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Distortional weak-coupling instability of Bogoliubov Fermi surfaces
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Centrosymmetric multiband superconductors which break time-reversal symmetry generically have two-
dimensional nodes, i.e., Fermi surfaces of Bogoliubov quasiparticles. We show that the coupling of the electrons
to the lattice always leads to a weak-coupling instability of such a state toward spontaneous breaking of inversion
symmetry at low temperatures. This instability is driven by a Cooper logarithm in the internal energy but the order
parameter is not superconducting but distortional. We present a comprehensive symmetry analysis and introduce
a measure that allows us to compare the strengths of competing distortional instabilities. Moreover, we discuss
the instability using an effective single-band model. This framework reveals a duality mapping of the effective
model which maps the distortional order parameter onto a superconducting one, providing a natural explanation
for the Cooper logarithm and the weak-coupling nature of the instability. Finally, we consider the possibility of
a pair-density wave state when inversion symmetry is broken. We find that it can indeed exist but does not affect
the instability itself.
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I. INTRODUCTION

It has recently been realized that centrosymmetric
multiband superconductors breaking time-reversal symmetry
generically possess Fermi surfaces of Bogoliubov quasipar-
ticles [1,2]. These Bogoliubov Fermi surfaces (BFSs) are
topologically protected by a Z2 invariant [3,4], which can
be expressed in terms of the Pfaffian of the Bogoliubov–de
Gennes Hamiltonian [1,2]. Multiband pairing which breaks
time-reversal symmetry has been suggested for various cen-
trosymmetric materials of high current interest, for example
iron-based superconductors [5–11] and Sr2RuO4 [12–14]. A
particularly interesting candidate is U1−xThxBe13 [15], which
shows two transitions in a certain doping range [16,17], where
time-reversal symmetry is broken in the low-temperature
phase [18]. Moreover, the observation that the specific heat
and the thermal conductivity are linear in temperature under
pressure [19] hint at the existence of BFSs [20]. These results
suggest unconventional superconductivity but there is no con-
sensus as to the pairing state in the two phases [15,21,22].

The existence of the Z2 invariant relies on the product of
charge conjugation and inversion symmetries (CP) and it is
thus natural to ask how stable this state and thus the BFSs are.
In particular, a real crystal might deform in such a way that in-
version symmetry and thus CP are broken, which presumably
would gap out the BFSs and push spectral weight away from
the Fermi energy. This process should reduce the electronic in-
ternal energy at the price of increasing the elastic energy. The
question arises whether spontaneous breaking of CP symme-
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try by distortion is possible and, if so, under what conditions.
Recently, Oh and Moon [23] as well as Tamura et al. [24]
have shown that there is a weak-coupling instability for an
attractive quasiparticle interaction in an inversion-symmetry-
breaking channel, the origin of which is not discussed. The
authors’ models do not contain lattice distortions, which are
the main players here. Very recently, Link and Herbut [25]
have investigated the complementary case of time-reversal-
symmetry-breaking superconductivity emerging in materials
that already break inversion symmetry in the normal state.
Their perturbative analysis suggests that such systems often
have BFSs for energetic instead of topological reasons.

In this paper, we show that the BFSs in centrosymmetric
multiband superconductors are generically unstable toward
distortions that break inversion symmetry. To be precise,
if such a system possesses odd-parity zone-center phonon
modes, then there is a distortional weak-coupling instability
at zero temperature. This instability results from a Cooper
logarithm in the internal energy, i.e., a term proportional to
�2 ln �, where � is the suitably defined magnitude of the
distortional order parameter. Notably, the Cooper logarithm
here appears for a distortional instability, whereas it is usually
characteristic for superconducting instabilities. Its origin in
both cases is that a gap opens at the Fermi energy. In the
present case, this effect is due to the loss of the Z2 topo-
logical invariant, which protects the BFSs in centrosymmetric
systems.

The breaking of inversion symmetry also leads to odd-
in-momentum shifts of the quasiparticle bands. We find that
remaining symmetries can prevent the gapping or the shifts
for certain distortions and certain momenta. If the band shift
is larger than the distortional gap the distorted system still
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possesses BFSs even though there is no Z2 invariant. It has
been known before that superconductors that break both time-
reversal and inversion symmetry can have BFSs [25–30].

In addition, we find that the odd-in-momentum band shifts
are irrelevant for the instability to leading order since they
do not affect the Cooper logarithm. We derive a relatively
simple measure involving the distortional gap in the quasi-
particle bands and the normal-state Fermi velocity that allows
to assess and compare the strengths of competing distortional
instabilities.

In this paper, we make general statements and illustrate
them for a particular model system, which is introduced in
Sec. II. In the following sections, a comprehensive symmetry
analysis of the distortional instability is presented, based on
the magnetic point group, which is advantageous in that it
treats generalized rotations and time reversal on equal footing
and reveals symmetries of the superconducting state that could
otherwise be overlooked. Specifically, uniform distortions are
discussed in Sec. III and their coupling to the electronic de-
grees of freedom is analyzed in Sec. IV. We then consider
the effects of the distortion on the quasiparticle dispersion
in Sec. V and the instability of the BFSs in Sec. VI. Here,
we also introduce a method to assess competing distortional
instabilities and illustrate it with numerical results.

In Sec. VII, distortions are analyzed in the pseudospin
(single-band) picture [1,2]. The pseudospin picture simplifies
the symmetry analysis and also permits a duality mapping
under which the distortional instability becomes a supercon-
ducting instability of the dual model. Finally, the breaking of
both time-reversal and inversion symmetries begs the question
whether the homogeneous superconducting state is unstable
toward a modulated superconducting state, i.e., a pair-density
wave (PDW) [31]. In Sec. VIII, we employ Ginzburg-Landau
theory to show that a PDW instability can indeed emerge for
some but not all distortion modes. If such an instability is
present the wavelength of the PDW diverges at the distortional
instability so that the PDW is irrelevant for the weak-coupling
instability. Finally, the work is summarized and conclusions
are drawn in Sec. IX.

II. MODEL SYSTEM

For illustration, we use the caesium chloride structure,
which arguably is the simplest one to exhibit the relevant
physics and provides a good approximation for the structure
of (doped) UBe13. In UBe13, the uranium atoms and one in
13 beryllium atoms (Be2) form a caesium chloride structure,
while the remaining beryllium atoms (Be1) sit on the faces
of the cubes formed by Be2, forming cubic boxes around the
uranium [32]. Both the caesium chloride structure and UBe13

have the crystallographic point group Oh. The magnetic point
group of the normal state is Oh ⊗ {1, T }, where T denotes
time reversal. Since {1, T } appears as a factor group, the mag-
netic point group is “gray” [33,34]. The Hermann-Mauguin
notation is m3̄m1′, where 1′ stands for time reversal combined
with the spatial identity operation [33]. The group has two
irreps �+ and �− for any irrep � of Oh, where the subscript ±
indicates the sign under time reversal.

To be specific, we consider electrons close to a �8 band-
touching point described by an effective spin of length J =

TABLE I. Basis matrices of the four-dimensional Hilbert space
of an effective spin of length J = 3/2. The matrices have been
normalized in such a way that Tr AB = 4δAB. The last two columns
show the corresponding irreps for the magnetic point groups m3̄m1′

and 4/mm′m′, respectively. The matrices belonging to g+ irreps of
m3̄m1′ can appear in the Hamiltonian for the normal state with-
out distortion and are denoted by h0, . . . , h5. The table does not
specify the order and sign of the components of the Eg doublets of
4/mm′m′. Using (xz, yz) as the template, the Eg doublets are, sup-
pressing common factors, (Jx, Jy ), (JzJx + JxJz, JyJz + JzJy ), (J3

x , J3
y ),

and (Jx (J2
y − J2

z ) + (J2
y − J2

z )Jx, −Jy(J2
z − J2

x ) − (J2
z − J2

x )Jy ).

Irrep

Basis matrix m3̄m1′ 4/mm′m′

1 ≡ h0 A1g+ A1g

2√
5

Jx T1g− Eg

2√
5

Jy

2√
5

Jz A1g

1√
3

(JyJz + JzJy ) ≡ h1 T2g+ Eg

1√
3

(JzJx + JxJz ) ≡ h2

1√
3

(JxJy + JyJx ) ≡ h3 B2g

1√
3

(J2
x − J2

y ) ≡ h4 Eg+ B1g

1

3
(2J2

z − J2
x − J2

y ) ≡ h5 A1g

2√
3

(JxJyJz + JzJyJx ) A2g− B2g

8√
365

J3
x T1g− Eg

8√
365

J3
y

8√
365

J3
z A1g

1√
3

[Jx (J2
y − J2

z ) + (J2
y − J2

z )Jx] T2g− Eg

1√
3

[Jy(J2
z − J2

x ) + (J2
z − J2

x )Jy]

1√
3

[Jz(J2
x − J2

y ) + (J2
x − J2

y )Jz] B1g

3/2 [1,2,23,24,27,35–37]. The Hilbert space of the local de-
grees of freedom is four dimensional. A basis of Hermitian
matrices spanning this space can be constructed from the stan-
dard spin-3/2 matrices. These basis matrices are irreducible
tensor operators of irreps of the magnetic point group and are
listed in Table I, together with their irreps. The normal-state
Hamiltonian can be written as

HN (k) =
5∑

n=0

cn(k)hn. (1)

The momentum-dependent functions cn(k) must transform
like the corresponding matrices hn so that the full Hamiltonian
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FIG. 1. Normal-state Fermi surface (semitransparent gray) and
BFSs (yellow) for the specific model with superconducting chiral
T2g order parameter � (1, i, 0). The parameters of the model are
specified in Sec. VI C.

is invariant under all symmetry transformations (i.e., belongs
to the trivial irrep A1g+). The specific functions cn(k) are given
in Sec. VI C. Only the specific six basis matrices belonging
to g+ irreps can appear because g− irreps do not have mo-
mentum basis functions. Given the normal-state Hamiltonian
HN (k), the Bogoliubov–de Gennes (BdG) Hamiltonian for the
superconducting state reads as

H(k) =
(

HN (k) �(k)
�†(k) −HT

N (−k)

)
, (2)

where •T denotes the transpose.
We are interested in superconducting states that break

at least time-reversal symmetry and may also break spatial
point-group symmetries. We specifically consider the chiral
T2g pairing state with the order parameter �(1, i, 0) studied
in Refs. [1,2]. This state has s-wave momentum dependence
(local pairing) but nontrivial orbital structure. Other pairing
states are briefly commented upon in Sec. IX. The BFS of this
model is depicted in Fig. 1. Explicit evaluation of the trans-
formations of the BdG Hamiltonian shows that the magnetic
point group is reduced to D4h(C4h) = 4/mm′m′ = No. 15.6.58
[33], where the notation D4h(C4h) means that the group con-
tains the elements of C4h and in addition the elements of
D4h \ C4h multiplied by time reversal. Specifically, the twofold
rotations with rotation vector in the xy plane and the mirror
reflections with normal vector in the xy plane are multiplied
by time reversal. The irreps are formally the same as for D4h

since the groups are isomorphic [38].
Symmetries of the BdG Hamiltonian can be treated in

essentially the same way as symmetries of the normal-state
Hamiltonian, except that the phase factor of unitary matrices,
which is arbitrary for the normal state, has to be fixed. This
reflects that superconductivity breaks a global U(1) invariance
down to Z2. A general discussion is given in Appendix A.

It will prove useful to classify the basis matrices according
to irreps of the magnetic point group of the superconducting
state. The results are also included in Table I. Care must
be taken for odd powers of spin since some of the group
elements involve time reversal. For example, Jz is odd under

TABLE II. Reduction of product representations relevant for the
electronic Hamiltonian Hdist(k) due to distortions of a caesium-
chloride system in the normal state. u+ irreps do not have momentum
basis functions and thus do not lead to allowed terms in Hdist(k).
These irreps are set in parentheses.

�dist �h Product representation

T1u+ A1g+ (T1u+)
A2g− T2u−
Eg+ (T1u+ ⊕ T2u+)
T1g− A1u− ⊕ Eu− ⊕ T1u− ⊕ T2u−
T2g+ (A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+)
T2g− A2u− ⊕ Eu− ⊕ T1u− ⊕ T2u−

twofold rotation about the x axis and belongs to the irrep A2g

of D4h. However, D4h(C4h) = 4/mm′m′ contains this rotation
multiplied by time reversal. Jz is even under this combined
transformation and belongs to the irrep A1g of D4h(C4h).

