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Motivated by the recent experiments suggesting the importance of nematicity in the phase diagrams of
iron-based and cuprate high-Tc superconductors, we study the influence of nematicity on the collective modes
inside the superconducting state in a nonequilibrium. In particular, we consider the signatures of collective modes
in short-time dynamics of a system with competing nematic and s- and d-wave superconducting orders. In the
rotationally symmetric state, we show that the Bardasis-Schrieffer mode, corresponding to the subdominant
pairing, hybridizes with the nematic collective mode and merges into a single in-gap mode, with the mixing
vanishing only close to the phase boundaries. For the d-wave ground state, we find that nematic interaction
suppresses the damping of the collective oscillations in the short-time dynamics. Additionally, we find that even
inside the nematic s + d-wave superconducting state, a Bardasis-Schrieffer-like mode leads to order parameter
oscillations that strongly depend on the competition between the two pairing symmetries. We discuss the
connection of our results to the recent pump-probe experiments on high-Tc superconductors.
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I. INTRODUCTION

The rapid development of pump-probe nonequilibrium
spectroscopy opened new powerful tools to investigate col-
lective excitations in condensed matter systems. In particular,
probing relaxation dynamics in unconventional supercon-
ductors appears to be a promising field due to a variety
of different emerging phases accompanying superconduct-
ing ground states in these systems [1–13]. The dynamics of
conventional charge superfluids is well understood by now.
An intense pump pulse with a frequency of the order of the
superconducting gap couples nonlinearly to the Cooper pairs,
which leads to a coherent excitation of the superconducting
order parameter �(t ). It then performs a damped oscillation
due to the existence of an intrinsic Higgs amplitude mode
at ωH = 2|�(t = ∞)|, which decays like 1/

√|�|t [14–28].
Note that the ultrafast pump-probe detection technique allows
the observation of coherent many-body quantum dynamics in
the solid state within a finite temporal window (prethermal-
ization plateau). In recent experiments [10–13], detection is
performed over a window of about 10 picoseconds (ps), well
before thermalization occurs (likely due to acoustic phonons
on a time scale of 100 ps [6]).

However, the rich phase diagram of unconventional super-
conductors with multiple competing states introduces further
complexity. For example, an additional symmetry breaking,
due to spin- [29] or charge- [30–32] density wave instability
or due to a competing superconducting state [33–36] give rise
to novel collective modes.

One interesting example is an unconventional super-
conductor with a subdominant pairing interaction with a

symmetry different from the ground state one. In that case a
sharp collective Bardasis-Schrieffer mode (BS mode) associ-
ated with a failed ground state is expected to be present within
the superconducting gap. It was originally introduced by Bar-
dasis and Schrieffer in Ref. [37] for the subdominant B1g

(dx2−y2 -wave)-symmetric mode in the A1g (s-wave)-symmetric
ground state. Most recently, possible signatures of this BS
mode were reported in the Raman response of the iron-based
superconductors due to the close competition between s±- and
dx2−y2 -wave superconductivity in these compounds [38,39].
At the same time, the situation in the iron-based and in several
other unconventional superconductors is complicated by the
presence of the nematic order and its fluctuations [40–49] in
the normal state making further analysis on the origin of the
anomalous enhancement of the B1g Raman signal [50,51] be-
low superconducting transition temperature necessary. Most
recently, we have analyzed the signatures of the BS mode
in the short-time dynamics [36]. This mode manifests itself
as an additional undamped oscillation of the superconduct-
ing gap amplitude at ωBS � ωH and its frequency depends
on the strength of the residual interaction in the subdomi-
nant pairing symmetry channel. In addition its dependence
on the fluence and polarization is distinct from the damped
Higgs oscillations. At the same time, if the interaction in the
subdominant symmetry channel is weak, i.e., the system is
far from the degeneracy point between two ground states,
the Bardasis-Schrieffer mode becomes extremely close to
the usual superconducting Higgs mode oscillation, making it
challenging to distinguish the two.

In this manuscript we extend the analysis of collective
modes in nonequilibrium superconductors [36] to include the
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effects of nematic order and its collective excitations. We
address the question of whether pump-probe technique can be
used to reveal an interplay between various collective modes
visible in the superconducting state and to distinguish the
Pomeranchuk nematic collective mode from the BS mode
due to the subdominant Cooper-pairing channel. In particular,
we first calculate the short-time dynamics in the rotationally
symmetric ground state, where we show that the nematic
interaction softens the frequency of the BS mode, even when
competition between different pairing symmetries is weak, but
do not lead to the appearance of a second collective mode.
This occurs due to a strong mixing between the collective
nematic and BS mode at finite frequencies. Furthermore, for
d-wave ground state the nematic interaction considerably im-
prove the visibility of BS mode-induced oscillations. Second,
we study the fate of the collective modes inside the nematic
superconducting state and analyze their short-time dynamics,
again finding only a single collective mode below the Higgs
mode frequency. Finally, we discuss the consequences of our
findings in the context of cuprate and iron-based high-Tc su-
perconductors.

II. MODEL

To model superconductivity in the presence of the nematic-
ity and its collective modes, we consider a two-dimensional
(2D) single-band model on the square lattice with nematic
and superconducting mean-field order parameters. The elec-
tronic nematic order, �nγ

n
k , where �n is the amplitude and

γ n
k encodes the momentum dependence of the order, corre-

sponds to a deformation of the Fermi surface, breaking the
point-group symmetry of the system. On a C4-symmetric
square lattice (the case that we will focus on), the often
considered types of nematicity result in an elongation of the
Fermi surface along one of the high-symmetry lines [52–57],
breaking C4 symmetry down to C2. Additionally, a linear
coupling between the electronic nematic order and the lattice
strain, allowed by symmetry, is known to result in a shear
deformation in the nematic phase [58,59]. With respect to
the superconducting order, nematicity results in a mixing of
s-wave and d-wave superconductivity, such that the super-
conducting order parameter �k is a combination of s and d
ones: �k = �sγ

s
k + eiα�dγ

d
k , where 0 � α � π and γ s

k = 1
and γ d

k = γ n
k = √

2 cos(2φ), where φ is the 2D polar angle
in momentum space, similar to Ref. [52]. Here, �s and �d

are corresponding magnitudes of the s− and the d − wave su-
perconducting order parameter, respectively. Thus, a minimal
description of the nematic superconductivity requires three
order parameters: the electronic nematic one, and the s- and
d- wave superconducting ones. The corresponding mean-field
Hamiltonian reads

