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The dynamics of an active, finite-size, and immiscible impurity in a dilute quantum fluid at finite temperature
is characterized by means of numerical simulations of the Fourier truncated Gross-Pitaevskii equation. The
impurity is modeled as a localized repulsive potential and described with classical degrees of freedom. It is
shown that impurities of different sizes thermalize with the fluid and undergo a stochastic dynamics compatible
with an Ornstein-Uhlenbeck process at sufficiently large time lags. The velocity correlation function and the
displacement of the impurity are measured and an increment of the friction with temperature is observed. Such
behavior is phenomenologically explained in a scenario where the impurity exchanges momentum with a dilute

gas of thermal excitations, experiencing an Epstein drag.

DOLI: 10.1103/PhysRevB.103.024509

I. INTRODUCTION

A Bose-Einstein condensate (BEC) is an exotic state of
matter, which takes place in bosonic systems below a crit-
ical temperature, when a macroscopic fraction of particles
occupy the same fundamental quantum state [1]. Almost three
decades ago, Bose-Einstein condensation was observed for
the first time by Anderson et al. in a dilute ultracold atomic
gas [2]. Since then, BECs have been realized in a wide range
of different systems, from solid-state quasiparticles [3,4] to
light in optical microcavities [5].

Bose-Einstein condensation is intimately related to the no-
tion of superfluidity, which is the capability of a system to
flow without viscous dissipation [1]. Superfluidity was first
detected almost one century ago in liquid helium “He [6,7]
below 2.17 K, and it is a known feature also of atomic BECs
and light in nonlinear optical systems [8]. Both superfluid-
ity and Bose-Einstein condensation are a manifestation of
quantum effects on a macroscopic scale, which is why these
systems are usually called quantum fluids. Theoretically, a
quantum fluid can be described by a macroscopic complex
wave function. This represents the order parameter of the
Bose-Einstein condensation phase transition and it is directly
related to the density and the inviscid velocity of the superflow
via a Madelung transformation [9].

As a consequence of superfluidity, an impurity immersed in
a quantum fluid does not experience any drag and can move
without resistance. However, if the speed of the impurity is
too large, superfluidity is broken because of the emission of
topological defects of the order parameter, known as quantum
vortices [10—13]. Moreover, at finite temperature the thermal
excitations in the system may interact with the impurities
and drive their motion [14]. The behavior of particles and
impurities immersed in a superfluid has been a central subject
of study since long time [10]. The interest has been recently
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renewed by the experimental implementation of solidified hy-
drogen particles to visualize quantum vortices in superfluid
helium [15,16], the study of polarons in atomic gases [17,18],
and the use of impurities to investigate the properties of su-
perfluids of light [19,20]. A particularly interesting kind of
impurity arises in the immiscible regime of the multicom-
ponent BEC. It has been shown that when two condensates
of different species highly repel each other, one of the two
components exists in a localized region and can be thought as
a finite-size impurity [21,22]. If many components are present
simultaneously, different phases can be identified, depending
on the ratios between the coupling constants [22]. In particu-
lar, for positive scattering lengths between the impurity fields,
the components separate from the main condensate and show
a hard-sphere repulsion between each other. Experimentally,
mixtures of different condensates have been realized with cold
atomic gases [23,24], and the immiscibility properties have
been studied [25].

In this work we aim at studying numerically the dynam-
ics of an immiscible and finite-size impurity in a quantum
fluid at finite temperature. There are several models which
have been proposed to take into account finite-temperature
effects in a quantum fluid, although at the moment there is
no uniform consensus on which is the best one [26]. A suc-
cessful example is the Zaremba-Nikuni-Griffin framework, in
which a modified-dissipative Gross-Piteaevskii equation for
the condensate wave function is coupled with a Boltzmann
equation for the thermal cloud [27]. A simpler model is the
Fourier truncated Gross-Pitaevskii (FTGP) equation, in which
thermal fluctuations of the bosonic field are naturally taken
into account without the coupling with an external thermal
bath [28]. The main idea behind the FTGP model is that
imposing an ultraviolet cutoff k,,y, and truncating the system
in Fourier space, allows for the regularization of the classi-
cal ultraviolet divergence and states at thermal equilibrium
can be generated. The FTGP model has been successfully
used to reproduce the condensation transition [28-31], to
study finite-temperature effects on quantum vortex dynam-
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ics [32-34], and to investigate the effective viscosity in the
system [35].

In this paper, we couple the FTGP equation with a min-
imal model for impurities, which are described as localized
repulsive potentials with classical degrees of freedom [13,36].
It has been recently utilized systematically to investigate the
interaction between particles and quantum vortices at very
low temperature [37-40]. We stress that this minimal model
is suitable for extensive numerical simulations and Monte
Carlo sampling. Indeed, its simplicity makes it computation-
ally much cheaper than more complex approaches in which
the impurities have many (infinite) degrees of freedom, like
the Gross-Clark model [41,42] or the multicomponent BEC
model [22].

