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Coherent photogalvanic effect in fluctuating superconductors
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We develop a theory of the coherent photogalvanic effect (CPGE) in low-dimensional superconductors in the
fluctuating regime. It manifests itself in the appearance of a stationary electric current of Cooper pairs under
the action of two coherent electromagnetic fields of light with frequencies lying in the sub-terahertz range.
We derive the general formula for the electric current density, study the particular cases of linear and circular
polarizations of the external light fields, and show that the current might have a nonmonotonous spectrum at
certain polarization angles and turns out very sensitive to the proximity of the ambient temperature to the
critical temperature of superconducting transition: Approaching the critical temperature, the peak in the spectrum
becomes narrower, its frequency experiences a redshift, and the intensity of the peak drastically grows.
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I. INTRODUCTION

In a broad sense, the photogalvanic (or photovoltaic) effect
(PGE) consists in the emergence of an electric current or
voltage in the sample under the action of electromagnetic
(EM) field of light. Recent years demonstrate a growing in-
terest in PGE, which has been studied in graphene [1], Weyl
semimetals [2,3], mono- and dichalcogenides [4,5], ferro-
electrics [6,7], and at terahertz frequencies [8]. There exist
various types of PGE, including the bulk PGE [9,10], valve
effect in semiconducting p-n junctions, photo-Dember effect
[11], and photo-piezoelectricity, among others. All these phe-
nomena are due to the presence of inhomogeneities either in
the media (like a p-n junction) or in the light field itself.

There also exists PGE, which requires neither the inho-
mogeneity of optical excitation of electron-hole pairs nor the
inhomogeneity of the sample [9,12–14]. Instead, the media
lacking the inversion center is required. In this case, the sta-
tionary electric current represents the second-order response
of the system to a uniform electric field E with frequency
ω, jη = Tηλγ EωλE∗

ωγ , where η, λ, γ = x, y, z. Thus, it is de-
termined by the 3-rank conductivity tensor Tηλγ (which is
nontrivial only in the media lacking the inversion center).
The microscopic origin of this PGE is in the asymmetry of
the interaction potential and the electron scattering processes
or the crystal-induced Bloch wave function. Recently, other
mechanisms of PGE related to the trigonal warping of valleys
in transition metal dichalcogenides have also been suggested
[15,16].

One of the types of PGE is the coherent photogalvanic
effect (CPGE). It was predicted in works [17,18] and observed
experimentally in [19,20]. It represents the emergence of a
stationary electric current in a spatially homogeneous con-
ducting sample exposed to two EM fields with frequencies ω

and 2ω. Phenomenologically, the CPGE current can be written
as [17] jη = χηλγ δE2ωλE−ωγ E−ωδ + c.c., where χηλγ δ is a 4-
rank generalized conductivity tensor, and E = 2Re(Eωeiωt +
E2ωe2iωt ), where E−ω = E∗

ω. As compared with the traditional
PGE, CPGE does not require the absence of the inversion
symmetry and it depends on the phase difference between the
EM fields.

Recently, photoinduced nonlinear transport phenomena in
superconductors attracted growing interest of the community
[21]. In particular, the photon drag effect [22] and the third
harmonic generation [23] were proposed. PGEs have not
been so far addressed in superconductors, to the best of our
knowledge. It is known that the PGE in normal conductors
at low temperatures exists due to the asymmetrical impurity
scattering processes of electrons, like the skew- and side-jump
effects, among others. These processes were investigated in
view of recent research on the anomalous Hall effect in fluc-
tuating superconductors [24], and it has been demonstrated
that the Aslamazov-Larkin correction is not dressed by these
asymmetric impurity scatterings.