H =
∑
k,σ

(
ξk + �nγ

n
k

)
c†

kσ ckσ +
∑

k

[�kc†
k↑c†

−k↓ + h.c.], (1)

where c(†)
kσ

is the operator that annihilates (creates) an electron
with spin σ with momentum k. The function ξk = αk2 − μ,
with parameters α,μ > 0, describes the band dispersion. We
do not assume a continuous rotational symmetry, taking in-
stead the parabolic form as an approximation for a full lattice
tight-binding dispersion that has only discrete (C4) rotational

symmetry. Note that although we focus on s-wave (A1g) and
dx2−y2 -wave (B1g) superconductivity, the considerations in this
paper can be easily generalized to any superconducting order,
which belongs to the even 1D irreducible representations. For
simplicity we will drop the index of dx2−y2 .

The conventional and helpful way to describe the short-
time dynamics in the superconducting state [16,17] is to
introduce the Anderson pseudospin operators

sk = 1

2

(
c†

k↑ c−k↓
)
σ

(
ck↑

c†
−k↓

)
. (2)

The operators sx
k, sy

k, and sz
k fulfill the spin commutation rela-

tions. This description can be generalized to the presence of
the nematic order in a straightforward way. Using Anderson
pseudospins Eq. (1) transforms into

H =
∑

k

Bk · sk. (3)

This form of the Hamiltonian describes a set of pseudospins sk

inside a pseudomagnetic field Bk = (2�′
k, 2�′′

k, 2ξ̃k )
T

. Here
we introduced the shorthand notation �k = �′

k − i�′′
k, where

�′
k and −�′′

k are the real and imaginary part of �k, and
the effective band structure ξ̃k = ξk + �nγ

n
k . Note that the

nematic order parameter �n is real, while �s and �d can be
complex numbers. Additionally, we introduce the pairing in-
teractions Vs and Vd for the s- and d-wave pairing channel and
the nematic interaction Vn, where Vs,d,n < 0 means attractive
interaction in these channels. The order parameters need to be
determined self-consistently via

�n = Vn

∑
k,σ

γ n
k 〈c†

kσ ckσ 〉 = 2Vn

∑
k

γ n
k

〈
sz

k

〉
, (4)

�s = Vs

∑
k

γ s
k〈c†

k↑c†
−k↓〉 = Vs

∑
k

γ s
k

〈
sx

k − isy
k

〉
, (5)

�d = Vd

∑
k

γ d
k 〈c†

k↑c†
−k↓〉 = Vd

∑
k

γ d
k

〈
sx

k − isy
k

〉
. (6)

The nematic interaction needs to overcome a critical attractive
strength, Vn,c = − 1

2ν0
= −2πα, where ν0 = 1

4πα
is the density

of states, to form a nematic state at zero temperature [52].
Note that compared to Ref. [52] our value for Vn,c has an ad-
ditional factor of 2, which stems from the explicit summation
over spins in Eq. (4). In contrast to that the superconducting
instability is known to occur at an arbitrarily weak coupling,
such that either �s or �d (or both) are always finite at T = 0
as soon as the interaction in the corresponding channel is
nonzero. Note that we vary the ratio Vd/Vs and the parame-
ter Vn within this work and keep Vs = 0.65Vn,c constant. In
equilibrium the pseudospin expectation values are given by

〈
sx,eq

k

〉 = − �′
k

2Ek
, (7)

〈
sy,eq

k

〉 = − �′′
k

2Ek
, (8)

〈
sz,eq

k

〉 = − ξ̃k

2Ek
, (9)

where the quasiparticle energy dispersion
Ek =

√
ξ̃ 2

k + (�′
k )2 + (�′′

k )2. The general interplay of
superconductivity and the nematic order is sketched in
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FIG. 1. (a) Sketched phase diagram of the considered model.
Above a critical value Vn,c nematic order sets in, which leads to a
mixed superconducting and nematic state below for T < Tc and a
pure nematic state for Tc < T < Ts. (b) Computed zero temperature
phase diagram of the model, see Eq. (1). Solutions with finite ne-
matic order �n breaking rotational symmetry are characterized by
coexisting �s and �d - order parameters for the s-wave and d-wave
superconducting order, respectively. In the larger part of the phase
diagram �d and �s can be chosen both real (s-,d-, or s + d-wave).
However, once both channels are closely degenerate, an s + id-wave
state, breaking time reversal symmetry, evolves, turning into an
s + eiαd-wave state, once a finite but small �n develops.

Fig. 1(a), while Fig. 1(b) shows computed zero temperature
phase diagram of this model. For Vn < Vn,c one finds the phase
diagram of competing s- and d-wave superconductivity; it
consists of pure s-wave superconductivity below Vd/Vs ≈ 1,
pure d-wave superconductivity above approximately
Vd/Vs > 1.2, and an s + id-wave state in between. In the
s + id-wave state �s and �d have a phase-difference
of π/2; this state breaks time-reversal symmetry, but is
invariant under a combination of C4-rotation symmetry and
time-reversal symmetry. Around Vn ≈ Vn,c nematic order
emerges, breaking rotational symmetry and turns the pure
s- and pure d-wave states into mixed s + d-wave states.
On the other hand, in the s + id-wave state, which has a
very tiny region in parameter space, both �s and �d are
nonzero even in the absence of nematic order. On increasing
Vn, s + id-wave state evolves into the s + d-state via an
intermediate s + eiαd state [60], which breaks both C4 and
time-reversal symmetry as well as their combination. Note
that in the s + d-wave state we always find that the nematic
order parameter �n and the d-wave order parameter �d have
a different sign.

