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Orbital-dependent self-energy effects and consequences for the superconducting
gap structure in multiorbital correlated electron systems
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We perform a theoretical study of the effects of electronic correlations on the superconducting gap structure
of multiband superconductors. In particular, by comparing standard RPA-based spin-fluctuation mediated gap
structures to those obtained within the FLEX formalism for an iron-based superconductor, we obtain directly
the feedback effects from electron-electron interactions on the momentum-space gap structure. We show how
self-energy effects can lead to an orbital inversion of the orbital-resolved spin susceptibility, and thereby invert
the hierarchy of the most important orbitals channels for superconducting pairing. This effect has important
consequences for the detailed gap variations on the Fermi surface. We expect such self-energy feedback on the
pairing gap to be generally relevant for superconductivity in strongly correlated multiorbital systems.
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I. INTRODUCTION

The discovery of a growing class of unconventional multi-
band superconductors and the continuing development of
high-resolution experimental probes of superconducting gap
structures, highlight our need for theoretical models capable
of quantitatively describing the detailed momentum struc-
ture of superconducting pairing. Thus, the modern theoretical
objective is not only to locate the leading irreducible rep-
resentation of the preferred gap function, but additionally
to correctly describe all superconducting “gap details”, con-
sisting, for example, of the gap amplitude modulations and
relative signs of the gaps on the participating Fermi surface
sheets [1,2]. This ambitious goal has driven part of the re-
search of iron-based superconductivity over the past decade,
and remains currently very relevant, for example, for ex-
plaining superconductivity in multiband compounds such as
infinite layer nickelates [3], FeSe [4], KFe2As2 [5], LiFeAs
[6], UTe2 [7], and Sr2RuO4 [8]. Since the superconducting
gap structure is directly related to the mechanism of supercon-
ductivity, it serves as an important testing ground for different
electron pairing scenarios. However, as exemplified in this
paper, even within a given mechanism there are additional
electron correlation effects that may severely affect the “gap
details” of the resulting gap structure.

The importance of the strength of Coulomb repulsion in
the formation of Cooper pairs relates to the overall ques-
tion of whether electron-electron interactions are friend or
foe of superconductivity. Within most unconventional pair-
ing scenarios, repulsive interactions generate pairing in the
first place [9–11], but there exists an optimal strength,
since too strong interactions limit superconductivity. This is-
sue has been discussed for cuprate superconductors where the
single-band Hubbard Hamiltonian is the prime model under

investigation [12]. However, for multiband systems, there ex-
ist additional complexity since the states at the Fermi level
may exhibit different orbital character [13]. Thus, even though
the Coulomb interaction is identical for electrons in the vari-
ous active orbitals, the crystal structure and the corresponding
band structure differentiates the orbitals at the Fermi level. At
the bare level, one would expect the orbitals mainly contribut-
ing to Fermi level states to also dominate the pairing [14].
However, Coulomb repulsion may cause these same dominant
orbital states to exhibit the largest self-energy, with potentially
important implications for the resulting pairing state [14–23].

The issue of important self-energy feedback effects on the
superconducting gap structure, has recently been intensely
studied in relation to the material FeSe, featuring a Fermi
surface consisting of small elliptical hole (electron) pockets
near the � (M) point of the 2-Fe Brillouin zone [4,24,25].
In this compound, superconductivity materialises out of an
electronic nematic phase and exhibits a remarkably large
90◦ rotational anisotropy [26]. The gap variation along the
Fermi pockets is not straightforwardly explained by standard
pairing models [14,26]. Specifically, the superconducting gap
features very strong amplitude variations along the ellipti-
cal Fermi pockets and nearly vanishes around the vertex of
the ellipses [26]. This gap structure is qualitatively different
from that obtained from standard multiorbital random phase
approximation (RPA) spin-fluctuation pairing, an approach
that has been generally successful for many other iron-based
materials [1,13,14,27]. Therefore it was hypothesized that
additional correlation effects, e.g., orbital-dependent mass
renormalizations, not included within the standard bare-RPA
pairing formalism, might nontrivially affect the gap structure
[14,19,28–30].

