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Migdal-Eliashberg theory describes the properties of the normal and superconducting states of electron-
phonon-mediated superconductors based on a perturbative treatment of the electron-phonon interactions. It is
necessary to include both electron and phonon self-energies self-consistently in Migdal-Eliashberg theory in
order to match numerically exact results from determinantal quantum Monte Carlo in the adiabatic limit. In this
work we provide a method to obtain the real-axis solutions of the Migdal-Eliashberg equations with electron
and phonon self-energies calculated self-consistently. Our method avoids the typical challenge of computing
cumbersome singular integrals on the real axis and is numerically stable and exhibits fast convergence. Analyzing
the resulting real-frequency spectra and self-energies of the two-dimensional Holstein model, we find that self-
consistently including the lowest-order correction to the phonon self-energy significantly affects the solution of
the Migdal-Eliashberg equations. The calculation captures the broadness of the spectral function, renormalization
of the phonon dispersion, enhanced effective electron-phonon coupling strength, minimal increase in the electron
effective mass, and the enhancement of superconductivity which manifests as a superconducting ground state
despite strong competition with charge-density-wave order. We discuss surprising differences in two common
definitions of the electron-phonon coupling strength derived from the electron mass and the density of states,
quantities which are accessible through experiments such as angle-resolved photoemission spectroscopy and
electron tunneling. An approximate upper bound on 2�/Tc for conventional superconductors mediated by
retarded electron-phonon interactions is proposed.

DOI: 10.1103/PhysRevB.103.024520

I. INTRODUCTION

The first microscopic theory of superconductivity was de-
veloped by Bardeen, Cooper, and Schrieffer (BCS theory)
in 1957 [1]. BCS theory assumes an instantaneous and non-
local interaction between any pair of electrons within the
Debye energy of the Fermi surface and this theory turns out
to be an inadequate description for superconductors where
the electron-phonon (el-ph) interaction is strong. The subse-
quent theory of superconductivity developed by Migdal and
Eliashberg is designed to work at stronger el-ph coupling and
considers a more realistic el-ph interaction which is retarded
in time and successfully captures the frequency and momen-
tum dependence el-ph coupling induced lifetimes and mass
enhancement of electronic quasiparticle states near the Fermi
level [2–4].

There are different versions of Migdal-Eliashberg (ME)
theory which differ in their level of approximation depend-
ing on the choice of whether to solve the ME equations
self-consistently and whether to include the renormalization
of the phonon propagator. Our interest here is in the self-
consistent versions of ME theory and we will refer to the
version which accounts for renormalization of the phonon
propagator as renormalized Migdal-Eliashberg (RME) theory
and the version where the phonon propagator remains bare as

unrenormalized Migdal-Eliashberg (UME) theory. Previous
work demonstrates remarkably good quantitative agreement
between RME theory and numerically exact determinantal
quantum Monte Carlo (DQMC) simulations on clusters of the
same size in the limit where the dimensionless el-ph coupling
is sufficiently weak and the phonon energy scale is small
compared to the electronic bandwidth [5,7,8]. In particular,
RME theory accurately captures the properties of the super-
conducting state of the system up to a critical value of the
electron-phonon coupling strength beyond which ME theory
breaks down due to lattice instabilities such as the formation
of bipolarons or charge-density wave (CDW) order [8,9]. The
self-consistent version of ME without renormalization of the
phonon propagator is less accurate [5,7].

ME theory is commonly used to phenomenologically de-
scribe properties of the normal and superconducting states
arising from el-ph interactions across many different materi-
als. ME theory has been successfully applied to understand
the superconducting transition temperature in LaH10 under
high pressure [10,11], reproduce the single-particle tunnel-
ing density of states in lead [12], and provide theoretical
support in the analysis of electronic band renormalizations
seen in angle-resolved photoemission (ARPES) experiments
in strongly correlated systems such as the cuprates [13]. In
some applications, self-consistent ME solutions are needed
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as in the case of reproducing replica bands arising from a
forward scattering electron-phonon interaction at the interface
of monolayer FeSe on an SrTiO3 substrate or graphene/h-BN
heterostructures [14–16], and reproducing the phonon peak
positions arising from multiphonon scattering processes ob-
served in high-resolution electron-tunneling spectroscopy on
Nb-doped SrTiO3 [17]. With advances in inelastic x-ray scat-
tering and neutron scattering, experiments are able to more
accurately measure the dispersion and linewidths of phonons
[18,19]. Real-frequency solutions of the RME equations could
prove to be a useful tool for understanding the phenomenol-
ogy of phonon spectral functions.

The ME equations on the imaginary axis can be naturally
solved via numerical methods thanks to the fact that the
Matsubara frequencies are discretely spaced on the imagi-
nary axis requiring simple summations and no integrations of
functions with singularities. Furthermore, the imaginary axis
solutions are numerically stable which is especially important
when attempting to perform self-consistent calculations in
challenging regimes such as at low temperature or moderately
strong interaction strength. However, obtaining the solution
of ME theory on the real axis in principle provides access to
any property of the normal or superconducting state of the
system and allows for direct comparison with experimentally
accessible quantities such as the electron mass enhancement
or the superconducting gap size. The usual form for the real
axis equations is obtained from the imaginary axis equations
by introducing the spectral representation for the propagators
and performing the Matsubara frequency sum. Although the
real axis equations have historically been solved in this form
[12,20–22], these equations are cumbersome to solve numeri-
cally because they require evaluating principal-value integrals
on every iteration and suffer from slow convergence [23].