We aim to understand the short-time dynamics of the order
parameters in this model, which is closely connected to the
short-time dynamics of the pseudospin expectation values as
seen from Eqs. (4)–(6). Using the Heisenberg equation of mo-
tion one obtains Bloch-type equations for the time evolution
of the Anderson pseudospin operators

d

dt
sk = i[H, sk] = Bk × sk. (10)

The nematic order modifies the dispersion
ξk → ξ̃k = ξk + �nγ

n
k . The properties of the pseudospins

for conventional s-wave superconductors have been
discussed extensively in previous works [16,33,61] and
here we extend the analysis for the presence of nematic
order and competing superconducting channel. Note,
the equations of motion in Eq. (10) also include the
time-dependent mean-field order parameters, which
is evaluated self-consistently at each time step via
Eqs. (4)–(6) and is then reinserted into the time-dependent
pseudomagnetic field Bk(t ) = (2�′

k(t ), 2�′′
k(t ), 2ξ̃k(t ))

T
.

At the same time, the repulsive short-range interaction,
which yields unconventional superconductivity is assumed
to act instantaneously, i.e., retardation effects are not
taken into account within our theory. To include those
would require to go beyond the Bardeen-Cooper Schrieffer
approximation in the equilibrium and consider the dynamics
of the pairing interaction. Then, in a nonequilibrium, �(t )
would depend on all sk(t ′ < t ) integrated over t ′ in a
self-consistent fashion. Interestingly, the effects of retardation
in conventional phonon-driven superconductors have been
recently suggested [62] to promote the observability of the
Higgs mode in nonlinear responses. To extend this analysis to
an unconventional superconductor is an interesting problem,
which would require a separate investigation and we leave it
for a future study.

In the normal state the pseudospin expectation value points
along z axis and is given by 〈sz,eq

k 〉 = −0.5sgn(ξk ), i.e., we
have a domain of spins pointing upwards for |k| < kF , where
kF is the Fermi momentum, and a domain of spins pointing
downwards for |k| > kF and there is a hard domain wall at
|k| = kF . In the superconducting state the pseudospins gain
a finite x and y component due to the opening of the super-
conducting gap, which leads to a continuous “twisting” from
spin ups into spin downs around kF as shown in Fig. 2(a).
The presence of the nematic order leads to an additional
angle-dependent modulation of the pseudospin direction near
the Fermi wave vector kF . In the equilibrium the pseudospins
sk point exactly antiparallel to a pseudomagnetic field Bk and
thus, do not precess in the field as seen from Eq. (10). Quench-
ing the system (independent of the quenched quantity) has
always the same effect: The pseudomagnetic field Bk is tilted
and, thus, the pseudospins sk are not pointing antiparallel to
Bk anymore and start to precess.

To illustrate how nematic order changes the picture, we
quench its value to to a finite magnitude �n = 0.1μ. This
in turn induces a change in the z component of Bk, Bz

k →
Bz

k + 2�nγ
n
k . The effect of this additional �Bz

k = 2�nγ
n
k is

strongest near |k| ≈ kF as seen in Fig. 2(b). Recall that the
finite nematic order breaks the tetragonal C4 symmetry due
to the additional modulation induced by �nγ

n
k . In addition,

024519-3



MÜLLER, VOLKOV, PAUL, AND EREMIN PHYSICAL REVIEW B 103, 024519 (2021)

FIG. 2. The direction of the pseudospins sk in the s-wave super-
conducting state (colored arrows) and the direction of the negative
pseudomagnetic field −Bk after a quenched finite nematic order pa-
rameter �n (black arrows) (a). The effect of the quench is particularly
pronounced near the Fermi level, where the pseudospins change their
direction. This effect is shown explicitly for |k| = kF (b), where the
quenched nematic order parameter adds an additional modulation
�Bz

k ∼ γ n
k = √

2 cos(2φ) to the pseudomagnetic field.

Fig. 2(b) shows that the inclusion of the effect of a time-
dependent electromagnetic field via a time-dependent vector
potential A(t ) leads to a similar effect, as it enters the z com-
ponent of the pseudomagnetic field via a minimal coupling
Bz

k = 2ξ̃k → ξk+A + ξk−A. The pseudomagnetic field Bk be-
comes tilted in the z direction, which leads to a precession of
the pseudospins sk.

An analogous effect is also obtained if one quenches the
superconducting order parameter. Quenching the order pa-
rameters �s or �d leads to a change in the components Bx

k
and By

k. This results also in a precession of the pseudospins
sk. This, due to the three different order parameters and/or
an external field there are multiple options how to quench the
system and drive it out of the equilibrium.

III. SHORT-TIME DYNAMICS

Using the equations of motion we are in the position to cal-
culate the short-time dynamics for our model. In the following

we discuss the short-time dynamics in the pure s-wave, pure
d-wave, and the mixed s + d-wave ground state for varying
strength of the nematic interaction.

In out-of-equilibrium experiments the ground state of these
systems is excited by the application of a time-dependent laser
field. This field pumps energy into the system and therefore
excites Cooper pairs. However, in the non-nematic ground
state, i.e., the pure s-wave or the pure d-wave state, the laser
field does also temporarily break the rotational symmetry in
these systems. This implies that even though one starts with
a pure s-wave (d-wave) superconductor the pulse also excites
d-wave (s-wave) Cooper pairs [36], although this pairing sym-
metry is energetically not favored and subdominant.

At the same time, the presence of the nematic order can
also mix the s and d channels, which raises the question of
the influence of nematic collective modes on the BS mode in
a nonequilibrium system. In the following section we study
the interplay of the BS and nematic collective modes in the
short-time dynamics of our model.