In this paper, we study CPGE in a superconductor in the
fluctuating regime [25,26] when the temperature is slightly
above the critical temperature of superconducting (SC) tran-
sition Tc and in addition to normal (unpaired) electrons there
start to emerge and collapse Cooper pairs called in this case
the SC fluctuations (SFs) since the density of Cooper pairs
fluctuates, according to the Aslamazov-Larkin (AL) effect.
These SFs can dramatically change the conductivity of the
system due to an additional paraconductivity term. As we
showed in previous works [27], the presence of SFs can also
drastically change the optical response of the system.

To describe the CPGE of SFs, we will use the Boltzmann
transport equations approach [26], in the framework of which
the Cooper pairs are described by the distribution function
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and an effective energy-dependent lifetime. This approach has
proved sufficient if one considers the AL corrections to the
conductivity [28–31], which we do in this paper.

II. GENERAL FORMALISM

The Boltzmann equation for SFs in the uniform external
electromagnetic field reads

∂ f

∂t
+ 2e[Eω(t ) + E2ω(t )] · ∂ f

∂p
+ f − f0

τp
= 0, (1)

where f is the distribution function of fluctuating Cooper
pairs, t is time, e is electron charge, Eω(t ) = Eωeiωt + E∗

ωe−iωt

and E2ω(t ) = E2ωe2iωt + E∗
2ωe−2iωt are the first and second

harmonics of the electromagnetic field of frequency ω, p is
the center-of-mass momentum of the Cooper pair with the ab-
solute value p = |p|; τp = πα/(16εp) is the effective Cooper
pair lifetime with α the parameter of the AL theory [26]; α is
calculated using the relation 4mαTcξ

2/h̄2 = 1, where ξ is the
correlation length given by

ξ 2 = v2
F τ 2

2

[
ψ

(
1

2

)
− ψ

(
1

2
+ h̄

4πT τ

)
+ h̄ψ ′(1/2)

4πT τ

]
. (2)

Here ψ (x) is the digamma function; vF = h̄
√

4πn/m is the
Fermi velocity; τ is the electron relaxation time, εp = εp =
p2/4m + μ is Cooper pair energy with m the electron mass,
μ = αTcε, ε = (T − Tc)/Tc > 0 the reduced temperature
[26]; f0 = T/εp is the classical Rayleigh-Jeans distribution
of Cooper pairs at temperature T in the absence of external
perturbations.

Furthermore, we assume that the EM fields cause small
perturbations of the local density of SFs and do the expan-
sion [32,33], f (t ) = f0 + ∑

n f (n)(t ). The nth order correction
obeys the equation

(
∂

∂t
+ 1

τp

)
f (n)(t ) = −2e[Eω(t ) + E2ω(t )] · ∂ f (n−1)(t )

∂p
.

(3)

The general formula for the CPGE current density is jη =
2e

∫
dpuη f /(2π h̄)2, where η = x, y and uη = pη/2m is a

Cooper pair velocity. In our case, the lowest-order nonzero
contribution to the stationary current reads

jη = 2e
∫

dp
(2π )2

uη

〈
f (3)(t )

〉
,

〈
f (3)(t )

〉 = −2eτpRe

(
E∗

ω · ∂ f (2)
ω

∂p
+ E∗

2ω · ∂ f (2)
2ω

∂p

)
, (4)

where 〈...〉 stands for the time-averaging and the second-order
corrections satisfy

(
iω + 1

τp

)
f (2)
ω = −2e

(
E2ω · ∂ f ∗(1)

ω

∂p
+ E∗

ω · ∂ f (1)
2ω

∂p

)
,

(
2iω + 1

τp

)
f (2)
2ω = −2eEω · ∂ f (1)

