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Magnetic and structural dimer networks in layered K2Ni(MoO4)2
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The magnetic and thermodynamic properties of layered single-crystal K2Ni(MoO4)2 having both structural
and magnetic dimers have been investigated. The crystal structure of K2Ni(MoO4)2 is composed of edge-sharing
NiO6-octahedral pairs bridged by the MoO2−

4 polyatomic ion groups in a plane, and the K+ ions sit in the van
der Waals gap between the layers. The temperature dependence of magnetic susceptibility shows a spin-singlet
ground state with an activation gap of �/kB ≈ 38 K. A high-field magnetization study at T = 1.5 K exhibits
a half-magnetization plateau at μ0H ∼ 25 T, corresponding to a level crossing of the singlet ground state with
the lowest triplet state. Further, we have performed density functional theory calculations to determine magnetic
exchange interactions. The nearest-neighbor coupling constant J1 ∼ 10 K between the Ni spins turns out to be
an order of magnitude larger than all interdimer couplings. Our experimental and theoretical results suggest that
K2Ni(MoO4)2 constitutes a nearly isolated two-dimensional S = 1 dimer model.

DOI: 10.1103/PhysRevB.103.024451

I. INTRODUCTION

In the past two decades, spin dimer materials have gar-
nered a great deal of attention because a spin gap between
the spin-singlet ground state to the excited triplet state ex-
hibits a variety of exotic phenomena such as the realizations
of Bose-Einstein condensation (BEC) and the appearance of
magnetization plateaus [1–5]. A spin dimerization can occur
in spin-Peierls, spin-ladder, and frustrated quantum magnets.
The prototypical examples include CuGeO3 in one dimension
(1D) [6] and SrCu2(BO3)2 in 2D [3].

Besides the spin-gap opening in noninteger spin systems,
Haldane conjectured that integer-spin antiferromagnetic (AF)
Heisenberg chains can also have an energy gap due to topo-
logical origin [7]. Since then, 1D S = 1 AF Heisenberg chains
have been the subject of intense research. Several quasi-1D
S = 1 chain systems have been proposed to test the Haldane
conjecture, such as CsNiCl3 [8], Y2BaNiO5 [9], PbNi2V2O8

[10], and SrNi2V2O8 [11]. However, the occurrence of 3D AF
ordering in the T → 0 limit preempts an inherent topological
gap opening expected for the integer spins. In real materials,
it is extremely challenging to find perfect integer-spin chain
compounds, which are free from interchain perturbations. For
example, the S = 1 spin chain compound CsNiCl3 has been
considered as a model system verifying the Haldane conjec-
ture, yet tiny next-nearest-neighbor coupling constant J ′ with
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an order of J ′/J ∼ 1% turns out to be sufficient to stabilize the
long-range AF ordering at TN ∼ 4.8 K [12]. The interchain
coupling detrimental to the Haldane gapped phase obscures
the sought-after spin-gap opening.

Noticeably, the S = 1 tetramer antiferromagnet
K2Ni2(MoO4)3 is found to be located near a quantum
critical point, while adjoining a spin-gap phase [13]. This
motivates us to search for related spin dimer compounds.
We find that K2Ni(MoO4)2 is a candidate of a nearly perfect
S = 1 dimer system on both structural and magnetic aspects.
Each layer of K2Ni(MoO4)2 is composed of NiO6-octahedral
pairs bridged by MoO4 groups with the K+ ions intercalated
between the layers, as shown in Fig. 1. The structural S = 1
dimers are formed by edge-shared NiO6 octahedra. These
S = 1 dimers are weakly connected through MoO4 tetrahedral
units in the ac layer while being terminated by the van der
Waals (vdW) gap.

Through comprehensive thermodynamic characterizations,
we determine a spin gap of �/kB ≈ 38 K. Herein, details of
single-crystal growth, dc and ac magnetic susceptibilities, and
specific heat measurements are presented. Supplemented with
these thermodynamic data, magnetic exchange interactions
calculated with density functional theory demonstrate that
K2Ni(MoO4)2 realizes an almost isolated two-dimensional
S = 1 dimer system.

