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Effect of vortex annihilation lines on magnetic relaxation in high-temperature superconductors
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We show that in superconductors of type II, where Abrikosov vortices with different polarities are present, the
areas where they meet and annihilate each other (B = 0 lines) “attract” a significant part of the magnetization
current j. This leads to redistribution of j over the sample, and as a result, the rate of magnetic relaxation is
reduced. This effect is significant in the case of weak dependence of the activation energy U on j, particularly
for the flux flow (U = 0) and at early stages of flux creep (U � kT ). The slowdown of the relaxation is mostly
pronounced in the remanent state, where the B = 0 lines are located at the edges of the sample. In the case of
flux flow, the remanent magnetization decays as m ∝ 1/t instead of the usual “field-on” exponential dependence
m ∝ exp(−t/τ ). The effect is important and observable in the magnetization measurements, for instance, in
La2−xSrxCuO4 crystals and other novel superconducting materials.
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I. INTRODUCTION

Starting from the pioneer work on giant flux creep [1],
it has become clear that high-temperature superconductors
(HTSCs) cannot be described by the classic Bean model [2]
in which the magnetization is determined by the critical
current jc and magnetic relaxation that results from vortex
flow or creep is totally neglected. Except for the region of
low temperatures that varies from compound to compound,
say, T � 40 K for YBa2Cu3O7−x (YBCO) and T � 20 K
for Bi2Sr2Ca2Cu3O10+x (BSCCO), the relaxation processes
in these compounds are very fast. Therefore, the experimen-
tally measured magnetization current j is usually significantly
less than jc and even than the depinning current jdepin (see
Refs. [3,4] as reviews). Instead, j appears to be a function of
the experimental waiting time, sweeping rate of the magnetic
field, the “history” of the sample (field cooled or zero field
cooled), and other circumstances.

Whereas the relaxation in the field-on measurements has
been successfully described theoretically for long cylinders
and slabs by both analytic studies [4–6] and numeric sim-
ulations [6,7], a consistent description of the relaxation in
the remanent state has not been developed yet. The main
difficulty, as pointed out already in Ref. [5], is the definition of
the flow of vortices, D = Bv (where v is the vortex velocity)
at the edges of a long sample. Since B = 0 at the edges in
the remanent state, D seems to vanish there as well. This
contradicts the obvious fact that D should remain finite at the
edges and even reach its maximal value over the whole sample
there. The explanation for this contradiction was provided
in Refs. [6,8], where it was proved that v diverges near the
edges, which compensates the vanishing B. For instance, it
was shown that B ∝ √

x in the flux flow regime, where x
is the distance from the edge. At the same time, v proves
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to diverge as 1/
√

x; thus, D = Bv remains finite and reveals
no singularity. However, a consistent study of the relaxation
in the remanent state, including a comprehensive analysis of
the B(x, t ) dependence in the remanent state, has not been
performed yet.

In this paper we show that the peculiar nature of mag-
netic relaxation in the remanent state in long superconducting
samples is a particular manifestation of a more general phe-
nomenon, namely, a dramatic effect of the annihilation lines,
where B = 0, on the kinetics of Abrikosov vortices. At these
lines vortices of different polarities encounter and annihilate
each other. We show that in long samples (slabs, cylinders),
where vortices are almost straight, v and, in turn, the density
of the magnetization current j diverge at the annihilation lines.
Of course, the magnetic penetration depth λ serves as a cutoff
for such a divergence. This effect results in redistribution
of j over the sample, which, in turn, crucially slows down
the relaxation of the total magnetic moment. The qualitative
explanation for such an effect (later, we perform a quantitative
analysis) could be as follows. The total current I = ∫