ω

∂p
, (5)

and the first-order corrections read(
iω + 1

τp

)
f (1)
ω = −2eEω · ∂ f0

∂p
= −2e(u · Eω ) f ′

0,

(
−iω + 1

τp

)
f ∗(1)
ω = −2eE∗

ω · ∂ f0

∂p
= −2e(u · E∗

ω ) f ′
0,

(
2iω + 1

τp

)
f (1)
2ω = −2eE2ω · ∂ f0

∂p
= −2e(u · E2ω ) f ′

0,

(6)

where f ′
0 = ∂ f0/∂εp. Integrating by parts in Eq. (4) and tak-

ing the integrals, introducing for convenience dimensionless
variables κ = εp/μ and β = πω/(16Tcε), and then using
Eω = E1eω and E2ω = E2e2ω, where we introduce two unity
vectors in the directions of electric field harmonics, and finally
parametrizing the fluctuating Cooper pair velocity as u = un,
where n = (cos ϕ, sin ϕ), we can find the total current density
(see the Appendix)

jη = χηλγ δe∗
ωλe∗

ωγ e2ωδ + χ∗
ηλγ δeωλeωγ e∗

2ωδ

+ ζηλγ δe∗
2ωλeωγ eωδ + ζ ∗

ηλγ δe2ωλe∗
ωγ e∗

ωδ, (7)

where

χηλγ δ = j0
2

∫ ∞

1

(κ − 1)dκ

κ2

(
1

κ − iβ
+ 1

κ + 2iβ

)

× ∂

∂κ

[
δηλδγ δ/2 − 2 κ−1

κ
nηnλnγ nδ

κ (κ + iβ )

]
,

ζηλγ δ = j0
2

∫ ∞

1

(κ − 1)dκ

κ2(κ + iβ )

× ∂

∂κ

[
δηλδγ δ/2 − 2 κ−1

κ
nηnλnγ nδ

κ (κ + 2iβ )

]

(8)

are two auxiliary tensors, where the bar symbols stand for the
averaging over the angle of the unity vector n. In Eq. (8),

j0 = (2e)4

2π h̄2m

T β3

μω3
E2

1 E2, (9)

and

nxnxnyny = nynynxnx = nxnynynx = nynxnxny

= nxnynxny = nynxnynx = 1

8
; n4

x = n4
y = 3

8
, (10)

whereas the other components (containing single x or y index
such as nynxnxnx) vanish. Expressions (7) to (10) describe the
general case of CPGE at any polarization and represent the
main result of this paper.

III. LINEAR AND CIRCULAR POLARIZATIONS

Let us consider the most interesting cases from experimen-
tal point of view, presented in Fig. 1. Choosing eω = (1, 0)
and e2ω = (cos θ2ω, sin θ2ω ), which corresponds to Fig. 1(a),
we find from Eqs. (7) to (10)

jx = 2 cos θ2ωRe (χxxxx + ζxxxx ), (11)

jy = 2 sin θ2ωRe (χyxxy + ζyyxx ). (12)
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FIG. 1. Geometry of incident fields: Panels (a) and (b) corre-
spond to linear polarization of both the fields, whereas (c) and
(d) correspond to the cases of circular polarization of one of the fields
(see text for details).

Instead, taking eω = (cos θω, sin θω ) and e2ω = (1, 0) we
find for Fig. 1(b)

jx = 2 cos2 θωRe (χxxxx + ζxxxx )

+ 2 sin2 θωRe (χxyyx + ζxxyy), (13)

jy = sin(2θω )Re (χyxyx + χyyxx + ζyxxy + ζyxyx ). (14)

Furthermore, taking eω = (1, 0) and e2ω = (1, iσ )/
√

2,
where σ = ±1 indicates left/right circular polarization, we
find for Fig. 1(c)

jx =
√

2Re (χxxxx + ζxxxx ),

jy =
√

2σ Im (ζyyxx − χyxxy). (15)

Taking eω = (1, iσ )/
√

2 and e2ω = (1, 0) for Fig. 1(d) we
have

jx = Re (χxxxx + ζxxxx − χxyyx − ζxxyy),

jy = σ Im (χyxyx + χyyxx − ζyxxy − ζyxyx ). (16)

IV. RESULTS AND DISCUSSION

The theory which we developed is applicable to generic
two-dimensional superconducting materials. Let us choose
a specific material, MoS2. Its superconducting temperature
ranges from around Tc = 8 to 18 K; the typical densities of
the carrier of charge take the values from n = 5 × 1013 to
1.5 × 1014 cm−2, and realistic electron scattering time is of
the order τ ∼ 0.1 ps [34,35].