Recently, a drag force acting on an impurity in the weak
coupling regime has been detected using a damped GP equa-
tion at finite temperature [43], extending an analytical work
in which the resistance of the GP fluid on a point particle was
studied at zero temperature [44]. In the case of immiscible
active impurities, it has been shown that a multitude of them
coupled with the FTGP model can form clusters, depending
on the temperature and the ratio between the fluid-mediated
attraction and the impurity-impurity repulsion [14]. Moreover,
the presence of such clusters turned out to be responsible for
an increase of the condensation temperature. However, the
precise characterization of the dynamics of a single impurity
immersed in a bath of FTGP thermal modes has not been
addressed yet. This is indeed the purpose of this work. In
the next section, we present the FTGP model coupled with
a single three-dimensional impurity, and provide details for
the numerical techniques used to simulate such system. In
Sec. III, we present a statistical analysis of extensive numer-
ical simulations of the system. In particular, we find that at
large times the dynamics of an impurity in a finite-temperature
quantum fluid is akin to an Ornstein-Uhlenbeck process with
a temperature-dependent friction coefficient, that we are able
to explain. Eventually, we exploit this information to show
that for the sizes of the impurities considered, their motion
is consistent with a scenario where the thermal excitations
behave as a gas of waves rather than a continuum liquid.

II. FINITE-TEMPERATURE MODEL

We use the Fourier truncated Gross-Pitaevskii model to
describe a weakly interacting quantum fluid at finite tem-
perature, with a repulsive impurity immersed in it [14]. The
Hamiltonian of the model is given by
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where ¥ (x,t) is the bosonic field, m is the mass of the
constituting bosons, and g = 4 afi*/m is the self-interaction
coupling constant, with a the boson s-wave scattering length.

The bosonic field is coupled with an impurity of mass Mj,
described by its classical position (¢ ) and momentum p(z) =
M1q(t). The impurity is modeled by a repulsive potential
Vi(Jx — q|), which defines a spherical region centered in q(t)

where the condensate is completely depleted. Note that the
functional shape of the potential Vi(]x — q|) is not important,
provided that it is sufficiently repulsive to completely deplete
the fluid. The relevant parameter is indeed the size of the de-
pleted region, which in turns identifies the impurity radius aj.
The Galerkin projector Pg truncates the system imposing an
UV cutoff in Fourier space: ”Pg[xﬁk] = 0 (kmax — |k|)1ﬁk with
0(-) the Heaviside theta function, 1/71( the Fourier transform of
¥ (x) and k the wave vector. The time-evolution equation of
the wave function and the impurity are obtained straightfor-
wardly by varying the Hamiltonian (1):
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Note that the projection of the density || in Eq. (2) is
a dealiasing step that is necessary to conserve momentum
[34] in the truncated equations. This procedure slightly dif-
fers with the projected Gross-Pitaevskii model [28] as some
high-momentum scattering processes are not considered in the
FTGP framework.

At zero temperature and without the impurity, Eq. (2)
can be linearized about the condensate ground state vy =
[0l exp (—int/h), fixed by the chemical potential u =
gl¥o)?. The excitations of the condensate propagate with the
Bogoliubov dispersion relation
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where k = |k|, c = \/g|¥o|?/m is the speed of sound, and § =

Vii/2gm|vo|? defines the healing length at zero temperature.
Note that the impurity completely depletes the condensate in

the region where V| > u.

The Hamiltonian H and the number of bosons N =
f | |?dx are invariants of the FTGP model. Thus, it possesses
finite-temperature absolute equilibrium solutions, distributed
with the probability

Py, q, §] oc e PH=#, o)

The concept of absolute equilibria of Fourier truncated equa-
tions was first introduced in the context of the Euler equation
[45,46] and directly generalizes to FTGP [34]. Such equilibria
are steady solutions of the associated Liouville equation. The
Liouville equation describes the microcanonical evolution of
the phase-space distribution function of an ensemble of states
driven by Egs. (2) and (3). Note that a state which solves
Egs. (2) and (3) conserves the invariants N and H, and the
equilibrium distribution in Eq. (5) is nothing but the probabil-
ity of picking one of these states at given inverse temperature
B and chemical potential . This is true whether the impurity
is present in the system or not. The argument of the expo-
nential in Eq. (5) is a linear combination of the invariants
H and N, and B is a Lagrange multiplier identified with the
inverse temperature. Given a random initial condition with
energy H and number of bosons N, long time integration of
Egs. (2) and (3) will let the system evolve to an equilibrium
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state belonging to the distribution (5). The temperature is not
directly available as a control parameter since such dynamics
is microcanonical, but it is biunivocally associated to the given
conserved invariants [28].