III. DISTORTION MODES

The first step of the analysis is the identification of all uni-
form distortion modes that break inversion symmetry. These
are the modes that transform according to odd-parity (u) irreps
of the point group. The uniform distortion modes are the
optical phonons at k → 0. The result is a list of all inversion-
symmetry-breaking deformation modes with their associated
irreps.

Not all structures with a nontrivial basis have zone-center
phonons belonging to u irreps. For example, the diamond
structure has a two-atom basis and thus three optical-phonon
branches. These transform according to the irrep T2g of the
point group Oh [39] and the irrep T2g+ of the magnetic point
group. Since T2g+ is three dimensional there are no other uni-
form distortion modes, in particular no odd-parity ones. This
means that the inversion symmetry of the diamond structure
cannot be broken by a uniform distortion. Of course, nonuni-
form distortions, which also break translation symmetry, are
possible. If they are commensurate they are easily described
in the same framework by considering a superlattice in which
the distortion is uniform. We return to this point in Sec. IX.

The caesium chloride structure also has a two-atom basis
and thus three optical-phonon branches. However, the zone-
center optical phonons here transform according to T1u+ [40],

TABLE III. Reduction of product representations relevant for the
electronic Hamiltonian Hdist(k) due to distortions in the state with
T2g, �(1, i, 0) superconductivity.

�dist �h Product representation

Eu A1g Eu

B1g Eu

B2g Eu

Eg A1u ⊕ A2u ⊕ B1u ⊕ B2u

A2u A1g A2u

B1g B2u

B2g B1u

Eg Eu
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i.e., like a spatial vector, which is plausible since the distor-
tions generate an electric dipole moment of each unit cell.
We denote the displacement vector by p = (px, py, pz ), which
serves as the distortional order parameter. The caesium chlo-
ride structure thus has three degenerate distortion modes that
break inversion symmetry [41]. UBe13 inherits these modes
since the uranium and Be2 sublattices form a caesium chloride
structure but of course has many additional ones.

So far, we have not considered the symmetry reduction due
to superconductivity. Using a table of basis functions for D4h

and the fact that the displacement vector is even under time
reversal, we find that the three degenerate distortion modes of
the caesium chloride are split into a doublet (px, py), which
transforms according to Eu, and a singlet pz, which belongs
to A2u.

IV. COUPLING TO THE ELECTRONIC SYSTEM

The second step is to set up the symmetry-allowed
terms Hdist(k) in the electronic Hamiltonian for every
odd-paritydistortion mode. Since we are looking for a weak-
coupling instability we may restrict ourselves to terms linear
in the distortions. We expand Hdist(k) in the basis matrices
in Table I. Standard methods of group theory are used to
find the allowed terms: the combination of distortional order
parameters, basis matrices, and momentum-dependent struc-
ture factors must be invariant under the magnetic point group,
i.e., belong to the trivial irrep. Note that we must include the
distortional order parameter in the transformations to find its
coupling to the electronic degrees of freedom. If the distortion
is kept fixed it breaks lattice symmetries and thereby reduces
the point group.

For each distortion mode or multiplet of modes belonging
to some irrep �dist and each basis matrix or multiplet of
matrices belonging to some irrep �h, we are searching for
possible momentum basis functions so that their combination
has the full symmetry of the point group. This is most eas-
ily done by reducing the product representation �dist ⊗ �h.
Suitable momentum basis functions must belong to one of
the irreps appearing in the reduction. In our example, we
have distortions belonging to T1u+ of m3̄m1′ in the normal
state and to Eu and A2u of 4/mm′m′ in the superconducting
state. All basis matrices belong to g irreps so that the product
representation is parity odd. Since momentum is also odd
under parity the structure factor must be odd in momentum,
i.e., only momentum basis functions belonging to u irreps
can occur. Since momentum is also odd under time reversal
only u− irreps of m3̄m1′ occur. In more detail, we obtain

TABLE IV. Lowest-order momentum basis functions of u irreps
of the magnetic point group 4/mm′m′.

� Basis functions

A1u kz

A2u kxkykz(k2
x − k2

y )
B1u kz(k2

x − k2
y )

B2u kxkykz

Eu (ky, −kx )

TABLE V. Combinations of (v1, v2) transforming according to
Eu and (w1, w2) transforming according to Eg that belong to the four
one-dimensional u irreps of 4/mm′m′. The third column shows the
corresponding expressions for (ky, −kx ) and (Jx, Jy ), while the fourth
shows them for (px, py ) and (Jx, Jy ).

A1u v1w2 − v2w1 kyJy + kxJx pxJy − pyJx

A2u v1w1 + v2w2 kyJx − kxJy pxJx + pyJy

B1u v1w2 + v2w1 kyJy − kxJx pxJy + pyJx

B2u v1w1 − v2w2 kyJx + kxJy pxJx − pyJy

the reductions given in Table II for the normal state and in
Table III for the superconducting state.

It is useful to obtain the lowest-order polynomial mo-
mentum basis functions for the u irreps of 4/mm′m′. These
are distinct from the basis functions for D4h = 4/mmm since
momentum transforms differently under the transformations
involving time reversal. For the two-dimensional irrep Eu,
we take (x, y) as the template defining the first and sec-
ond components. The resulting basis functions are shown in
Table IV.

Tables I–III show that some basis matrices cannot occur
in Hdist(k) in the normal state but become allowed in the
superconducting state. The reason for this is not the presence
of superconductivity but the breaking of time-reversal sym-
metry. As an example, consider the term (kx py − ky px )1. It is
allowed in the superconducting state since both (px, py) and
(ky,−kx ) are Eu doublets. However, it cannot appear in the
normal state since it is odd under time reversal. Since such
terms are induced by the time-reversal-symmetry-breaking
superconductivity their prefactors must vanish if the pairing
amplitude � vanishes. Invariance under global phase rota-
tions of � as well as perturbative arguments imply that the
prefactors will be proportional to |�|2 to leading order [1,2].
If the superconducting energy scale |�| is small compared
to normal-state energy scales, then distortional terms of this
type are expected to be small compared to terms that are also
allowed in the normal state.

For illustration, we construct the complete distortion terms
in the Hamiltonian using Tables I–III. This is straightforward
for one-dimensional irreps but care is needed for the products
of the two-dimensional irreps Eu and Eg. These occur
because (px, py) as well as (ky,−kx ) are Eu doublets, while
certain pairs of basis matrices, for example (Jx, Jy), are Eg

doublets. We take (x, y) and (xz, yz) as templates for the
ordering of basis functions of Eu and Eg, respectively. The
correct combinations belonging to the four one-dimensional
irreps in Eu ⊗ Eg = A1u ⊕ A2u ⊕ B1u ⊕ B2u can be inferred
form these templates. They are given in Table V. The

TABLE VI. Combinations of (v1, v2) and (w1, w2) transforming
according to Eu that belong to the four one-dimensional g irreps of
4/mm′m′. The last column shows the corresponding expressions for
(ky, −kx ) and (px, py ).

A1g v1w1 + v2w2 ky px − kx py

A2g v1w2 − v2w1 kx px + ky py

B1g v1w1 − v2w2 ky px + kx py

B2g v1w2 + v2w1 −kx px + ky py
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corresponding combinations belonging to the one-
dimensional irreps in Eu ⊗ Eu = A1g ⊕ A2g ⊕ B1g ⊕ B2g

are given in Table VI. The resulting contributions to the
Hamiltonian for distortions pz read as

Hpz (k) =
[

d1
A2u

(k)Jz + d2
A2u

(k)J3
z + d1

B2u
(k)
[
Jz
(
J2

x − J2
y

)+ (
J2

x − J2
y

)
Jz
]

+ d1
B1u

(k)(JxJyJz + JzJyJx ) + �d 1
Eu

(k) ·
(

Jx
Jy

)
+ �d 2

Eu
(k) ·

(
J3

x
J3

y

)

+ �d 3
Eu

(k) ·
(

Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx

−Jy
(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy

)
+ |�|2e1

A2u
(k)1 + |�|2e2

A2u
(k)
(
2J2

z − J2
x − J2

y

)+ |�|2e1
B2u

(k)
(
J2

x − J2
y

)
+ |�|2e1

B1u
(k)(JxJy + JyJx ) + |�|2�e 1

Eu
(k) ·

(
JzJx + JxJz

JyJz + JzJy

)]
pz, (3)

while for distortions (px, py) we obtain

Hpx,py (k) =
[

�d 4
Eu

(k)Jz + �d 5
Eu

(k)J3
z + �d 6

Eu
(k)
(

1 0
0 −1

)[
Jz
(
J2

x − J2
y

)+ (
J2

x − J2
y

)
Jz
]

+ �d 7
Eu

(k)
(

0 1
1 0

)
(JxJyJz + JzJyJx ) + d1

A1u
(k)(Jy,−Jx ) + d2

A1u
(k)
(
J3

y ,−J3
x

)
+ d3

A1u
(k)
[− Jy

(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy,−Jx

(
J2

y − J2
z

)− (
J2

y − J2
z

)
Jx
]+ d3

A2u
(k)(Jx, Jy )

+ d4
A2u

(k)
(
J3

x , J3
y

)+ d5
A2u

(k)
[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx,−Jy

(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy
]

+ d2
B1u

(k)(Jy, Jx ) + d3
B1u

(k)
(
J3

y , J3
x

)
+ d4

B1u
(k)
[− Jy

(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy, Jx

(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx
]+ d2

B2u
(k)(Jx,−Jy )

+ d3
B2u

(k)
(
J3

x ,−J3
y

)+ d4
B2u

(k)
[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx, Jy

(
J2

z − J2
x

)+ (
J2

z − J2
x

)
Jy
]

+ |�|2�e 2
Eu

(k)1 + |�|2�e 3
Eu

(k)
(
2J2

z − J2
x − J2

y

)+ |�|2�e 4
Eu

(k)
(

1 0
0 −1

)(
J2

x − J2
y

)
+ |�|2�e 5

Eu
(k)

(
0 1
1 0

)
(JxJy + JyJx ) + |�|2e1

A1u
(k)(JyJz + JzJy,−JzJx − JxJz )

+ |�|2e3
A2u

(k)(JzJx + JxJz, JyJz + JzJy) + |�|2e2
B1u

(k)(JyJz + JzJy, JzJx + JxJz )

+ |�|2e2
B2u

(k)(JzJx + JxJz,−JyJz − JzJy)

]
·
(

px

py

)
, (4)

where the functions dl
� (k), �d l

Eu
(k), el

� (k), and �e l
Eu

(k) trans-
form as momentum basis functions of the indicated irreps
of 4/mm′m′. Different functions belonging to the same irrep
are enumerated by the superscript l , and the notation d and
e distinguishes between terms that are present in both the
normal and superconducting and only in the superconducting
state, respectively. For terms that only exist in the supercon-
ducting state, the leading dependence on the pairing amplitude
� is made explicit. Vector arrows, two-component row and
column vectors, 2 × 2 matrices, and the dot product refer to
two-dimensional irreps.

In this way, all symmetry-allowed terms in Hdist(k) associ-
ated with all odd-parity distortion modes can be constructed
for any system. The corresponding terms in the BdG Hamil-
tonian are then obtained as

Hdist(k) =
(

Hdist(k) 0
0 −HT

dist(−k)

)
. (5)

V. EFFECTS ON THE QUASIPARTICLE DISPERSION

The distortional terms Hdist (k) in the BdG Hamiltonian
break inversion symmetry if the distortion is held fixed and
are therefore expected to have two distinct effects: odd-in-
momentum shifts of the quasiparticle bands and splitting
of band crossings. They correspond to the Pomeranchuk
and Cooper instabilities, respectively, of BFSs discussed by
Tamura et al. [24] for a purely electronic model. The cases
of pure shifts and pure splittings as well as their combination
are sketched in Fig. 2. We now discuss these effects in some
detail.

