substituting Aββ ′ and Bββ ′

into the integral equation on aβ , we obtain

aβ = −2iπεβ

γ

∫
dβ ′

2π

e−2π (β−β ′ )/γ−2i(β−β ′ )/γ log(γ−1)

sinh[2π (β − β ′)/γ − i0+]
aβ ′ .

(A16)
It is convenient to change the variables to β = γ k/2, aβ =
e−πk−ik log(γ−1)εγ k/2b̃k . The gap equation then takes the form

b̃k = i

2

∫
εk′γ /2

sinh[π (k′ − k) + i0+]
b̃k′ dk′. (A17)

Once we know b̃k , one can compute 
̃(ω) and the gap func-
tion �(ω) using Eqs. (A7) and (A2).

2. Solution of the gap equation

Let’s define the function Bz of a complex argument z as

Bz = i

2

∫
εk′γ /2

sinh[π (k′ − z)]
bk′ dk′. (A18)

For real k, b̃k = Bk−i0+ The function Bz satisfies the periodic-
ity condition

Bz+in = (−1)nBz, (A19)
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where n is integer and has branch cuts at z = x + in, where x
is real. In particular, for n = 0,

Bk+i0+ = (1 − εkγ /2)Bk−i0+ . (A20)

We now take the logarithm of both sides of (A20). For γ >

1, the function εkγ /2 increases monotonically with |k|, and
εkγ /2 = 1 at k = kγ = ±β. Using this, we obtain

log Bk+in+i0+ − log Bk+in−i0+

= log |1 − εkγ /2| + iπχn�(k − β )

+ iπξn�(−k − β ). (A21)

Here χn, ξn = ±1 are two parameters, which reflect the am-
biguity of evaluating log (1 − εkγ /2) for |k| > β due to a
discontinuity of a logarithm across its branch cut. Because of
the periodicity condition (A19), the lhs of (A21) is indepen-
dent to n, hence χn ≡ χ and ξn ≡ ξ are just two numbers, each
is either +1 or −1. Using the Sokhotski-Plemelj theorem, we
can then reexpress (A21) as

log Bk = 1

2i

∫ ∞

−∞
log |1 − εkγ /2| coth [π (k′ − k)]dk′

+ πχ

2

∫ ∞

β

coth [π (k′ − k)]dk′

+ πξ

2

∫ −β

−∞
coth [π (k′ − k)]dk′ + Gk, (A22)

where Gk is an analytic function, which satisfies the periodic-
ity relation

Gk+in = Gk + (2l + 1)inπ, l, n ∈ Z. (A23)

The last condition uniquely specifies Gk = c + (2l + 1)πk,
where c is a constant. The latter is irrelevant as one can easily
verify that it contributes only to an irrelevant overall factor in
�∞(ω̄). Using (A23) and absorbing the divergent piece into
c, we obtain from (A22):

b̃k = Bk−i0+

= exp

{
1

2i

∫ ∞

−∞
log |1 − εkγ /2| coth [π (k′ − k + i0+)]dk′

− χ

2
log

sinh[π (kγ − k + i0+)]

sinh(πkγ )

+ ξ

2
log

sinh[π (kγ + k − i0+)]

sinh(πkγ )

+
(

2l + 1 − χ + ξ

2

)
πk

}
. (A24)

This b̃k depends on three parameters: χ, ξ = ±1 and l ∈ Z.
Below we select χ, ξ , and l based on the two conditions: (1)
the integrand in the rhs of the gap equation (A17) must be con-
vergent; (2) bk must give rise to a gap function �(ω̄), which
vanishes at ω̄ → ∞. The first condition puts the following
constraints:

If χ = ξ = 1, then l = 0.
If χ = ξ = −1, then l = −1.
If χ = −ξ = 1, then l = 0,−1.
If χ = −ξ = −1, there is no solution for l .

We verified that the second condition is satisfied only if
χ = −ξ = 1 and l = 0,−1. The dependence on l in (A23),
and the difference between the two choices for l , is an irrele-
vant overall factor for �(ω̄). We then concludes that the two
conditions uniquely specify b̃k .