At finite temperature, many modes are excited and interact
nonlinearly. Such interactions lead to a spectral broadening of
the dispersion relation, together with small corrections of the
frequency. Overall, the dispersion relation can be well approx-
imated taking into account the depletion of the condensate
mode in the following manner [35]:

2k2
a)g(k) = Ck‘/ no(T) + sT’ (6)

where 1y (T') is the condensate fraction. We define it as

(I ) ydxP),
(I [ dx);_,

namely, as the ratio between the occupation number of the
zero mode at temperature 7' and at temperature 7 = 0. With
such definition, the condensate fraction is normalized to be
one at zero temperature. In this way, the depletion of the
condensate due to the presence of the impurity is properly
taken into account [14]. The fraction of superfluid component
ny(T) = ps/p and normal fluid component n,(T) = p,/p,
where p = % i m|y¥|? dx is the average mass density, can be
computed using a linear response approach [14,47,48]. They
read as, respectively,

no(T) = . (N

limy . xr(k)

W(T) = 0 X
) = o e

ng(T)=1—ny(T), 8)
where xc(k) and x;(k) are, respectively, the compressible
(longitudinal) and incompressible (transverse) coefficients of
the two-point momentum correlator:

N kik; kik
(Ji(k)j;(—k)) FXC(k) + | &ij — = xi(k),  9)
with J;(k, 1) the Fourier transform of the ith component of the
momentum density j;(x, ) = Z[y 9% — Y*o¥].

A. Numerical methods and parameters

In the numerics presented in this work, we integrate the
system (2) and (3) by using a pseudospectral method with
Nies = 128 uniform grid points per direction of a cubic do-
main of size L = 2. We further set the UV cutoff kp.x =
Nres/3, so that, aside from the Hamiltonian H and the number
of bosons N, the truncated system (2) and (3) conserves the
total momentum P = [ Z(yVy* — y*Vi)dx +p as well
(provided that initially Pg[y] = ¢ and Ps[Vi] = V1) [34.,39].
In thermal states, the cutoff ky.x plays an important role.
The dimensionless parameter &k, controls the amount of
dispersion of the system and therefore the strength of the
nonlinear interactions of the BEC gas. The smaller its value,
the stronger the interaction is. Note that, as scales of the
order of the healing length have to be resolved numerically,
it cannot be arbitrarily small. See, for instance, Refs. [34,35]
for further discussions. In this work we fix this parameter
to Ekmax = 2 /3. Note that in our results all the lengths are
expressed in units of the healing length at zero temperature

(a) T =0.22T)

(b) T =052T)

ap = 12.7& ap =12.7.¢

FIG. 1. Snapshots of the GP field with an impurity of size a; =
7.6¢ at time t = 3056&/c [(a), (b)] and an impurity of size a; =
12.7¢ at time t = 7130 /c [(c), (d)] at temperatures 7 = 0.22 T}
[(@), (¢)] and T = 0.527T;, [(b), (d)]. The GP sound waves are ren-
dered in blue, the dark sphere is the impurity potential, and the green
surfaces are contours of the GP density at p/p = 0.15. The impurity
trajectory is displayed as a solid line.

& and the velocities in units of the speed of sound c at zero
temperature. In these units, the system size is L = 128&.
The potential used to model the impurity is a smoothed

hat function V;(r) = % (1 — tanh [rzZZ‘z’ 1). The impurity radius
aj is estimated at zero temperature bgi measuring the volume
of the displaced fluid $7ai = [(|vol* — [¥p|*) dx, where ¥,
is the steady state with one impurity. The impurity mass
density is then p; = M;/ (%naf). In all the simulations we
fix u = |Yo| =1 and for the impurity potential Vp = 20u
and A, = 2.5&. We consider an impurity of radius a; = 7.6
setting 1, = 2§ and an impurity of size a; = 12.7£ setting
Na = 108.

Note that, although the shape of the impurity potential is
fixed, fluctuations of the impurity surface are allowed by the
model. Such fluctuations are shown in Fig. 1 (that will be
commented in Sec. III) as green contours of the fluid density
at a low value around the spherical potential.

We prepare separately the ground state with an impurity
Yp (at zero temperature) and the FTGP states at finite tem-
perature Yr, without the impurity. The first one is obtained
by performing the imaginary-time evolution of Eq. (2), while
the second one is realized with the stochastic real Ginzburg-
Landau (SRGL) [14,34,35], protocol that allows to explicitly
control the temperature. The SRGL method is briefly recalled
below. The initial condition for the FTGP simulations is then
obtained as ¥ =y, X Y. For our analysis, we considered
~22 different realizations for each of the 15 studied tem-
peratures and for each impurity. The initial velocity of the
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impurity is always set to zero and the temporal length of
each realization is ~9000& /c. In all the statistical analysis
presented in the following sections, we checked that including
or not the data associated to the early times of the simulation
does not change the results. The thermalization of the impurity
will be studied explicitly in Sec. III, but this fact gives already
a first indication that the impurity reaches the equilibrium with
the thermal bath in the very early stages of the simulations.