A. Superconducting s-wave ground state

We first solve the equations of motion Eq. (10) inside the
pure s-wave superconducting ground state and keep the super-
conducting d-wave state and the nematic state energetically
nearby but subdominant. This resembles a simplified picture
of the iron-based superconductors, which also show a strong
presence of the B1g nema tic [63] and superconducting d-
wave fluctuations [51] nearby. We solve the self-consistency
equations for �s and quench its value by reducing it by a
factor 0.95 and set the d-wave order parameter to |�d | =
0.05|�s|. The frequencies of the modes and the relative phases
of oscillations have been found not to depend on the quench
phase of �d . This perturbation is similar to the application
of a time-dependent vector potential as discussed above. Ap-
proximating the vector potential pulse with a quench neglects
possible polarization-dependent effects [36] but makes the
computation far more efficient. The resulting short-time dy-
namics is shown in Fig. 3 for the ratio Vd/Vs = 0.75 and for
different values of the nematic interaction strength Vn. Assum-
ing no nematic interaction (Vn = 0) we find that the excited
superconducting s-wave condensate is mainly oscillating with
the Higgs-mode frequency ωH = 2�s,∞. This oscillation with
the Higgs-mode frequency shows typical 1/

√
t damping as its

frequency is located at the border of the quasiparticle contin-
uum [14]. At the same time, we also excite d-wave Cooper
pairs due to the rotational symmetry breaking in the quench,
which couple to Vd and, thus, yields a finite order parameter
�d . This d-wave condensate performs an undamped oscil-
lation with the BSmode frequency ωBS < ωH as discussed
by us previously in Ref. [36]. Note that in Fig. 3(b) we
show the absolute value of the complex order parameter �d ,
which oscillates around 0 and thus, the frequency spectrum
is peaked at 2ωBS. Next we turn on a weak, attractive ne-
matic interaction Vn = Vn,c/3 < 0 and find that the frequency
ωBS is immediately affected. In particular, it shifts to lower
frequencies and its position is now determined by both Vd

and Vn. Additionally a finite nematic order parameter �n

is generated out of equilibrium, which magnitude oscillates
around zero. It is important to note that the nematic order
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FIG. 3. Short-time dynamics as follows from Eq. (10) after introducing the quench �s → 0.95�s, �d = i0.05�s. In all the cases the
ground state is s wave (Vs/Vd = 0.75) but we consider three nematic interaction values, Vn = 0 (blue solid line), attractive Vn = Vn,c/3 (red
dashed line) and repulsive Vn = −Vn,c/3 (yellow dotted line). The dynamics of the s-wave (a), d-wave (b), and nematic order (c) are shown.
The corresponding frequency spectra are shown on the right side (d)–(f).

parameter does not oscillate with its own frequency but os-
cillates with the same frequency, i.e., by the modified ωBS,
similar to �d . This occurs because the form factor of the
d − wave superconducting order and that of the nematic order
are the same, allowing both to mix (i.e., couple linearly) in
the superconducting state. Thus, we find that the nematic
fluctuations and the subdominant pairing fluctuations in the
same B1g channel couple to form a single collective nematic
Bardasis-Schrieffer mode, which we denote as ωN-BS in the
following. The nematic order parameter and the subdomi-
nant pairing channel perform undamped oscillations because
their frequency is well below ωH = 2�s,∞. At the same time,
the nematic order parameter |�n(t )| and the superconducting
one, |�d |, show an antiphase oscillation, which means that
although nematicity favors the s + d-wave state instead of the
pure s-wave state, it still competes with superconductivity for
the available phase space. To check the direct influence of the
nematic interaction on the nematic Bardasis-Schrieffer mode
we also considered repulsive nematic interaction as shown
in Fig. 3 for Vn = −Vn,c/3. We find that the frequency of
ωN-BS is pushed now to higher frequencies, as is expected
from nematic/d-wave competition, and there is no additional
excitation of a nematic mode seperated from the BS mode
besides the nematic Bardasis-Schrieffer mode.

To get further insight in the interplay of the subdom-
inant pairing instability and nematic fluctuations onto the

collective modes in a superconducting system, we compute
the frequency dependence of these modes within linear re-
sponse theory. Our starting point are the equations of motion
in Eq. (10), which are linearized around their equilibrium
values, i.e., we approximate sk(t ) � seq

k + δsk(t ) and Bk(t ) �
Beq

k + δBk(t ). Thus, we obtain

d

dt
δsk = Beq

k × δsk + δBk × seq
k , (11)

which is valid, strictly speaking, for a weak perturbation. Nev-
ertheless, as we show later, we obtain a reasonable agreement
between the solutions of the full nonlinear equations and those
obtained within the linearized approximation. The perturbed
pseudomagnetic field is determined by the perturbed order
parameters

δBk(t ) = (2δ�′
k(t ), 2δ�′′

k(t ), 2δξ̃k )T (12)

with δ�k(t ) = δ�s(t )γ s
k + δ�d (t )γ d

k and δξ̃k �
1
2

∂2ξk
∂k2 A2(t ) + δ�n(t )γ n

k = αA2(t ) + δ�n(t )γ n
k . The

linearized equations of motion in Eq. (11) can be solved
via a Fourier transformation, which then gives

δsk(ω) = Mk(ω)δBk(ω), (13)

where Mk(ω) is a matrix

Mk = 1

2Ek(ω2 − 4E2
k )

·

⎛
⎜⎝

2((ξ̃k )2 + (�′′
k )2) −2�′

k�
′′
k + iξ̃kω −2ξ̃k�

′
k − i�′′

kω

−2�′
k�

′′
k − iξ̃kω 2((ξ̃k )2 + (�′

k )2) −2ξ̃k�
′′
k + i�′

kω

−2ξ̃k�
′
k + i�′′

kω −2ξ̃k�
′′
k − i�′

kω 2((�′
k )2 + (�′′

k )2)

⎞
⎟⎠. (14)
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Note that all order parameters in the matrix Mk are at equilib-
rium. The perturbed pseudomagnetic field δBk contains both
the information on the δ�k and δ�n, as well as on the vector
potential A. It can be rewritten in terms of these quantities as
follows:

δBk = 2
(
δ�′

k, δ�
′′
k, αA2(t ) + δ�nγ

n
k

)T
(15)

= 2Gk(δ�′
s, δ�

′′
s , δ�

′
d , δ�

′′
d , δ�n)T + 2αA2êz (16)

≡ 2Gkδ� + 2αA2êz. (17)

Here we introduced the matrix

Gk =
⎛
⎝γ s

k 0 γ d
k 0 0

0 γ s
k 0 γ d

k 0
0 0 0 0 γ n

k

⎞
⎠, (18)

which contains all relevant form factors. Using Eqs. (4)–(6)
and V = diag(Vs,Vs,Vd ,Vd , 2Vn)we find

δ� =
∑

k

V GT
k δsk. (19)

Inserting Eq. (13) into Eq. (19) we obtain

δ�(ω) = (1 − χ (ω))−1(2αF (A2)(ω))
∑

k

V GT
k Mkêz (20)

with χ (ω) = 2
∑

k V GT
k MkGk and F (A2)(ω) is the Fourier

transformation of A2(t ). The 5 × 5 matrix χ (ω) can be
understood as the response function of the gaps δ� =
(�′

s,�
′′
s ,�

′
d ,�

′′
d ,�n)T . In the simplest case the resonance

frequencies of δ�(ω) are given at those values of ω, where the
r.h.s. of Eq. (20) diverges. This is the case, when the condition

det(1 − χ (ω)) = 0 (21)

is fulfilled. As is expected in linear response, the form of the
vector potential does not affect the frequencies.