II. EXPERIMENTAL AND CALCULATION DETAILS

A polycrystalline sample of K2Ni(MoO4)2 was prepared
by the solid-state reaction method using K2MoO4, NiO, and
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FIG. 1. (a) 2D and (b) 3D view of the crystal structure of
K2Ni(MoO4)2. The edge-shared NiO6 octahedral pairs form dimers
connected by the polyatomic ion groups of MoO2−

4 in the ac plane
with the K+ ions in the van der Waals gaps.

MoO3 (higher than 99.95% pure) as starting materials. A
mixture of the reagents was calcined at 400 ◦C in the air for 48
hours, ground, and sintered at 450 ◦C and 500 ◦C for 48 hours
each with intermediate grindings. Platelike single crystals of
K2Ni(MoO4)2 in yellow-green color have been successfully
grown from the mixture of the polycrystalline sample and
K2MoO4 in the weight ratio of 1:2. The photo of the typical
sample of ∼3.5 × 2.2 × 0.2 mm3 size is shown in the inset of
Fig. 2.

The single-crystal quality and phase purity was confirmed
by powder x-ray diffraction (Bruker D2). The synchrotron
XRD patterns were obtained with the MYTHEN detector with
a 15 keV beam at the 09A beamline of NSRRC in Taiwan.
The crushed-crystal sample was packed in a 0.1 mm borosil-

FIG. 2. Rietveld refinement of the synchrotron XRD powder
pattern using crushed crystals of K2Ni(MoO4)2 taken at room tem-
perature. The observed data, Rietveld refinement fit, Bragg peaks,
and difference curve are denoted by the plus sign symbols, green
solid line, vertical black dashes, and purple line, respectively. The
insets show an image of the as-grown single crystal with the easily
cleaved ac plane, and XRD pattern of a cleaved plane which has a
preferred orientation of indexed (0 K 0) peaks.

icate capillary and the capillary was kept spinning during
data collection. The collected patterns were analyzed with
the Rietveld method using the program of Bruker TOPAS.
A neutron powder diffraction experiment has been performed
on a powder sample with 7.53 g at beamline Echidna,
ANSTO, Australia. The temperature-dependent diffraction
patterns were collected in a 9 mm diameter vanadium can
with a neutron wavelength of 2.43 Å. The obtained data
were analyzed with the Rietveld method using the program
DIFFRAC.TOPAS.

The magnetic measurements were performed using a su-
perconducting quantum interference device vibrating-sample
magnetometer (SQUID-VSM, Quantum Design, USA). The
high-field magnetization measurements were carried out at the
Dresden High Magnetic Field Laboratory in Germany using
a pulsed-field magnet. The specific heat data were obtained
using a standard relaxation method with a physical property
measurement system (PPMS; Quantum Design, USA).

DFT calculations were performed with the generalized
gradient approximation (GGA) being taken care of by the
Perdew-Burke-Ernzerhof parametrization (PBE) [14]. To de-
scribe the electron-electron interactions of 3d states of Ni, the
GGA with on-site Coulomb repulsion (GGA + U ) calcula-
tions were performed with an effective U parameter Ueff =
6 eV [15]. The accurate projector augmented wave method
as implemented in the Vienna Ab initio Simulation Package
[16–19] was used for the present study. The crystal structure
of K2Ni(MoO4)2 contains eight formula units per unit cell. All
the present calculations were carried out with experimental
lattice parameters. The one-electron Kohn-Sham wave func-
tions were expanded in a plane-wave basis set with a cutoff
energy of 480 eV. The integrations over the Brillouin zone
were performed with a k-point grid of 8 × 6 × 4 by following
the Monkhorst-Pack scheme. The convergence criteria for the
total energy was set to be 10−6 eV.