We operatively define the condensation temperature 7; as
the first point of the temperature scan at which the conden-
sate fraction ny(7) goes to zero. The normal fluid fraction
n,(T) and consequently the superfluid fraction ny(7) =1 —
n,(T) are evaluated numerically with the following protocol
[48]. At fixed temperature, we measure the angle-averaged
incompressible and compressible spectra of the momentum
correlator, respectively, x/?(k) o< (k*|j;(k)[*) and x29(k) o
(k*|jc(K)|?). We fit the logarithm of )(,1‘1(k)/k2 and Xéd (k)/k?
with a cubic polynomial in the range 3L/2w < k < 3kpyax/2;
we extrapolate the values of the fits at k = 0 and finally di-
vide them to get n,(T) = x;(k = 0)/xc(k = 0). Such method
works well at low temperatures while it is strongly affected
by numerical noise at temperatures T 2> T, [48]. These last
points are then simply assumed to be equal to zero.

Finally, note that in this work, if not explicitly specified,
all the averages are intended over realizations for a fixed
temperature 7. Moreover, because of isotropy, we treat each
dimension of any vectorial quantity as a different realization
of the same distribution.

B. Grand-canonical thermal states

We recall here the SRGL protocol used to obtain equilib-
rium thermal states of the truncated GP equation. We refer
to Ref. [34] for further details about the method. The FTGP
grand-canonical thermal states obey the (steady) Gibbs dis-
tribution which coincides with Eq. (5). A stochastic process
that converges to a realization of this probability distribution is
given by the following stochastic equation (in physical space):

Iy n_, >
t 2m

2h
+ 5o Pele el (10)

where ¢(x,t) is a complex Gaussian white noise with
zero mean and delta correlated in space and time:
((x,1)*(X', 1)) = 8(x — x")8(¢t — t'). In principle, such pro-
cess is coupled with analogous equations for the impurity
degrees of freedom [14]. Here, we do not consider them
since we are interested in generating thermal states without
impurities. As explained in the previous section, the impurity
is added afterwards to the thermal states in order to observe
its dynamics according to the evolution equations (2) and (3).
In the right-hand side of Eq. (10) a deterministic term and a
stochastic term compete against each other. The distribution
which entails the balance between such fluctuations and dissi-
pation is Eq. (5), i.e., the steady solution of the Fokker-Planck
equation associated to Eq. (10) [34].

We define the temperature as T = 1/kx 8, where ky =

L*/N and N = %k}, is the number of Fourier modes in

the system. With this choice, the temperature has units of
energy density and the intensive quantities remain constant in
the thermodynamic limit, that is kp,x — oo with L constant.
Finally, in order to control the steady value of the average den-
sity p, the chemical potential is also dynamically evolved with
the ad hoc equation & = —v,(p — p;) during the stochastic
relaxation. In this way, the system converges to the control
density p = p, that we set equal to m|y|> = 1.

We finally mention that a similar approach can be used
to generate and study thermal states, which is the stochastic
GP model [26]. There, the stochastic relaxation (10) is com-
bined with the physical GP evolution (2). However, unlike the
FTGP model, the stochastic GP model is dissipative and has
an adjustable parameter in which the interaction between the
condensate and the thermal cloud is encoded.

III. IMPURITY MOTION

We perform a series of numerical simulations of the models
(2) and (3), varying the temperature and the size of the impu-
rity. Typical impurity trajectories are displayed in Fig. 1 for
two different temperatures, together with a volume rendering
of the field and of the impurity. The motion of the impurity is
clearly driven by a random force, due to the interaction with
the thermal excitations of the condensate.

Before studying the stochastic dynamics of the impurity,
we characterize some properties of the thermal states that
will be used later. In Fig. 2(a) we show the condensate frac-
tion ng, the superfluid component ng, and the normal fluid
component n,, plotted against temperature. The lines refer to
the simulations without impurity while the circles are obtained
in presence of the largest impurity considered (a; = 12.7§).
Almost no difference between the two cases is detected since
the volume occupied by the impurity is only 0.5%. Indeed, in
Ref. [14] it was shown that the condensate fraction starts to
increase at high temperatures if the impurities filling fraction
is larger than 4%. We can therefore safely assume that the
impurity has no impact on the statistical properties of the
thermal fluctuations.

From the impurity (3), we observe that the quantum fluid
interacts with the impurity via a convolution between the im-
purity potential and the density gradient. It is thus interesting
to understand the typical correlation time of density fluctua-
tions, in particular of its gradients. In Fig. 2(b) we compute the
decorrelation time 1gp of the thermal excitations as a function
of temperature. Such time is evaluated performing a FTGP
evolution of thermal states without impurity and considering
the time correlator of one of the components of the density
gradient:

(9ip(19)0;p(tg + 1))
((9ip)?)
The averages in Eq. (11) are performed over space and
different realizations. Three examples for three different tem-
peratures of the time evolution of this correlator are shown
in the inset of Fig. 2(b). They show a damped oscillating
behavior and touch zero for the first time after a time ~1c/£.
We estimate the decorrelation time tgp as the time after which
the correlator (11) is always less than 1%. At timescales larger
than 7gp, we expect that the interactions between the impurity

Cap(t) =

(11)

024509-4



STOCHASTIC MOTION OF FINITE-SIZE IMMISCIBLE ...