Substituting these χ, ξ , and 2l + 1 into (A23) and reex-
pressing the result back in terms of bk = e−πk−ik log(γ−1)b̃k , we
obtain

bk = exp [−ik log(γ − 1)] exp

{
1

2i

∫ ∞

−∞
log |1 − εk′γ /2|

× coth[π (k′ − k + i0+)] dk′

−1

2
log

sinh[π (kγ − k + i0+)]

sinh[πkγ ]

− 1

2
log

sinh[π (kγ + k − i0+)]

sinh[πkγ ]

}
. (A25)

3. Computation of �∞(ω)

We now substitute this bk into Eq. (A7) and compute 
̃(ω)
and the gap function �(ω) using Eq. (A2). It is convenient to
introduce y ≡ |ω̄|γ . In terms of y, we obtain

�∞(y) = y1/2
∫ ∞

−∞
dkbke−ik log y. (A26)

The y1/2 in the prefactor can be eliminated by shifting the
integration contour away from the real axis, to k − i/2. This
is a safe procedure because bk is analytic within the interval
−1 < Im(k) < 0. Shifting the integration, we obtain the final
expression

�∞(y) =
∫ ∞

−∞
dkbke−ik log y, (A27)

where

bk = e−iIk−ik log(γ−1)

√
cosh[π (k − β )] cosh[π (k + β )]

(A28)

and

Ik = 1

2

∫ ∞

−∞
dk′ log |εk′ − 1| tanh π (k′ − k). (A29)

4. Series expansion for �∞(y)

The function Ik can be expressed as an infinite product of
the �-functions (see Paper I for details). For bk , this yields, up
to an overall factor,

bk = �(1 − ik)

�(1 + ik)
�

[
1

2
+ i(k + β )

]
�

[
1

2
+ i(k − β )

]

×
∞∏

m=1

�
[

1
2 + i(k − iβm)

]
�
(
1 + 2m

γ
− ik

)
�
[

1
2 − i(k + iβm)

]
�
(
1 + 2m

γ
+ ik

) . (A30)

Here βm > 0 are the solutions of εiβm = 1 for imaginary ar-
gument. There is an infinite set of such βm, specified by
integer m = 0, 1, 2, . . . and located at 1/2 + 2m/γ < βm <

1/2 + 2(m + 1)/γ [see Fig. 3(b)].
The integral in (A27) can be evaluated by closing the in-

tegration contour along an infinite arc in the complex plane
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FIG. 26. The expansion of the exact �∞(ωm ) in pow-
ers of ωm. The leading term at small ωm is �lead

∞ |ωm|γ /2 =
cos (βγ log |ωm|/ḡ + φ). The subleading terms form series of lo-
cal and nonlocal terms. Local series hold in powers of |ωm|nγ

(n = 1, 2, . . . ), and all terms in these series oscillate, like the lead-
ing term. The nonlocal terms do not oscillate and form series in
|ωm|(n′+βm )γ , where n′ = (0, 1, 2, . . . ) and βm (m = 0, 1, 2, . . . ) are
some γ -dependent numbers. We show |�∞ − �lead

∞ | for γ = 1.01
and γ = 1.99. An analytical analysis shows that in the first case,
β0 > 1, such that the leading correction comes from the local series
and oscillates. For γ = 1.99, β0  0.9 < 1. In this case the leading
correction comes from nonlocal series and does not oscillate. The
numerical evaluation of |�∞ − �lead

∞ | shown here confirms these
results.

of frequency. For y < 1, i.e., ωm < ḡ, the arc must be in
the upper half plane, and for y > 1, i.e., ωm > ḡ, in the
lower half plane. Viewed as a function of complex k, bk has
poles from individual �-functions in the upper frequency half
plane at k = ±β + i(n + 1/2), where n = 0, 1, 2, . . . and at
k = iβm + i(n + 1/2), and in the lower half plane, at k =
−i(n + 1) and k = −i(1 + 2m/γ + n), where n = 0, 1, 2, . . .

and m = 1, 2, . . ..