To avoid the difficulties of solving the ME equations on
the real axis, it is common to use Padé approximants to
analytically continue the imaginary axis solution to the real
axis or even to avoid analytic continuation entirely by us-
ing imaginary axis proxies such as correlators evaluated at
τ = β/2 [2,5,9,24–27]. Padé approximants attempt to find the
rational functions which interpolate the values of the electron
or phonon Green’s function or self-energy on the imaginary
axis and capture the nonanalyticities in the lower half of the
complex plane [24]. However, this method is an uncontrolled
approximation and not guaranteed to produce the correct ana-
lytic continuation, especially at higher temperatures, and does
not always provide a faithful representation of the phonon
structure at higher frequencies [2,25]. Attempts have also been
made to use the extended Koopmans’ theorem to perform
analytic continuation of the imaginary axis Green’s function
but in practice the accuracy was comparable to that of Padé
approximants [28].

The GW approximation for perturbatively calculating the
self-energy of a many-body system of electrons shares many
similarities with the RME approximation as the self-energies
are structurally the same. Within the GW community, there
are several other methods which have been proposed for solv-
ing the real-axis GW equations which avoid the challenges of
working directly on the real axis such as the contour defor-
mation technique [29]. Other examples include plasmon-pole
models for the screened Coulomb interaction or multipole

models for the electron self-energy such as two-pole models
or Padé approximants [30–33]. However, such methods often
make restrictive assumptions which we would like to avoid
and their accuracy is hard to judge.

Marsiglio et al. provide an iterative method for analytic
continuation of the UME equations in Ref. [23] which avoids
singular integrals and exhibits fast convergence. In this work,
we extend this iterative method to the RME equations while
maintaining the same benefits of the original method. The
resulting analytic continuation is well suited for numerical
evaluation and converges quickly. Using this method, we ob-
tain the electron and phonon spectral functions in the normal
and superconducting states and take care to work in a regime
of electron-phonon coupling strength where RME theory is
valid. Treating both the electron and phonon propagators on
an equal footing results in significant changes to the properties
of the normal and superconducting states as compared to the
case where the phonon propagator remains bare. The method
can be applied to problems beyond traditional ME theory if
the self-energies have the same structure as those in the RME
equations, as in the polaronic version of the tight-binding
method studied in Ref. [22].

Approximation-free techniques such as DQMC are typi-
cally computationally expensive and thereby generally limited
to studies performed on small lattices and high tempera-
tures [34,35]. Although some DQMC simulations of el-ph
coupled systems such as the Holstein model are free of
the Fermion sign problem, the long phonon autocorrelation
times are still computationally prohibitive for large systems
at low temperatures [36]. Furthermore, analytically contin-
uing DQMC results is tricky and sometimes dubious due
to the nature of the problem and the inherent noise in the
DQMC data [37]. The iterative method described in this work
provides a computationally efficient method of obtaining
real-axis spectra in the adabiatic, weak-coupling limit where
RME theory provides a good description of the paradigmatic
and widely studied Holstein model [5,7–9,38–49]. The di-
mensionless electron-phonon coupling strength, λ, generally
controls whether the system exhibits metallic behavior, super-
conductivity, or charge-density wave order at low temperature
[8,9,50]. We comment on differences in two common defini-
tions of λ which are accessible in experiments such as ARPES
and electron tunneling [13,51]. We find that λ determined
from electron mass renormalization is significantly different
and less sensitive to superconducting correlations than λ de-
rived from the joint electron-phonon density of states at the
Fermi level. We examine the analytically continued electronic
spectral function in the superconducting state at the largest
value of λ for which RME theory is applicable to provide
new insights on the maximal value of 2�/Tc attainable in
conventional superconductors.

II. MODELS AND METHODS

We consider the Holstein Hamiltonian [52] given by

H =
∑
k,σ

εk c†
k,σ ck,σ + �

∑
q

(
b†

qbq + 1

2

)

+ α√
N

∑
k,q,σ

c†
k+q,σ ck,σ (b†

−q + bq), (1)
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where N is the number of lattice sites of a two-dimensional
square lattice, � is the frequency of a dispersion-less Einstein
phonon, εk is the band dispersion, α is a the electron-phonon
coupling constant, c†

k,σ creates an electron with momentum
k and spin σ , and we have set h̄ = M = 1. In the case of a
momentum independent el-ph coupling constant, we define
the bare dimensionless electron-phonon coupling strength

λ0 = 2α2ρ(EF )

�
, (2)

where ρ(EF ) is the density of states at the Fermi level.
In ME theory the equation for the electron self-energy on

the imaginary axis is given by

�(k, iωn) = − α2

βN

∑
q,m

D(q, iνm)τ3G(k − q, iωn − iνm)τ3

(3)

and the phonon self-energy is given by

�(q, iνm) = α2

βN

∑
k,n

Tr[G(k + q, iωn + iνm)τ3G(k, iωn)τ3],

(4)

where the τi are the Pauli matrices, β is the in-
verse temperature, ωn = 2nπ/β, νm = (2m + 1)π/β,
G(k, iωn) = (iωnτ0 − εkτ3 − �(k, iωn))−1, and D(q, iνm) =
−2�/[ν2

m + �2 + 2��(q, iνm)]. �(k, iωn) and G(k, iωn) are
2 × 2 Nambu matrices with nonzero off-diagonal components
in the superconducting phase.

For numerical evaluation of Eqs. (3) and (4) we use the
fast Fourier transform (FFT) to perform convolutions in both
imaginary frequency and momentum. We combine a higher-
order evaluation of the Fourier integral described in Ref. [53]
with a correction accounting for the discontinuity of the elec-
tronic Green’s function in imaginary time. Linear mixing at
every iteration with the result from the previous iteration is
used to stabilize convergence of the self-energies during the
self-consistent iterations.