Without nematic interaction Eq. (21) reveals three real so-
lutions: (i) the phase fluctuation (Goldstone mode) at ω = 0,
which becomes gapped due to the coupling to the fluctuation
of the vector potential and is shifted inside the quasiparticle
continuum [64]; (ii) the amplitude fluctuation (Higgs mode)
at ωH = 2�max, of the dominant superconductor order pa-
rameter; and (iii) the BS mode, which occur due to residual

1.00.50

FIG. 4. The dependence of the nematic Bardasis-Schrieffer mode
frequency ωN-BS with respect to the nematic interaction Vn is com-
puted from Eq. (21). For various ratios of Vd/Vs we track ωBS until
it drops to 0. The inset shows the dependence of the pure Bardasis-
Schrieffer mode ωBS on Vd/Vs without the nematic interactions.

attractive interaction in the competing superconducting chan-
nel. The frequency position of the BS mode is well separated
from the Higgs-mode oscillation provided the system is suffi-
ciently close to the secondary instability, i.e., Vd is close to Vs.

Upon inclusion of the attractive nematic interaction this
picture changes as we have observed in the short-time
dynamics in Fig. 3. We find that the frequency of the
Bardasis-Schrieffer mode ωBS decreases upon increasing ne-
matic interaction in the same d-wave channel and reaches zero
at the phase transition where the nematic ground state forms.
In particular, in Fig. 4 we show the evolution of the nematic
BS mode frequency upon increasing nematic interaction. Note
that the critical Vn,c at which a nematic ground state form
varies only marginally with increasing Vd/Vs. Most interest-
ingly, we find that this mode transforms into pure nematic
mode for the case Vd/Vs = 0. This indicates that collective
BS-like mode in the superconducting state can be easily mixed
with a purely nematic mode. This coupling of the nematic
mode with the BS mode is also the present for repulsive
nematic interactions, as discussed in Appendix A.

We can further demonstrate this analytically. Assuming
a pure s-wave ground state we can calculate the response
function χ (ω) = 2

∑
k V GT

k MkGk. The sum over momenta k
can be rewritten as an integral over the angle φ and an integral
over ξ times the density of states ν0. This yields (the terms
that vanish after ξ or φ integral are omitted)

χ (ω) = ν0

∫
dξ

1√
ξ 2 + �2(ω2 − 4(ξ 2 + �2))

×

⎛
⎜⎜⎜⎜⎝

2Vsξ
2 0 0 0 0

0 2Vs(�2 + ξ 2) 0 0 0
0 0 2Vdξ

2 0 0
0 0 0 2Vd (ξ 2 + �2) iVdω�

0 0 0 −2iVnω� 4Vn�
2

⎞
⎟⎟⎟⎟⎠. (22)

Note that the first three columns of χ (ω) correspond to the
response of �′

s, �′′
s , �′

d , which all appear to be decoupled
from each other. The fourth and fifth columns correspond to
the response of �′′

d and �n, which are coupled due to the off-
diagonal elements in Eq. (22). Note, the coupling between �′′

d

and �n is finite as long as we consider finite frequencies. In-
deed, in equilibrium a linear coupling between the imaginary
part of the �′′

d and �n is forbidden by time-reversal symmetry.
However, if time dependence of the order parameter is al-
lowed, the following term is allowed to appear in the effective
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action: i d�n
dt (��∗

d − �∗�d )/2, which respects all symmetries
of the system, including gauge invariance. This would lead
to the coupling between �′′

d and �n, such as observed in
Eq. (22). On the other hand, the coupling between �n and
�′

d , while formally allowed by symmetry, is proportional to ξ

and thus vanishes after the integration over ξ .
Plugging this into our condition for collective modes in

Eq. (21) we obtain

det(1 − χ (ω)) = (1 + 2VsI1(ω))(1 + 2Vs(I1(ω)

+ I2(ω)))(1 + 2Vd I1(ω))

×
[

(1 + 2Vd (I1(ω) + I2(ω))(1 + 4VnI2(ω))

− 2VnVd
ω2

�2
I2(ω))2

]
, (23)

where we introduced the integrals

I1(ω) = ν0

∫
dξ

ξ 2√
ξ 2 + �2(4(ξ 2 + �2) − ω2)

, (24)

I2(ω) = ν0

∫
dξ

�2√
ξ 2 + �2(4(ξ 2 + �2) − ω2)

. (25)

We want to discuss each part of the expression in Eq. (23).
Note that the integrals I1(ω) and I2(ω) are monotonically
increasing. Therefore, the expressions 1 + 2VsI1(ω), 1 +
2Vs(I1(ω) + I2(ω)) and 1 + 2Vd I1(ω) can only have a single
root at maximum and thus each term can give rise to a only
single collective mode. The first term corresponds to the Higgs
mode (ω = 2�):

1 + 2VsI1(ω = 2�) = 1 + Vsν0

∫
dξ

1

2
√

ξ 2 + �2
= 0.