Here, by performing a direct comparison of the super-
conducting gap structures arising from bare-RPA versus the
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self-consistent fluctuation exchange (FLEX) formalism [31],
we can directly explore how electronic correlations can influ-
ence the resulting superconducting gap. Indeed, while both
approaches subscribe to standard spin-fluctuation mediated
superconductivity, the main difference between the methods
is the inclusion of self-energy effects in the FLEX approach.
While several earlier works have applied the self-consistent
FLEX method to study pairing in iron-based superconductors
[32–34], none have focused on the detailed orbital contri-
butions and contrasted these to simpler methods neglecting
self-energy effects in the pairing kernel. We find that while
the overall symmetry class of the leading gap solution is not
affected (for our case study), there are significant “gap details”
that get strongly modified by self-energy effects. We trace
the main difference between bare-RPA and self-consistent
FLEX to the presence of a so-called orbital inversion, i.e., the
fact that the orbital structure of the pairing kernel has been
restructured by self-energy effects. This change of the orbital
hierarchy in the contributions to the pairing naturally arise in
multiorbital models where pairing and self-energy are caused
by the same virtual processes, thereby rendering feedback
effects important. We expect future computational schemes
for pairing superior to FLEX to reach similar conclusions.

Finally, we discuss an approximate method of including
the self-energy feedback effects in the pairing by incorpo-
rating orbital-dependent quasiparticle weights as proposed in
Refs. [14,26]. We compare the results of this simpler approach
to the full FLEX calculation.

II. MODEL AND METHOD

The model consists of a five-orbital tight-binding Hamil-
tonian H0 including all relevant five Fe d orbitals
[dxy, dx2−y2 , dxz, dyz, d3z2−r2 ], and onsite interactions via the
standard Hubbard-Hund term HI

H = H0 + HI

=
∑
i jσ

∑
qt

t tq
i j c†

itσ c jqσ

+ U
∑

it

nit↑nit↓ + U ′ ∑
i,t<q

∑
σσ ′

nitσ niqσ ′

+ J
∑
i,t<q

∑
σσ ′

c†
itσ c†

iqσ ′citσ ′ciqσ

+ J ′ ∑
i,t �=q

c†
it↑c†

iq↓cit↓ciq↑, (1)

with interaction parameters U,U ′, J, J ′ given in the notation
of Kuroki et al. [27] fulfilling the relations U ′ = U − 2J and
J = J ′. Here q and t are orbital indices and i, j denote Fe-atom
sites. The kinetic part, H0, is identical to that used in Ref. [35]
consisting of a DFT-derived five-band model generated for
LiFeAs. We choose a band relevant for LiFeAs since this
material does not exhibit magnetic and nematic instabilities,
but stress that the discussion below is general, and should
be of relevance also to other multiband unconventional su-
perconductors. The detailed band structure is not of crucial
importance as long as it features multiple-orbital Fermi sur-
face sheets.

The single-particle Green’s function is given by

G(k, ωm)−1 = G0(k, ωm)−1 − �(k, ωm), (2)

where the bare Green’s function is G0(k, ωm) =
[iωm − H0(k) + μ]−1, and the self-energy in orbital basis
is given by

�ps(k, ωm)

= 1

βNq

∑
q,�m

∑
qt

Vpqst (q,�m)Gqt (k − q, ωm − �m). (3)

Here, Vpqst (q,�m) refers to the effective particle-hole interac-
tion given by

Vpqst (q,�m) =
[

3

2
U SχS (q,�m)U S + 1

2
UCχC (q,�m)UC

−
(

UC + U S

2

)
χ0(q,�m)

(
UC + U S

2

)]
pqst

,

(4)

with the charge- and spin-fluctuation parts of the RPA suscep-
tibility defined by

χC (q,�m) = [1 + χ (q,�m)UC]−1χ (q,�m),

χS (q,�m) = [1 − χ (q,�m)U S]−1χ (q,�m), (5)

with the matrices UC and U S given by

UC
pppp = U, U S

pppp = U,

UC
ppss = 2U ′ − J, U S

ppss = J,

UC
pssp = J ′, U S

pssp = J ′,

UC
psps = 2J − U ′, U S

psps = U ′. (6)

The orbitally resolved susceptibility is given by

χpqst (q,�m)

= − 1

βNk

∑
k,ωm

Gtq(k, ωm)Gps(k + q, ωm + �m) , (7)

where Nk is the number of k points and β = 1/T denotes
the inverse temperature. In Eq. (4), χ0(q,�m) refers to the
standard bare multiorbital Lindhard function.