The expressions for the retarded electron and phonon self-
energies on the real axis can be obtained from the imaginary
axis equations by introducing the spectral representation for
the propagators, performing the Matsubara frequency summa-
tion, analytically continuing the result, and performing one
of the contour integrals over frequency by making use of
the analyticity of the retarded Green’s function in the upper
half-plane (for details of the derivation see Appendix A). The
resulting expressions are

�R(k, ω) = −α2

N

∑
q

∫ ∞

−∞
dzB(q, z)τ3

{
1

β

∑
m

G(k − q, iωm)

ω − iωm − z
− GR(k − q, ω − z)[1 + nB(z) − nF (ω − z)]

}
τ3

(5)

�R(q, ω) = α2

N

∑
k

∫ ∞

−∞
dzTr

(
A(k + q, z)τ3

{
1

β

∑
m

G(k, iωm)

ω + iωm − z
− GA(k, z − ω)[nF (z − ω) − nF (z)]

}
τ3

)
,

where GR/A(k, ω) is the retarded/advanced Green’s function,
A(k, ω) = − 1

π
ImGR(k, ω) is the electronic spectral function,

B(k, ω) = − 1
π

ImDR(k, ω) is the phonon spectral function,
nB(ω) is the Bose-Einstein distribution function, and nF (ω)
is the Fermi-Dirac distribution function. The equation for
the electronic self-energy �R(k, ω) in Eq. (5) is derived in
Ref. [23]. The equation for the phonon self-energy �R(q, ω)
is the additional equation needed to analytically continue
RME theory. These equations reduce to the familiar non-self-
consistent single-iteration form for the electron and phonon
self-energies by replacing the propagators with the bare ex-
pressions. In order to make use of these equations and to
obtain the analytic continuation to the real axis, the ME
equations are first solved self-consistently on the imaginary
axis and the results are used as inputs to the pair of equa-
tions in Eq. (5) which are also solved self-consistently. In
practice we find that the analytic continuation to the real
axis converges quickly (typically requiring an order of mag-
nitude fewer iterations than converging the imaginary axis
calculation). Although this method of analytic continuation is
more costly than using Padé approximants, the method is still
computationally tractable on large system sizes thanks to the
use of the FFT to perform the convolutions in real frequency
and momentum. Implementation of the method has been made
freely available to the public [54].

III. RESULTS

DQMC and other numerical studies have examined the
accuracy of RME theory and have generally found it to be
quantitatively accurate up to a critical value of λ0 of order
1 [8,38,55]. Using the method of analytic continuation de-
scribed above, we examine the real-axis spectral functions
and self-energies obtained from RME theory within its range
of validity. We choose parameters identical to as those in
Ref. [8] representing a cuprate-like square-lattice band struc-
ture with next-nearest-neighbor hopping t ′ = −0.3t at an
electron filling of n = 0.8 for which the density of states
at the Fermi level for the bare band-structure is ρ(EF )t =
0.3, an Einstein phonon with a phonon frequency of � =
0.17t corresponding to an adiabatic ratio �/EF = 0.1 for
a dispersion-less Einstein mode, and a dimensionless el-ph
coupling strength of λ0 = 0.4 beyond which the ME theory
rapidly breaks down and diverges from the DQMC results.
For the parameter regime considered here, there is remark-
ably good quantitative agreement between ME theory and
DQMC results for the single-particle electronic self-energy
and superconducting susceptibility [8]. In Appendix B, we
also show results for a half-filled band with t ′ = 0 and at
temperatures above the transition to the charge-density wave
phase find the same qualitative results as for n = 0.8 and
t ′ = −0.3t .
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FIG. 1. Holstein model in two dimensions on a 120 × 120
lattice, t ′ = −0.3t , n = 0.8, λ0 = 0.4, βt = 16, �/EF = 0.1.
(a) Phonon spectral function for the RME theory. (b) Phonon spectral
function at selected momentum points. (c) α2F (ω) computed as an
average over the Fermi surface and corresponding λ for UME theory
(blue) and RME theory (orange).

A. Normal state

We first consider ME theory in the normal state at a tem-
perature of βt = 16 which is a temperature below the phonon
energy scale. The solution of the self-consistent RME equa-
tions captures the renormalization of the phonon dispersion
and linewidth due to electron-phonon interaction. Figure 1

shows phonon-related quantities such as the phonon spectral
function and the α2F (ω) function introduced by McMillan
and Rowell [51]. The phonon frequency softens significantly
from the bare � = 0.17t value as seen in Fig. 1(a) especially
at a wave vector corresponding to the weak-coupling Fermi
surface nesting for this band structure near q = (π, π ). The
phonon spectral function for selected values of the wave vec-
tor q are shown in Fig. 1 illustrating the increased linewidth
of the phonon mode caused by the el-ph interactions. The
peak in the a2F (ω) function correspondingly moves to-
ward lower frequency and broadens as shown in Fig. 1(c).
The effective electron-phonon coupling is computed as λ =
2

∫ ∞
0 [α2F (ω)/ω]dω and is more than four times larger in the

renormalized case (λ = 1.7) as compared to the unrenormal-
ized case (λ = 0.4) due to a combination of increased spectral
weight in the phonon spectral function due to an increase in
the phonon occupation number and the shift of the peak of
α2F (ω) to lower frequency. As will be discussed below, the
larger effective electron-phonon coupling strength leads to an
enhanced superconducting Tc for the RME theory despite the
softening of the phonon. We note that these observations are
similar to the behavior observed in RME theory outside the
adiabatic limit with � = 1t as noted in Ref. [26] which is a
limit where RME theory appears to be less reliable based on
comparison with DQMC [8].

The electronic spectra for the RME theory exhibit a
significant broadening/incoherence compared to the unrenor-
malized case. As seen in the imaginary part of of the electronic
self-energy in Fig. 2(b), the broadening is over 2.5 times
larger in the renormalized case which can be understood as
a result of the increased number of phonons in the renor-
malized calculation caused by the tendency toward lattice
instability as signified by the softening of the phonon. Based
on Eq. (5), the imaginary part of the electronic self-energy
has a term proportional to the the phonon spectral func-
tion times the Bose occupation factor convolved with the
electronic density states, a quantity which increases as the
phonon softens since

∫
dωnB(ω)B(q, ω) = 2Nq + 1 where Nq

is the number of phonons at wave vector q. In the UME
calculation the average number of phonons per site is 〈N〉 =
1
2 [nB(�) − nB(−�) − 1] = 0.07 and in the RME calculation
we find 〈N〉 = 0.85.