(26)

This expression is zero because it is the exact condition of
the self-consistency equation for �. The second term would
correspond to the Goldstone mode (here it is at ω = 0 but
becomes gapped upon inclusion of the gauge fluctuations):

1 + 2Vs(I1(ω = 0) + I2(ω = 0))

= 1 + Vsν0

∫
dξ

1

2
√

ξ 2 + �2
= 0, (27)

which is again the self-consistency equation for �. Since
I1(ω) is monotonically increasing and |Vd | < |Vs| the part
1 + 2Vd I1(ω) has no root at all for ω ∈ [0, 2�]. Therefore the
coupled nematic BS mode corresponds to a root in the last
term emerging from the coupling of �′′

d and �n. Separating
the response of �′′

d and �n in Eq. (23) from the rest we can
write a condition for the nematic Bardasis-Schrieffer mode
ωN-BS as

det(χN-BS(ω) − 1) = 0, (28)

χN-BS(ω) =
(−2Vd (I1(ω) + I2(ω)) iVdωI2(ω)/�

−2iVnωI2(ω)/� −4VnI2(ω)

)
. (29)

One observes that there is a cross term in Eq. (29) of
the from ∼iω�′′

d�n corresponding to a dynamic coupling

between the nematic and the imaginary part of the d-wave
order parameter which vanishes only in the static case ω = 0.
Indeed, such a coupling is allowed by symmetry, since �′′

d
breaks time reversal symmetry and both break rotational sym-
metry. On purely symmetry grounds, one may also expect a
nonzero coupling between �′

d and �n; however, it vanishes
after integration over ξ , which comes as a result of lineariza-
tion of the electronic spectrum. Thus, if the linearization of the
spectrum around the Fermi surface is not used, this coupling
would be nonzero, although it is expected to be small, coming
from the region away from the Fermi surface.

Using the self-consistency equation one gets
I1(ω) = − 1

2Vs
− (1 − ω2

4�2 )I2(ω); I2(ω) can be evaluated
analytically. Then, Eq. (28) reduces to the following form:

−ν0Vs
arccos

√
1 − x2

x
√

1 − x2
= 1

vn + vd
1−vd

x2
, (30)

where x = ω
2�

and the notation vd = Vd/Vs and vn = 2Vn/Vs

has been introduced. The l.h.s. of Eq. (30) is a monotonically
increasing function, while the r.h.s. is a decreasing one of
x. Consequently, only one solution of the equations is pos-
sible; moreover, the r.h.s. diverges at x = 1, so a solution is
guaranteed to exist up until the mode becomes unstable. An
instability (solution at x = 0) occurs either for vn = 1

ν0|Vs| →
Vn = − 1

2ν0
= Vn,c (independent of vd ) or for vd = 1 (indepen-

dent of vn). All of this is in agreement with the results in the
phase diagram in Fig. 1, also consistent with the absence of
nematic/BS mixing at ω = 0. Most importantly, the mixing
between two modes is clearly responsible for this “one-mode”
behavior.

Thus, we come to the conclusion that in an s-wave ground
state with competing d-wave and nematic states, there is a
single collective in-gap mode that generically has a mixed
character, although the mixing is weaker near an instability,
where the frequency of the excitation goes to zero. This is ev-
ident from Fig. 4, where on decreasing ωN-BS, its dependence
on Vn becomes profoundly weaker. On the other hand, we find
the coupling between �′

d and �n to vanish after integration
over the radial direction, as it is proportional to ξk .

We find that in the presence of nematic ordering tendency,
the in-gap collective mode cannot be immediately related to
the competing superconducting correlations in the d-wave
channel as was originally proposed [51], unless extremely
close to a phase boundary, where the criticality of one order
dominates. Moreover, close to a nematic phase, an oscillation
of the superconducting order parameter can be generated by
the interaction originating in the particle-hole nematic channel
even for Vd/Vs = 0. We also emphasize that we do not observe
two separate modes corresponding to the competition between
the subdominant d-wave ground state and the nematic in-
teraction because both are in the B1g channel. This changes
if the nematic order has, for example, B2g-type symmetry,
where the upper found dynamics coupling vanishes as shown
in Appendix B.

B. Superconducting d-wave ground state

Now we turn to the discussion of the short-time dynamics
in the pure d-wave superconducting ground state, which is
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FIG. 5. Short-time dynamics computed from Eq. (10) inside the d-wave ground state after the quench. Here we consider Vn = 2Vn,c/3 and
vary the strength of the s-wave interaction channel Vs = 0.25Vd (blue) and Vs = 0.65Vd (red). Additionally we show the dynamics for vanishing
nematic interaction Vn = 0 for Vs = 0.25Vd (dotted blue). On the right side, the dynamics of the induced s-wave order parameter |�s|(t ) (a),
the d-wave order parameter |�d (t )| (b) and the nematic order parameter �n(t ) (c) are shown. The corresponding frequency spectra are shown
on the right side (d)–(f).

present if Vd/Vs > 1.2 and for weak nematic interactions Vn <

Vn,c. This scenario applies, for example, to the high-Tc cuprate
superconductors, where the presence of nematicity and ne-
matic fluctuations is intensively discussed [40–43]. However,
unlike in iron-based superconductors no strong competition
between the dominant d-wave superconducting channel and
a subdominant s-wave Cooper pairing channel is expected.
Note also that the usual BS modes from the secondary Cooper
pairing instabilities are strongly damped due to the nodal
structure of the superconducting gap [36]. Therefore, nematic
fluctuations in the B1g channel would be the only source of
the visible additional oscillations in the superonducting order
parameter.

We solve again the self-consistency equations and quench
this time the finite �d by a factor 0.95 and set the s-wave order
parameter |�s| = 0.05|�d | similar to the previous subsection.
In Fig. 5 we show the resulting short-time dynamics. Due to
the strong damping of the collective dynamics the frequency
spectra are much broader than in the s-wave ground state. We
find that the d-wave order parameter mainly oscillates with its
Higgs-mode frequency ωH = 2�max. Additionally we see that
the induced s-wave Cooper pairs couple to Vs and generate a
finite �s, which performs a strongly damped oscillation, mak-
ing its actual experimental observation difficult. However, we
observe that in the presence of attractive nematic interaction,
an additional oscillation frequency below ωH can be resolved.

As shown in Fig. 5 this frequency is not a pure nematic
mode depending only on the strength of Vn, but indeed de-
pends on the strength of the attractive s-wave interaction,
corresponding to the mixed nematic BS mode discussed
before. If the residual attractive interaction in the nematic
channel is strong, the frequency of this mode is well below ωH.
We attribute the observed influence of the nematic interaction
on the BS mode to the form factor of the nematic order

parameter, that resembles that of the d − wave superconduct-
ing order parameter, having minima in the nodal region, where
most quasiparticles are excited. Consequently, one expects
damping to be weaker for the collective oscillations of the
nematic order. However, due to the coupling between the BS
and nematic mode, only a single mixed collective mode is
observed. Thus, our results show that a not too strong nematic
interaction effectively makes the BS mode less sensitive to
damping by the nodal quasiparticles, making its observation
in experiments more likely.