PHYSICAL REVIEW B 103, 024509 (2021)

1.00 1
0.75 1
0.50 A
0.25 1
0.00 A
— T/T\ = 0.07 b
60 1 m— T /T = 0.52 ( )
& T/Ty = 0.96
Q 0-
wp
<40 1
A —1 T T
& 5 10 15
20 1 te/
0 T T T T T
0.2 0.4 0.6 0.8 1.0
T/T

FIG. 2. (a) Temperature evolution of condensate fraction (green
solid line), superfluid fraction (dashed blue line), and normal fraction
(dotted red line) for simulations without impurity. The circles of cor-
responding colors refer to simulations in presence of an impurity of
size a; = 12.7& and mass density p; = p. (b) Temperature evolution
of the decorrelation time of the FTGP density gradients. (Inset) Time
evolution of the two-point correlators of the FTGP density gradients
(11) for three different temperatures.

and the thermal excitations can be considered as random and
rapid. Before checking if this is the case, we verify explicitly
whether the impurity reaches the thermal equilibrium with the
quantum fluid.

If the number of the excitations-impurity interactions is
large, the velocity of the impurity is expected to be normally
distributed at the equilibrium, in accordance with the central
limit theorem. Indeed, we show this in Fig. 3, where the
probability density function (PDF) for the single component
of the impurity velocity is displayed. Assuming ergodicity,
the PDFs are computed averaging also over time, besides over
realizations. Since we expect the impurity to be in thermal
equilibrium with the surrounding GP fluid, the second-order
moment of its velocity should relax to a constant value, that is
related to the temperature via the equipartition of energy:

o knT
(ql)_ Ml .

12)

The perfect agreement between Eq. (12) and the numerical
simulations is displayed in Fig. 4. It confirms that the impurity
is indeed in thermal equilibrium with the thermal bath. Note
that the linear scaling with temperature persists also at high
temperatures, where the GP energies are not in equipartition
anymore because of high nonlinear interactions. This is not
a contradiction since the impurity is a classical object with
a simple quadratic kinetic energy. For comparison, the de-
viation from equipartition of the GP energy density egp =

10! (a) y-N
—— T/Ty = 0.07
w —e— T/T = 0.15
a 1 -
a 10 —— /T = 0.22
—e— T/T = 0.37
10—3 . . T —— T/T>\ =0.44
0.2 0.0 0.2 —e— T/T =0.52
(@ —{d:))/ == T/Tx =0.59
—— T/Ty = 0.67
(b) L T/Tx = 0.74
1071 4 T/T = 0.81
" ;\ T/Ts = 0.89
a & T/T\ =0.96
& 034 & AN _
5 Y T/T = 1.04
9 “'q ----- Gaussian
..' op
1075 = T T T -

—-5.0 —2.5 0.0 2.5 5.0
(Ge — (@) /0w

FIG. 3. PDF of the single-component velocity of an impurity
of size a; = 7.6 and mass density p; = p, for different temper-
atures. (a) Velocities normalized with the speed of sound at zero
temperature. (b) Velocities normalized with the standard deviation.
Dotted black line is a Gaussian distribution with zero mean and unit
variance.

(H — uN)/L* + */2g (without impurities) is reported in the
inset of Fig. 4.

We consider now the evolution of the two-point impurity
velocity correlator C,(¢). If the collisions between the super-
fluid thermal excitations and the impurity are fast and random,
we expect it to decay as

. . 12
Co(t) = lim <Qi(t0)CI1:(tO + l‘?) — )" _ o 13)
—>00 <q[2> — (qi>2
where 17 is the dynamical correlation time of the impurity
velocity. Specifically, the behavior (13) should certainly hold

0.005 1 _ 0 O“'O
SRR o
0.0044 & g e
N o® Q°
0 Je2 o*
ooy Ty e 9 anTe
=~ . . . .o" o ar = 12.7
= 0.002 A T/TAO‘.O' ----- kn T/ My
O,‘o"
0.001 - s OO H-00
0.000 4 8- 9 400

0.0 0.2 0.4 0.6 0.8 1.0
T/Ty

FIG. 4. Second-order moment of the single-component velocity
of impurities of size a; = 7.6§ (red circles) and a; = 12.7¢ (blue
diamonds), as a function of the temperature. The mass density
is py = p for both. (Inset) GP energy density versus tempera-
ture (blue points). Orange dashed line is the equipartition line
ecp = T,.
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0 200 400 600 800

T/Ty

100 10! 102
e/

FIG. 5. Time evolution of the two-point velocity correlator for
the impurity of size a; = 7.6& and mass density p; = p in (a) log-lin
scale and (b) log-log scale. Different colors are associated to different
temperatures (same legend of Fig. 3). Dotted lines are linear fits.
(Inset) Temperature evolution of the dynamical correlation time of
the impurity.

at time lags larger than the decorrelation time of the GP excita-
tions tgp, estimated in Fig. 2(b). This scenario is confirmed by
the measurements of C,(¢), reported in Fig. 5 for the impurity
of size a; = 7.6&£. The exponential decay is evident for time
lags larger than ~10¢ /c for all the temperatures.