The difference in broadening of the electronic spectral
functions between UME and RME is apparent in Figs. 2(a),
2(b) and 2(d). Figures 2(a) and 2(b) compares the electronic
spectral function along a cut in momentum space with ky =
π/2 and a kink in the spectral function at the phonon en-
ergy is visible at the phonon frequency. As the self-energy
has only a weak momentum dependence in the RME calcu-
lation, the strength of the kink where the band crosses the
phonon frequency is similar across other cuts in momentum
space. Figure 2(d) compares the energy distribution curves at
a point on the Fermi surface, clearly showing the qualitative
difference in the broadening. Note that the good agreement
between RME theory and DQMC suggests that this intrinsic
broadening would not be undone by including higher-order
diagrams or vertex corrections.

It is interesting to note that the slope of the real part
of the electronic self-energy is similar between UME and
RME theory near the Fermi energy despite the significant
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FIG. 2. Holstein model in two dimensions on a 120 × 120 lattice, t ′ = −0.3t , n = 0.8, λ0 = 0.4, βt = 16, �/EF = 0.1. (a) Electronic
spectral function for ME theory without renormalization with a momentum-space cut along (0, π/2) to (π , π/2). (b) Spectral function for
RME theory for the momentum-space cut along (0, π/2) to (π , π/2). (c) Real and imaginary parts of the electronic self-energies for UME
theory (blue) and RME theory (orange) at the point on the Fermi surface with ky = π/2. (d) Spectral functions for the renormalized and
unrenormalized cases at the point on the Fermi surface with ky = π/2.

differences in the imaginary part. As will be discussed later,
this means the electron mass renormalization is similar be-
tween the renormalized and unrenormalized cases despite
much stronger effective el-ph coupling. The results for a half-
filled system without next-nearest-neighbor hopping (t ′ = 0)
also in the �/EF < 1 limit and below the charge-density wave
ordering temperature are qualitatively similar to the results
described here and can be found in Appendix B. Parame-
ters were chosen to match those of Ref. [5] where it was
also shown that the superconducting and charge-density wave
susceptibilities from RME theory agree better with DQMC
calculations than those from UME theory.

B. Superconductivity

Including the phonon self-energy in the ME theory in fact
changes the ground state of the system from a charge-density
wave to a superconductor in the weak-coupling, adiabatic
regime considered here. This can be seen from the temper-
ature dependence of the charge-density-wave susceptibility,
χCDW, and the superconducting susceptibility, χSC, in the nor-
mal state. We compute the susceptibilities within the Migdal
approximation illustrated by the diagrams in Fig. 3(a) which
correspond to summing the series of particle-hole ring dia-
grams for the charge-density wave susceptibility and summing
the series of particle-particle ladder diagrams for supercon-
ducting susceptibility. The charge-density wave susceptibility
is given by

χCDW(q) = χ0(q, iν0)

1 + α2D0(q, iν0)χ0(q, iν0)

χ0(q, iνm) = − 2

Nβ

∑
k,n

G(k, iωn)G(k + q, iωn + iνm)
(6)

and the superconducting susceptibility is given by

χSC = 1

Nβ

∑
k,m

F (k, iωm)�(k, iωm)

F (k, iωm) = G(k, iωm)G(−k,−iωm)

�(k, iωn) = 1 − α2

Nβ

∑
q,m

F (k − q, iωn − iνn)D(q, iνm)

×�(k − q, iωn − iνm). (7)

The charge-density-wave susceptibility is suppressed and
the superconducting susceptibility is enhanced for RME the-
ory relative to UME theory as seen in Fig. 3(b) which
plots the inverse of the susceptibilities versus temperature.
The charge-density wave susceptibility, χCDW, is reported
at the wave vector, q, for which the susceptibility as-
sumes its maximum value. In the unrenormalized case, the
charge-density-wave susceptibility diverges before the super-
conducting susceptibility, indicating that the system enters the
charge-density-wave phase at a temperature of around 0.1t . In
the renormalized case, the charge-density-wave susceptibility
is relatively large in magnitude but does not appear to tend
toward a divergence at a finite temperature. The supercon-
ducting susceptibility narrowly wins and diverges at a finite
temperature of Tc = 0.013t . The enhancement of supercon-
ductivity in the renormalized case make sense given the larger
effective el-ph coupling strength.

We next consider the same system at a lower temper-
ature of βt = 100 in order to access the superconducting
phase. A 0.03t superconducting gap is visible in the electronic
spectral function in Fig. 4(a). The superconducting order pa-
rameter, given by the size of the superconducting gap, is
calculated as �(k) = �12(k,ω)

Z (ω) |ω=0, where ω(1 − Z (k, ω)) =
1
2 [�11(k, ω) − �11(k,−ω)] and the subscript indices on
the self-energy indicate either the diagonal or off-diagonal
Nambu components. The superconducting transition temper-
ature based on the temperature at which the superconducting
order parameter goes to zero is Tc = 0.013t , consistent with
the transition temperature obtained from the divergence of the
superconductivity susceptibilities.

Within the very weak coupling limit of BCS theory, the
ratio of twice the superconducting gap to the transition
temperature is set by a universal value given by 2�/Tc =
2π/eγ = 3.53. For strongly coupled superconductors 2�/Tc

generally exceeds the BCS value and an asymptotic value
of 2�/Tc = 12.7 was determined for ME theory for a free
electron gas without competition from a possible CDW
[25,56,57]. Within ME theory, 2�/Tc closely follows a phe-
nomenological form which increases monotonically as a
function of the ratio set by Tc to the phonon energy scale [56].
It has recently been argued that the ratio of Tc to the phonon
frequency for conventional superconductors is bounded by
Tc/� < 0.1 because superconductivity is suppressed at larger
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FIG. 3. Inverse of the superconducting and charge-density wave
susceptibilities for the Holstein model in two dimensions on a 128 ×
128 lattice, t ′ = −0.3t , n = 0.8, λ0 = 0.4, and � = 0.17t (corre-
sponding to �/EF = 0.1). χCDW is reported at the wave vector, q, for
which the susceptibility assumes its maximum value. (a) Diagrams
for the charge-density wave and superconducting susceptibilities in
the Migdal approximation. (b) UME theory. (c) RME theory.

values of λ0 by strong-coupling physics such as the formation
of polarons and/or CDW order. With these considerations
in mind, 2�/Tc should be maximized in a conventional el-
ph-mediated superconductor when Tc/� ≈ 0.1 as any further
increase in λ0 will decrease Tc as well as 2�/Tc.