j(x)dx,
where x is the coordinate across the sample width, is deter-
mined by the boundary conditions for B(x). In symmetrical
relaxation problems I flowing in one half of the sample is
proportional to Bcenter − Bedge, where Bcenter and Bedge are the
values of the magnetic field at the center of the sample and
its edge, respectively. Thus, the total “amount” (integral) of
j is finite, whereas the driving force for vortex motion (the
Lorentz force) is proportional to j. An annihilation line “con-
sumes” a lot of j since the latter diverges in its vicinity. As
a result, the average values of j significantly decrease in the
rest of the sample, and the total relaxation rate slows down.
We will show below that the most dramatic deceleration of
relaxation should be expected in the remanent state where
Bedge = 0. In this case the annihilation line is located at the
edge of the sample, and vortices annihilate with their mirror
images, as described by Bean and Livingston [9].
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Our analysis proves that the deceleration (slowdown) effect
in the presence of annihilation lines is particularly pronounced
in the flux flow regime, where there are no potential barriers
and vortex motion is impeded only by viscous friction [10].
Generally speaking, the same should happen in the flux creep
regime, but with no or weak dependence of U on j. In the
field-on case, where B �= 0 in the whole sample (no annihila-
tion lines), the magnetization depends on time exponentially:
|m| ∝ exp(−t/τ ), as shown in Ref. [6]. Here τ is the charac-
teristic time of flux flow in the sample. However, as we show
below, in the remanent state m is described by a power-law de-
pendence m ∝ (τ/t )α , with α = 1 in the remanent state. This
is, of course, much slower than the exponential dependence in
the field-on case.

Before starting our analysis, let us outline its applicability.
Most popular HTSC crystals (YBCO, BSCCO, and others)
usually have a platelet shape with a very small aspect ratio
rc/rab � 1, where rc and rab are the characteristic sample
sizes along the c axis and in the ab plane, respectively. In this
case the vortices are curved, especially in the remanent state;
the magnetization current j is determined by both components
of the magnetic induction, Bc and Bab, and both components
vc and vab of the vortex velocity are important [3,11]. In
such platelets the vortex annihilation in the remanent state is
implemented by formation of closed vortex loops that collapse
at the Bc = 0 line. Neither divergence of the vortex velocity
nor any effects of dramatic slowdown of the relaxation have
been observed in platelet samples with the magnetic field
directed along the c axis. Of course, it is possible to study the
relaxation rates in these compounds at H ⊥ c, where the slow-
down effects could be pronounced, but this requires a quite
fine experimental technique since the corresponding magnetic
moments will be small.

It is not a problem to create long samples of conventional
(low-Tc) superconductors, like Nb-based materials. However,
as we show below, the slowdown of the relaxation process due
to presence of the B = 0 lines is most significant at U = 0
(flux flow) or at least at U � kT . In low-Tc superconduc-
tors the activation energies are usually high, U/kT � 1, and
crucial deceleration of the magnetic relaxation related to the
annihilation lines effect is unlikely to be found.

The most promising materials to observe the annihilation
lines’ effect on flux dynamics are the La2−xSrxCuO4 samples
with Tc ≈ 32 K that combine very high relaxation rates with
aspect ratios rc/rab � 1 (see Ref. [12]). This is an intermediate
case between a platelet (rc/rab � 1) and an infinite slab or a
cylinder (rc/rab = ∞). The analysis of flux penetration into
and exit from finite slabs [13] proves that, say, for c/a = 2 the
vortices are quite straight even near the sample edge, except
for the very “top” and “bottom” of the sample. Therefore, one
can neglect Bab and apply the one-dimensional analysis where
B = Bc. We compare our theoretical analysis with experi-
mental results obtained in La2−xSrxCuO4 samples and show
that the dramatic slowdown explains the anomalies found in
magnetization curves obtained experimentally in these com-
pounds.

II. FLUX RELAXATION IN THE REMANENT STATE

Let us compare flux penetration into an infinite (along y
and z directions) superconducting slab with width 2d (0 <

x < 2d) when the external field H is switched on (field-on
relaxation) with flux exiting from the same slab when the
external field is removed: H = 0 (remanent relaxation). The
magnetic field B(x, t ) is parallel to z , vortices move along x,
the magnetization current j(x, t ) flows along y, and both are
related by Maxwell’s law:

j = − c

4π

∂B

∂x
. (1)

The field-on case corresponds to the zero-field-cooled
experiment, where H‖z is switched on when there are no vor-
tices in the sample: B(x, t = 0) = 0. In the “remanent” case,
initially, B(x, t = 0) = H , and then H is abruptly switched
off. In both these cases the dependence of B on x and t
is determined by the one-dimensional flux “diffusion” equa-
tion [6,14,15]:

∂B

∂t
= −∇(Bv) = − ∂

∂x

(
Aφ0

cη
B j exp(−U/kT )