III. RESULTS AND DISCUSSION

A. Crystal structure

The as-grown single crystal is shown in the inset of Fig. 2
with the as-cleaved plane of preferred (0 K 0) orientation
direction. K2Ni(MoO4)2 crystallizes in an orthorhombic crys-
tal structure of space group Cmca (No. 64) as shown in
Fig. 1 [20], where layers of edge-sharing NiO6-octahedra
pairs are bridged by the polyatomic ion groups of MoO2−

4
in the ac plane, and the K+ ions are in the interstitial
sites between the dimer layers. Figure 2 shows the syn-
chrotron XRD powder pattern using crushed crystals of
K2Ni(MoO4)2 at room temperature. The fitted lattice parame-
ters are a = 8.47618 ± 0.00005 Å, b = 19.0473 ± 0.0001 Å,
c = 10.85018 ± 0.00008 Å, and V = 1751.72 ± 0.02 Å3,
which are in good agreement with those published in the
literature [20]. The goodness of fit is shown by the resid-
ual refinement factors of Rp = 4.82%, Rwp = 7.33%, Rexp =
1.69%, and χ2 = 4.33.

The temperature evolution of the lattice parameters was
derived from the Rietveld refinement of the obtained neutron
powder diffraction data between 2–200 K, and synchrotron
XRD at 300 K. The results are summarized in Figs. 3(a)–3(c),
where the error bars are smaller than the symbol size. The
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FIG. 3. The refined lattice constants are analyzed from the neu-
tron powder diffraction data between 2 and 200 K. (a), (b), and
(c) are the temperature evolution of the lattice parameters a, b, and
c, respectively, where the scale of y axes is set to be the same for
comparison. The 300 K data are derived from synchrotron XRD
refinement results. (d) Change of the lattice parameters is plotted as
a percentage against the base temperature lattice parameters.

temperature dependence of the lattice constants follows the
typical linear thermal expansion with increasing temperature
between 38 and 300 K. As seen from the relative change
of the lattice parameters in Fig. 3(d), the thermal expansion
is anisotropic. This is consistent with the fact that the most
significant change occurs in the b axis due to dipole contri-
bution across the vdW gap. The refined structural parameters
of K2Ni(MoO4)2 at T = 300 K (synchrotron XRD) and T =
2 K (neutron powder diffraction patterns) are summarized in
Table I.

B. Static magnetic susceptibility

Figure 4 shows the temperature dependence of dc mag-
netic susceptibilities χ = M/H for the K2Ni(MoO4)2 powder
sample measured in an applied field of μ0H = 0.01 T. No
thermal hysteresis is observed between the zero-field-cooled
(ZFC) and field-cooled (FC) cycles, ruling out the presence
of inhomogeneous magnetism. The high-T paramagnetic state
between T = 150–300 K is well described by the Curie-Weiss
law χ (T ) ∼ C/(T − �) as shown in the 1/χ (T ) plot (see
the red solid line in the inset of Fig. 4). The fitting yields
the Curie constant C = 1.24 ± 0.02 cm3 K/mol and the Weiss
temperature � = −38.7 ± 0.8 K. The negative � value in-
dicates antiferromagnetic couplings between the Ni2+ spins.
An effective magnetic moment of μeff = 3.15 ± 0.02 μB per
Ni2+ calculated from the Curie constant is larger than the ex-
pected spin-only value of μcal = 2.83 μB for S = 1 and g = 2.
Here, μB is the Bohr magneton. Yet, it is consistent with
most Ni-based compounds having sizable orbital contribution
[13,21]. χ (T ) exhibits a broad maximum around 38 K, and
falls steeply to zero, and then shows a Curie-tail like upturn
below 4 K.

The total χ (T ) includes the temperature-independent terms
due to Van Vleck paramagnetic χVV and core diamagnetic
χdia contributions, the paramagnetic impurity contribution

FIG. 4. The dc magnetic susceptibilities χ (T ) of the
K2Ni(MoO4)2 powder sample measured in an applied field of
μ0H = 0.01 T. The black, red, and blue circles represent the raw
χ (T ), impurity and T -independent contribution to χ (T ), and
intrinsic spin dimer χ (T ), respectively. The pink line is a fit to
Eq. (1) and the green line to an activation expression as described
in the text. The upper inset shows the 1/χ plot. The red solid
line is the Curie-Weiss law fit of the T = 150–300 K data to
χ (T ) ∼ C/(T − �). The lower inset is a magnified view of the
low-T χ (T ) at μ0H = 0.01 and 7 T.