In our calculation, Tc/� = 0.08 which is close to saturat-
ing the upper bound for conventional superconductors and,
as shown in Fig. 4(b), the order parameter as a function
of temperature does not fit to the BCS form and results in
2�/Tc ≈ 5. We therefore expect that the 2�/Tc ≈ 5 ratio

FIG. 4. Holstein model in two dimensions on a 128 × 128 lattice,
t ′ = −0.3t , n = 0.8, λ0 = 0.4, βt = 100, and � = 0.17t (corre-
sponding to �/EF = 0.1). (a) Electronic spectral function for RME
theory for momentum-space cut along (0, π/2) to (π , π/2).
(b) Superconducting order parameter (gap size) as a function of
temperature for RME theory. Blue line is the gap function obtained
from BCS theory.

represents an approximate upper bound for conventional su-
perconductors with pairing mediated by a strongly retarded
electron-phonon interaction. Indeed, the 2�/Tc ratios exper-
imentally observed in many conventional superconductors as
illustrated in Ref. [56] are generally within the range 2�/Tc �
5. We do not expect that tuning the details of the electronic
band-structure or shape of the Fermi surface would affect
these results significantly because the band-structure consid-
ered here avoids any special Fermi surface nesting conditions.
Choosing a Fermi surface favoring a particular wave vector
for nesting would increase CDW correlations and suppress
superconductivity and the 2�/Tc ratio.

C. Strength of el-ph coupling

Quantifying the strength of electron-phonon coupling in
various materials is of general interest and importance, es-
pecially considering the fact that the optimal regime for
superconductivity in conventional superconductors is sensi-
tive to the electron-phonon coupling strength and occurs at
intermediate electron-phonon coupling strength. To this point
we have discussed the strength of electron-phonon coupling in
terms of the dimensionless electron-phonon coupling constant
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obtained from integrating the α2F (ω) function which is exper-
imentally accessible by electron tunneling experiments under
the assumption that ME theory provides a good description of
the system with an electron-boson spectral function α2F (ω)
describing the effective electron-electron interactions due to a
generic boson exchange and the existence of a well-defined
Fermi surface [25,51,58]. However, another common defi-
nition of electron-phonon coupling strength is based on the
mass enhancement of electronic quasiparticles near the Fermi
surface which can be measured directly through experimental
techniques such as ARPES [13]. The coupling constant de-
rived from the mass renormalization at a given point on the
Fermi surface can be defined in terms of the real part of the
electronic self-energy as [59]

λm(kF ) = −∂�′(kF , ω)

∂ω
|ω=0. (8)

The phonon density of states is of course also k-dependent
and the α2F (ω) function previously used to calculate λα2F is
in fact calculated as a Fermi surface average for which the
equivalent k-dependent λ for the Holstein model is

λα2F (kF ) = 2α2

(2π )2

∮
dk

vF (k)

∫ ∞

0

dω

ω
B(kF − k, ω), (9)

where
∮

denotes integration over the Fermi surface, vF (k) is
the Fermi velocity. The Fermi surface average performed to
compute λm from λm(kF ) and λα2F from λα2F (kF ) is given by

λ =
∮

dk
vF (k)λ(k)∮

dk
vF (k)

. (10)

Clearly, λm and λα2F are two different definitions of the
dimensionless electron-phonon coupling. The definition of λm

is not directly sensitive to the phonon density of states or the
lifetime/broadening of the electronic quasiparticles. λm and
λα2F are in principle related assuming a constant density of
states and low temperature [59]. However, for the general
solution of the ME theory, λm and λα2F are not equivalent,
especially for the case with phonon renormalization. For the
normal state calculation considered above, we find that λm =
0.4 and λα2F = 0.4 for UME theory, and λm = 0.4 and λα2F =
1.7 for RME theory. The similar values of λm are consistent
with the similar slopes seen in the real part of the electronic
self-energy near zero frequency as shown in Fig. 2(c). Within
RME theory, the momentum dependence of λm and λα2F is
even qualitatively different such that λm is maximized at the
node while λα2F is maximized at the antinode as shown in
Fig. 5.

The Holstein model is known to exhibit competition be-
tween SC and CDW/(bi)polaron phases [5,9,38–49]. The
tendency toward formation of polarons is associated with an
increase of λm as the electrons become heavier due to being
dressed by a cloud of phonons. Since the value of λm observed
for both UME and RME theory in the normal state is the same,
the tendency toward formation of CDW order or polarons does
not change significantly with phonon renormalization in the
regime studied here. The same conclusion can be drawn based
on the similarity in magnitude of λ0 and λm.

In contrast to the behavior of λm, we can associate
the significant increase of λα2F with the enhancement of

FIG. 5. Fermionic momentum dependence of the el-ph coupling
along the Fermi surface calculated for RME theory for the Holstein
model in two dimensions on a 120 × 120 lattice, t ′ = −0.3t , n =
0.8, βt = 16, λ0 = 0.4, and � = 0.17t (corresponding to �/EF =
0.1). Inset shows the Fermi surface and the definition of the angle θ .

superconductivity observed in the renormalized calculation.
Therefore it appears λα2F is likely more informative and sensi-
tive to superconducting correlations than λm. In summary, by
including phonon self-energy, the superconducting tendency
is enhanced more significantly than the polaronic/CDW ten-
dency based on an analysis of λm versus λα2F as well as
the strengths of the superconducting and charge-density wave
susceptibilities. Given the significant (factor of four) differ-
ence between λm and λα2F in our calculations, care should be
taken when drawing conclusions about the effective strength
of el-ph coupling as is relevant to superconductivity or relating
λm to λα2F .