To obtain a self-consistent solution, we solve Eqs. (2)–(7)
iteratively using the FLEX scheme shown in Fig. 1. The circle
at the top corresponds to a bisection search that is used to
find a chemical potential μ such that the particle number
is kept at 6.0 within a numerical accuracy of 10−5. To im-
prove the numerical stability of the algorithm, the self-energy
is also mixed with that obtained in the previous step using
� = (�new + �previous)/2, where �new and �previous are the
self-energies obtained in the current and previous steps, re-
spectively. The condition used to terminate the FLEX loop is
that max(|Gnew − Gprevious|)/ max(|Gprevious|) < 10−3, where
Gnew and Gprevious are the Green’s functions calculated in the
current and previous steps, respectively. The calculations are
done for T = 100 K, using a momentum space mesh with
30×30 points and truncating the Matsubara sums to include
the 1000 smallest frequencies.
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FLEX

μ

FIG. 1. Schematic illustration of the self-consistent FLEX scheme.

To compute the superconducting pair potential, we use the
converged charge- and spin-susceptibilities to calculate [33]

V (SC)
pqst (q,�m) = Û + 3

2U SχS (q,�m)U S

− 1
2UCχC (q,�m)UC, (8)

where

Ûpppp = U, Ûppss = U ′,

Ûpssp = J, Ûpsps = J ′. (9)

We also obtained the spectral function through analytical
continuation of the converged Green’s function using the Padé
approximation. More specifically, we use the continued frac-
tion method [36,37].

The appearance of a superconducting instability at Tc can
be found from solving the linearized gap equation,

− 1

VG

∑
μ

∫
FSμ

dS′ �νμ(k, k′)
gi(k′)

|vFμ(k′)| = λigi(k) , (10)

for the eigenvalues λi and the eigenvectors gi(k). Here, μ, ν

are the band indices of the Fermi surface vectors k, k′, respec-
tively, VG is the area of a Brillouin zone and the magnitude of
the Fermi velocity |vFμ(k)| weights the corresponding Fermi
point. For this purpose, we project the pairing interaction at
the lowest frequency into band space by

�νμ(k, k′) = Re
∑
pqst

ap,∗
ν (k)at,∗

ν (−k)

×V (SC)
pqst (k − k′,�1) aq

μ(k′)as
μ(−k′) , (11)

where ap
μ(k) are the matrix elements from the transformation

from orbital space to band space. Here, we use as Hamil-
tonian H̃ (k) = H0(k) + 1

2 [�(k, ω0) + �(k, ω0)†] where the
Hermitian part of the self-energy matrix �(k, ω0) at the low-
est Matsubara frequency ω0, Eq. (3) is considered, a very
good approximation at the Fermi level. The leading instability,
identified by the largest eigenvalue λi is strictly speaking only

correctly identified exactly at the critical temperature Tc, thus
also the superconducting order parameter �(k) is propor-
tional to gi(k) in this regime. We contrast this calculation
to two usual spin-fluctuation calculations where the effective
interaction is obtained within RPA without self-energy cor-
rections [13], and an approach where the effect of correlations
is included via quasiparticle weights in the susceptibility that
enters RPA and the projection to band space given in Eq. (11)
[14].

III. RESULTS

The role of electron correlations on the band structure
of FeSCs has been studied theoretically by application of
a variety of different methods [38–41]. In particular, both
local and nonlocal self-energy effects on the Fermi surface
have been explored and compared to experiments, and LiFeAs
has played a prominent role in this exploration [35,42–51].
Figure 2 compares the bare electronic structure to the one
described by the FLEX approach including the self-energy
from Eq. (3) with U = 1.2 eV and J = 0.15 eV. In Fig. 2(c),
we show the associated low-energy band structure along a
standard high-symmetry momentum cut, again comparing the
bare eigenenergies to the spectral density as extracted from
the total spectral function continued to the real axis by use
of the Padé approximation. Figure 2(a) displays the bare
Fermi surface, whereas Fig. 2(b) shows the Fermi surface
as obtained by utilizing the approximate Hamiltonian H̃ (k).
In Fig. 2(c), the physical spectral density is compared to
the band structure arising from both H0(k) and H̃ (k). As
seen, the latter exhibits good overall agreement with high
spectral intensity at low energies. From Fig. 2, it is evi-
dent that the main effect of �ps(k, ωm) is to slightly modify
the Fermi surface, causing smaller (larger) electron (hole)
pockets. In addition, the second hole pocket around � ac-
quires a “flower” shape. Such Fermi surface changes due to
a momentum-dependent self-energy have been investigated
in detail previously [22,32,34,49,52] and will not be further
elaborated here. Instead, we focus on the modifications of the
pairing structure from interactions.