)
, (2)

where φ0 is the unit flux, η is the Bardeen-Stephen drag
coefficient (viscous friction) [10], c is the light velocity, U
is the activation energy for the vortex motion, k is the Boltz-
mann constant, T is temperature, and A � 1 is a numerical
factor [16]. Generally, the activation energy U depends on
both B and j; see Ref. [4] for a review. We focus on the case
where the annihilation line B = 0 is present in the sample;
thus, the magnetic field is relatively small, and it is possible
to neglect the dependence of U on B that becomes important
at high fields in the regime of collective flux creep [4]. We
choose the logarithmic dependence of U on j:

U ( j) = U0 ln( jc/ j), (3)

which has been reported in numerous experiments [17] at
low fields since it enables us to get (in some cases) analytic
solutions of Eq. (2) along with numerical results. It is worth
mentioning that Eq. (3) corresponds to the power-law E - j
characteristics: E ∝ ju+1, where �E = −(1/c)[�v × �B] is the
electric field inside a superconductor and u = U0/kT . This
particular choice of the U ( j) dependence does not confine the
universality of our results, as we discuss later. Obviously, the
case u = 0 corresponds to flux flow.

Substituting Eqs. (1) and (3) into Eq. (2), we get

∂B

∂t
= Aφ0

4πη

(
c

4π jc

)u
∂

∂x

[
B

(
∂B

∂x

)u+1]
. (4)

In the field-on case the boundary conditions for Eq. (4) are
B(0) = B(2d ) = H , and in the remanent state we have B(0) =
B(2d ) = 0. A method of semianalytical solutions of similar
equations, provided B �= 0, was developed in Ref. [6]. How-
ever, the logarithmic dependence of U on j [see Eq. (3)] was
not considered there.

Let us start with relaxation of the remanent magnetiza-
tion. In this case Eq. (4) can be solved exactly by separation
of variables: B(x, t ) = B0b(x) f (t ). The boundary conditions
are b(0) = 0, b(d ) = 1, and the initial condition is f (0) = 1.
Correspondingly, B0 is the magnetic field at the slab’s center
x = d at t = 0. We confine our analysis to the area 0 � x � d
since, apparently, the field profiles are symmetric at any time:
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b(x) = b(2d − x). Then Eq. (4) acquires the form

b
df

dt
= s f u+2 ∂

∂x

[
b

(
db

dx

)u+1]
, (5)

where s = (cB0/4π jc)uAφ0B0/(4πη). Note that the dimen-
sion of s is cmu+2 s−1. Thus, we obtain two separate equations
for the spatial and temporal dependencies of the field:

1

b

d

dx

[
b

(
db

dx

)u+1]
= −C, (6)

1

s f u+2

df (t )

dt
= −C, (7)

where C is a positive constant.
Equation (6) can be transformed into an elementary differ-

ential equation,

g + u + 1

u + 2
b

dg

db
+ bC = 0, (8)

by the substitution g = (db/dx)u+2, treating b as a variable
and g(b) as a function. After solving Eq. (8), we find from
Eq. (6) that at 0 � x � d ,

∫ b

0

ξ
1

u+1 dξ(
1 − ξ

2u+3
u+1

) 1
u+2

= Q

d
x, (9)

where

Q(u) = (u + 1)
∫ 1

0

ξ u+1dξ

(1 − ξ 2u+3)
1

u+2

. (10)

Note that the constant C in Eqs. (6) and (7) is related to Q
as C = (Q/d )u+2(2u + 3)/(u + 2). The temporal dependence
f (t ) can be found from Eq. (7):

f (t ) =
(

1

1 + (u + 1)t/τ (u)

) 1
u+1

, (11)

where

τ (u) = 1

s

u + 2

2u + 3

(
d

Q

)u+2

. (12)

Equation (9) implicitly determines the spatial dependence
of the field b(x), which is shown in Fig. 1 for 0 � x � d
(left half of the sample) at different values of u. Obviously,
the greater u is, the more straight profiles we get since the
spatial variations of the activation energy U = kTu ln( jc/ j)
should be of order kT , as discussed in Ref. [6]. It is worth
mentioning that if the activation energy depends on field,
U = U (B, j), then the condition of its approximate constancy
is violated in the remanent state (see Ref. [6]). In this work,
however, we focus on the case where U depends only on j
and will consider U (B) dependence elsewhere. Note also that
the spatial dependence of b [determined by Eq. (9) and shown
in Fig. 1] is of the self-organized type [6,8]. This means that
for any arbitrary initial distribution B(x, 0) the profile of the
magnetic field approaches b(x) at t � τ .