Although it is evident from the BCS expression Tc ≈
ωD exp(−1/λ) (and similarly by the ωln prefactor in the for-
mula for Tc obtained for ME theory by McMillan, Allen,
and Dynes [60,61]) that a larger (bare) phonon frequency is
favorable for superconductivity, the softening of a phonon
mode can be counteracted by a boost in the electron-phonon
coupling strength arising from increased spectral weight
in the phonon spectral function (increased phonon occupation
number) and a shift of the phonon density of states to lower
frequency. In this work we account for phonon softening and
damping due to the el-ph interactions, but Tc enhancement
due to the increase of λ in connection to phonon softening
and damping can also occur by other mechanisms such as
disorder-induced scattering or the effects of phonon anhar-
monicity [62,63]. Therefore, softening of a phonon mode does
not necessarily suppress superconductivity. This is surprising
based on the intuition that phonon softening is often associ-
ated with stronger charge correlations which are antagonistic
toward superconductivity. However it appears that at least
in the regime studied here, phonon softening is not always
directly indicative of the strength of charge correlations as is
evident by the suppression of the charge-density wave sus-
ceptibility and the minimal change of electron effective mass.
Including the effects of phonon self-energy in the calculations
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can actually tip the scales in the delicate balance of CDW/SC
competition in favor of superconductivity.

IV. CONCLUSION

RME theory accounts for the interaction between electrons
and phonons at the same lowest-order diagrammatic level of
approximation for both the electron and phonon self-energies
and, in contrast to UME theory, quantitatively agrees with
numerically exact results from DQMC in the weak-coupling,
adiabatic limit. The method described in this work allows
for a numerically efficient analytic continuation of the solu-
tion of the imaginary-axis solutions of the RME equations,
providing an improvement over approximate methods of an-
alytic continuation such as Padé approximants and can be
applied to a range of self-energy approximations such as the
GW approximation [33]. The real-frequency solution of the
RME equations can provide insight into the renormalization
of the phonon propagator in weakly coupled electron-phonon
systems which is accessible to experiments such as inelastic
x-ray scattering and neutron scattering. Renormalization of
the phonon propagator can enhance the effective electron-
phonon coupling strength (λα2F ) without significant electron
mass enhancement (λm), resulting in an enhancement of su-
perconductivity as compared to calculations performed with
unrenormalized phonons. The dimensionless electron-phonon
coupling strength derived from electron mass renormalized
and the McMillan function α2F (ω) are quantitatively and
qualitatively different when significant renormalization of the
phonon mode occurs. The resulting superconducting state ex-
hibits a 2�/Tc ratio larger than that of the very weak-coupling
limit described by BCS theory. As our calculation resides
in the adiabatic limit at a critical value of electron-phonon

coupling beyond which superconductivity is suppressed by
strong-coupling physics, the 2�/Tc ≈ 5 ratio sets an approx-
imate upper bound for conventional superconductors with
phonon-mediated pairing with strongly retarded interactions.
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APPENDIX A: DERIVATION OF REAL-AXIS EQUATIONS

This section presents the derivation of the equation for the
real-axis phonon self-energy in Eq. (5). The derivation of the
electronic self-energy is available in Ref. [23]. The phonon
self-energy in the normal state on the imaginary axis is
given by

�R(q, iνn) = 2α2

Nβ

∑
k,m

G(k, iωm)G(k + q, iωm + iνn). (A1)

Introducing the spectral representation for the Green’s func-
tion G(iωm, k) = ∫ ∞

−∞ dz A(q,z)
iωm−z and performing the Matsubara

frequency sum yields

�R(q, iνn) = 2α2

N

∑
k,m

∫ ∞

−∞
dzdz′ A(k, z)A(k + q, z′)[nF (z) − nF (z′)]

iνn + z − z′ . (A2)

Performing the analytic continuation iνn → ω + iδ and using A(k, z) = − 1
π

ImGR(k, z) gives

�R(q, ω + iδ) = −2α2

Nπ

∑
k,m

∫ ∞

−∞
dzdz′ A(k + q, z′)ImGR(k, z)[nF (z) − nF (z′)]

ω + z − z′ + iδ
. (A3)

The final form of the real-axis equation which avoids principal value integrations is obtained by analytically performing the
integral over z in Eq. (A3). To perform this integral consider the following integral of only those parts of Eq. (A3) which depend
on z,

I =
∫ ∞

−∞
dzdz′ ImGR(k, z)[nF (z) − nF (z′)]

ω + z − z′ + iδ
. (A4)

The next step is to separate this integral into separate integrals for the real and imaginary parts in order to make use of the
analyticity of GR(z, k) in the upper half-plane for contour integration. Defining ω± = ω − z − z′ ± iδ, the integral becomes

I = Im

{∫ ∞

−∞
dz[nF (z) − nF (z′)]

GR(k, z)

2

(
1

ω+
+ 1

ω−

)}
− iRe

{∫ ∞

−∞
dz[nF (z) − nF (z′)]

GR(k, z)

2

(
1

ω+
− 1

ω−

)}
. (A5)

These integrals can be evaluated by considering a contour integral over the upper complex plane for which the relevant poles are
z = ω − z′ + iδ and z = i(2m + 1)π/β for m � 0.