On the one hand, the distorted superconducting system has
neither inversion symmetry P nor time-reversal symmetry T .
The only surviving global symmetry is charge conjugation
C, which guarantees that for any quasiparticle state of en-
ergy E at momentum k, there is another quasiparticle state
of energy −E at −k. However, there is no symmetry that
requires the presence of a state of energy E at −k. This means
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(a) (b) (c)

FIG. 2. Sketches of the consequences of distortions: (a) shifts of quasiparticle bands, (b) splitting of band crossings, and (c) combination
of both. The light blue dashed lines denote the quasiparticle bands of the undistorted superconductor. Their crossings with E = 0 form the
BFSs of the centrosymmetric superconductor. Note that the distorted system retains BFSs when the distortional gap is smaller than the band
shift.

that the quasiparticle band structure is generally not even in
momentum. Since it approaches an even limit for vanishing
distortions, there must be corrections that are odd in k. In fact,
for our model, all occurring momentum basis functions are
odd so that Hdist (k) is odd. However, this is only true because
the local J = 3/2 degree of freedom is even under inversion
so that P acts trivially on the Hilbert space of the local degrees
of freedom and all basis matrices are even. If P is not trivial,
there are also odd basis matrices, which require even functions
of momentum. Hence, in general Hdist (k) need not be odd in
k but it always contains terms that lead to odd corrections to
the quasiparticle energies and can be interpreted as a tilting of
the quasiparticle bands. In the following, we only consider the
case that Hdist (k) is completely odd.

On the other hand, the quasiparticle-band crossings at zero
energy are protected by CP symmetry [1–4]. When this sym-
metry is broken the crossings generally gap out. If there were
only the gapping at zero energy the situation would be very
similar to the BCS theory of superconductivity. However, the
tilting of the band structure can shift the gapped out crossings
away from zero energy and can in fact lead to residual Fermi
surfaces [23]. A similar competition between the energy shifts
and gaps occurs for materials that already break inversion
symmetry in the normal state [25].

Remaining symmetries of the distorted superconductor can
prevent the tilting or the splitting on certain high-symmetry
elements in the Brillouin zone. The detailed analysis for our
model is relegated to Appendix B. In short, we find the fol-
lowing types of symmetry constraints: (a) The distortional
contribution to the electronic Hamiltonian can vanish for cer-
tain distortions p and momenta k. This situation can lead to
unexpectedly high symmetry, also in combination with the
following cases. (b) Spatial twofold symmetry operations, i.e.,
mirror planes and twofold rotation axes, act like the inversion
symmetry on the symmetry element normal to the mirror
plane or rotation axis. This protects the symmetry of the en-
ergy spectrum and the existence of the Z2 invariant and thus of
band crossings. (c) For certain pairing states, there is no pair-
ing for some bands within the mirror plane or on the rotation
axis, which protects crossings of these bands. (d) Magnetic
twofold symmetry operations, i.e., mirror planes and twofold
rotation axes multiplied by time reversal, act like time-reversal
symmetry within the mirror plane or on the rotation axis. This
protects the symmetry of the energy spectrum but not band
crossings.

We summarize the constraints for our model in Table VII.
Evidently, the quasiparticle bands cannot be completely
gapped out for the T2g, �(1, i, 0) pairing state for any local
distortion. As an example for how the remaining nodes may
look like, we refer to Fig. 8 in Ref. [27]: Here, band crossings
at zero energy are also protected in the kxky plane and on
the kz axis, leading to line and point nodes, respectively. Of
course, in Ref. [27] inversion symmetry is already broken in
the normal state and does not break spontaneously.

VI. INSTABILITY OF BOGOLIUBOV FERMI SURFACES

To assess a possible distortional instability, we have to
minimize the free energy as a function of all distortional order
parameters � = (�1,�2, . . .). We here restrict ourselves to
the zero-temperature limit, in which the free energy becomes
the internal energy. We also assume that the system remains in
the harmonic regime, which is reasonable for a weak-coupling
instability. The internal energy has the form

U = Uel(�1, . . . ,�) + 1

2

∑
ν

Kν�
2
ν, (6)

where the first term is the energy of the occupied electronic
states, which depends on the distortions and also on the su-
perconducting pairing amplitude �, and the second is the
harmonic elastic energy. The elastic constants Kν for distor-
tions �ν belonging to the same multidimensional irrep must
be identical. If such a degeneracy applies only to the normal
state but is lifted in the superconducting state the difference

TABLE VII. Symmetry constraints on the quasiparticle band
structure for the T2g, �(1, i, 0) pairing state on the caesium-chloride
structure.

Symmetric Protected
Distortion p Momentum k spectrum crossings

any (0, 0, kz ) yes yes
(px, py, 0) (kx, ky, 0) no some bands
(px, 0, pz ) (kx, 0, kz ) yes no
(0, py, pz ) (0, ky, kz ) yes no
(px, px, pz ) (kx, kx, kz ) yes no
(px, −px, pz ) (kx, −kx, kz ) yes no
(0, 0, pz ) (kx, ky, 0) yes yes
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between the Kν is expected to be of order |�|2 and thus small
if the superconducting energy scale is small. All Kν must be
positive since the system in the normal state is undistorted.

In our example, we have three distortional order parameters
p = (px, py, pz ) and

U = Uel(p,�) + 1
2 KEu

(
p2

x + p2
y

)+ 1
2 KA2u p2

z . (7)

The two elastic constants are expected to differ little since they
are equal for the cubic normal state.

For the characterization of a possible instability, the depen-
dence of Uel on the distortions �ν for small �ν is crucial. We
derive the electronic energy Uel within BCS theory, starting
from the BCS Hamiltonian

ĤBCS = 1

2

∑
k

�
†
kH(k)�k + 1

2

∑
k

nb∑
n=1

ξn(k)

+ N

2Vpair

∑
m

|�m|2, (8)

where H(k) is the BdG Hamiltonian of Eq. (2),

�k =
(

ck

c†
−k

)
(9)

is a Nambu spinor operator (for our model, ck is itself a
four-component spinor), ξn(k), n = 1, . . . , nb, are the normal-
state eigenenergies relative to the chemical potential, and nb

is the dimension of the Hilbert space of the local degrees of
freedom, nb = 4 for our example. The second term in Eq. (8)
results from anticommuting the fermionic operators to obtain
the Nambu form. The last term stems from mean-field decou-
pling and expresses the fact that the superconducting order
parameter has multiple components �m [1,2]. This term is not
relevant for what follows and is omitted from now on.

In the next step, H(k) is diagonalized by a Bogoliubov
transformation with the new Nambu spinor

�k =
(

γk

γ
†
−k

)
. (10)

The result is the BCS Hamiltonian

ĤBCS = 1

2

∑
k

�
†
k

(
E (k) 0

0 −E (−k)

)
�k + 1

2

∑
k,n

ξn(k)

=
∑
k,n

En(k) γ
†
knγkn − 1

2

∑
k,n

En(k) + 1

2

∑
k,n

ξn(k),

(11)

where

E (k) = diag(E1(k), E2(k), . . . , Enb (k)). (12)

The choice of the energies En(k) is not unique since one
can interchange any pair En(k) and −En(−k) by a unitary
transformation. The results of course do not depend on the
choice. If the spectrum at fixed k is symmetric it is possible to
choose all En(k) non-negative. However, generally this is not
the case.

The electronic internal energy is the ground-state expecta-
tion value of ĤBCS:

Uel =
∑
k,n

En(k)〈γ †
knγkn〉0 − 1

2

∑
k,n

En(k) + 1

2

∑
k,n

ξn(k).

(13)

For En(k) > 0, the BCS ground state |BCS〉 satisfies
γkn|BCS〉 = 0 so that the ground-state expectation value
〈γ †

knγkn〉0 vanishes. On the other hand, for En(k) < 0, the
expectation value equals unity. We thus obtain [42]

Uel =
∑
k,n

En(k)
(−En(k)) − 1

2

∑
k,n

En(k) + 1

2

∑
k,n

ξn(k)

= −1

2

∑
k

nb∑
n=1

|En(k)| + 1

2

∑
k

nb∑
n=1

ξn(k). (14)

Note that the first term in the second line contains the sum of
the absolute values of one half of the eigenvalues of the BdG
Hamiltonian H(k). For what follows, it is useful to extend the
range of n in such a way that

Enb+n(k) = −En(−k). (15)

Then, En(k) for n = 1, . . . , 2nb are the eigenvalues of H(k).
We can write

Uel = −1

4

∑
k

2nb∑
n=1

|En(k)| + 1

2

∑
k

nb∑
n=1

ξn(k). (16)

An inversion-symmetry-breaking distortion leads to shifts
of the normal-state and superconducting-state bands that are
odd in momentum k. There are also even-in-momentum shifts
but they first occur at second order, O(�2), in the distortion
and are irrelevant for our analysis and omitted from now on.
For the normal-state bands ξn(k), the odd-in-momentum shifts
clearly drop out of Eq. (16) and can be ignored [43].

A. Distortional instability

The effects of the odd-in-momentum band shifts and the
splitting of crossings on the electronic internal energy Uel can
now be calculated. We relegate the derivation to Appendix C,
where we consider the cases of pure shifts, pure splitting, and
the combination of both in turn. We find that the band shifts
alone lead to a negative contribution to the internal energy
of order O(�2) in the distortions. Hence, the prefactor of
�2 must be sufficiently large to overcome the positive elastic
energy in Eq. (6). This would be a strong-coupling instability.

The situation changes when the opening of gaps is taken
into account. In this case, the internal energy always contains
a Cooper logarithm of the form �2 ln �. For the generic case
with both shifts and splittings, the distortional contribution to
the electronic internal energy reads as, see Appendix C,

δUel = V

16π3

nb∑
n=1

∫
BFS

d2kF
η2

n(kF )

vn(kF )

[
− ln 2 − 1

2

+ ln
η0

vn(kF )

+ u(αn(kF )) + ln

ηn(kF )

η0

]
, (17)
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FIG. 3. Enhancement u of the coefficient of the quadratic term
O(�2 ) in the internal energy due to odd-in-momentum band shifts.
α is the odd part of the band shift in units of the distortional gap. For
α > 1, residual BFSs exist.

where ηn(kF ) is half the distortional energy gap of band n at
momentum kF on the unperturbed BFS, vn(kF ) is the mag-
nitude of the Fermi velocity vn(kF ) ≡ ∂En(k)/∂k|k=kF of the
quasiparticles at kF , αn(kF ) ≡ |δEn(kF )|/ηn(kF ) is the band
shift in units of the gap (both are of first order in �), η0 is an
arbitrary constant reference energy, and

u(α) ≡
{

α
√

α2 − 1 + ln
(√

α2 − 1 + α
)
, for α > 1,

0, for α � 1.
(18)

The function u(α) is plotted in Fig. 3. The prefactor of the
logarithmic term in Eq. (17) is positive and so drives a weak-
coupling instability: δUel can always be reduced by making �

and thus ηn nonzero.
We draw a number of conclusions regarding the effect of

the odd-in-momentum band shifts, which lead to αn(kF ) > 0.
First, where they are smaller than the gap at the Fermi energy
they do not have any effect on the weak-coupling instability.
Second, where they are larger—and residual BFSs exist—they
do not affect the Cooper logarithm but only renormalize the
prefactor of the quadratic term O(�2). Larger shifts lead to
a positive correction, which is added to the positive elastic
energy. They thus increase the effective stiffness of the crystal
and reduce the distortion at zero temperature, as expected.
However, as long as there is any band splitting anywhere on
the unperturbed BFSs, the Cooper logarithm and the weak-
coupling instability survive. This is true even if the band shifts
are larger than the splitting everywhere so that the BFSs are
nowhere gapped out. In this situation, the BFSs are split into
two surfaces, one inside the other.

B. Which distortion is stabilized?

So far, we have found that a distortional weak-coupling
instability always exists. Typically, the distortional order pa-
rameter � has multiple components. The instability will select
those distortions that minimize the full internal energy U =
Uel + (1/2)

∑
ν Kν�

2
ν . Equation (17) shows that distortions

are favored that lead to the largest splitting, or more precisely

the largest η2
n(kF )/vn(kF ), averaged over the BFSs for a given

magnitude �. In the following, we restrict ourselves to our
model.