It is an interesting question how the field profile, i.e., the
function b(x), behaves near the edge of the sample. As shown
in Ref. [6] by numerical methods, in the flux flow regime the
field vanishes near the edge as a square root: b(x) ∝ √

x. Now
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FIG. 1. Spatial dependence of the magnetic field b(x) shown for
0 � x � d (one half of the slab) and different values of the parameter
u = U0/kT . The profiles approach the straight line (dashed) as u
grows; see discussion in the text.

we can prove analytically that this is a particular case of a
more general result. One easily finds from Eq. (9) that

b(x) ∝ xβ, β = u + 1

u + 2
(13)

at x/d � 1. The exponent β in Eq. (13) ranges between
0.5 at u = 0 (flux flow, square-root field profile) and 1 at
u → ∞ (high activation energies, straight field profile). The
corresponding b(x) profiles are shown in Fig. 1. Moreover,
the power-law dependence described by Eq. (13) appears to
hold not only close to the edge x = 0 but for a significant part
of the sample x � d except its very center (see Fig. 2). The
magnetization current j ∝ ∂B/∂x diverges as xβ−1 near the
edges of the sample. The strongest divergence is achieved at
u = 0 (flux flow), where β = 1/2 and j ∝ x−1/2, whereas at
u → ∞ we get β = 1, and the divergence of j fades out.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

b(
x)

 =
 B

(x
,t)

/B
(d

,t)

x/d

  u = 0         β = 1/2
  u = 1.5      β = 5/7
  u = 9         β = 10/11

FIG. 2. Power-law approximation for the spatial dependence of
the field, b(x) ≈ xβ [see Eq. (13)], at different values of u.
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FIG. 3. Comparison of the relaxation of the magnetic moment
m(t ) at u = 0 (flux flow) for field-on measurements where the re-
laxation is exponentially fast [see Eq. (16)] and in the remanent
state where m ∝ 1/t [see Eq. (15)]. We assume H = B0, so τr f =
1.79τflow. The analytic results (solid lines) are shown together with
the numeric data obtained for the flux penetration into an empty
sample B(x, 0) = 0 after its instantaneous switching on (squares) and
for the flux exit from a completely filled sample B(x, 0) = B0 after
H is instantaneously switched off (circles).

It can be easily checked that the magnetic flux current
D(x) ∝ B(∂B/∂x)u+1 [see Eqs. (2) and (4)] does not even
remain finite at x = 0 (and, correspondingly, at x = 2d) but
reaches its maximal value over the sample there, as apparently
should be the case in the remanent state. Note that D(x) is
proportional to the electric field E (x) in the sample.

Obviously, the magnetic moment per unit volume m(t ) =
(4πd )−1

∫ d
0 (B(x, t ) − H )dx obeys the same dependence on

time as f (t ) [see Eq. (11)]:

mrem(t ) = m0

(
1

1 + (u + 1)t/τ (u)

) 1
u+1

. (14)

In the case of flux flow, where u = 0, Eq. (14) reads

mrem(t ) = m0

1 + t/τr f
, (15)

with τr f = τ (0) = 3.58πηd2/(Aφ0B0) [see Eq. (12)]; note
that Q(0) = 0.863. The subscript r f means “remanent flow.”
Thus, we see that in the flux flow regime the remanent mag-
netization relaxes as 1/t . At the same time, as proved in
Ref. [6], in the field-on case where the external magnetic field
H penetrates into a zero-field-cooled (“empty”) sample, the
relaxation is described by the exponential function:

|m(t )| = m0 exp(−t/τflow), (16)

where τflow = 2πηd2/(Aφ0H ) = 0.559(B0/H )τr f . This man-
ifests the crucial slowdown of the flux flow in the remanent
state when compared to that in the field-on case. In Fig. 3 we
show the temporal dependence of the normalized magnetic
moment m(t )/m0, obtained both analytically [see Eqs. (15)
and (16)] and numerically, for remanent and field-on relax-
ation. Note that the slight difference between the analytic and

numerical results at τ � τflow originates from the fact that
Eqs. (15) and (16) describe the relaxation of self-organized
field profiles, whereas for our initial field distributions it
takes time of the order of τflow to approach the self-organized
shapes.