Figure 2 shows the temperature dependence of the electric
current density. The components jx and jy corresponding to
different cases in Fig. 1 exhibit a decay once the temperature
increases as compared with the critical temperature (compare
also with Fig. 3). It can be explained by the enhancement of
the influence of SFs once we approach the critical tempera-
ture. In general, the temperature dependence of the current is
mainly (although not fully) inherited from the factor j0, that
goes as T −2 at large temperatures, T 	 Tc, whereas it has

FIG. 2. Components of electric current densities, jx (solid) and
jy (dashed), as functions of temperature. The green, gray, blue, and
red curves correspond to Figs. 1(a), 1(b), 1(c), and 1(d) , respectively.
Inset shows the dependence of j0 on temperature. We used [34,35]
Tc = 10 K, n = 1014 cm−2, τ = 0.1 ps, m = 0.5 m0, where m0 is free
electron mass. We fixed ω = 2 × 1011s−1, θω = θ2ω = π/6, E1 = 2
V/cm, and E2 = 0.25 V/cm.

a singularity (T − Tc)−3 at temperatures approaching Tc (see
inset in Fig. 2). This behavior is more singular than the one
of the conventional paraconductivity, where the singularity is
(T − Tc)−1 [26].

Figure 3 shows the spectra of electric current density cor-
responding to different geometries of incident fields, shown
in Fig. 1. In the case of linearly polarized light [Figs. 3(a)
and 3(b)], it looks as if the x and y components of the current
density show similar behavior: The magnitude of the current
density decreases with the increase of frequency. However,
analytical analysis (of the derivatives of the current den-
sity) demonstrates that this dependence is not monotonous in
Fig. 3(a) for the current density jy. Indeed, at some frequency,
jy for Fig. 3(a) crosses zero and changes its sign, thus it starts
to increase. Later, it crosses a maximum and then decreases
again. All the components of the current density saturate at
high frequencies, independent of temperature.

In the case of circularly polarized light [Figs. 3(c) and
3(d)], the x and y components of electric current density show
different behavior. While the x component behaves similar
to that of linearly polarized light, the y components behave
differently and reveal a nonmonotonous behavior. They also
grow and then decay after overcoming a peak value. This
nonmonotonous behavior can be explained from the analytical
analysis of Eq. (15). In particular, the analytical expressions of
χηλγ δ and ζηλγ δ on β ∝ ω/(T − Tc) determine the behavior
of the spectrum presented in Fig. 3. At small β, jx/ j0 ∝
const. + o(β ) and jy/ j0 ∝ β + o(β3). In the limit of large
β, both the components of current vanish. We also analyzed
the behavior of the derivative j′y/ j0 on frequency. It crosses
zero manifesting the extremum of jy(ω) dependence. It hap-
pens at β ≈ 0.44 for Fig. 3(c), which corresponds to ω ≈
2.9 × 1010 s−1 for T = 10.10 K. With the decrease of ε, the
magnitudes of the currents grow since β ∝ ω/(T − Tc). We
can also see that once the ambient temperature approaches Tc,
the dashed curves ( jy) in Figs. 3(c) and 3(d) get narrower, and
the peak frequency experiences a redshift.
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FIG. 3. Spectra of electric current density for different incident field geometries. The solid curves show x-projection of the current jx as
functions of frequency, while the dashed curves show jy as functions of the same frequencies at two temperatures: 10.10 K (red) and 10.12 K
(green) that are above the critical temperature Tc = 10 K. Other parameters were taken the same as in Fig. 2.