Since the distortion is small at a weak-coupling instability
we can expand the band splittings,

ηn(kF ) ∼= ∂ηn(kF )

∂p

∣∣∣∣
p=0

· p ≡ cn(kF ) · p. (19)

The logarithm is then

ln
ηn(kF )

η0

∼= ln
cn(kF ) · p

η0
= ln

cn(kF ) · p0p̂
η0

+ ln
p

p0
, (20)

where p = |p| and p0 is an arbitrary constant with the same
dimension as the distortional order parameter. The change in
the internal energy reads as

δU ∼= V

16π3

nb∑
n=1

∫
BFS

d2kF
[cn(kF ) · p]2

vn(kF )

[
− ln 2 − 1

2

+ ln
cn(kF ) · p0p̂

vn(kF )

+ u(αn(kF )) + ln

p

p0

]

+ 1

2
KEu

(
p2

x + p2
y

)+ 1

2
KA2u p2

z . (21)

We assume that the crystal is far from a distortional instability
in the normal state, i.e., that the elastic internal energy is large.
We can then neglect the renormalization of the O(p2) term by
electronic contributions, leading to

δU ∼= V

16π3

nb∑
n=1

∫
BFS

d2kF
[cn(kF ) · p]2

vn(kF )
ln

p

p0

+ 1

2
KEu

(
p2

x + p2
y

)+ 1

2
KA2u p2

z

= 1

2

∑
i j

Ci j pi p j ln
p

p0
+ 1

2
KEu

(
p2

x + p2
y

)+ 1

2
KA2u p2

z ,

(22)

with

Ci j ≡ V

8π3

nb∑
n=1

∫
BFS

d2kF
cn,i(kF ) cn, j (kF )

vn(kF )

= V

8π3

nb∑
n=1

∫
BFS

d2kF
1

vn(kF )

× ∂ηn(kF )

∂ pi

∣∣∣∣
p=0

∂ηn(kF )

∂ p j

∣∣∣∣
p=0

. (23)

We find that distortions are favored which maximize Ci j .
Now (1/2)

∑
i j Ci j pi p j must have the full 4/mm′m′

symmetry of the superconducting state when p is also trans-
formed. In other words, the bilinear form must transform
according to A1g. As noted above, the doublet (px, py) belongs
to Eu and pz belongs to A2u. Since we have expanded to
second order, the matrix C does not depend on p. Hence, all
coefficients are constants, which transform according to A1g.
The only allowed components are then Cxx = Cyy ≡ CEu and
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Czz ≡ CA2u . We end up with

δU ∼= 1

2

[
CEu

(
p2

x + p2
y

)+ CA2u p2
z

]
ln

p

p0

+ 1

2

[
KEu

(
p2

x + p2
y

)+ KA2u p2
z

]
. (24)

The symmetry of δU is in fact much higher than the expected
4/mm′m′: this group contains a fourfold rotation axis par-
allel to ẑ but δU has continuous SO(2) rotation symmetry
about the z axis. This is due to the well-known effect that
quadratic forms with rotation symmetry of order 3 or higher
have continuous rotation symmetry. The logarithmic factor
has continuous symmetry in any case.

The energy change δU has a local maximum at p = 0.
Minimization can lead to p = (p cos ϕ, p sin ϕ, 0) with arbi-
trary angle ϕ (easy plane) or to p = (0, 0, p) (easy axis). For
in-plane distortions, we find

0 = ∂

∂ p
δU ∼= CEu p ln

p

p0
+ 1

2
CEu p + KEu p, (25)

which with p �= 0 implies

p ∼= p0√
e

exp

(
−KEu

CEu

)
. (26)

The change in the internal energy is then

δU ∼= −CEu p2
0

2e

(
KEu

CEu

+ 1

2

)
exp

(
−2KEu

CEu

)

+ KEu p2
0

2e
exp

(
−2KEu

CEu

)

= −CEu p2
0

4e
exp

(
−2KEu

CEu

)
. (27)

Analogously, for distortions along the z axis, we obtain

p ∼= p0√
e

exp

(
−KA2u

CA2u

)
, (28)

δU ∼= −CA2u p2
0

4e
exp

(
−2KA2u

CA2u

)
. (29)

As discussed above, the stiffness constants KEu and KA2u are
expected to be similar since they are equal in the normal state.
On the other hand, the parameters CEu and CA2u describe the
gapping of the quasiparticle bands of the anisotropic super-
conducting state due to distortions and have no reason to be
similar. Hence, the difference in internal energy for in-plane
and z axis distortions should be dominated by the difference
between CEu and CA2u . Replacing KEu ≈ KA2u by K , the energy
change

δU (C) ∼= −C p2
0

4e
exp

(
−2K

C

)
(30)

is negative for all C > 0 and is a monotonically decreasing
function of C. Hence, distortions with larger C are favored but
the energy gain is exponentially small for small C, typical for
a weak-coupling instability.

We now address the question how strongly the internal en-
ergy differentiates between different distortions. Since δU (C)
depends very strongly on C we expect that modest differences

in C lead to large differences in energy and thus, following
BCS theory, to large differences in the distortional critical
temperature. The relative difference between the energy gains
for in-plane and z axis distortions is

2
δU (CEu ) − δU (CA2u )

δU (CEu ) + δU (CA2u )

= −2
CEu e−2K/CEu − CA2u e−2K/CA2u

CEu e−2K/CEu + CA2u e−2K/CA2u

= −2 tanh

(
− K

CEu

+ K

CA2u

+ ln
CEu

CA2u

)
. (31)

In the weak-coupling limit, K/CEu and K/CA2u are large. Since
CEu and CA2u are not expected to be similar the first two terms
in the argument of the hyperbolic tangent together are large
in magnitude. The logarithm generically does not compensate
for this. Consequently, the argument is large in magnitude and
the whole expression is close to −2 sgn(CEu − CA2u ). Hence,
the favored distortion typically is hugely favored.

C. Numerical results

In the following, we illustrate the measure Ci j defined in
Eq. (23) by numerical results. The undistorted normal-state
Hamiltonian HN in Eq. (1) contains functions cn(k), which
we choose in accordance with point-group and translation
symmetries as

c0(k) = −2t0(cos kx + cos ky + cos kz ) − μ, (32)

c1(k) = 4t1 sin ky sin kz, (33)

c2(k) = 4t1 sin kz sin kx, (34)

c3(k) = 4t1 sin kx sin ky, (35)

c4(k) = 4t2(− cos kx + cos ky) cos kz, (36)

c5(k) = 4t2√
3

(2 cos kx cos ky − cos ky cos kz

− cos kz cos kx ). (37)

We take t0 = 2, t1 = −1.5, t2 = −1.7, and μ = −12.6. The
normal state then has a small hole-type Fermi surface in
the lower band, which to good approximation belongs to
the magnetic quantum numbers ±3/2 with respect to the
momentum-dependent spin quantization axis. A large value of
� = 0.5/

√
2 is chosen for the superconducting gap amplitude

in the order parameter �(1, i, 0) to obtain sizable BFSs. The
qualitative results do not depend on the amplitude.

One problem here is the large number of allowed coupling
terms between the electronic system and distortions appear-
ing in Eqs. (3) and (4). To reduce the complexity, we (a)
neglect couplings that require superconductivity (with basis
functions el

�), (b) assume the simplest trigonometric form of
basis functions that is consistent with the caesium chloride
structure (i.e., with the simple cubic Bravais lattice), and (c)
consider each of the remaining terms in Eqs. (3) and (4)
separately. Table VIII shows numerical results for CEu/V and
CA2u/V as defined in Eq. (23). Note that the numerics show
that the terms appearing in Hpz (k) [Eq. (3)] indeed only favor
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TABLE VIII. The parameters CEu/V and CA2u/V that determine
the energy gain due to various allowed distortion terms, labeled by
the form factors in Eqs. (3) and (4). For each of them, the simplest
trigonometric form consistent with the simple cubic Bravais lattice
has been assumed and its prefactor has been set to unity. The basis
matrices h in spin space have been normalized so that Tr h2 = 4;
see Table I. Large CEu/V favors in-plane distortions, whereas large
CA2u/V favors distortions along the z axis. Entries “0” mean zero by
symmetry, confirmed by the numerics, while “0.00” signifies a small
positive number that is rounded to zero.

CEu/V (10−5) CA2u/V (10−5)

d1
A1u

5.23 0

d2
A1u

8.57 0

d3
A1u

27.1 0

d1
A2u

0 0.00

d2
A2u

0 0.00

d3
A2u

0.00 0

d4
A2u

0.00 0

d5
A2u

0.00 0

d1
B1u

0 0.00

d2
B1u

0.09 0

d3
B1u

0.10 0

d4
B1u

0.05 0

d1
B2u

0 0.00

d2
B2u

0.13 0

d3
B2u

0.12 0

d4
B2u

0.12 0

d1
Eu

0 1.16

d2
Eu

0 20.2

d3
Eu

0 449

d4
Eu

8.1 0

d5
Eu

5.44 0

d6
Eu

8.98 0

d7
Eu

8.24 0

distortions along the z direction, whereas terms in Hpx,py (k)
[Eq. (4)] only favor in-plane distortions. In a real system, all
terms will be present simultaneously since they are all allowed
by symmetry. We observe that the contributions with form
factors dl

� (k) belonging to A1u and Eu are the only sizable
ones. This is a consequence of having a small normal-state
Fermi surface: all other form factors are suppressed by being
of higher order in momentum.

Among the A1u and Eu contributions, only three out of ten
favor distortions along the z direction but the largest entry
by more than one order of magnitude does so. The dominant
entry refers to the term

�d 3
Eu

(k) ·
(

Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx

−Jy
(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy

)
(38)

in Hpz (k). The Eu prefactors are �d l
Eu

(k) = (sin ky,− sin kx )
for all l = 1, . . . , 7. Why is this contribution so much more
favorable compared to the simpler ones, for example the term

TABLE IX. Basis matrices of the two-dimensional pseudospin
Hilbert space. The last two columns show the corresponding irreps
for the magnetic point groups m3̄m1′ and 4/mm′m′. The correct order
and signs of the Eg doublet for 4/mm′m′, again using (xz, yz) as the
template, are (σ1, σ2).

Irrep

Basis matrix m3̄m1′ 4/mm′m′

σ0 A1g+ A1g

σ1 T1g− Eg

σ2

σ3 A1g

involving (Jx, Jy)? While the answer certainly depends on de-
tails of the model, one can understand the relative importance
of terms based on the pseudospin picture, as we show at the
end of the next section.

VII. PSEUDOSPIN PICTURE

In our model, the normal-state bands are twofold degen-
erate at general k because of time-reversal and inversion
symmetries. This twofold degeneracy can be parametrized
by a pseudospin of length 1/2. If the normal-state bands are
sufficiently far apart on the superconducting energy scale the
effect of interband pairing can be treated perturbatively. Such
a treatment leads to (a) a spin-independent shift γ (k) of the
normal-state band energies, (b) a pseudomagnetic field h(k)
coupling to the pseudospin, and (c) an intraband pseudospin-
singlet pairing term with an amplitude ψ (k) that encodes
the uninflated nodes [1,2]. Since the intraband pairing is of
pseudo-spin-singlet nature, the momentum-dependent ampli-
tude ψ (k) must carry the full symmetry information of the
pairing state in the original multiband system. Here, we dis-
cuss the distortional correction Hdist(k) and its consequences
in the pseudospin picture.

The correction to the electronic Hamiltonian due to uni-
form distortions, Hdist(k), is constrained by symmetry. It must
be invariant under all point-group operations if the distor-
tional order parameters � are transformed simultaneously.
Moreover, Hdist(k) is linear in � in the harmonic limit. The
normal-state Hamiltonian is of course parametrized by the
2 × 2 identity matrix σ0 ≡ 1 and the three Pauli matrices
σ1, σ2, σ3. For our caesium chloride model, the symmetry
classification of these basis matrices is given in Table IX,
which corresponds to Table I for the full model.

As noted above, the distortion modes p transform accord-
ing to T1u+ of m3̄m1′ in the normal state. We now only
need the reductions T1u+ ⊗ A1g+ = T1u+, which does not have
any momentum basis functions and thus does not lead to an
allowed term in Hdist(k), and T1u+ ⊗ T1g− = A1u− ⊕ Eu− ⊕
T1u− ⊕ T2u−. Hence, in the normal state only σ1, σ2, σ3 can
appear in Hdist(k). To get an idea of the leading terms, we ig-
nore the reduction of the point group from m3̄m1′ to 4/mm′m′
due to superconductivity.