of χimp(T ) ∼ C′/T , and the intrinsic spin susceptibility
χs(T ), namely, χ (T ) = χVV + χdia + χimp(T ) + χs(T ). The
Van Vleck paramagnetic and core diamagnetic contribu-
tions are estimated to be χ0 = χVV + χdia = (4.69 ± 0.07) ×
10−4 cm3/mol. The Curie-like tail stems from orphan spins.
As evident from the lower inset of Fig. 4, the application of
an external field of μ0H = 7 T leads to saturation of the im-
purity contribution δM in χ ∼ (M + δM )/H by the Zeeman
splitting.

To extract the intrinsic χs(T ), we subtract both χ0 and
χimp from the total χ (T ). The resulting χs(T ) clearly
shows a spin-gap behavior. With increasing temperature, an
exponential-like growth of χs(T ) suggests a thermal activation
of the excited triplets from the singlet ground state (see the
blue circles in Fig. 4). If interdimer coupling beyond the
nearest-neighbor coupling is ignored, an isolated S = 1 spin-
dimer model with the nearest-neighbor coupling constant J1 is
expressed as [22]

χs(T ) = 2Nβg2μ2
B(1 + 5e−2βJ1 )

3 + eβJ1 + 5e−2βJ1
, (1)

where β = 1/kBT , kB is the Boltzmann constant, and g is the
g factor. In a first approximation, we attempted to fit χs(T )
to Eq. (1). The isolated dimer model gives a nice description
with J1/kBT = 37.89 ± 0.02 K (see the pink solid line in
Fig. 4). We note that the determined J1 value is very close to
the Weiss temperature � = −38.7 ± 0.8 K obtained from the
Curie-Weiss analysis of χ (T ). Considering � ∝ ∑

ziJi, our
fitting result suggests that all terms of Ji (i � 2) are negligible.
To confirm this assumption, we include interdimer interac-
tions in the calculation as an effective field γ . In a mean-field
approximation of the spin dimer model, the magnetic
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TABLE I. Selected refined structural parameters of synchrotron XRD pattern at 300 K and neutron powder diffraction pattern at 2 K. An
asterisk (*) indicates that the isotropic thermal parameters are constrained to be identical by atom type.

300 K 2 K

Space group: Cmca (No. 64)
a (Å) 8.47618 ± 0.00005 8.45125 ± 0.00009
b (Å) 19.0473 ± 0.0001 18.9620 ± 0.0003
c (Å) 10.85018 ± 0.00008 10.8408 ± 0.0002
Rp (%) 4.82 2.68
Rwp (%) 7.33 3.48
Rexp (%) 1.69 3.33
χ 2 4.33 1.04
Ni1 (8d)
x 0.1783 ± 0.0002 0.1773 ± 0.0002
Beq (Å2) 0.55 ± 0.04 0.06 ± 0.06
Mo1 (8f)
y 0.5317 ± 0.0001 0.5318 ± 0.0002
z 0.2834 ± 0.0001 0.2840 ± 0.0003
Mo2 (8f)
y 0.3429 ± 0.0001 0.3426 ± 0.0002
z 0.4637 ± 0.0001 0.4670 ± 0.0002
*Beq (Å2) 0.76 ± 0.02 0.06 ± 0.07
K1 (8e)
y 0.2128 ± 0.0002 0.2152 ± 0.0003
K2 (8f)
y 0.3684 ± 0.0002 0.3704 ± 0.0003
z 0.0687 ± 0.0003 0.0698 ± 0.0005
*Beq (Å2) 2.04 ± 0.08 0.6 ± 0.01
O1 (8f)
y 0.4998 ± 0.0005 0.4984 ± 0.0002
z 0.1310 ± 0.0009 0.1266 ± 0.0003
O2 (8f)
y 0.6221 ± 0.0005 0.6235 ± 0.0002
z 0.2908 ± 0.0008 0.2919 ± 0.0004
O3 (16g)
x 0.3362 ± 0.0008 0.3371 ± 0.0003
y 0.5002 ± 0.0004 0.4984 ± 0.0001
z 0.3644 ± 0.0006 0.3647 ± 0.0002
O4 (8f)
y 0.2671 ± 0.0005 0.2668 ± 0.0002
z 0.5570 ± 0.0009 0.5595 ± 0.0003
O5 (8f)
y 0.3183 ± 0.0005 0.3141 ± 0.0002
z 0.3099 ± 0.0008 0.3135 ± 0.0003
O6 (16g)
x 0.1725 ± 0.0008 0.1769 ± 0.0003
y 0.3912 ± 0.0003 0.3914 ± 0.0001
z 0.4959 ± 0.0006 0.5021 ± 0.0003
*Beq (Å2) 1.72 ± 0.08 0.55 ± 0.05
Ni1-Ni1 (Å) 3.023 ± 0.004 2.997 ± 0.004
Ni1-O1 (Å) 2.075 ± 0.007 2.032 ± 0.003
Ni1-O3 (Å) 1.989 ± 0.007 1.994 ± 0.003
Ni1-O6 (Å) 2.073 ± 0.006 2.060 ± 0.003
O1-Ni1-O1 (deg) 86.5 ± 0.4 85.0 ± 0.2