Thus, we turn to a discussion of the superconducting gap
structure, contrasting the bare RPA case to the FLEX situa-
tion including self-energy corrections. In the RPA calculation,
the interaction parameters have to be considered as effective
values, leading to a nominally smaller critical value for the
Stoner instability. We therefore adjust the value of U such
that the resulting eigenvalues λ in the pairing calculations
are almost identical, leading to U = 0.9 eV for the RPA case.
In Fig. 3, we display both the gap along the Fermi surface
pockets [Figs. 3(a) and 3(c)] and the real-space orbital struc-
ture of the resulting gap function [Figs. 3(b) and 3(d)]. As
seen, both gap structures support an s± superconducting gap
solution. However, there are significant effects of the self-
energy on the “gap details.” First of all, as seen from both
the momentum-space plots and the real-space plots, the dxy

orbital contribution is significantly reduced in the FLEX case.
This is evident from comparison of the relative strength of the
intra-orbital pairing seen in the top left square of Figs. 3(b)
and 3(d). In addition, this reduction is evident from the very
weakened gap amplitude in dxy-dominated segments of the
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FIG. 2. (a) Fermi surface of the bare model. (b) Fermi surface of the correlated model with self-energy corrections and (c) Spectral function
(color map) from the converged FLEX calculation for the same parameters as in (b), together with the unrenormalized bands (blue dashed)
and the bands as obtained from adding the Hermitian part of the self energy (black).

Fermi surface, as seen from comparing Figs. 3(a) and 3(c).
Essentially the blue sections of the Fermi surface shown in
Fig. 2(b) have been “washed out.”

In band space, the hierarchy of the gaps remains the same,
e.g., the inner �-centered hole pocket exhibits the largest gap
in both Figs. 2(a) and 2(c). The reduction of dxy-dominated
pairing renders the gap at the M point very small in the
FLEX case, and it boosts the gap amplitude modulation on
pockets exhibiting mixed orbital content, particularly those
containing dxy-dominated sections. This is seen most clearly
from the electron pockets centered at the X and Y points in
Fig. 3(c). We additionally show the gap structure projected to
orbital space and Fourier transformed to real space, Figs. 3(b)
and 3(d) for the two calculations. Each block represents the
pairing in a certain orbital component �ps(r), where the onsite
pairing r = 0 is represented by the center square of each
block, and bond order parameters by the appropriate squares
away from the center. Indeed, one can note that the dxy − dxy

block is strongly suppressed for the FLEX calculation [panel
(d)] such that the dxz − dxz and dyz − dyz components domi-
nate the FLEX result.

As a particular feature, we point out the structure of two
blocks in the pairing field for the conventional calculation,
Fig. 3(b). In the dxz − dxz [dyz − dyz] block, the r = (±1, 0)
[r = (0,±1)] bond order �xz,xz(±1, 0) [�yz,yz(0,±1, 0)] is
small, but has opposite sign compared to the r = (0,±1) [r =
(±1, 0)] bond order �xz,xz(0,±1) [�yz,yz(±1, 0)]. Formally,

the nearest-neighbor pairing in the dxz [dyz] orbitals can be de-
composed into an s-wave contribution, �̃s, and a d-wave con-
tribution, �̃d , such that �xz,xz(±1, 0) = �̃s − �̃d ≈ −0.001
and �xz,xz(0,±1) = �̃s + �̃d ≈ 1.2 [�yz,yz(±1, 0) = �̃s +
�̃d and �yz,yz(0,±1) = �̃s − �̃d ]. The sign change of the
bond order then implies that �̃d is slightly larger than �̃s. The
order parameter �̃d encodes an orbital singlet pairing with
dx2−y2 -form factor as for example worked out in Refs. [19,53]
for a different compound. In the longer range pairing channels
like, e.g., �xz,xz(0,±2) and �yz,yz(0,±2) the change of sign
is more visible, even though the overall size of the pairing
strength at these sites is much smaller compared to the nearest
neighbor pairing strength. The orbital singlet nature of the
gaps is suppressed in the FLEX calculation, as seen from
Fig. 3(d). Here, all pairing amplitudes in the xz − xz and
yz − yz blocks are positive (blue). This means that the orbital
character of the gap is preferentially “tripletlike” although a
small singlet component remains, as seen from the change in
gap magnitude between, e.g., �xz,xz(0,±1) and �xz,xz(±1, 0).