Figure 4 demonstrates the dependence of current densities
on the polarization angles of the light fields. As it follows
from Eqs. (11) to (16), the jx and jy components of the current
depend on the angle only in the cases when both the incident
fields have linear polarization. It corresponds to Figs. 1(a) and
1(b). As θω or θ2ω varies from 0 to 2π , the magnitudes of
current densities change their magnitudes and even sign. We
want to note, that for Figs. 1(c) and 1(d) there is an extra
factor σ , which reflects the chirality of the field but there is
no dependence on the angle.

In this article, we considered one particular type of super-
conducting fluctuations: the Aslamazov-Larkin corrections.
There also take place other contributions: the Maki-Thompson
[36,37] and the “density of states” [38] corrections. However,
the Boltzmann equations approach cannot be used for their
description, and a quantum approach is required.

The Boltzmann equation approach in the case of a uniform
alternating field is equivalent to the time-dependent Ginzburg-
Landau approach, which can be used in the dirty-sample limit
T τ � 1 and when ωτ � 1 [39]. Thus, the theory developed
in our paper is also limited by this inequality between the
external EM field frequency ω and the electron momentum
scattering time off impurities τ . In the same time, the pa-
rameter β = πω/(16Tcε) is still arbitrary in the frameworks
of the time-dependent Ginzburg-Landau approach (and in our
consideration).

Another issue concerns the experimental observation of
the predicted effect, which is sensitive to the relative phase
between the Eω and E2ω fields. For the sake of stationarity and
spatial homogeneity of the resulting CPGE electric current,
mutual temporal and spatial coherence of the fields is re-
quired. Also, the angles of incidence of both the fields should

FIG. 4. Spectra of electric current densities corresponding to Figs. 1(a) and 1(b) for three different values of polarization angles (a) θ2ω and
(b) θω: π/3 (red), 7π/5 (green), 9π/5 (blue). We used T = 10.10 K. Other parameters were taken the same as in Fig. 2.
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be smaller than the ratio of the wavelength to the sample size
[40].

V. CONCLUSION

We studied the coherent photogalvanic effect in a two-
dimensional superconductor in the fluctuating regime. We
showed the emergence of a stationary electric current of
Cooper pairs when the sample is exposed to two coherent
electromagnetic fields of light with certain frequencies and
different polarizations. We derived the general formula for the
electric current density and investigated in detail the particular
cases of linear and circular polarizations of the external light
fields. We showed that the current might experience a non-
monotonous dependence on frequency and it is very sensitive
to the proximity of the temperature to the critical temperature

of superconducting transition. In particular, the peak in the
spectrum of the current becomes narrower, its frequency expe-
riences a redshift, and the intensity of the peak grows once the
temperature approaches Tc. These results capture the effects
arising due to the interplay of the physics of superconducting
(Cooper pair density) fluctuations and the polarizations of
incident light fields.
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APPENDIX: DERIVATION OF THE ELECTRIC CURRENT DENSITY

Integrating by parts in Eq. (4) we find

jη = (2e)2
∫

dp
(2π )2

Re
(
E∗

ω f (2)
ω + E∗

2ω f (2)
2ω

) · ∂ (uητp)

∂p
,

f (2)
ω = − 2eτp

1 + iωτp

(
E2ω · ∂ f ∗(1)

ω

∂p
+ E∗

ω · ∂ f (1)
2ω

∂p

)
,

f (2)
2ω = − 2eτp

1 + 2iωτp
Eω · ∂ f (1)

ω

∂p
.

(A1)

Thus, we can split the current density on three terms

j (1)
η = −(2e)3Re

∫
dp

(2π )2
E∗

ω · ∂ (uητp)

∂p

(
τp

1 + iωτp
E2ω · ∂ f ∗(1)

ω

∂p

)
,

j (2)
η = −(2e)3Re

∫
dp

(2π )2
E∗

ω · ∂ (uητp)

∂p

(
τp

1 + iωτp
E∗

ω · ∂ f (1)
2ω

∂p

)
,

j (3)
η = −(2e)3Re

∫
dp

(2π )2
E∗

2ω · ∂ (uητp)

∂p

(
τp

1 + 2iωτp
Eω · ∂ f (1)

ω

∂p

)
.