The identity T1u+ ⊗ T1g− = A1u− ⊕ Eu− ⊕ T1u− ⊕ T2u−
and a table of Oh basis functions show that the electronic
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Hamiltonian due to the distortion must have the form

Hdist(k) = dA1u− (k) p · σ

+ �dEu− (k) ·
(

pxσ1 − pyσ2

(2pzσ3 − pxσ1 − pyσ2)/
√

3

)

+ �dT1u− (k) ·
⎛
⎝pyσ3 − pzσ2

pzσ1 − pxσ3

pxσ2 − pyσ1

⎞
⎠

+ �dT2u− (k) ·
⎛
⎝pyσ3 + pzσ2

pzσ1 + pxσ3

pxσ2 + pyσ1

⎞
⎠ ≡ g(k) · σ, (39)

where we have used the center dot for two-dimensional and
three-dimensional scalar products indiscriminately. This re-
sult is quite interesting. For example, the first term has the
same form as the coupling of the pseudomagnetic field. The
direction is fixed by the distortion p but it has a very com-
plicated form in momentum space since the lowest-order
polynomial basis function of A1u− is kxkykz [k4

x (k2
y − k2

z ) +
k4

y (k2
z − k2

x ) + k4
z (k2

x − k2
y )]. One generally has the prejudice

that lower-order basis functions dominate. If we hence include
only the basis functions of lowest order, which belong to T1u−,
we obtain

Hdist(k) ∼= α k ·
⎛
⎝pyσ3 − pzσ2

pzσ1 − pxσ3

pxσ2 − pyσ1

⎞
⎠ = α k · (p × σ )

= −α (p × k) · σ (40)

and thus

g(k) ∼= −α p × k, (41)

where α is a constant. This has the form of an antisymmetric
spin-orbit coupling (ASOC) of Rashba type with the role of
the electric field played by the distortional order parameter p.
This is plausible since the distortion in our model is accompa-
nied by a dipole moment.

In the pseudospin picture, the BdG Hamiltonian has the
general form

H(k) =
(

HN (k) ψ (k) iσ2

−ψ∗(k) iσ2 −HT
N (−k)

)
, (42)

with

HN (k) = ξ (k) σ0 + g(k) · σ + h(k) · σ, (43)

where ξ (k) ≡ ε(k) − μ is the normal-state dispersion includ-
ing the chemical potential. The spin-independent renormal-
ization of the dispersion due to interband pairing has been
absorbed into ξ (k). The ASOC and the pseudomagnetic-field
term look quite similar but g(k) is odd in k, whereas h(k) is
even. We now use the behavior under inversion and suppress
the common argument k, which yields

H =
(

ξσ0 + g · σ + h · σ ψ iσ2

−ψ∗ iσ2 −ξσ0 + g · σT − h · σT

)
. (44)

The BdG Hamiltonian only contains the two vectors h and g.
Since we are only interested in the eigenvalues we can sim-
plify the problem by choosing the coordinate system in spin
space in such a way that h is along ẑ and g is in the xz plane.
Moreover, the eigenvalues cannot depend on the phase of ψ so
that we can choose a (generally momentum-dependent) gauge
that makes ψ real. This gives

H =

⎛
⎜⎝

ξ + gz + h gx 0 ψ

gx ξ − gz − h −ψ 0
0 −ψ −ξ + gz − h gx

ψ 0 gx −ξ − gz + h

⎞
⎟⎠. (45)

It is obvious that the Hamiltonian consists of decoupled blocks for ψ = 0. This reflects that there is no superconducting gap
for ψ = 0 and thus that bands can cross. By interchanging the second and fourth basis states, corresponding to a particle-hole
transformation in the spin-down channel, we rewrite the Hamiltonian as

Ĥ ≡

⎛
⎜⎝

h + gz + ξ ψ 0 gx

ψ h − gz − ξ gx 0
0 gx −h + gz − ξ −ψ

gx 0 −ψ −h − gz + ξ

⎞
⎟⎠. (46)

Compared to H, ξ and h as well as ψ and gx are interchanged.
However, ψ is even in momentum, which is reflected by −ψ

appearing in the lower right block, whereas gx is odd. We will
say that Ĥ describes the dual model.

The undistorted superconducting state (gx = gz = 0) corre-
sponds, in the dual model, to a normal metal with Hamiltonian
ĤN = h σ0 + γ · σ, where γ = (ψ, 0, ξ ). The dual model is
indeed metallic—its Fermi surface is the BFS of the origi-
nal model. The transverse distortional instability (gx) maps
onto a superconducting instability. The dual superconduct-
ing gap matrix is gxσ1 = gx σ3 iσ2 so that this is a triplet
superconductor with spin along the z direction. gx is odd in

momentum, consistent with triplet superconductivity for an
inversion-symmetric normal state.

The order parameter gz is added to the dual magnetic field
ξ along the z direction. At fixed momentum, this does not
change any symmetries and thus does not change the proper-
ties of the spectrum. In the original model, gz renormalizes the
dispersion ξ . Since ξ changes rapidly in momentum space (the
band width is large compared to gz) this is a small effect and
leads to a small shift of the normal-state Fermi surface. Since
gz is odd in momentum the band shift breaks the inversion
symmetry of the bands and of the normal-state Fermi surface.
Since gz and −gz are related by a symmetry of the undistorted
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system, namely by inversion, the effect on the free energy is
an even function of gz. Generically, the effect will scale with
g2

z for small gz and thus at most lead to a strong-coupling
instability. This is the Pomeranchuk instability discussed in
Ref. [24].

On the other hand, the dual superconducting order param-
eter gx generically opens a gap, which leads to a Cooper
log in the internal energy. It therefore causes a weak-
coupling instability [24]. gx also breaks inversion symmetry
and thus together with gz causes shifts of quasiparticle
bands that are odd in momentum. The corresponding change
in the free energy is expected to be quadratic and thus
changes the energetics but cannot compensate for the Cooper
log.

Going back to the original coordinate system, we conclude
that the component of the distortion-induced ASOC g that
is parallel to the interband-pairing-induced pseudomagnetic
field h does not cause a weak-coupling instability of the BFSs.
On the other hand, the components normal to h do lead to a
weak-coupling instability of the BFSs, which is analogous to
the one in BCS theory by means of a duality mapping. These
results show that g(k) with large components normal to h(k)
are favored.

We can now partially understand the numerical results
shown in Table VIII. The pseudomagnetic field h(k) for the
�(1, i, 0) pairing state is obtained by projecting the time-
reversal-odd part of the gap product,

��† − UT (��†)∗U †
T = 4

3�2
(
7Jz − 4J3

z

)
, (47)

into the relevant band [2]. Here,

UT =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ (48)

is the unitary part of the time-reversal operator. The result
can be written in the form h(k) · σ. The pairing state is a
pseudospin ferromagnet in that h(k) has a nonzero average.
To get an idea about the favored distortion, we can treat h(k)
to leading order; i.e., we replace it by its average, which is
parallel to the z axis. This implies that g(k) lying in the xy
plane is favored. Since g(k) ∼= −α p × k we conclude that
p ‖ ẑ ‖ h is favored. This agrees with the numerical results
of Sec. VI C.

To understand the relative strength of the three distortion
terms favoring p in the z-direction, we consider the corre-
sponding terms in Hpz (k). For small k, these terms read as

H1
dist(k) = 2√

5
(kyJx − kxJy)pz, (49)

H2
dist(k) = 8√

365

(
kyJ3

x − kxJ3
y

)
pz, (50)

H3
dist(k) = 1√

3

{
ky
[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx
]

+ kx
[
Jy
(
J2

z − J2
x

)+ (
J2

z − J2
x

)
Jy
]}

pz. (51)

After projection into the relevant band, they can be written as
gl (k) · σ, l = 1, 2, 3, which defines their contributions gl (k)

to the distortion-induced ASOC in the pseudospin picture.
The model used for the numerics has a small and roughly
spherical normal-state Fermi surface. It is thus justified to
employ a spherical approximation for the undistorted Hamil-
tonian,

HN (k) ∼= (αk2 − μ)1 + β(k · J)2, (52)

which has the advantage that all evaluations can be performed
analytically. The relevant band is the one with eigenvalues
±3/2 of k̂ · J, where k̂ = k/k.

We have seen that distortions are favored when the com-
ponent of the effective ASOC vector gl (k) normal to h(k) is
large. A good measure for this is |gl × h|2 = (gl × h) · (gl ×
h). Note that this quantity is independent of the choice of basis
for the pseudospin. For the three terms of interest, we obtain

|g1 × h|2 = 0, (53)

|g2 × h|2 = 9
1460 k2 p2

z sin2 θ{4[sin6 θ + cos6 θ ]

× [(3 cos 2θ + 5) cos 4φ + 6 sin2 θ ]2

+ [6 cos 2θ + 3 cos 4θ + 7]2 sin2 4φ}, (54)

|g3 × h|2 = 3
64 k2 p2

z sin2 θ{4[sin6 θ + cos6 θ ]

× [(3 cos 2θ + 5) cos 4φ − 10 sin2 θ ]2

+ [6 cos 2θ + 3 cos 4θ + 7]2 sin2 4φ}. (55)

In fact, the full vector g1(k) vanishes, not just its components
normal to h(k). This follows from the fact that the operator
H1

dist(k) is proportional to a spin component perpendicular
to k, which has vanishing matrix elements between the two
states in the relevant band, which are eigenstates of k̂ · J with
eigenvalues ±3/2. This explains why the entry for d1

Eu
in

Table VIII is small (it is not zero because the real model is
not spherical).

To compare the other two contributions, we note that the
pairing state has rotational symmetry about the z axis in the
spherical approximation. This suggests to average |gl × h|2
over the angle φ, which yields

|g1 × h|2 = 0, (56)

|g2 × h|2 = 9
23360 k2 sin2 θ (660 cos 2θ + 1428 cos 4θ

+ 108 cos 6θ + 117 cos 8θ + 1783), (57)

|g3 × h|2 = 3
1024 k2 sin2 θ (−1004 cos 2θ + 2324 cos 4θ

− 276 cos 6θ + 213 cos 8θ + 2839). (58)

These averages are plotted in Fig. 4. It is obvious that the third
contribution is much larger than the second. Hence, the third
term d3

Eu
leads to a much stronger ASOC in the direction nor-

mal to the pseudomagnetic field h(k) compared to the second
term d2

Eu
, while the first term is zero anyway. Therefore, the

third term is most effective in stabilizing a distortion in the z
direction than the second and the second more than the first.
This is exactly the order found numerically; see Table VIII.

VIII. PAIR-DENSITY WAVE

To address the question whether the system could show
an instability toward a spatially modulated superconducting
state—a PDW—we consider a Ginzburg-Landau description.
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FIG. 4. The φ averages |gl × h|2 characterizing the strength of
the distortion terms dl

Eu
that stabilize a distortion in the z direction,

as a function of the angle θ . For details, see the text.

We denote the complex superconducting amplitudes for the
various pairing channels by �m(r) and ignore the coupling
to the electromagnetic field for simplicity. For our J = 3/2
model, m = 0 corresponds to the A1g pairing state, m = 1, 2, 3
to T2g, and m = 4, 5 to Eg. A PDW will occur generically if a
term of first order in gradients is allowed in the Ginzburg-
Landau free-energy density; see Ref. [31] for a discussion.

We here restrict ourselves to the case of T2g pairing, where
we have a three-component superconducting order parameter
(�1, �2, �3) and the �m transform as irreducible tensor op-
erators of the irrep T2g of the spatial point group m3̄m = Oh.
The first-order gradient terms read as

fgrad =
3∑

m,n=1

amn · �∗
mi∇�n. (59)

From the reality of fgrad, we obtain, using integration by parts,
that a∗

mn = anm. The first-order terms are further constrained
by the magnetic point-group symmetries. Under spatial sym-
metries, the momentum operator π̂ = −i∇ transforms like
the momentum k. Furthermore, �1, �2, and �3 transform
like the basis functions kykz, kzkx, and kxky, respectively. The
same holds for their complex conjugates. The time-reversal
transformation is more subtle since it involves a transposition:
time reversal maps π̂ to −π̂T and �n to �∗

n . This implies the
mapping

�∗
mπ̂�n → −�mπ̂T �∗

n = −�∗
n π̂�m, (60)

where we have used that the transposed momentum operator
acts to the left instead of to the right. This is corroborated by
the observation that π̂ must transform like the vector potential
A to preserve gauge invariance and that �∗

mA�n → −�∗
n A�m

under time reversal.
We can now analyze the transformation properties of bi-

linear products �∗
m ⊗ �n under m3̄m1′, where the Kronecker

product indicates that the factors are not immediately multi-
plied as scalars but rather the momentum operator is inserted
before they are contracted. We have found that �∗

m ⊗ �n →
�∗

n ⊗ �m under time reversal. The combinations transforming
as irreducible tensor operators of the irreps of m3̄m1′ are given
in Table X. Note the appearance of T1g−; the behavior under
time reversal is nonstandard because of the transposition and

TABLE X. Association of quantities relevant for the formation
of a PDW with irreps of m3̄m1′.