According to the results mentioned so far, at sufficiently
large timescales the interactions between the impurity and the
thermal bath can be considered to be effectively fast, random,
and decorrelated. Thus, it is natural to suppose that the im-
purity dynamics may be described by the Ornstein-Uhlenbeck
(OU) process [49]:

My = —yq + Vo5 (1), (14)

where ¢,(¢) is a (Gaussian) white noise in time, i.e., (. (7)) =
0 and (&,i(t1)&r,j(t2)) = 8;;6(t; —t2) where o2 is related to
the diffusion coefficient. The term —yq is the drag force,
with y a friction coefficient that in general may depend on
temperature and on the impurity size. In particular, the friction
should be directly related to exponential decay timescale ty
of the correlator (13) as y = M;/7;. In Fig. 5 we clearly see
that the correlators decay faster for higher temperatures. The
values of the correlation time 77 at different temperatures are
obtained through linear fits of In C,(¢), shown as dotted lines
in Fig. 5(a). The decreasing of 7 with temperature is then ex-
plicitly displayed in the inset of Fig. 5(b). Note that 7; > tgp,
consistently with the assumptions of the OU process. The
physical consequence of such behavior, according to the OU
picture, is that the friction y between the impurity and the
fluid is larger for larger temperatures. We will dedicate the

next section to the discussion on the temperature dependence
of y.

We briefly comment on the short time-lag limit (¢t <
10&€ /c), where the measured correlator appears to decay fast
and with the same slope for all the temperatures. This is
particularly evident in the log-log plots in Fig. 5(b). In this
regime, the assumptions necessary for an OU regime to be
established are certainly not valid. Indeed, we are looking at
timescales shorter than the decorrelation time of the thermal
excitations Tgp, so that the collisions between the excitations
and the impurity cannot be considered random, rapid, and
decorrelated as in the forcing ¢.(¢) in (14). It is worth noting
that, for low temperatures, the velocity correlator partially
recovers before the exponential decay. This unusual feature
may be a consequence of a lack of decorrelation due to the
small fraction of thermal excitations at low temperatures,
which prevents the emergence of a diffusive regime. Such
phenomenon requires further investigations.

Another important prediction that can be obtained from the
OU process is that the variance of the displacement 6,¢;(t) =
qi(t + tv) — qi(tp) obeys the law

O'ZM[ Y y
8ig)) = (1t — 1+ e ). 15
(@) = = (3t =1 +e (15)
Two regimes can be identified. At short time lags [but still
large enough to consider the forcing ¢.(¢) delta correlated],
the displacement is ballistic
2
72, (16)

8qi)°) —

((5:qi) )t<<M1/y M

Conversely, after the dynamical relaxation, a diffusive regime
is established

2

)2 7, =
((4:4i) )t>>7>p/y yzt 2Dx, a7

where we have defined the diffusion constant D = o2/2y>.
Finally recall that, since in the OU process we also have
that (¢?) = 02/2Myy = Dy /M, the diffusion coefficient in
Eq. (17) can be related to the equipartition of energy in ther-
mal equilibrium (5) through the Einstein relation
D= M (18)
14
The measurements of the average squared displacement
for the impurity of size a; = 7.6¢ are shown in Fig. 6 for
all the temperatures analyzed, and compared with the OU
predictions. Once the squared displacement is normalized
with the prefactor of the prediction (15) and assuming the
Einstein relation (18) to estimate the diffusion coefficient,
the separation between the ballistic regime and the diffusive
one is apparent (bottom panel). The transition happens at the
measured values of the dynamical correlation time ¢ = 1y,
confirming the validity of the analysis of the velocity cor-
relator. The diffusion coefficient D is measured as the slope
of the squared displacement in the diffusive regime and it
is shown in the inset of Fig. 6(a). It is slightly larger than
the prediction given by the Einstein relation (18). Such trend
can be the signature of a memory effect due to a stochastic
forcing of the fluid on the impurity which is not perfectly
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FIG. 6. Time evolution of the averaged squared displacement
for the impurity of size a; = 7.6§ for different temperatures. Dif-
ferent colors are associated to different temperatures (same legend
of Fig. 3). Dashed green line is the prediction (15), assuming the
Einstein relation (18), dashed-dotted black line and dotted line are,
respectively, the asymptotic equations (16) and (17). (a) lin-lin scale,
times normalized with & /¢ and distances normalized with &. (b) log-
log scale, times normalized with the correlation time 7; and distances
normalized with the prefactor of (15). (Inset) Measured diffusion
coefficient as a function of temperature compared with the Einstein
relation (18).

delta correlated. For instance, it could be traced back to the
presence of coherent structures in the fluid or to the impurity
surface fluctuations, due to the actual interaction between the
impurity and the thermal excitations.

Friction modeling

In this section we show explicitly the behavior of the fric-
tion coefficient observed in the numerical simulations and we
give a phenomenological argument to explain it. In Fig. 7, the
friction y is plotted as a function of the temperature for the
two impurity sizes analyzed (red circles for the small one and
blue diamonds for the large one). Each value of y = M, /1
is estimated from the measured decay time 77 of the impurity
velocity correlator, shown in the inset of Fig. 5(b).