(A2)

Again integrating by parts, we find

j (1)
η = (2e)3Re

∫
dp

(2π )2
f ∗(1)
ω E2ω · ∂

∂p

(
τp

1 + iωτp
E∗

ω · ∂ (uητp)

∂p

)
,

j (2)
η = (2e)3Re

∫
dp

(2π )2
f (1)
2ω E∗

ω · ∂

∂p

(
τp

1 + iωτp
E∗

ω · ∂ (uητp)

∂p

)
,

j (3)
η = (2e)3Re

∫
dp

(2π )2
f (1)
ω Eω · ∂

∂p

(
τp

1 + 2iωτp
E∗

2ω · ∂ (uητp)

∂p

)
.

(A3)

Taking into account that

∂ (uητp)

∂ pλ

= τp

2m

(
δηλ − 2m

εp
uηuλ

)
, (A4)
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we have

j (1)
η = (2e)4Re

∫
dp

(2π )2

τp(− f ′
0)uγ uδ

2m(1 − iωτp)

∂

∂εp

[
τ 2

p (δηλ − 2muηuλ/εp)

1 + iωτp

]
E∗

ωλE∗
ωγ E2ωδ,

j (2)
η = (2e)4Re

∫
dp

(2π )2

τp(− f ′
0)uγ uδ

2m(1 + 2iωτp)

∂

∂εp

[
τ 2

p (δηλ − 2muηuλ/εp)

1 + iωτp

]
E∗

ωλE∗
ωγ E2ωδ,

j (3)
η = (2e)4Re

∫
dp

(2π )2

τp(− f ′
0)uγ uδ

2m(1 + iωτp)

∂

∂εp

[
τ 2

p (δηλ − 2muηuλ/εp)

1 + 2iωτp

]
E∗

2ωλEωγ Eωδ,

(A5)

where f ′
0 = ∂ f0/∂εp. Introducing dimensionless variables, κ = εp/μ and β = πω/(16Tcε), then using Eω = E0eω and E2ω =

E0e2ω, thus denoting two unity vectors in the directions of electric field harmonics, and parametrizing u = un, where n =
(cos ϕ, sin ϕ), we find from Eq. (A5)

j (1)
η = j0Re

∫ ∞

1

(κ − 1)dκ

κ2(κ − iβ )

∂

∂κ

[
δηλnγ nδ − 2 κ−1

κ
nηnλnγ nδ

κ (κ + iβ )

]
e∗
ωλe∗

ωγ e2ωδ, (A6)

j (2)
η = j0Re

∫ ∞

1

(κ − 1)dκ

κ2(κ + 2iβ )

∂

∂κ

[
δηλnγ nδ − 2 κ−1

κ
nηnλnγ nδ

κ (κ + iβ )

]
e∗
ωλe∗

ωγ e2ωδ, (A7)

j (3)
η = j0Re

∫ ∞

1

(κ − 1)dκ

κ2(κ + iβ )

∂

∂κ

[
δηλnγ nδ − 2 κ−1

κ
nηnλnγ nδ

κ (κ + 2iβ )

]
e∗

2ωλeωγ eωδ, (A8)

where

nγ nδ =
∫ 2π

0

dϕ

2π
nγ nδ = 1

2
δγ δ,

nηnλnγ nδ =
∫ 2π

0

dϕ

2π
nηnλnγ nδ.

Straightforward calculations give

nxnxnyny = nynynxnx = nxnynynx = nynxnxny = nxnynxny = nynxnynx = 1

8
, (A9)

n4
x = n4

y = 3

8
, (A10)

whereas the other components (containing single x or y index such as nynxnxnx) vanish. Using Eqs. (A6) to (A10), we find the
total current density described by Eqs. (7) and (8) in the main text.
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