susceptibility is given by χmf(T ) = χs/(1 + γχs). We found
γ ≈ 0 (not shown here), lending further support to the validity
of a nearly isolated dimer model.

Further, we analyze the thermal activation behavior of
χs(T ) in the temperature range of 1.8–20 K in terms of

a simple activation expression χs ∼ exp(−�ac/kBT ) and a
spin-ladder expression χ (T ) ∼ T −1/2 exp(−�lad/kBT ) [23]
(see the green solid line in Fig. 4). We obtain �ac = 27.4 ±
0.3 K and �lad = 38.2 ± 0.5 K. Noticeably, the spin gap
extracted from the spin-ladder model is nearly identical to
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FIG. 5. Real (χ ′) and imaginary components (χ ′′) of the ac
magnetic susceptibility for K2Ni(MoO4)2 powder sample measured
with an oscillating field of Hac = 1 Oe at various frequencies of
10–1000 Hz.

the J1 value obtained from the isolated dimer model. The
simple activation model underestimates the actual spin gap.
The perfect agreement among J1, �, and � suggests that
K2Ni(MoO4)2 could be viewed as a pure dimer system with
negligible interdimer couplings and behaves like a two-leg
spin ladder system. In fact, if we rotate the spin dimers
(rungs), shown in Fig. 1(a), by 90◦, it would be topologically
equivalent to the two-leg spin ladder [24].

C. ac magnetic susceptibility

The ac magnetic susceptibility was measured with an
oscillating field of Hac = 1 Oe in various frequencies f =
10–1000 Hz without applying a static magnetic field. At low
frequencies f = 10–250 Hz, as shown in Fig. 5, the real part
of the ac magnetic susceptibility χ ′(T ) shows a broad maxi-
mum around 38 K, which coincides with χs(T ) (see Fig. 4).
Remarkably, with increasing frequencies from f = 100 Hz up
to 1000 Hz (instrument upper limit), a dip feature starts to
develop in χ ′(T ) around the spin gap of ∼38 K, leading to a
double-peak structure. This is accompanied by the growing
absorption peak in χ ′′(T ), which becomes apparent above
100 Hz. The peak of χ ′′(T ) shifts from 30 K at 37 K with
increasing frequency from 100 Hz to 1000 Hz.

As K2Ni(MoO4)2 does not exhibit any magnetic transi-
tion or spin glass, we expect no energy dissipation driven
by the ac field as other quantum paramagnets. Noteworthy
is that the χ ′ and χ ′′ anomalies occurring at the spin-gap
temperature indicate that the energy dissipation process is
related to the singlet-triplet excitations. We recall that the
2D frustrated spin-dimer compound SrCu2(BO3)2 shows a
double-peak suppression of thermal conductivity, which is
attributed to resonant scattering of phonons by the singlet-
to-triplet excitations [25]. In this light, a dissipation channel
might be activated by a similar mechanism, namely, a phonon
coupling to the spin gap. Further investigations are needed to
confirm this scenario.