a. The case y < 1

For y < 1, relevant poles are at k = ±β + i(n + 1/2) and
at k = iβm + i(n + 1/2). This yields series expansion for
�∞(y) in the form

�∞(y) = Re
∞∑

n=0

ei(β log y+φ)C<
n yn+1/2

+
∞∑

n,m=0

D<
n,myn+βm+1/2. (A31)

We cited this result in Eq. (13). Here φ is some particular,
γ -dependent number, and C<

n and D<
n,m are γ -dependent coef-

ficients. The leading term in (A31) at small y is

�∞(y) = y1/2C<
n cos (β log y + φ). (A32)

The first subleading term scales as y3/2 for γ � 1.81, where
β0 > 1, and as y1/2+β0 for γ closer to 2, where β0 < 1. We
verified this explicitly by subtracting the leading term, given
by (A32), from the exact solution and identifying the leading
term in the leftover (see Fig. 26).

In the direct perturbation expansion in y, the series in yn

(the first term in (A31)) come from fermions with internal y′ ∼
y and form the “local” series. The second term in (A31) is a

sum of contributions from fermions with y′ = O(1), which for
y 	 1 can we regarded as “nonlocal”. We can then express
�∞(y) = �∞,L(y) + �∞,NL(y), where

�∞,L(y) = Re
∞∑

n=0

ei(β log y+φ)C<
n yn+1/2, (A33)

�∞,NL(y) =
∞∑

n,m=0

D<
n,myn+βm+1/2. (A34)

The coefficients C<
n in (A33) can be obtained analytically, as

we already found in Papers I and III for γ < 1. The computa-
tions for γ > 1 are similar, and we present only the result. We
obtained

C<
n = C<

0

n∏
m=1

1

Īm
, (A35)

Īm = 1

2

{
�[(m + 1/2)γ + iβγ ]�[(1/2 − m)γ − iβγ ]

�(γ )

− �[γ (1/2 + iβ )]�[γ (1/2 − iβ )]

�(γ )

}

+ �(1 − γ )

2

{
�[(m + 1/2)γ + iβγ ]

�[1 − (1/2 − m)γ + iβγ ]

+ �[(1/2 − m)γ − iβγ ]

�[1 − (m + 1/2)γ − iβγ ]

}

− �(1 − γ )

2

{
�[γ (1/2 + iβ )]

�[1 − γ (1/2 − iβ )]

+ �[γ (1/2 − iβ )]

�[1 − γ (1/2 + iβ )]

}
. (A36)

Using the expansion for �-functions, one can verify that at
large m, Īm ∼ mγ−1, i.e., C<

n ∼ 1/nn(γ−1). Interestingly, the
sum in (A33) then converges for any y and can be obtained
numerically by summing up the proper number of terms in
(A33). We show the results for �∞,L(y) for different γ in
Fig. 27, extending also into the range y > 1. At γ � 2, one
can expand the � functions in (A36) in 2 − γ . For Īm we then
obtain, to first order in 2 − γ ,

Īm = im

β
[1 + iQ(2 − γ )(m + 1)], (A37)

where Q ≈ 0.7. This holds for Q(2 − γ )m < 1. For larger m,
Q(2 − γ )m becomes sin(Q(2 − γ )m). Substituting Īm from
(A37) into (A35), evaluating the product to first order in
(2 − γ ), and substituting the result into (A33), we obtain, to
the same accuracy,

�∞,L(y) ∝ √
ye−2Q(2−γ )βy cos[β(log y − y)

− Q(2 − γ )(yβ )2/2) + φ]. (A38)

The expression becomes particularly simple for γ = 2, where

�∞,L(y) ∝ √
y cos [β(log y − y) + φ]. (A39)
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FIG. 27. (a)–(g) The gap function �∞,L (y) as a function of y = (|ωm|/ḡ)γ for various γ . At y < 1, �∞,L (y) oscillates for all γ with the
period set by log y. As γ increases towards 2, the new oscillating regime emerges if one extends �∞,L (y) to y > 1. In this new regime the
period of oscillations is set by y. (h) The analytical form of �∞,L (y) at γ → 2. (i) The approximately linear dependence of the upper boundary
for new oscillations, y∗, on 2 − γ .

b. The case y > 1

For y > 1, relevant poles are in the lower half plane, at
k = −i(n + 1) and k = −i(n + 1 + 2m/γ ). This yields the
expansion for �∞(y) in powers of 1/y in the form

�∞(y) =
∞∑

n=0

C>
n

(
1

y

)n+1

+
∞∑

n,m=0

D>
n,m

(
1

y

)n+1+2(m+1)/γ

.