In general terms, the friction y depends on the interaction
between the impurity and the surrounding fluid. For a classical
fluid there are different regimes, depending on the value of the
Knudsen number Kn = Apg,/a;, where Angp, is the mean-free
path of the fundamental constituents of the fluid. If Kn « 1,
at the scale of the impurity, the fluid can be effectively consid-
ered as a continuous medium and the Navier-Stokes equations
hold. As a consequence, the drag force acting on the impurity
is the standard Stokes drag Fq = —6mainq [50], so that the

0.040 1/ —. 5 = 0.14- 4= aZp, (v,) :
— v =0.1-2%a} (5 — po) (vg) l
0.035 1 —- 5 — 0.19- a2, (u,) / °
— v =0.14- £a} (p — po) (vg) / !
0.0301 O a =7.6¢ / /
ay = 12.7¢ )
0.025 -
= v 2.31%%, .
T 002045 "o, 7
uy > 2.2 1 % /
7 = (1]
00154 2.1
0.010 -
0.005 -
0.000 -
0.0 0.2 0.4 0.6 0.8 1.0
T/T

FIG. 7. Friction coefficient y nondimensionalized by cM;/& as
a function of the temperature, for impurities of size a; = 7.6§ (red
circles) and a; = 12.7& (blue diamonds), with mass density p; = p.
Dashed-dotted lines are fits of the Epstein drag (20) using the normal
fluid density p,. Solid lines are fits of the Epstein drag using the
density of noncondensed modes p — pp. (Inset) Average excitation
velocity (vg) (21) as a function of temperature.

friction is related to the viscosity 1 as
y = 6map. (19)

Instead, if Kn > 1, the fluid behaves as a dilute gas of free
molecules. In this case, the resistance of the impurity is well
described by the Epstein drag [51]:
Mipg (v

= Caatpgvg) = cdf%pig), (20)
where p, is the mass density of the gas and (vy) > |q] is
the average velocity of the molecules. The prefactor Cy is
a dimensionless constant that depends on the interaction be-
tween the impurity and the fluid molecules. In the case of
elastic collisions of the fluid excitations (specular reflection),
a simple way of understanding the formula (20) is summa-
rized in the following [52]. If an object of mass M| moves
with velocity ¢ in an isotropic gas of free molecules, the
momentum exchanged in the collision between a surface el-
ement dA and a molecule (assuming elastic collisions) is
Ap ~ —2mg|q| cos Ofi, where my < M is the molecule mass
and 6 is the angle between the object velocity and the outward
normal to the surface element fi. Assuming that the typical
speed of the molecules (vg) is much larger than the object
velocity, the average number of collisions in a time interval
At is dng = ng(vg) At dA, which is the number density of
molecules ng, = p;/m, times the volume spanned by each
molecule (vg) At dA. The infinitesimal force arising from the
momentum exchange is therefore dFq = (Ap/At) dncon. By
symmetry, if the object is spherical, the force components
orthogonal to its direction of motion will cancel. Account-
ing for this, the net drag force results from the integration

. 4
Fo=-yq, y=-—
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of |dF4|cos@(q/|q|) over half of the sphere surface. This
leads precisely to Eq. (20) with C4 = 1. Considering differ-
ent reflection mechanisms leads to the same equation with a
different value of the prefactor Cy. For instance, in the case
of full accommodation of the excitations with the impurity
surface one gets Cy = (1 + 7 /8) ~ 1.39 [51].

The mean-free path Ay (7) in the FTGP model has been
recently estimated in Ref. [35] as the product of the group
velocity of the excitations and the nonlinear interaction time
(i.e., the reciprocal of the spectral broadening of the dispersion
relation) at a given temperature. For £ky.x = 27 /3, the value
used in this work, the mean-free path Ay turns out to lie
between 10§ and 50 & at temperatures 7 < 0.7 7, thus larger
than the sizes of the impurities studied here (cf. Fig. 14 of
Ref. [35]). As a consequence, we can treat the fluid as a gas
of free molecules and confront the measured friction with the
Epstein drag. In particular, the role of “gas molecules” in the
GP fluid is played by the thermal excitations. Therefore, we
can substitute the gas density p, in Eq. (20) with the density
of the noncondensed modes p, = p — po, where pg = nop
or with the normal fluid density p; = p, = 1,0, computed
using the momentum density correlator [48] (see Fig. 2). The
velocity of the excitations vy = ‘% is averaged as

(vg) = 2 klesi ”kaa% _ Z:’g kz”/ldaa%’ 1)

kmax 1d
2 kesi Mk =1 "%

with ng the occupation number of the mode k € Sx = {1 <
K| < kmax} and n,id = Zlkl:k ny its angle average.