Define ∫ ∞

−∞
dz[nF (z) − nF (z′)]

GR(k, z)

2

(
1

ω+
± 1

ω−

)
≡ a ± b,
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FIG. 6. Holstein model in two dimensions on a 80 × 80 lattice, n = 1, t ′ = 0, α2/�2 = 1.5t , βt = 6, � = 0.5t . (a) Phonon spectral
function. (b) Phonon spectral function at selected momentum points. (c) Real and imaginary parts of the electronic self-energies for UME
theory (blue) and RME theory (orange) at kF = (π/2, π/2). (d) Electronic spectral functions for the renormalized and unrenormalized cases
at kF = (π/2, π/2).

with

a = −π i

β

∞∑
m=0

G(k, iωm)
1

ω + iωm − z′ + iδ
,

b = π i[nF (z′ − ω + iδ) − nF (z′)]GR(k, z′ − ω + iδ) − π i

β

∞∑
m=0

G(k, iωm)
1

ω + iωm − z′ − iδ
.

The integral I is then given by

I = Im(a + b) − iRe(a − b) = −ia + ib∗ = π [nF (z′ − ω) − nF (z′)]GA(z′ − ω, k) − π

β

∞∑
m=−∞

G(k, iωm)

ω + iωm − z′ , (A6)

where GA(k, ω) = [GR(k, ω)]∗, the relation G∗(k, iωm) = G(k,−iωm) was used, and iδ was dropped from the denominator of
the second term since it is negligible relative to iωm. Returning to Eq. (A3) gives the final result

�R(q, ω + iδ) = 2α2

N

∑
k

∫ ∞

−∞
dzA(k + q, z)

{
1

β

∑
k,m

G(k, iωm)

ω + iωm − z
− GA(k, z − ω)[nF (z − ω) − nF (z)]

}
. (A7)

One can check that by inserting the from of the noninter-
acting G(k, iωm) = (iωm − εk )−1 and GR(k, ω + iδ) = (ω −
εk + iδ)−1 into the final result yields the correct form for the
usual single-iteration phonon self-energy given by

�R
0 (q, ω + iδ) = 2α2

N

∑
k

nF (εk ) − nF (εk+q)

ω + iδ + εk − εk+q
. (A8)

APPENDIX B: HOLSTEIN MODEL AT HALF FILLING

We consider the case of a two-dimensional Holstein
model at half-filling and without next-nearest-neighbor hop-
ping (t ′ = 0). Parameters were chosen to match those in

Ref. [5] which demonstrates that RME theory agrees with
DQMC, whereas the UME theory does not for these param-
eters. The phonon frequency is � = 0.5t corresponding to
�/EF = 0.25. The electron phonon coupling strength is set
by α2/�2 = 1.5t . As seen in Fig. 6, the spectral functions
and self-energies are qualitatively similar to those for the
parameters in the main text. In the half-filled case the soft-
ening of the phonon occurs exactly at the q = (π, π ) wave
vector and is already very strong at the temperature of βt = 6
due to the strong charge-density wave instability from perfect
Fermi surface nesting. The major difference between RME
and UME theory is the significantly broader electronic spectra
in the renormalized case as can be seen in Fig. 6(d).

[1] J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175
(1957).

[2] E. Pavarini, E. Koch, and U. Schollwöck, Emergent Phenomena
in Correlated Matter, Vol. 3 (Forschungszentrum Jülich GmbH
Institute for Advanced Simulation, Jülich, 2013).

[3] A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys.
JETP 7, 996 (1958)].

[4] G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov.
Phys. JETP 11, 696 (1960)].

[5] F. Marsiglio, Phys. Rev. B 42, 2416 (1990).
[6] R. Baquero, Electron-phonon Interaction in Oxide Supercon-

ductors, Proceedings of the 1st CINVESTAV Superconductivity
Symposium (World Scientific, Singapore, 1991).

[7] F. Marsiglio, Phonon Self-Energy Effects in Migdal-Eliashberg
Theory, in Ref. [6], 167 (1991).

[8] I. Esterlis, B. Nosarzewski, E. W. Huang, B. Moritz, T. P.
Devereaux, D. J. Scalapino, and S. A. Kivelson, Phys. Rev. B
97, 140501(R) (2018).

024520-9

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevB.97.140501


NOSARZEWSKI, SCHÜLER, AND DEVEREAUX PHYSICAL REVIEW B 103, 024520 (2021)

[9] I. Esterlis, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B 99,
174516 (2019).

[10] A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A.
Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E.
Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M.
Tkacz, and M. I. Eremets, Nature 569, 528 (2019).

[11] S. F. Elatresh, T. Timusk, and E. J. Nicol, Phys. Rev. B 102,
024501 (2020).

[12] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev.
148, 263 (1966).

[13] T. Cuk, D. H. Lu, X. J. Zhou, Z.-X. Shen, T. P. Devereaux, and
N. Nagaosa, Phys. Stat. Sol. 242, 11 (2005).

[14] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W.
Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P.
Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).

[15] L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J.
Phys. 18, 022001 (2016).

[16] C. Chen, J. Avila, S. Wang, Y. Wang, M. Mucha-Kruczynski, C.
Shen, R. Yang, B. Nosarzewski, T. P. Devereaux, G. Zhang, and
M. C. Asensio, Nano Lett. 18, 1082 (2018).

[17] A. G. Swartz, H. Inoue, T. A. Merz, Y. Hikita, S. Raghu, T. P.
Devereaux, S. Johnston, and H. Y. Hwang, Proc. Natl. Acad.
Sci. USA 115, 1475 (2018).

[18] I. Ahmadova, T. C. Sterling, A. C. Sokolik, D. L. Abernathy,
M. Greven, and D. Reznik, Phys. Rev. B 101, 184508 (2020).

[19] H. Miao, D. Ishikawa, R. Heid, M. Le Tacon, G. Fabbris, D.
Meyers, G. D. Gu, A. Q. R. Baron, and M. P. M. Dean, Phys.
Rev. X 8, 011008 (2018).

[20] V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805 (1964).
[21] J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev.