�∗
1 ⊗ �1 + �∗

2 ⊗ �2 + �∗
3 ⊗ �3 A1g+

�∗
1 ⊗ �1 − �∗

2 ⊗ �2 Eg+
1√
3
(2�∗

3 ⊗ �3 − �∗
1 ⊗ �1 − �∗

2 ⊗ �2)
�∗

2 ⊗ �3 + �∗
3 ⊗ �2 T2g+

�∗
3 ⊗ �1 + �∗

1 ⊗ �3

�∗
1 ⊗ �2 + �∗

2 ⊗ �1

�∗
2 ⊗ �3 − �∗

3 ⊗ �2 T1g−
�∗

3 ⊗ �1 − �∗
1 ⊗ �3

�∗
1 ⊗ �2 − �∗

2 ⊗ �1

π̂ = −i∇ T1u−
p T1u+
−p · i∇ A1g−
−pxi∂x + pyi∂y Eg−
− 1√

3
(2pzi∂y − pxi∂x − pyi∂y )

−pyi∂z − pzi∂y T2g−
−pzi∂x − pxi∂z

−pxi∂y − pyi∂x

−pyi∂z + pzi∂y T1g−
−pzi∂x + pxi∂z

−pxi∂y + pyi∂x

cannot directly be inferred from the reduction T2g+ ⊗ T2g+ =
A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+.

The symmetries of momentum operators and distortional
order parameters are also included in Table X. In the har-
monic regime, the coefficients amn in Eq. (59) are linear in
the distortions p. The irreps of all independent bilinear forms
constructed from p and −i∇ are also given in Table X.

The free-energy density fgrad has to be invariant under
m3̄m1′. We can thus construct the allowed terms as all com-
binations of p, −i∇, and order-parameter bilinear forms that
transform according to A1g+. Since p is even under time re-
verse and −i∇ is odd, the order-parameter bilinear has to be
odd, which only permits the three combinations belonging to
T1g−. Hence, we find three allowed terms:

fgrad,1 ∝ −py(�∗
2 i∂z�3 − �∗

3 i∂z�2)

+ pz(�∗
2 i∂y�3 − �∗

3 i∂y�2), (61)

fgrad,2 ∝ −pz(�∗
3 i∂x�1 − �∗

1 i∂x�3)

+ px(�∗
3 i∂z�1 − �∗

1 i∂z�3), (62)

fgrad,3 ∝ −px(�∗
1 i∂y�2 − �∗

2 i∂y�1)

+ py(�∗
1 i∂x�2 − �∗

2 i∂x�1). (63)

Note that these terms do not fully agree with the Lifshitz
invariants given in Ref. [31] for this pairing state.

We now make the ansatz

�m(r) = �0
meiQ·r. (64)

For the allowed gradient terms, this leads to

fgrad,1 ∝ (pyQz − pzQy)
(
�0∗

2 �0
3 − �0∗

3 �0
2

)
, (65)

fgrad,2 ∝ (pzQx − pxQz )
(
�0∗

3 �0
1 − �0∗

1 �0
3

)
, (66)

fgrad,3 ∝ (pxQy − pyQx )
(
�0∗

1 �0
2 − �0∗

2 �0
1

)
. (67)
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So far, our results hold for any T2g order parameter. Specifi-
cally for the �(1, i, 0) state, we obtain

fgrad,1 = fgrad,2 = 0, (68)

fgrad,3 ∝ i|�|2(pxQy − pyQx ). (69)

Noting that the average pseudomagnetic field is oriented along
the z direction and that it is proportional to |�|2 in the weak-
coupling limit, we can write the remaining term as

fgrad,3 ∝ h · (p × Q) = (h × p) · Q (70)

in that limit. An analysis based on the magnetic point group
4/mm′m′ of the superconducting state leads to essentially the
same result and is not presented here.

The linear term in Eq. (70) would lead to a PDW with
wave vector Q ∝ h × p, evidently normal to both the pseu-
domagnetic field and the distortion. We only obtain a PDW if
the distortion has a component normal to the pseudomagnetic
field. Above, it has been concluded from numerical results
and the pseudospin picture that the preferred distortion is
parallel to the pseudomagnetic field. In that case, there is no
modulation.

If a linear term exists the wavelength of the PDW scales
with 1/p and thus diverges as the distortional transition
temperature is approached from below. The weak-coupling
distortional transition is thus expected to be unaffected by the
formation of the PDW. However, a direct first-order transition
toward a PDW with broken inversion symmetry could happen
if a distortion not parallel to h is stable at all.

IX. SUMMARY AND CONCLUSIONS

In this paper, we have shown that the coupling of the
electrons to the lattice always leads to a distortional weak-
coupling instability of an inversion-symmetric multiband
superconductor that breaks time-reversal symmetry and has
BFSs. At this instability, inversion symmetry is broken spon-
taneously and the BFSs are gapped out, except possibly in
high-symmetry directions. In addition, the quasiparticle bands
are shifted and are no longer even in momentum. If the shifts
are sufficiently large, the state with broken inversion symme-
try can still have BFSs [25–30]. At zero temperature, the new
gaps always lead to a reduction of the internal energy due to
the appearance of a Cooper logarithm �2 ln � in terms of the
absolute value of the distortional order parameter. A Cooper
logarithm is characteristic for superconducting instabilities
and it is remarkable that it here appears for a distortional in-
stability. Its origin in both cases is that the quasiparticle bands
are gapped at the Fermi energy. For the distortional instability,
this is guaranteed by the CP symmetry of the undistorted state.

For the case where several distortional instabilities com-
pete, we have introduced a relatively simple measure for
their relative strengths. This measure is obtained by divid-
ing the square of the change of the gap with the distortion
by the normal-state Fermi velocity, and averaging the result
over the BFSs. It is maximized by the leading instability and
it discriminates highly selectively between competing insta-
bilities since the energy gain depends exponentially on the
measure.

In our example of a caesium chloride structure with T2g

pairing with the order parameter �(1, i, 0), the superconduct-
ing state lowers the cubic symmetry of the crystal to the
tetragonal magnetic point group 4/mm′m′ and there are com-
peting distortions within and perpendicular to the (001) plane.
The leading instability depends on microscopic details of the
system but a general argument based on an effective single-
band model favors distortions in the z direction. Two other
pairing states that break time-reversal symmetry are plausi-
ble for this model [2,35]: The T2g pairing state with order
parameter �(1, ω, ω2), ω = e2π i/3, has the trigonal magnetic
point group 3̄m′ [33]. There are competing distortions within
and perpendicular to the (111) plane. The most plausible Eg

pairing state with order parameter �(1, i) has the magnetic
point group m3̄m′ [33], which is still cubic. In this case, the
distortions are isotropic in the harmonic approximation.

Actually, we have only demonstrated the instability for
distortions that break inversion symmetry. We have pointed
out that some structures with a basis do not permit uniform
distortions that break inversion symmetry, the diamond struc-
ture being an example. However, it is always possible to break
inversion symmetry by choosing a sufficiently large supercell;
even if we start from a Bravais lattice we can take a supercell
containing at least three lattice sites and deform it in such a
way that the corresponding three-atom basis is itself not inver-
sion symmetric. For commensurate distortions, the arguments
made above carry over to the superlattice. In this case, the
breaking of translation symmetry leads to the backfolding of
bands and the gapping of band crossings already in the normal
state. However, these new avoided crossings are generically
not at the Fermi energy and thus do not affect the instability
of the BFSs. We conclude that BFSs are unstable for any
structure. Only the induced distortion will necessarily not be
uniform.

The distortional weak-coupling instability is universal and
occurs even in the extreme limit where the band shifts induced
by the distortion are everywhere larger than the induced band
gaps so that the BFS are nowhere gapped out. The universality
of the instability should be contrasted to the Peierls instability
in one dimension [44–46], for which the logarithm and thus
the weak-coupling instability only exist if the system is tuned
to half filling. It is also distinct from weak-coupling instabili-
ties toward density-wave states in higher-dimensional systems
that rely on fine-tuning of an approximate particle-hole sym-
metry which gives perfect nesting of Fermi pockets [47–52].

We have also analyzed the instability in the pseudospin
(single-band) picture. The resulting Hamiltonian can be
mapped onto a dual model, in which the BFSs play the
role of Fermi surfaces of a normal metal and the relevant
component of the distortion becomes a superconducting order
parameter. This duality makes clear why the Cooper logarithm
and the weak-coupling instability are generic. Finally, we have
addressed the possibility of a PDW in the distorted state,
based on methods discussed in Ref. [31]. Depending on the
orientation of the distortional order parameter, a PDW can
indeed form. However, its wavelength diverges at the distor-
tional weak-coupling transition, rendering it irrelevant for the
analysis of this transition.

It is important to note that other transitions can preempt the
one discussed here. The most relevant possibility is that the
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superconducting state with broken time-reversal symmetry is
replaced by a time-reversal-symmetric state at low tempera-
tures because the growing BFSs and the associated density
of states at the Fermi energy eventually become energetically
disfavored [53]. In any case, the inversion-symmetric and
time-reversal-symmetry-breaking state does not persist down
to zero temperature.
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APPENDIX A: UNITARY SYMMETRIES OF THE
BdG HAMILTONIAN

In this Appendix, we provide some background on unitary
symmetries of the superconducting state. Assume that the
normal state has a symmetry of the form UHN (R−1k)U † =
HN (k), where U is a unitary matrix acting on the Hilbert space
of local degrees of freedom (here the effective spin) and R
is an O(3) matrix acting on momentum space. Evidently, U
is only fixed up to a phase factor. Extending the symmetry
condition to Nambu space, we obtain

UH(R−1k)U† = H(k), (A1)

with

U =
(

eiαU 0
0 e−iαU ∗

)
, (A2)

where we have made the phase factor explicit. In the normal
state (� = 0), this is equivalent to the original symmetry
relation for any α. In the superconducting state (� �= 0), the
superconducting blocks in H(k) pick up factors of e±2iα un-
der the transformation. Hence, Eq. (A1) cannot hold for all
choices of α. Rather, only two choices that differ by an overall
sign of U and thus of U are possible. This reflects the fact
that superconductivity breaks a global U(1) invariance down
to Z2 [54]. Typical U in our case are rotation operators for the
effective spin. It turns out that the allowed choices for eiα are
not necessarily the trivial ones eiα = ±1 and that they depend
on the phase of �.

APPENDIX B: SYMMETRY CONSTRAINTS ON BAND
TILTING AND GAPPING OF BAND CROSSINGS

In this Appendix, we give a detailed discussion of the
symmetries that can prevent asymmetric band shifts (tilting)
or opening of gaps at band crossings.

(1) For certain (orientations of the) distortional order pa-
rameters and certain momenta k, symmetry can force Hdist (k)
to vanish. For our model and distortions in the z direction, note
that for k = kzẑ along the z axis, i.e., for kx = ky = 0, Table IV

shows that only momentum basis functions belonging to A1u

can be nonzero. But Eq. (3) does not contain any A1u basis
functions. This implies that

Hpz (kzẑ) = 0. (B1)

This result can also be obtained as follows: pz transforms
according to A2u and kz according to A1u. Odd powers of kz

also belong to A1u, whereas even powers belong to A1g. The
relevant products are A2u ⊗ A1u = A2g and A2u ⊗ A1g = A2u.
There are no basis matrices belonging to either A2g or A2u; see
Table I. Hence, no terms linear in pz and only depending on
kz exist.