(A40)
We cited this result in Eq. (14). The leading term in the series
is 1/y, i.e., at ωm 
 ḡ, �∞(ω) ∝ 1/|ω|γ . The exact �∞(ω)
clearly shows this behavior (see Fig. 4)

Equation (A40) is formally the same as the series expan-
sion result for γ < 1; however, the coefficients C>

n and D>
n,m

depend on γ . We now argue that this dependence is qualita-
tively different for γ < 1 and γ > 1. Namely, we argue below
that for γ > 1, there is a universal piece in �∞(y) at large
y, which does not fit into the power-law series in (A40). We
obtain this piece by analyzing the form of bk in Eq. (A27)
and evaluating the integral over k directly, without closing
the itegation contour in the complex plane of k. While we
did not compute C>

n and D>
n,m explicitly, the presence of a

piece that does not fit into power-law series implies that the

series expansion in (A40) does not converge at γ > 1 (e.g.,
the coefficients C>

n grow fast enough with n and eventually
overcome the smallness of 1/yn) and would yields incorrect
results, starting from some critical n, which depends on y.
In Paper V, where we specifically focus on γ = 2, we show
explicitly that this is the case and determine a critical n.

Below we focus on the universal, non-power-law term in
�∞(y). We show that this term is present at γ > 1, because
the complex phase of the integrand in Eq. (A27) has an ex-
treme at k = k∗ ∼ y1/(γ−1). The universal contribution then
comes from the expansion of the integrand around k = k∗.
There is no such extreme for γ < 1.

To identify the universal term, we consider large y and
analyze the contribution to the integral in (A27) from k
above some kmin = O(1). We label the corresponding term as
�u

∞(y). In explicit form,

�∞;u(y) =
∫ ∞

kmin

dk
cos [Ik + k log y(γ − 1)]

{cosh[π (k − β )] cosh[π (k + β )]}1/2
.

(A41)

For large k, the integral, which determines Ik in Eq. (A29),
is determined by k′ ∼ k. This integral contains εγ k′/2. For
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γ > 1, εγ k′/2 is an increasing function of k′ and its lead-
ing term at large k′ is εγ k′/2  (γ − 1)(Aγ k′)γ−1, where
Aγ = γ [ π

2�(γ ) cos(π (2−γ )/2) ]
1/(γ−1). Substituting this form into

Eq. (A29), we obtain

I (k) + log [y(γ − 1)]  (γ − 1)k ln
ye

Aγ k
. (A42)

Substituting this form into (A41), we find that the argument
of the integrand has a maximum at

k∗ = y
1

γ−1 A−1
γ . (A43)

Expanding I (k) + k log[y(γ − 1)] to quadratic order in u =
k/k∗ − 1, as

I (k) + k log[y(γ − 1)] ≈ (γ − 1)k∗
(
1 − 1

2 u2
)
, (A44)

substituting into (A41), and approximating the denominator
in (A41) by its large k value, we obtain

�u
∞(y) ∼

√
k∗e−πk∗

Re

[
e
−i(γ−1)k∗[1− π2

(γ−1)2
]

×
∫ ∞

−[k∗(γ−1)/2]1/2[1−iπ/(γ−1)]
dũeiũ2

]
, (A45)

where ũ = u[(γ − 1)k∗/2]1/2. The universal part of this ex-
pression is obtained by taking the lower limit to −∞, in
which case

∫∞
−∞ eiũ2 = √

πeiπ/4. Substituting into (A45) and
expressing k∗ in terms of |ωm|/ḡ, we obtain for the universal
term

�u
∞(ωm) ∼

( |ωm|
ḡ

) γ

2(γ−1)

exp

[
− π

Aγ

( |ωm|
ḡ

) γ

γ−1

]

× cos

{
γ − 1

Aγ

[
1− π2

(γ − 1)2

]( |ωm|
ḡ

) γ

γ−1

− π

4

}
.