Lett. 10, 336 (1963).
[22] E. I. Shneyder, S. V. Nikolaev, M. V. Zotova, R. A. Kaldin, and

S. G. Ovchinnikov, Phys. Rev. B 101, 235114 (2020).
[23] F. Marsiglio, M. Schossmann, and J. P. Carbotte, Phys. Rev. B

37, 4965 (1988).
[24] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179

(1977).
[25] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
[26] P. M. Dee, K. Nakatsukasa, Y. Wang, and S. Johnston, Phys.

Rev. B 99, 024514 (2019).
[27] P. Niyaz, J. E. Gubernatis, R. T. Scalettar, and C. Y. Fong, Phys.

Rev. B 48, 16011 (1993).
[28] M. Schuler and Y. Pavlyukh, Phys. Rev. B 97, 115164 (2018).
[29] R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. B 37,

10159 (1988).
[30] M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418

(1985).
[31] H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,

1827 (1995).
[32] M. M. Rieger, L. Steinbeck, I. D. White, H. N. Rojas, and R. W.

Godby, Comput. Phys. Commun. 117, 211 (1999).
[33] D. Golze, M. Dvorak, and P. Rinke, Front. Chem. 7, 377 (2019).
[34] J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

[35] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).

[36] M. Hohenadler and T. C. Lang, Autocorrelations in quantum
Monte Carlo simulations of electron-phonon models, in Com-
putational Many-Particle Physics, edited by H. Fehske, R.
Schneider, and A. Weiße (Springer, Berlin, 2008), pp. 357–366.

[37] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
[38] A. S. Alexandrov, Europhys. Lett. 56, 92 (2001).
[39] E. Berger, P. Valasek, and W. von der Linden, Phys. Rev. B 52,

4806 (1995).
[40] R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B

40, 197 (1989).
[41] N. C. Costa, T. Blommel, W.-T. Chiu, G. Batrouni, and R. T.

Scalettar, Phys. Rev. Lett. 120, 187003 (2018).
[42] B. J. Alder, K. J. Runge, and R. T. Scalettar, Phys. Rev. Lett.

79, 3022 (1997).
[43] T. Ohgoe and M. Imada, Phys. Rev. Lett. 119, 197001 (2017).
[44] J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 48,

6302 (1993).
[45] S. Ciuchi, F. de Pasquale, S. Fratini, and D. Feinberg, Phys. Rev.

B 56, 4494 (1997).
[46] J. K. Freericks, V. Zlatic, W. Chung, and M. Jarrell, Phys. Rev.

B 58, 11613 (1998).
[47] D. Meyer, A. C. Hewson, and R. Bulla, Phys. Rev. Lett. 89,

196401 (2002).
[48] M. Capone and S. Ciuchi, Phys. Rev. Lett. 91, 186405 (2003).
[49] J. P. Hague and N. d’Ambrumenil, J. Low Temp. Phys. 151,

1149 (2008).
[50] I. Esterlis, S. A. Kivelson, and D. J. Scalapino, npj Quant.

Mater. 3, 59 (2018).
[51] W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108

(1965).
[52] T. Holstein, Ann. Phys. 8, 325 (1959).
[53] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, New York, 2007).

[54] The Python code is released at https://github.com/bennosski/
elph.

[55] J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B 84,
184531 (2011).

[56] B. Mitrovic, H. G. Zarate, and J. P. Carbotte, Phys. Rev. B 29,
184 (1984).

[57] F. Marsiglio, and J. P. Carbotte, Phys. Rev. B 43, 5355 (1991).
[58] A. G. M. Jansen, F. M. Mueller, and P. Wyder, Phys. Rev. B 16,

1325 (1977).
[59] G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press,

New York, 1990).
[60] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[61] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
[62] M. Baggioli, C. Setty, and A. Zaccone, Phys. Rev. B 101,

214502 (2020).
[63] C. Setty, M. Baggioli, and A. Zaccone, Phys. Rev. B 102,

174506 (2020).

024520-10

https://doi.org/10.1103/PhysRevB.99.174516
https://doi.org/10.1038/s41586-019-1201-8
https://doi.org/10.1103/PhysRevB.102.024501
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1002/pssb.200404959
https://doi.org/10.1038/nature13894
https://doi.org/10.1088/1367-2630/18/2/022001
https://doi.org/10.1021/acs.nanolett.7b04604
https://doi.org/10.1073/pnas.1713916115
https://doi.org/10.1103/PhysRevB.101.184508
https://doi.org/10.1103/PhysRevX.8.011008
https://doi.org/10.1103/PhysRev.134.A805
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRevB.101.235114
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1007/BF00655090
https://doi.org/10.1103/RevModPhys.62.1027
https://doi.org/10.1103/PhysRevB.99.024514
https://doi.org/10.1103/PhysRevB.48.16011
https://doi.org/10.1103/PhysRevB.97.115164
https://doi.org/10.1103/PhysRevB.37.10159
https://doi.org/10.1103/PhysRevLett.55.1418
https://doi.org/10.1103/PhysRevLett.74.1827
https://doi.org/10.1016/S0010-4655(98)00174-X
https://doi.org/10.3389/fchem.2019.00377
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1103/PhysRevB.52.4806
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevLett.120.187003
https://doi.org/10.1103/PhysRevLett.79.3022
https://doi.org/10.1103/PhysRevLett.119.197001
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.56.4494
https://doi.org/10.1103/PhysRevB.58.11613
https://doi.org/10.1103/PhysRevLett.89.196401
https://doi.org/10.1103/PhysRevLett.91.186405
https://doi.org/10.1007/s10909-008-9800-z
https://doi.org/10.1038/s41535-018-0133-0
https://doi.org/10.1103/PhysRevLett.14.108
https://doi.org/10.1016/0003-4916(59)90002-8
https://github.com/bennosski/elph
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1103/PhysRevB.29.184
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1103/PhysRevB.16.1325
https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.101.214502
https://doi.org/10.1103/PhysRevB.102.174506