It is not true that Hdist (k) always vanishes when k is
parallel to p: Consider the case that both p and k lie in the
xy plane and are oriented along the same principal axis, e.g.,
p = pxx̂ and k = kxx̂. Then Table IV shows that all odd one-
dimensional momentum basis functions vanish, while for the
Eu basis functions only the first component vanishes, whereas
the second is nonzero. Then the only remaining terms in
Eq. (4) read as

Hpx,0(kxx̂) = [
d7

Eu,2(kxx̂)(JxJyJz + JzJyJx )

+ |�|2e5
Eu,2(kxx̂)(JxJy + JyJx )

]
px. (B2)

These are the contributions from the B2g basis matrices. This
makes sense since for p and k both parallel to x̂, the only
nonvanishing combinations of the two belong to A2g and B2g,
as Table VI shows. But there are no basis matrices belonging
to A2g, see Table I, and thus only B2g occurs. The result is
that the electrons see the in-plane distortion even in this high-
symmetry direction.

(2) A twofold rotation axis acts like the inversion symmetry
in the plane normal to the axis. This pseudoinversion can
protect the symmetry of the energy spectrum and the existence
of a Z2 invariant and thus of band crossings. Together, this
implies that BFSs persist. In our example, the undistorted
superconducting state possesses a twofold rotation symmetry
C2z about the z axis. The BdG Hamiltonian satisfies

UC2zH(−kx,−ky, kz )U†
C2z

= H(k), (B3)

with

UC2z =
(−ie−iJzπ 0

0 ieiJzπ

)

= diag(1,−1, 1,−1, 1,−1, 1,−1); (B4)

see also Appendix A. This transformation acts like inversion
in the kz = 0 plane.

To see how the distortion affects this symmetry, we have
to keep the distortional order parameter fixed under point-
group transformations. kz is even under the rotation C2z, while
(kx, ky) is odd. Then Table IV shows that momentum ba-
sis functions belonging to A1u, A2u, B1u, and B2u are even,
whereas functions belonging to Eu are odd. The basis matrices
in Table I are even for the irreps A1g, B1g, and B2g, whereas
they are odd for the irrep Eg, as a look at a character table for
D4h shows (note that C2z is not combined with time reversal
in the magnetic point group). Equation (3) then shows that
Hpz (k) is invariant under C2z. This is not surprising since the
distortion is parallel to the twofold axis. On the other hand,
Eq. (4) shows that Hpx,py (k) is odd under the rotation C2z, also
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as expected for a distortion normal to the twofold axis. Hence,
for a distortion p = pzẑ along the z axis, the twofold rotation
symmetry of the superconducting state survives. Since the
rotation acts like inversion in the kz = 0 plane this implies that
the spectrum remains symmetric in this plane for distortions
p = pzẑ; i.e., there is no asymmetric shift of bands.

Charge-conjugation symmetry is described by
UCHT (−k)U†

C = −H(k), where UC = σ1 ⊗ 1 is the unitary
part of the antiunitary charge conjugation operator C. One
easily checks that(

CUC2z

)2 = UCU∗
C2z

UCUC2z = +1. (B5)

Hence, the effective inversion in the kz = 0 plane satisfies the
condition for the existence of a Z2 invariant [1–4]. Conse-
quently, the band crossings survive in this plane and, since
the crossing is not shifted away from zero energy, the BFS
survives for p = pzẑ.

(3) Mirror symmetries act like the inversion symmetry on
the axis normal to the mirror plane. This can protect the
symmetry of the energy spectrum and the existence of a Z2

invariant and thus of band crossings. Together, this implies
that BFSs persist. In our example, the undistorted supercon-
ducting state possesses a mirror symmetry mz with respect to
the xy plane. The BdG Hamiltonian satisfies

UmzH(kx, ky,−kz )U†
mz

= H(k), (B6)

with

Umz = UC2z =
(−ie−iJzπ 0

0 ieiJzπ

)
. (B7)

This transformation acts like inversion on the kz axis, i.e., for
kx = ky = 0.

The remainder of the argument is very similar to the case of
the twofold axis. To see how the distortion affects the mirror
symmetry, we keep the distortional order parameter fixed. kz is
odd under the mirror operation mz, while (kx, ky) is even. Then
Table IV shows that momentum basis functions belonging to
A1u, A2u, B1u, and B2u are odd, whereas functions belonging
to Eu are even. The basis matrices in Table I are even for
the irreps A1g, B1g, and B2g, whereas they are odd for the
irrep Eg. Equation (3) then shows that Hpz (k) is odd under
mz, whereas Eq. (4) shows that Hpx,py (k) is even. Hence, for
the distortion p lying in the xy plane, the mirror symmetry
of the superconducting state survives. This implies that the
energy spectrum remains symmetric on the kz axis for in-plane
distortions; i.e., there is no asymmetric shift of bands.

The combination with charge conjugation satisfies(
CUmz

)2 = UCU∗
mz
UCUmz = +1. (B8)

Hence, the effective inversion on the kz axis satisfies the con-
dition for the existence of a Z2 invariant and the BFS survives
in this one-dimensional space for p = (px, py, 0).

In fact, together with the first point we obtain a stronger
statement. We have seen that for our model Hpz (kzẑ) = 0
holds. This implies that the value of pz is irrelevant on the kz

axis. We thus find the same results, namely symmetric spec-
trum and survival of BFSs on the kz axis, for any distortion
p = (px, py, pz ). This is an example of a “higher symmetry
than expected.”

(4) Twofold rotation axes can protect crossings on the
rotation axis (not in the plane perpendicular to it) for special
pairing states. Specifically, if the bands belonging to one of
the eigenvalues of the rotation operator do not show any
superconductivity, no gaps can open for them. This case is
not discussed further since for our example it does not give
additional conditions. In general, the arguments would be
similar to the following discussion for mirror symmetries.

(5) Mirror symmetries can protect crossings within the
mirror plane (not on the axis perpendicular to it) for special
pairing states. Specifically, if the bands belonging to one
of the eigenvalues of the mirror operator do not show any
superconductivity, no gaps can open for them. However, the
spectrum generically becomes asymmetric. In our example,
the symmetry in Eq. (B6) restricted to this plane becomes

UmzH(kx, ky, 0)U†
mz

= H(kx, ky, 0). (B9)

This is a local symmetry in momentum space. It is equivalent
to [Umz ,H(kx, ky, 0)] = 0. Hence, one can block diagonalize
the BdG Hamiltonian as

H(kx, ky, 0) −→
(
H+(kx, ky) 0

0 H−(kx, ky)

)
, (B10)

where H±(kx, ky) acts on the sectors belonging to the eigen-
values ±1 of Umz . Since Umz is already diagonal this is just
a reordering of the rows and columns. As we have seen in
Ref. [2], for our special T2g pairing state, only H−(kx, ky )
contains superconductivity. Therefore, H+(kx, ky) and thus
half of the bands in the kz = 0 plane have no superconducting
gaps.

As noted above, the mz mirror symmetry persists for a
distortion in the xy plane. Hence, it remains true that half of
the bands in the kz = 0 plane do not show a superconducting
gap. However, all bands become asymmetric.

(6) Magnetic symmetry operations involving twofold rota-
tion axes can act as effective time reversal on these axes. We
take C′

2x = C2xT as an example. The undistorted supercon-
ducting state has this symmetry. It acts as

UC′
2x
HT (−kx, ky, kz )U†

C′
2x

= H(k), (B11)

with

UC′
2x

= UC2xUT =
(

e−iJxπ 0
0 eiJxπ

)(
eiJyπ 0

0 eiJyπ

)

= diag(−i, i,−i, i, i,−i, i,−i). (B12)

On the kx axis, i.e., for ky = kz = 0, the transformation be-
haves like time reversal.

For the distortion terms, note that on the kx axis only the
second component of the Eu basis functions is nonzero. It is
odd under C′

2x. Of the basis matrices, the ones belonging to A1g

and B1g are even, the ones for B2g are odd, and the two com-
ponents of Eg basis functions are odd and even, respectively.
We thus find

Hpz (kxx̂) = {
d1

Eu,2(kxx̂)Jy + d2
Eu,2(kxx̂)J3

y

+ d3
Eu,2(kxx̂)

[−Jy
(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy
]

+ |�|2e1
Eu,2(kxx̂)(JyJz + JzJy)

}
pz, (B13)
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which is odd under C′
2x for fixed pz. Hence, a distortion along

the z direction destroys the symmetry, as expected.
It is useful to write down the terms for px and py distortions

separately. We find

Hpx (kxx̂) = [
d7

Eu,2(kxx̂)(JxJyJz + JzJyJx )

+ |�|2e5
Eu,2(kxx̂)(JxJy + JyJx )

]
px, (B14)

which is even, and

Hpy (kxx̂) = [
d4

Eu,2(kxx̂)Jz + d5
Eu,2(kxx̂)J3

z

− d6
Eu,2(kxx̂)

[
Jz
(
J2

x − J2
y

)+ (
J2

x − J2
y

)
Jz
]

+ |�|2e2
Eu,2(kxx̂)1

+ |�|2e3
Eu,2(kxx̂)

(
2J2

z − J2
x − J2

y

)
− |�|2e4

Eu,2(kxx̂)
(
J2

x − J2
y

)]
py, (B15)

which is odd. Hence, the distorted systems retains the effec-
tive time-reversal symmetry if the distortion is along x̂. This

symmetry together with charge conjugation then implies that
the energy spectrum remains symmetric on the kx axis, even
though inversion symmetry is broken. On the other hand, this
type of symmetry does not prevent the gapping out of band
crossings.

(7) Magnetic mirror symmetries can act as effective time-
reversal symmetry within the mirror planes. We take m′

x =
mxT as an example. This symmetry acts as

Um′
x
HT (kx,−ky,−kz )U†

m′
x
= H(k), (B16)

with Um′
x
= UC′

2x
, i.e., like time reversal in the kykz (kx = 0)

plane.
In the distortion terms, note that in the kx = 0 plane only

momentum basis functions belonging to A1u, B1u, and the first
component of Eu appear. They are odd under m′

x. The basis
matrices belonging to A1g and B1g are even, the ones for B2g

are odd, and the two components of Eg basis functions are odd
and even, respectively. We thus find that

Hpz (0, ky, kz ) = {
d1

B1u
(0, ky, kz )(JxJyJz + JzJyJx ) + d1

Eu,1(0, ky, kz )Jx + d2
Eu,1(0, ky, kz )J3

x

+ d3
Eu,1(0, ky, kz )

[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx
]

+ |�|2e1
B1u

(0, ky, kz )(JxJy + JyJx ) + |�|2e1
Eu,1(0, ky, kz )(JzJx + JxJz )

}
pz (B17)

is even under m′
x. Similarly,

Hpx (0, ky, kz ) = {
d4

Eu,1(0, ky, kz )Jz + d5
Eu,1(0, ky, kz )J3

z

+ d6
Eu,1(0, ky, kz )

[
Jz
(
J2

x − J2
y

)+ (
J2

x − J2
y

)
Jz
]

+ d1
A1u

(0, ky, kz )Jy + d2
A1u

(0, ky, kz )J3
y

− d3
A1u

(0, ky, kz )
[
Jy
(
J2

z − J2
x

)+ (
J2

z − J2
x

)
Jy] + d2

B1u
(0, ky, kz )Jy

+ d3
B1u

(0, ky, kz )J3
y + d4

B1u
(0, ky, kz )

[− Jy
(
J2

z − J2
x

)− (
J2

z − J2
x

)
Jy
]

+ |�|2e2
Eu,1(0, ky, kz )1 + |�|2e3

Eu,1(0, ky, kz )
(
2J2

z − J2
x − J2

y

)
+ |�|2e4

Eu,1(0, ky, kz )
(
J2

x − J2
y

)+ |�|2e1
A1u

(0, ky, kz )(JyJz + JzJy)

+ |�|2e2
B1u

(0, ky, kz )(JyJz + JzJy)
}

px (B18)

is odd and

Hpy (0, ky, kz ) = {
d7

Eu,1(0, ky, kz )(JxJyJz + JzJyJx ) − d1
A1u

(0, ky, kz )Jx − d2
A1u

(0, ky, kz )J3
x

− d3
A1u

(0, ky, kz )
[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx
]+ d2

B1u
(0, ky, kz )Jx

+ d3
B1u

(0, ky, kz )J3
x + d4

B1u
(0, ky, kz )

[
Jx
(
J2

y − J2
z

)+ (
J2

y − J2
z

)
Jx
]

+ |�|2e5
Eu,1(0, ky, kz )(JxJy + JyJx ) − |�|2e1

A1u
(0, ky, kz )(JzJx + JxJz )

+ |�|2e2
B1u

(0, ky, kz )(JzJx + JxJz )
}

py (B19)

is even. Hence, a distortion in the yz magnetic mirror plane
respects the effective time-reversal symmetry for k in the
same plane. Importantly, p and k need not be related beyond

lying in the same plane. Together with charge conjugation this
implies that the energy spectrum remains symmetric in this
plane. Band crossings are not protected.
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APPENDIX C: ELECTRONIC INTERNAL ENERGY

In this Appendix, we evaluate the change in the electronic
internal energy due to distortions. We first consider the case
that there are odd-in-momentum band shifts but no splittings.
For the undistorted superconductor, inversion symmetry im-
plies that the spectrum is even in momentum and it is possible
to enumerate the eigenvalues in such a way that En(−k) =
En(k) for n = 1, . . . , 2nb. Equation (15) then implies that
Enb+n(k) = −En(k) for n � nb and En−nb (k) = −En(k) for
n > nb. Thus the spectrum is symmetric at each k and the
absolute values |En(k)| are twofold degenerate.