It is tempting to identify this nematic BS mode with the
additional oscillation found recently in high- T c cuprates [13].
Note that the nematic fluctuations have been found in the
entire doping range of the hole-doped cuprates but specifically
were related to the pseudogap region [42,43].

C. Superconducting s + d-wave ground state

If the nematic interaction exceeds the critical value Vn,c a
nematic ground state forms and the tetragonal C4 symmetry
is broken. This breaking of the point group symmetry leads
to a mixing of irreducible representations, with implications
for the superconducting state. In particular, a mixed twofold
symmetric composite s + d-wave state forms, where s- and
d-wave order parameters mutually coexist. Nevertheless, as
both s-wave and d-wave orders are driven by the separate in-
teractions, one can still expect to distinguish a corresponding
oscillations of their constituents in short time dynamics and
separate the main (dominant) pairing instability and a sec-
ondary (subdominant) one. Additionally, an amplitude mode
of the nematic order can be expected, especially close to
Vn,c To study this regime, we set Vn > Vn,c and calculate the
superconducting order parameters �s and �d and the ne-
matic order parameter �n self consistently. We quench both
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FIG. 6. Short-time dynamics in the nematic s + d-wave state as obtained from the solution of Eq. (10) after introducing quenches. Here we
started in all cases with an s + d-wave ground state and quenched the superconducting order parameter by 5% with respect to the equilibrium,
i.e., �s = 0.95�s,eq and �d = 0.95�s,eq. We considered Vd = 0.75Vs and three different values for the nematic interaction, Vn = 1.1Vn,c (blue
solid line), Vn = 1.2Vn,c (red dashed line) and Vn = 1.3Vnc (yellow dotted line). The dynamics of the s-wave (a), d-wave (b), and nematic order
(c) are shown. The corresponding frequency spectra are shown on the right side (d)–(f).

superconducting order parameters by a factor 0.95. The re-
sulting short time dynamics is shown in Fig. 6. One finds
that both magnitudes, namely the s-wave and d-wave order
parameters oscillate with two frequencies. The first one cor-
responds to the Higgs mode ωH = 2�max and a second mode
with a lower frequency, which depends on the strength of the
secondary (weaker) instability and the nematic interaction. In
addition, while Higgs oscillations are damped as expected for
an anisotropic superconductors as the gap maxima still lie
within a quasiparticle continuum, the second mode, which
we identify again as the nematic BS mode, can be strongly
damped or undamped depending on whether the frequency
of this mode is larger or smaller than 2 min �k. The latter
depends on the Vs/Vd ratio as well as the strength of the
nematic order, which also sets the ratio between the s-wave
and d − wave components similar to the previous sections. In
other words, we argue the short time dynamics can be used in
orthorhombic state to elucidate the nature of the primary and
the secondary superconducting instabilities, possibly relevant
to the case of FeSe as we discuss below.

To get further insight into the collective modes in the
mixed s + d state we also compute their frequency depen-
dence within linear response solving Eq. (21). Similar to the
s-wave ground state we find a (nematic) BS mode also inside
the s + d-wave state and its frequency position is determined
by the nematic interaction Vn and the ratio Vd/Vs as shown in
Fig. 7. In particular, close to Vn,c, the mode appears to stiffen
on increasing Vn/Vn,c, saturating to a finite value later. We
attribute this to a hybridization of the amplitude mode of the
nematic order and the BS mode; as the nematic mode becomes
stiffer, the hybridization loses its importance. Next, we find
that for a fixed value of Vn > Vn,c the frequency of the in-gap
mode strongly decreases as a function of Vd/Vs but does not go
to zero at Vd/Vs = 1. This decrease signals the transition from

an s-wave driven superconducting s + d-state with d-wave
as an nematicity induced byproduct into an d-wave driven
s + d-state with s-wave as its byproduct. However, this is
not a thermodynamic phase transition, since no additional
symmetries break, but a crossover and thus the in-gap mode
cannot go to zero at Vd/Vs = 1. Instead the frequency of this
mode drops to a finite value. Additionally, the observability
of this mode depends strongly on its location with respect to
the onset of the quasiparticle continuum; e.g., as nematicity
is enhanced, the gap develops deep minima and an enhanced
damping of the nematic BS mode is expected, as is seen in
Fig. 6. Note that the values of Vn used here are sufficiently
large, such that on increasing Vd , we avoid the s + eiαd phase

FIG. 7. The nematic Bardasis-Schrieffer mode in the s + d-wave
ground state depending on the strength of the nematic interaction
Vn for various ratios of Vd/Vs. The solid line is a solution of the
linearized approximation in Eq. (21). Due to the anisotropic order
parameter the BS mode lies within the quasiparticle continuum for
large enough Vn and is then strongly dampened.
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[see Fig. 1(b)]; on the boundaries of that phase a soft mode
associated with time-reversal symmetry breaking would be
expected [60].

IV. DISCUSSION AND CONCLUSION

One of the main conclusions of our study is that the ne-
matic interaction in the system has a strong impact onto the
short-time dynamics of unconventional superconductors. In
particular, we argue that its presence can yield additional
oscillations in the time evolution of the superconducting
order parameter. These oscillations are in addition to the
Higgs modes and appear as B1g-symmetric BS type modes
in the s-wave superconducting ground state, which appear (in
the presence of nematic interactions) even if the interaction
in the subdominant d-wave Cooper-pairing channel is weak.
For the d-wave ground state, the nematic interactions yield
additional weakly damped oscillations, whereas the pure s-
wave BS modes are expected to be strongly damped by nodal
quasiparticles. Furthermore, we argue that even if the tetrago-
nal symmetry is explicitly broken in the nematic ground state
the Higgs spectroscopy could be used to elucidate the nature
of the primary and secondary superconducting instabilities, as
the mode properties, such as line shape, appear to be strongly
dependent on the nature of the primary state. In this regard it is
of interest to investigate further the short time dynamics of the
iron-based superconductors, where both ingredients, strong
competition between s±- and d-wave superconductivity and
nearby nematic order, are present and BS-like mode has been
observed [51,65]. We notice that actually both the nematic
interaction, Vn, and the subleading d-wave interaction, Vd ,
would yield a single collective mode in the superconducting
state of mixed origin. An additional interesting system to
study would be FeSe1−xTex and FeSe1−xSx compounds, as
the parent FeSe undergoes a nematic phase transition below
90 K and a superconducting transition below 8 K. The total
C2-symmetric superconducting order parameter is strongly
anisotropic and (nearly) nodal. Substituting Se by S or Te
induces an orthorhombic to tetragonal transition, yet super-
conductivity is more continuous function of x. Here a strong
interplay of nematicity and various competing superconduct-
ing states would yield an interesting short-time dynamics.
While we expect some quantitative difference due to the
multiband nature, the qualitiative picture of mixing of BS
modes and nematic modes should not be affected.