As we show below, the same result holds for u � 1, and
only in the limit u � 1 do the relaxation rates for flux entry
and exit become similar. Such a difference gives rise to a
crucial role of the flux flow and the early creep stages in
the remanent state. Really, for η � 10−5 g cm−1 s−1, which is
typical for high-Tc compounds at T not too close to Tc (see
Ref. [18]), one gets τflow � [d2/H]s, where d is measured
in millimeters and H is in gauss. Thus, for typical samples
and fields we have τflow ∼ 10−3/10−1 s. Thus, most field-on
experiments, where the waiting time between the changing of
the field and the first measurement of the field (Hall probes
or magneto-optics) or the magnetic moment [superconducting
quantum interference device (SQUID)] is at least of the order
of several seconds, i.e., much greater than τflow, “miss” the
short exponential flux flow stage described by Eq. (16) and
deal exclusively with the deep creep stage where U � kT .
On the contrary, in the remanent state the long-lasting 1/t
“tail” [see Eq. (15)] affects the field configuration B(x, t ) and,
in turn, the magnetic moment m(t ) at times that considerably
exceed τflow, which could be found experimentally.

In order to get a general expression for the m(t ) depen-
dence in the case of field penetration into a zero-field cooled
sample with the U ( j) dependence described by Eq. (3), one
can apply the semianalytic approach developed in Ref. [6].
It is based on the fact that the activation energy U is al-
most constant spatially at any stage of the relaxation process:
U (x, t ) � U (t ). Since U is determined by j, this means that
the field profiles are almost straight during all the relaxation
process, i.e., j ∝ |dB/dx| = const, and depends only on time.
Then, integrating Eq. (2) over x and using Eq. (1), we find

d j

dt
= − j

τflow
exp[−U ( j)/kT ]. (17)

Substituting the logarithmic U ( j) = U0 ln( jc/ j) dependence
[see Eq. (3)] into Eq. (17) and taking into account that m ∝ j
within our semianalytic approach where j is supposed to be
independent of x, we get

|m(t )| = m0

(
1

1 + ut/τflow

) 1
u

. (18)

Of course, Eq. (18) transforms into Eq. (16) at u → 0 (flux
flow). Equation (18) coincides up to numerical factor in τflow

with the result obtained in Ref. [15], where flux dynamics was
analysed in terms of self-organized criticality.

It is worth noting just the “mathematical” reason for such
a dramatic change (power law instead of exponential time
dependence) in the solution of Eq. (4) when we consider
remanent relaxation, particularly in the case of flux flow (u =
0). At H �= 0 the magnetic field B approaches H with time,
so the term B(∂B/∂x) can be approximately substituted by
H (∂B/∂x). Thus, Eq. (4) becomes linear at u = 0, and its
solution should be of the exponential type. On the contrary, at
H = 0 the flux flow equation remains significantly nonlinear
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at all t ; therefore, its solution appears to be power law instead
of exponential.

At u �= 0 the above arguments concerning the quasilinear-
ity of Eq. (4) no longer hold. Although B still approaches H
with time, the term (∂B/∂x)u+1 remains nonlinear, and the
relaxation rate appears to be as far from exponential as u is
greater than zero [see Eq. (18)]. Correspondingly, the slow-
down effect fades out, and the relaxation rates for the field-on
and remanent states become similar [compare Eq. (14) with
Eq. (18)].

Finally, it should be emphasized that the dramatic slow-
down of the remanent relaxation occurs due to weak
dependence of the activation energy U on j rather than due
to the smallness of U . In the situation where the activation
energy is prominent, U � kT , but weakly depends on j, the
almost constant factor exp(−U/kT ) just “renormalizes” time
in Eq. (2). Therefore, all the results obtained for the flux
flow regime still hold for such a “constant-U” creep, but with
the substitution t → t exp(U/kT ). As a result, the remanent
relaxation appears to be still crucially slower than the field-on
one.