Adding an odd correction δEn(k), we obtain new eigenen-
ergies

Ẽn(k) = En(k) + δEn(k). (C1)

We have Ẽn(−k) = En(k) − δEn(k) and charge-conjugation
symmetry implies that there is another eigenenergy

Ẽn′ (k) = −Ẽn(−k) = −En(k) + δEn(k) (C2)

at k, where n′ = nb + n for n � nb and n′ = n − nb for n > nb.
Importantly, the unperturbed energy of band n′ has opposite
sign compared to the energy of band n but their shift is the
same. Let En(k) � 0 and En′ (k) � 0 without loss of gen-
erality. Then there are two cases: In region A, defined by
|δEn(k)| � En(k), the absolute values are

|Ẽn(k)| = En(k) + δEn(k), (C3)

|Ẽn′ (k)| = En(k) − δEn(k). (C4)

The shift of the absolute values appearing in Uel is then oppo-
site for the two bands and drops out when the sum over bands
is performed.

In region B with |δEn(k)| > En(k), the absolute values
depend on the sign of δEn(k). We find

|Ẽn(k)| = sgn[δEn(k)]En(k) + |δEn(k)|, (C5)

|Ẽn′ (k)| = − sgn[δEn(k)]En(k) + |δEn(k)|. (C6)

The unperturbed values thus cancel in Uel but the shifts do not.
The shift of the electronic internal energy reads as

δUel = −1

4

∑
(k,n)∈B

|En(k) + δEn(k)| + 1

4

∑
(k,n)∈B

|En(k)|

= 1

4

∑
(k,n)∈B

[−|δEn(k)| + |En(k)|] < 0, (C7)

where the sum is only over the region B for each band
n = 1, . . . , 2nb since in region A the shifts drop out. δUel is
negative since |δEn(k)| > |En(k)| in region B.

For small distortions, the change in the electronic internal
energy is dominated by states close to the Fermi energy, i.e.,
close to the BFSs of the undistorted superconductor. In partic-
ular, region B is restricted to the vicinity of the BFSs. We can
therefore expand the unperturbed quasiparticle energies and
the odd corrections about momenta kF on the BFSs:

En(k) ∼= vn(kF ) · (k − kF ), (C8)

δEn(k) ∼= δEn(kF ). (C9)

Here, vn(kF ) ≡ ∂En(k)/∂k|k=kF is the Fermi velocity of the
quasiparticles at k = kF . We now go over to a momentum
integral and write

δUel
∼= V

4

2nb∑
n=1

∫
B

d3k

(2π )3
[|vn(kF ) · (k − kF )| − |δEn(kF )|]

= V

32π3

2nb∑
n=1

∫
BFS

d2kF

∫
|vn(kF )k⊥| � |δEn(kF )|

dk⊥

× [|vn(kF )k⊥| − |δEn(kF )|], (C10)

where vn(kF ) = |vn(kF )|, k⊥ = |k⊥|, and k⊥ = k − kF , cho-
sen normal to the BFS, i.e., parallel to vn(kF ). The integral∫

BFS is over the full BFS. The Jacobian equals unity since the
transformation is a pure rotation. Evaluating δUel further, we
obtain

δUel
∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF

[
vn(kF )k2

⊥
∣∣∣|δEn(kF )|/vn(kF )

0

− 2|δEn(kF )| |δEn(kF )|
vn(kF )

]

= − V

32π3

2nb∑
n=1

∫
BFS

d2kF
δE2

n (kF )

vn(kF )
. (C11)

This contribution is finite, negative, and of second order in
the magnitude � = |�| of the distortions. This scaling results
from one power of � from the size of the region B and
another power from the energy reduction within this region.
The result shows that the tilting of the bands alone would lead
to a strong-coupling instability: The prefactor of �2 must be
sufficiently large in magnitude to overcome the elastic energy.

Next, we treat the case that the distortion gaps out the BFSs
but leaves the spectrum symmetric. Then for any perturbed
band energy Ẽn(k), there is an n′ with Ẽn′ (k) = −Ẽn(k). We
take Ẽn(k) � 0 and Ẽn′ (k) � 0, without loss of generality. In
the vicinity of the unperturbed BFSs of bands n and n′, we
then have

Ẽn(k) ∼=
√

v2
n (kF )k2

⊥ + η2
n(kF ), (C12)

Ẽn′ (k) ∼= −
√

v2
n (kF )k2

⊥ + η2
n(kF ), (C13)

where ηn(kF ) > 0 is half the distortional energy gap at mo-
mentum kF on the unperturbed BFS. We again split the
integration in Uel into an integral over the BFSs and an integral
over k⊥ in the direction perpendicular to it. However, now the
integration is not restricted to some part of the Brillouin zone.
Moreover, the k⊥ integral diverges if extended to R. It thus
requires a cutoff 
, which, in principle, comes from high-
energy physics not included in the expansion and also depends
on kF . The situation is very similar to the superconducting
instability and like in standard BCS theory we treat 
 as a
constant, which does not qualitatively affect the results, and

024521-18



DISTORTIONAL WEAK-COUPLING INSTABILITY OF … PHYSICAL REVIEW B 103, 024521 (2021)

write

δUel
∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF

∫ 


−


dk⊥
[−√v2

n (kF )k2
⊥ + η2

n(kF ) + vn(kF )|k⊥|]

= V

32π3

2nb∑
n=1

∫
BFS

d2kF vn(kF )
∫ 


−


dk⊥

[
|k⊥| −

√
k2
⊥ + η2

n(kF )

v2
n (kF )

]
. (C14)

Evaluation of the k⊥ integral gives

δUel
∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF vn(kF )

[



(

 −

√

2 + η2

n(kF )

v2
n (kF )

)
+ η2

n(kF )

v2
n (kF )

ln
ηn(kF )
vn(kF )


 + η2
n (kF )

v2
n (kF )

⎤
⎦

∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF

[(
− ln 2 − 1

2

)
η2

n(kF )

vn(kF )
+ η2

n(kF )

vn(kF )
ln

ηn(kF )

vn(kF )


]
, (C15)

where we have used that 
 is large. Since the gap ηn(kF ) is generically of first order in � the first term in the brackets is again
of order O(�2). However, the second term has an additional logarithmic factor. This Cooper logarithm leads to a weak-coupling
instability: δUel can always be reduced by making � and thus ηn nonzero.

Rewriting δUel as

δUel
∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF
η2

n(kF )

vn(kF )

[
− ln 2 − 1

2
+ ln

η0

vn(kF )

+ ln

ηn(kF )

η0

]
, (C16)

where η0 is an arbitrary constant reference energy, we see that the cutoff 
 does not affect the Cooper logarithm but only
renormalizes the coefficient of the O(�2) term. This term is expected to be dominated by the elastic energy.

Finally, we turn to the generic case combining an odd-in-momentum band shift with the opening of gaps at the band crossings.

For each band, momentum space is split into two regions, where region A is defined by |δEn(k)| �
√

v2
n (kF )k2

⊥ + η2
n(kF ) and

region B by |δEn(k)| >

√
v2

n (kF )k2
⊥ + η2

n(kF ).
If the gap is larger than or equal to the shift, ηn(kF ) � |δEn(kF )|, then only region A exists. It is still true that the shift cancels

out in region A so that we only obtain the contribution from the gap. If this holds everywhere on the BFSs, then Eq. (C16) for
the electronic internal energy remains valid.

In the general case, where regions of type B exist, we define

kc(kF ) ≡
√

δE2
n (kF ) − η2

n(kF )

vn(kF )
(C17)

for |δEn(kF )| � ηn(kF ). If kc(kF ) exists a band crosses the Fermi energy at k⊥ = ±kc(kF ). This means that the distorted
superconductor still has BFSs. In region B, i.e., for |k⊥| < kc(kF ), we get a cancellation of the even parts of the perturbed
bands analogous to Eq. (C10). The change in the electronic internal energy reads as

δUel
∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF 2

{∫ kc (kF )

0
dk⊥[−|δEn(kF )| + vn(kF )k⊥]

+
∫ 


kc (kF )
dk⊥

[−√v2
n (kF )k2

⊥ + η2
n(kF ) + vn(kF )k⊥

]}

= V

16π3

2nb∑
n=1

∫
BFS

d2kF

{∫ 


0
dk⊥vn(kF )k⊥ −

∫ kc (kF )

0
dk⊥|δEn(kF )| −

∫ 


kc (kF )
dk⊥

√
v2

n (kF )k2
⊥ + η2

n(kF )

}

∼= V

32π3

2nb∑
n=1

∫
BFS

d2kF

{
−2|δEn(kF )|kc(kF ) − η2

n(kF )

2vn(k)
+ kc(kF )

√
v2

n (kF )k2
c (kF ) + η2

n(kF )

+ η2
n(kF )

vn(kF )
ln

vn(kF )kc(k) +√
v2

n (kF )k2
c (kF ) + η2

n(kF )

2vn(kF )


}
, (C18)

where we have used that 
 is large. We define the band shift in units of the gap as

αn(kF ) ≡ |δEn(kF )|
ηn(kF )

(C19)
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so that

kc(kF ) ≡
⎧⎨
⎩

ηn(kF )
√

α2
n (kF ) − 1

vn(kF )
, for αn(kF ) > 1,

0, for αn(kF ) � 1.
(C20)

We now split the integral over the unperturbed BFSs into regions which αn(kF ) ≷ 1 and obtain

δUel
∼= V

32π3

2nb∑
n=1

{∫
BFS

d2kF

(
− ln 2 − 1

2

)
η2

n(kF )

vn(kF )
+
∫

BFS | αn(kF )�1
d2kF

η2
n(kF )

vn(kF )
ln

ηn(kF )

vn(kF )


+
∫

BFS | αn(kF )>1
d2kF

[
ηn(kF )|δEn(kF )|

vn(kF )

√
α2

n (kF ) − 1 + η2
n(kF )

vn(kF )
ln

[
√

α2
n (kF ) − 1 + αn(kF )]ηn(kF )

vn(kF )


]}

= V

32π3

2nb∑
n=1

∫
BFS

d2kF
η2

n(kF )

vn(kF )

[
− ln 2 − 1

2
+ u(αn(kF )) + ln

ηn(kF )

vn(kF )


]

= V

32π3

2nb∑
n=1

∫
BFS

d2kF
η2

n(kF )

vn(kF )

[
− ln 2 − 1

2
+ ln

η0

vn(kF )

+ u(αn(kF )) + ln

ηn(kF )

η0

]
, (C21)

with

u(α) ≡
{

α
√

α2 − 1 + ln
(√

α2 − 1 + α
)
, for α > 1,

0, for α � 1.
(C22)

The terms with indices n and n′ = n ± nb contribute equally to the final sum in Eq. (C21) so that we can restrict the sum to
n = 1, . . . , nb and multiply by two. This leads to the final result given in Eq. (17).
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