(A46)

Working along the same lines, but extending the analysis to
include the subleading terms at large k, we obtain �u

∞(ωm)
with a more accurate argument of the cos:

�u
∞(ωm) ∼

( |ωm|
ḡ

) γ

2(γ−1)

exp

[
− π

Aγ

( |ωm|
ḡ

) γ

γ−1

]

× cos �m(ωm/ḡ), (A47)

where

�m(x) = γ − 1

Aγ

[
1−1

2

(
π

γ − 1

)2]
x

γ

γ−1 + π2

2(γ − 1)Aγ

x
γ (2−γ )

γ−1

+ x
γ (2−γ )

γ−1 − 1

2 − γ
A1−γ

γ − π

4
. (A48)

At γ → 2, �(x) acquires a simple form �(x) = [x2(1 −
π2/2) + log x2]/π + π/4.

5. Analytical continuation

The gap function given by (A27) can be analytically con-
tinued away from the Matsubara axis by a simple rotation of
the argument: iωm → z = |z|eiψ . Under this transformation,
log y in (A27) transforms into log yz − iθ , where yz = (|z|/ḡ)γ

and θ = (π/2 − ψ )γ . The gap function transforms to

�∞(z) =
∫ ∞

−∞
dk

e−θke−iIk−ik log yz

√
cosh[π (k − β )] cosh[π (k + β )]

.

(A49)

Applying this transformation, we extend (A48) to

�u
∞(z) ∼

( |ωm|
ḡ

) γ

2(γ−1)

[Q(θ, |z|) + Q(−θ, |z|)], (A50)

where

Q(θ, |z|) = exp

[
−π − θ

Aγ

( |z|
ḡ

) γ

γ−1

]
ei�(|z|/ḡ,θ ) (A51)

and

�(x, θ ) = γ − 1

Aγ

[
1 − 1

2

(
π − θ

γ − 1

)2]
x

γ

γ−1

+ (π − θ )2

2(γ − 1)Aγ

x
γ (2−γ )

γ−1 + x
γ (2−γ )

γ−1 − 1

2 − γ
A1−γ

γ . (A52)

The largest value of θ is on the real axis, where ψ = 0 and θ =
πγ /2. Here Q(θ, |z|) 
 Q(−θ, |z|). Keeping only Q(θ, |z|),
we obtain on the real axis,

�u
∞(ω) ∼

( |ω|
ḡ

) γ

2(γ−1)

exp

[
−π (2 − γ )

2Aγ

( |ω|
ḡ

) γ

γ−1

]
ei�r (|ω|/ḡ),

(A53)

where

�r (x) = γ − 1

Aγ

[
1 − π2(2 − γ )2

8(γ − 1)2

]
x

γ

γ−1

+ π2(2 − γ )2

8(γ − 1)Aγ

x
γ (2−γ )

γ−1 + x
γ (2−γ )

γ−1 − 1

2 − γ
A1−γ

γ . (A54)

Comparing this oscillating �u
∞(ω) with the regular term on

the real axis eiπγ /2(ḡ/|ω|)γ , we see that for γ � 2, the oscil-
lating term is larger in a range ḡ < |ω| < ωcr , where ωcr ∼
ḡ/(2 − γ )1/2 has been defined in (49).

At γ → 2, ωcr diverges and �u
∞(ω) from (A53) remains

the dominant term in �∞(ω) at all ω > ḡ. In this limit,
�u

∞(ω) = �∞(ω) simplifies to

�∞(ω) ∼ |ω|
ḡ

exp

{
i

π

[(
ω

ḡ

)2

+ log

(
ω

ḡ

)2]}
. (A55)
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