What is the underlying reason for the modified supercon-
ducting gap structures seen from the comparison between
Figs. 3(a) and 3(c)? In order to answer this question we need
to dissect the pairing kernel giving rise to the Cooper pair
structure. As evident from Eqs. (8)–(11), the most important
ingredient is the spin susceptibility. In Fig. 4(a), we display
the real-part of the static total spin susceptibility for the
bare, RPA, and FLEX cases. As seen, the overall momentum
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FIG. 3. (a) Superconducting gap symmetry function g(k) for the pairing calculation in RPA (U = 0.9 eV and J/U = 1/8) together with
(b) the transformation to real space pairing amplitudes and projection to orbital space. (c) the corresponding calculation using the pairing
interaction as obtained from the self-consistent FLEX approach, U = 1.2 eV and J/U = 1/8. The latter yielding a much smaller pairing
amplitude at the k points dominated by the dxy orbital, which is also visible in the much smaller pairing amplitudes in the dxy-dxy channel
(first square) of (d).
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FIG. 4. (a) Comparison of the physical susceptibility as obtained from a non-self-consistent RPA calculation (U = 0.86 eV) and the
self-consistent FLEX approach, U = 1.2 eV and J = 0.15 eV. (b) orbitally resolved susceptibility of the non-self-consistent approach showing
the dominant dxy contribution that gives rise to the peak at (π, 0) and (c) corresponding orbitally resolved susceptibilities from the FLEX
approach with dominant dyz contribution at the same momentum transfer of (π, 0).

structure is preserved, and FLEX merely tends to smear
out the peak structure as a direct result of the self-energy.
However, as seen from a comparison of the orbital-resolved
susceptibilities in Figs. 4(b) and 4(c), an orbital inversion
has taken place near X = (π, 0) (and similarly near Y , not
shown). In the FLEX case, the dominant susceptibility is
found in the dxz/dyz channel, as opposed to the dxy orbital
channel for the bare-RPA case, thereby fundamentally restruc-
turing the dominant pair scattering contributions to supercon-
ducting pairing. This orbital inversion of the susceptibility
components is the main reason for the differences between
the bare-RPA and FLEX superconducting gaps. The orbital
inversion arises quite naturally in FLEX, since the same
physical processes are involved in pairing and the self-energy.
Thus, for systems close to magnetic instabilities where the
spin susceptibility (bubble and ladder diagrams) is expected
to be particularly important, incorporating the self-energy
feedback effects of the susceptibility is crucial for obtaining
a correct description of the “gap details.” At present it re-
mains to be seen whether future experiments, e.g., RIXS, may
be able to selectively probe the orbital content of the spin
susceptibility and compare this to calculations based on the
bare band structure to verify the existence of such self-energy-
generated orbital inversion.

As a function of increased interaction parameters U and J ,
both RPA and the FLEX approximation exhibit an instability
of a magnetic state. In general, the self-energy in the FLEX
approach tends to broaden the peaks of the susceptibility,
thereby pushing the Stoner instability to a larger critical in-
teraction strength. The orbital inversion, and the concomitant
effects on the superconducting gap structure, discussed above
are found in this enlarged large-U regime, and the results
presented here are robust in this regime. At weak interaction
strengths, the FLEX results resemble the bare-RPA results.
Finally, we stress that for other bands the self-energy effects
may not be as simple as an orbital inversion, especially if the
momentum positions of the dominant peaks in the susceptibil-
ities shift.

The result discussed above, exhibiting a strongly sup-
pressed gap on the dxy-dominated Fermi surface sections, is
an example of what has been dubbed orbital-selective super-
conductivity. A “poor man’s” version to incorporate the self-
energy effects has been proposed, e.g., in Refs. [14,26,54,55]
applied to FeSe and also in Ref. [8] applied to Sr2RuO4. In
this method, quasiparticle weight renormalizations are simply

included at the level of the single-particle Green’s function.
In this way, orbitals expected to be exposed to the largest
self-energy effects, thereby experiencing the most suppressed
quasiparticle weights, are naturally suppressed in their contri-
butions to the superconducting pairing kernel.