III. EFFECT OF SLOWED-DOWN RELAXATION
ON MAGNETIZATION CURVES

An experimental confirmation of the dramatic slowdown of
the relaxation in the remanent state by its direct comparison
with the field-on relaxation is quite possible. However, the
weak dependence of U on j that is the condition for such
a slowdown can usually be achieved only at small U � kT
even in clean samples since at very small j � jc the acti-
vation energy U diverges and its dependence on j becomes
more steep. Thus, the time delay between the stabilization
of magnetic field (after H is instantaneously switched on or
off) and starting magnetization measurements should be very
short (of the order of τflow) if we are going to measure jc or
at least estimate it. Both τflow and τr f usually do not exceed
0.1 s even for large samples with d � 1 cm, which practically
rules out the SQUID technique and requires Hall probes or
magneto-optics methods.

Besides direct measurements of flux relaxation we propose
an indirect but more convenient method for observation of
substantial slowdown in magnetic relaxation using the anal-
ysis of magnetization loops m(H ). Consider the case where
the external magnetic field H varies periodically between H0

and −H0 with a constant (by absolute value) sweeping rate
dH/dt = H0/t0, where t0 is, obviously, one quarter of the
total period. For low-Tc superconductors, where the flux creep
is extremely slow, the magnetization curve m(H ) reflects the
dependence of jc on B, and sweeping rate has a minor effect
on m(H ). For high-Tc compounds the relaxation processes are
crucial, and the shape of the magnetization curve results from
the interplay between the sweeping rate of the external field,
dH/dt , and the flux dynamics in the sample. One could expect
the dramatic slowdown discussed in the previous section to
affect the shape of the m(H ) curve in the vicinity of H = 0
that corresponds to the remanent state. In fact, j and, in turn,
m are determined by the condition of dynamic equilibrium be-
tween the sweeping rate of H and the relaxation of flux in the
sample. The faster dH/dt is, the greater |m| we should expect.
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FIG. 4. Results of the numerical solution of Eq. (4) at u = 0 (flux
flow) for the magnetization curve m(H ) and dynamic relaxation rate
dm/dH . The external field H is swept on with a constant rate dH/dt
from negative values to positive ones. For large negative and positive
H we get dm/dH → 0 (see discussion in the text). One can see
a clear anomaly in dm/dH in the field range 0 � H � H∗, where
the annihilation lines are present in the sample. The numerical data
are compared with the experimental results [12] obtained in a clean
La2−xSrx CuO4 crystal (diamonds and circles).

The slowdown in relaxation should result in accumulation of
m when H changes sign and, correspondingly, annihilation
(B = 0) lines are present in the sample. As B = 0 lines that
crucially decelerate flux motion exit the sample, one should
expect much faster relaxation dm/dt .

In Fig. 4 we show the magnetization curve m(H ) and
the “dynamic” relaxation rate dm/dH obtained by numerical
solution of Eq. (4) at u = 0 (flux flow). The magnetic field is
swept from the negative values to positive ones with a constant
sweeping rate: H ∝ t . The corresponding field profiles b(x)
are shown in Fig. 5. The dynamic relaxation rate dm/dH ,
which is proportional to dm/dt since H (t ) depends linearly
on time, shows a peculiar behavior around H = 0. In order to
understand it let us note that far from H = 0 (for both signs
of H) the dynamic relaxation rate dm/dH ≈ 0, i.e., m(H ) ≈
const, since in the case of flux flow (and, generally speaking,
for U independent of B) the magnetization m is a function of
the sweeping rate provided B �= 0 everywhere in the sample
(compare profiles 1 and 5 in Fig. 5). As H approaches zero,
the flux dynamics becomes slower since τflow ∝ 1/H [see
Eq. (16)], the profiles b(x) become more convex (see profile 2
in Fig. 5), and negative magnetic moment m gets accumulated.
Thus, dm/dH drops and reaches a sharp minimum at H = 0.
At this point two annihilation lines enter the sample from
both sides (x = 0 and x = 2d) and start to move towards its
center x = d . The “deepening” of m and, in turn, the growth
of the mean magnetization current | j| continue as dm/dH
remains negative. This lasts until the annihilation lines pass
(approximately) half way between the edge of the sample
and its center. At this point m(H ) reaches its minimum (see
Fig. 4). Then the flux dynamics, increased due to increased
j, “surpasses” the sweeping rate of H , the field profile b(x)
starts to lose its additional convexity and to overtake with the
growing H . As a result dm/dH changes sign and reaches its
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FIG. 5. Field profiles b(x) corresponding to the numerical mag-
netization curve shown in Fig. 4 as H is swept on from negative to
positive values. The annihilation (b = 0) lines are present starting
from profile 2 (H = 0), where they enter the slab from both sides,
to profile 4 (H is just above H∗), where they reach the center of
the sample (x = d) and disappear. One can note a clear square-root
behavior of b(x) around the annihilation lines (see profiles 2 and 3).