One other possible material class, where nematicity would
affect the short time dynamics of the superconducting state are
the cuprates. Recent experiments found signatures of a second
collective mode inside the superconducting phase of cuprates
beside the Higgs-mode and its origin is still not clarified
[13]. As we argue in our paper the nematic mode, coupled
to the Higgs oscillations of the d − wave superconducting
ground state could be another possibility. In contrast to the
BS mode, the nematic mode is much weaker damped by the
nodal quasiparticles and can be a natural candidate for these
additional oscillations. Note that for both cuprate and iron-
based superconductors, the typical timescale of these effects
is determined by the maximum size of the superconducting
order parameter and can thus be estimated to be less than a

FIG. 8. The dependence of the Bardasis-Schrieffer mode fre-
quency ωBS with respect to repulsive nematic interaction Vn is
computed from Eq. (21) for various rations of Vd/Vs. At a certain
strength of Vn the BS mode is pushed into the Higgs-mode.

few picoseconds, which is in both cases well distinguishable
from the typical phonon time scale of around 100 ps [66].

In summary, we have studied the interplay between ne-
matic order or fluctuations and BS modes in unconventional
superconductors. We have shown that nematic order fluctua-
tions and B1g symmetric BS mode mix into a single mode in
the s-wave superconducting state, with its frequency soften-
ing in proximity to the boundary of the nematic and s + id
states, where the mixing is negligible. We have also shown
that in the superconducting d-wave ground state the nematic
interactions lead to a reduction of damping of the mixed
BS-nematic mode. Finally, in the mixed state s + d supercon-
ducting ground state, we have shown that line shapes of the
collective oscillations can be used to elucidate the nature of
the primary and secondary superconducting instabilities.
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APPENDIX A: COLLECTIVE MODES WITH REPULSIVE
NEMATIC INTERACTIONS

In this section we discuss the effect of repulsive nematic
interactions onto the collective mode. This implies that Vn > 0
and therefore never leads to an emerging finite order parame-
ter �n and, thus, C4-rotational symmetry is always present.

In Fig. 8 we present the solution of Eq. (21) for Vn > 0.
Indeed we find that unlike attractive interactions, which sup-
port the BS mode by pushing it away from the quasiparticle
continuum, the repulsive nematic interactions have the oppo-
site effect and suppress the BS mode by pushing it closer to
it. Depending on the exact ratio, the mode is pushed into the
Higgs-mode frequency and converges at some point with it.
The larger the ratio Vd/Vs, the stronger is the repulsive nematic
energy needed to push the mode into the continuum. The
reason for that is not only because the BS mode frequency for
small ratios Vd/Vs is already close to the continuum but also

024519-10



INTERPLAY BETWEEN NEMATICITY AND … PHYSICAL REVIEW B 103, 024519 (2021)

the increase of the frequency seems to depend on this ratio,
because for small ratios of Vd/Vs, this increase is stronger.
However, independent of how close the d-wave state to the

s-wave ground state is the Bardasis-Schrieffer mode is finally
pushed into the Higgs-mode if the repulsive nematic interac-
tion is strong enough.

APPENDIX B: SYMMETRY OF NEMATICITY

Here we show that a B2g-nematic order does not interact with the BS mode of the B1g (dx2−y2 -wave) pairing channel. To do
so, we analyze Eq. (20) but change the form factor of nematic order to the B2g-symmetric form factor γ n

k = √
2 sin(2φk ). We

explicitly write the response matrix χ (ω) for δ� = (�′
s,�

′′
s ,�

′
d ,�

′′
d ,�n)T

χ (ω) = 2
∑

k

V GT
k MkGk

=
∑

k

1

Ek(ω2 − 4E2
k )

⎛
⎜⎜⎜⎜⎜⎜⎝

... −2Vsξk�
′
kγ

s
kγ n

k
... iVsω�′

kγ
s
kγ n

k
· · · · · · χ4×4

s−d · · · −2Vdξk�
′
kγ

d
k γ n

k
... iVdω�′

kγ
d
k γ n

k
4Vnξk�

′
kγ

s
kγ n

k −i2Vnω�′
kγ

s
kγ n

k −4Vnξk�
′
kγ

d
k γ n

k −2iVnω�′
kγ

d
k γ n

k 4Vn(�′
k )2(γ n

k )2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B1)

The first four rows and columns connect real and imaginary parts of �s with real and imaginary parts of �d . The fifth component
of δ� is nematic order and thus the (5, i) and (i, 5) component of the response function for i �= 5 describes coupling of nematicity
to superconductivity. From Eq. (B1) we find that if one assumes a B2g nematic form-factor γ n

k = √
2 sin(2φk ), then all of these

(5, i) and (i, 5) components vanish by symmetry because the B2g form factor is orthogonal to the B1g form factor of dx2−y2 -wave
and A1g form factor of s-wave superconductivity. Thus the response function consists of two independent block matrices: a
4 × 4-matrix, describing the collective response of superconductivity and, thus, the BS and Higgs modes and a 1 × 1 matrix,
describing the response of nematicity. Thus, the solution for the BS mode and the mode of the B2g nematicity in Eq. (21) are
independent of each other, showing that the coupling between nematicity and the BS mode is indeed only present if the nematic
fluctuations and the subdominant pairing have the same symmetry.
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