We demonstrate this effect in the following; we can
extract the approximate FLEX quasiparticle weights
directly from the calculated self-energy by Zα (k) ≈
[1 − Im �αα (k, ω0)/ω0]−1, with ω0 = πT [33,34]. This
procedure yields Zxy ≈ 0.52 and Zxz = Zyz ≈ 0.6 when
evaluated at their relevant Fermi surface points, for the
current FLEX case with U = 1.2 eV and J = 0.15 eV.
Note that the relevant quasiparticle weights are only those
for the dxy, dxz, dyz orbitals. The two other orbitals have
negligible weight on the Fermi surface and therefore their
values do not influence the result for the pairing [14] and
these orbitals contribute much less to the susceptibility, see
Fig. 4(b). For the case of FeSCs, it is well-known from a wide
range of methods that indeed Zxy exhibits the largest reduction
compared to the other four 3d orbitals [39–42,56,57]. In terms
of the FLEX method, the fact that the dxy orbital exhibits the
largest mass renormalization for FeSCs was studied in detail,
e.g., in Refs. [33–35].
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=0.136

FIG. 5. (a) Superconducting gap symmetry function g(k) for the
pairing calculation using a modified spin-fluctuation pairing calcu-
lation with U = 2.5 eV and J/U = 1/8, and quasiparticle weights
Zxy = 0.52, Zxz/yz = 0.6, Zx2−y2 = 0.8, and Zz2 = 0.72 as deduced
from the FLEX calculation. (b) Corresponding real-space pairing
amplitudes showing small pairing contributions in the dxy chan-
nel, while preserving the sign change in the next-nearest-neighbor
pairing amplitudes of the dxz and dyz orbital components, i.e.,
�xz,xz(0,±2) − �xz,xz(±2, 0) = −[�yz,yz(0,±2) − �yz,yz(±2, 0)].
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Using the above-extracted values for the quasiparticle
weights to renormalize the susceptibility and projection matri-
ces of the usual RPA method leads to the superconducting gap
structure shown in Fig. 5 where we have chosen the effective
interaction (U = 2.5 eV) such that, again, the eigenvalue for
the pairing calculation matches the one from the previous
FLEX calculation; this choice, however, does not alter the
result of the order parameter g(k). As seen, including a re-
duced weight on the dxy orbital qualitatively reproduces the
FLEX very well (except for some details, e.g., the orbital-
singlet pairing amplitude is not appropriately suppressed,
�̃d > �̃s).

IV. DISCUSSION AND CONCLUSIONS

The work presented here is related to another recent the-
oretical study of momentum-dependent quasiparticle renor-
malization on the gap structure of FeSCs [22]. In Ref. [22],
a one-loop FLEX calculation was presented, and it was ex-
plored how the inclusion of quasiparticle renormalizations
Z (k) alter the “gap details” along the relevant Fermi surface
sheets. In agreement with the current work, the dxy dominated
part of the electron pockets were suppressed compared to the
bare-RPA approach. However, no gap reduction was found
in Ref. [22] on the large dxy-dominated hole pocket centered
at M, as opposed to the findings reported in this work. The
main methodological difference with respect to the current
work is the inclusion of the full self-consistency loop incor-
porated here. This allows for (1) proper self-energy feedback
effects on the susceptibilities entering the pairing kernel and
(2) exploration of the regime of larger interactions U and
J inaccessible to one-shot calculations. These properties are
crucial for the orbital inversion discovered here, and cause the

strongly suppressed pairing on all dxy-dominated sections of
the Fermi surface.

More generally, we expect that other strongly correlated
multiorbital metals should exhibit similar self-energy effects
of their gap structure. However, there may well also be other
cases where the self-energy can severely alter the gap for other
reasons, e.g., by restructuring the orbital content of the Fermi
surface, or by fundamentally altering the dominant momen-
tum structure of the spin susceptibility. In the latter case, one
can expect that self-energy effects change the symmetry class
of the leading pairing instability [22].

In summary, we have explored the role of electronic corre-
lations on the superconducting gap structure in multiorbital
systems. Specifically, we contrasted the gap structure ob-
tained from standard bare-RPA with that generated within the
FLEX formalism, including self-energy feedback effects on
the superconducting pairing kernel. The main finding is the
existence of an orbital inversion, caused by the self-energy,
of the hierarchy of susceptibility channels contributing to
the pairing. This reduces the gap on the strongest correlated
orbitals. For the current band structure, this leads to a very
small gap on the largest hole pocket, and a significantly en-
hanced gap amplitude modulation on the electron pockets.
This demonstrates the relevance of self-energy feedback ef-
fects on the gap structure of multiorbital correlated metals.
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