FIG. 6. High-field magnetization curve taken with a pulsed-field
magnet at T = 1.5 K for K2Ni(MoO4)2 powder sample. The deriva-
tive dM/dH of the magnetization shows two peaks at μ0Hc1 ∼ 25 T
and μ0Hc2 ∼ 50 T, corresponding to magnetization plateaus.

D. High-field magnetization

We measured a high-field magnetization process at T =
1.5 K with a pulsed-field magnet up to 60 T. The magnetic
moment was sensed with an induction method using a pickup
coil device during the 25 ms pulse duration. The recorded
magnetization curve M(H ) and its derivative dM/dH are
plotted together in Fig. 6.

We observe two magnetization plateaus at μ0Hc1 ∼ 25 T
and μ0Hc2 ∼ 50 T. Since the saturation magnetization of
∼2 μB per Ni2+ ion is reached for fields above 50 T, the first
plateau at μ0Hc1 corresponds to half of the saturation magne-
tization. A close look unveils that the edges of the plateaus are
rounded and have a finite slope due to the finite-temperature
effect and magnetic anisotropy, and g-factor anisotropy. The
appearance of the magnetization plateaus can be naturally
understood in terms of the S = 1 spin-dimer model. The half
plateau arises from a level crossing of the singlet ground
state |Stot = 0, Sz = 0〉 with the lowest triplet state |1,−1〉,
while the full plateau corresponds to a level crossing of the
|1,−1〉 state to the quintet |2,−2〉 state. Overall, these level
crossings lead to a steplike behavior in the high-field magneti-
zation. From the critical field μ0Hc1 ∼ 25 T, we can estimate
the zero-field gap �mag as �mag/kB = gμBHc1/kB = 38.1 K,
which agrees perfectly with the spin gap evaluated from
χs(T ). We mention that similar half-magnetization plateaus
have been observed in the S = 1 organic chain compounds
[26,27] and the inorganic S = 1 isolated dimer system of
Ba3Mn2O8 [22,28].

E. Specific heat

Specific heat Cp of the powder sample in zero field is
presented in Fig. 7. The measured total specific heat consists
of electronic, magnetic, and phonon contributions as Cp =
Cel

p + Cm
p + Cph

p . Since K2Ni(MoO4)2 is a magnetic insulator,
we assume Cel

p ≈ 0. Because of the spin dimerization, the
conventional approach of extracting the β value from the low-
T approximation Cp/T ∼ βT 2 becomes invalid. Instead, we
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FIG. 7. The temperature dependence of specific heat Cp(T ) for
K2Ni(MoO4)2 measured at zero field. The red solid line is the fit to
Eq. (2) to evaluate a phonon contribution.

estimate the Cph
p (T ) contribution using the formula compris-

ing a linear combination of the Debye and Einstein models
[29] as

Cph
p (T ) = CD

[
9kB

(
T

θD

)3 ∫ xD

0

x4ex

(ex − 1)2
dx

]

+ CE

[
3R

(
θE

T

)2 exp
(

θE
T

)
[

exp
(

θE
T

) − 1
]2

]
, (2)

where R is the universal gas constant, and θD and θE are
the Debye and Einstein temperature, respectively. We note
that the fitting temperature range of 50–140 K is higher than
the spin-gap value of � ∼ 38 K. As shown in the red line
of Fig. 7, we find a nice description of the high-T Cp with
the fitting parameters CD = 0.72 ± 0.01, CE = 0.03 ± 0.01,
θD = 438 ± 6 K, and θE = 113 ± 2 K.

The magnetic contribution Cm
p (T ) is evaluated by subtract-

ing the estimated Cph
p from the total Cp. The resulting Cm

p (T )

FIG. 8. Magnetic specific heat Cm(T ) vs T for K2Ni(MoO4)2.
The green line is a fit of the low-T Cm(T ) data to Eq. (3) as discussed
in the text. A change in magnetic entropy �Sm from 2 to 34 K is
obtained from the integration of the Cm/T data.