In Fig. 7, the Epstein drag prediction (20) is compared
with the numerical data. Both using the normal fluid density
(dashed-dotted lines) or the density of noncondensed modes
(solid lines) we get a good accordance at low temperatures,
with a fitted prefactor C4, whose values are of the order 0.1.
Note that in this way we are implicitly guessing that the
impurity-excitations interaction is independent of tempera-
ture. The specific values of Cy are reported in the legend
of Fig. 7. They are consistent with a reasonable scenario in
which thermal waves are much less efficient in transferring
momentum to the impurity with respect to the standard parti-
cles reflection mechanisms [51]. We observe that Cy is slightly
increasing with the impurity size (perhaps because of some
variation of the impurity surface fluctuations) but it is inde-
pendent of temperature. Note that the precise determination of
radius dependence of Cy would require even further numerical
simulations of what has been presented here.

In the inset of Fig. 7, we show the temperature depen-
dence of the averaged excitations velocity (21), which turns
out to be larger than the speed of phonons because it is
dominated by high wave-number excitations. Note that the
friction increment starts to diverge from the prediction at high
temperatures. One reason is that the mean-free path of the
GP excitations is becoming of the same order of the impurity
size and thus the viscosity starts to play a role in the mo-
mentum exchange. A second cause may be that the impurity-
excitations interactions are modified because of the high
nonlinearity of the GP waves, leading to a temperature depen-
dence of the constant Cy in Eq. (20). Eventually, note that a
larger discordance with the measurements at high temperature
is observed if the normal fluid density is used. This is probably

due to a lack of accuracy in the computation of p, at high tem-
peratures, but it also suggests that it can be more reasonable to
identify the density of the excitations simply with that of the
noncondensed modes.

IV. DISCUSSION

In this paper we studied how the stochastic motion of an
active, finite-size, and immiscible impurity immersed in a GP
quantum fluid changes when the temperature is varied. We
demonstrated that the interaction with the thermal excitations
in the system always leads to a fast thermalization of the im-
purity. At time lags larger than 10§ /c the correlation function
of the impurity velocity shows an exponential decay, which is
steeper for higher temperatures. This and the impurity squared
displacement are reminiscent of an Ornstein-Uhlenbeck pro-
cess.

From the measurements of the velocity correlation we ex-
tracted the temperature dependence of the friction coefficient
y(T). The clear result is that the impurity does not experience
the typical Stokes drag present in a classical fluid. Indeed, in
the case of Stokes drag, the temperature dependence of the
friction (19) is through the viscosity 1. Since the viscosity
has been shown to be slightly decreasing with temperature in
the FTGP model [35], it cannot explain the trend observed
in Fig. 7. The reason is that the settings studied are asso-
ciated with large values of the Knudsen number, meaning
that at the scale of the impurity the GP quantum fluid at
finite temperature cannot be considered as a continuous liquid.
On the contrary, describing phenomenologically the system
as a gas of dilute thermal excitations reproduces the correct
temperature increment of the friction y (7). Moreover, we
observe a dependence of the friction with the impurity size
compatible with the quadratic scaling y  a; predicted by the
Epstein drag (20), despite some small deviations hidden in
the prefactor Cy. In the case of Stokes drag, one should have
observed a linear scaling y o gy that is not in agreement with
our data.

We stress that the picture outlined does not apply to the
particles typically used as probes in superfluid helium ex-
periments [15,16]. Indeed, aside from being liquid helium a
strongly interacting system, the typical size of those particles
is four orders of magnitude larger than the healing length.
Thus, in that case the Knudsen number is certainly small
enough to entail the standard Stokes drag. However, a similar
regime in terms of Knudsen number has been studied experi-
mentally by using microspheres in liquid helium below 0.5 K
[53]. It has been observed that the drag is determined by the
ballistic scattering of quasiparticles and the temperature de-
pendence of the friction coefficient is given by the temperature
dependence of the quasiparticles density. Aside from helium,
we hope that our study may be relevant for future BEC ex-
periments, in which finite-size and immiscible impurities can
be produced in the strong repulsive regime of multicomponent
condensates [22], or in the study of the impurity dynamics in
quantum fluids of light [19,20].

A possible follow-on of this work is the development of a
self-consistent theory for the interaction between the thermal
excitations and the impurity, which takes into account the
dependence on the wave numbers of the colliding waves. This
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could give an analytical explanation to the small value of the
prefactor Cq in Eq. (20) compared to the classical Epstein
drag for elastic collisions. Note that in a recent publication,
the motion of a bright soliton moving in a thermal cloud of
distinct atoms has been successfully modeled by using an OU
dynamics [54]. In that case, the soliton is treated by using
a wave function and the thermal (noncondensed) cloud as a
reservoir. Although in our model the impurity is a rigid body
with classical degrees of freedom, the result of [54] could
inspire an analytical derivation of the OU dynamics for an im-
purity (14). Moreover, the characterization of the motion of a
multitude of impurities in the FTGP system can be deepened,
expanding the findings of Ref. [14]. Finally, the fundamental
problem of vortex nucleation due to fast impurities has been
thoroughly investigated at zero temperature [11-13], but few
results are known in the finite-temperature regime [55,56].

In particular, the FTGP model coupled with impurities (1)
would be a suitable framework to address the impurity-vortex
interaction at nonzero temperature.
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