maximum at H = H∗. The latter is defined as the field where
the annihilation lines reach the center x = d and disappear
(see profile 4 in Fig. 5). As H grows further, the initial field
profile that results from the dynamic equilibrium between the
sweeping rate dH/dt and the normal flux dynamics in the
sample (without annihilation lines) is restored (look at profiles
1 and 5 in Fig. 5, which are almost identical).

In Fig. 4 our theoretical predictions are compared with
experimental data for m(H ) (circles) and ∂m/∂H (squares),
obtained in the La2−xSrxCuO4 sample [12] at dH/dt ≈
20 G/s (one experimental point was taken per 2 s). The sim-
ilarity between our numerical curves obtained for an infinite
slab with U = 0 and the experimental results obtained for the
sample with rc/rab � 1 and finite (although not large) U � kT
is quite promising. It is worth mentioning that the pronounced
dependence of U on B, which gives rise to fishtail features in
m(H ), starts in La2−xSrxCuO4 at |B| � 1000 G and does not
affect the area of small H where the above-described peculiar
behavior of m(H ) takes place.

IV. DISCUSSION

We have reported a crucial slowdown of the magnetic
relaxation in the remanent state compared with the field-on
relaxation. This is a particular case of a more general state-
ment that the annihilation (B = 0) lines, if present in the
sample, suppress and decelerate the flux motion. This effect is

mostly pronounced in long slabs or cylinders where vortices
are straight and can be described by the one-dimensional flux
diffusion equation [see Eq. (2)]. In real experiments this effect
should still be noticeable in samples with the aspect ratio
rc/rab � 1, where the vortices are almost straight except for
the vicinity of the top and bottom edges (see Ref. [13]). An-
other condition for observation of such a dramatic slowdown
in the relaxation rate is weak dependence of the activation
energy U on j. Thus, the effect should be most prominent
in the flux flow regime or at early stages of flux creep where
U � kT . The reason for the dramatic slowdown in relaxation
is the accumulation of the magnetization current j in the vicin-
ity of the B = 0 line that results in considerable diminution of
j in the rest of the sample. For flux flow, where U = 0, the
effect is mostly striking and results in power-law relaxation
with j ∝ t−1 instead of exponential time dependence j ∝
exp(−t/τflow), which describes the flux flow in the absence of
annihilation lines [6]. As shown in Sec. II, strong dependence
of U on j lessens the divergence [see Eq. (13)]; thus, the slow-
down effect fades out. In addition the slowdown effect should
not be expected in platelet samples with rc/rab � 1. In such
thin samples flux motion is essentially two-dimensional where
both the in-plane component of magnetic field (Bx in our
geometry) and the out-of-plane one (Bz) are important [3,11].
Then the line Bz = 0 is different from the annihilation line in
long samples since Bx remains finite there, the vortices form
loops that disappear by collapsing, and this process does not
lead to any divergence in j.

In the high-Tc family, clean La2−xSrxCuO4 crystals provide
a good opportunity for such a prominent slowdown to be
observed since they obey the condition U � kT at T � Tc

(vortex liquid) and have a nonplatelet shape of samples with
rc/rab � 1 (see Ref. [12]). However, most popular HTSCs
like YBCO and BSCCO could also be possible candidates for
studying significant slowdown in the remanent state at high
enough temperatures (flux flow regime) if magnetic field is
directed perpendicular to the c axis.

In addition, we have described a simple method for observ-
ing the slowdown in the relaxation process by the analysis
of the magnetization curves m(H ) obtained at a constant
sweeping rate of the external field dH/dt . The latter should
be chosen to be comparable to the mean relaxation rate ∂B/∂t
in the sample. The numerical results (see Sec. III) show a clear
anomaly in the dynamic relaxation rate dm/dH when the
annihilation lines are present in the sample. The comparison
with the experimental data [12] obtained in La2−xSrxCuO4

crystals looks quite promising.
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