FIG. 9. Schematic representation of the spin arrangements of
AFM configuration of K2Ni(MoO4)2. The exchange parameters are
denoted by different color arrows as discussed in Table III.

vs T is plotted in Fig. 8. The low-T Cm
p (T ) is fitted to the

following expression for localized gapped excitations [30]:

C = nR(�sh/T )2e−�sh/T

(1 + ne−�sh/T )2
, (3)

where n is the number of excited states per spin dimer. As
evident from the green line of Fig. 8, this low-T formula yields
the best fit with n = 2.08 ± 0.04 and �sh = 37.7 ± 0.4 K.
We find that the evaluated spin gap perfectly agrees with the
values estimated from both M(H ) and χs(T ). In addition, n
amounts to 2/3 of n = 3 expected for the triplets. The lacking
triplet contribution may be because the triplets whose excita-
tion gap is larger than �sh = 37.7 ± 0.4 K are not properly
taken into account in the fitting T range.

In addition, we evaluate the change in magnetic entropy

(�Sm) by integrating
∫ Cm

p

T dT between 2 and 34 K as shown
in Fig. 8. The released magnetic entropy at 34 K is about 8.14 J
mol−1 K−1, which amounts to ∼89.15% of the total spin
entropy of R ln(2S + 1) = 9.13 J mol−1 K−1 for a S = 1 spin
system. This analysis suggests that the magnetic entropy is
mostly released through the S = 1 spin dimerization process.

F. Calculated spin structure

In order to find the magnetic ground state of
K2Ni(MoO4)2, we consider several possible magnetic
configurations within the unit cell, as shown in Fig. 9. The

TABLE II. The calculated total energy �E (relative to the total
energy of FM configuration EFM = −90.7549 eV/f.u.), magnetic
moment of Ni atom mNi

s (μB/atom).

Configuration �E (meV/f.u.) mNi
s (μB/atom)

FM 0.0 1.77
AFM1 −3.48 1.77
AFM2 −1.75 1.77
AFM3 −3.63 1.77
AFM4 −0.005 1.77
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TABLE III. The calculated exchange interaction parameters (in
K) as outlined in Fig. 9.

Ji j Ni-Ni (Å) Bond color Value (K)

J1 3.0217 Yellow −10.01
J2 5.4472 Violet −0.52
J3 5.5542 Green −0.28
J4 6.8780 Red 0.16

total energy per formula unit (f.u.) of FM configuration is
calculated as −90.7549 eV, and �E ’s for AFM configurations
relative to the FM state are presented in Table II. Among the
three considered AFM configurations, AFM3 has the lowest
total energy with spin structure AFM coupled 1D chains
along the a axis.

To find out the corresponding values of exchange couplings
Ji within a Heisenberg model, as indicated in Fig. 9, the
Hamiltonian can be expressed as H = E0 − ∑

i, j Ji jσiσ j ,
where E0 is the total energy for all spin-independent
interactions, Ji j is the exchange interaction parameter
between the Ni2+ atoms at sites i and j, σi and σ j are
the unit vectors representing the direction of the local
magnetic moment at site i and j, respectively. By solving
the set of equations EFM = E0 − 2J1 − 2J2 − 4J3 − 4J4,
EAFM1 = E0 + 2J1 + 2J2 − 4J3 + 4J4, EAFM2 = E0 − 2J1 −
2J2 + 4J3 + 4J4, EAFM3 = E0 + 2J1 + 2J2 + 4J3 − 4J4,
EAFM4 = E0 − 2J1 + 2J2, the obtained Ji’s for AFM3 are
summarized in Table III, where a negative J represents AFM
interaction. The calculated J1 = −10.01 K is more than 20
times larger than all other couplings including the interdimer
coupling J2 = −0.52 K along the chain direction (a axis),
which agrees with the dimerized ground state configuration of

K2Ni(MoO4)2 consistently. As such, we can ignore all other
coupling beyond the singlet state of the dimer in the T → 0
limit.

The calculated band structure and density of states (DOS)
for the AFM3 spin configuration are shown in Fig. 10, which
indicates a large band gap of ∼3.8 eV between the valence
and conduction bands for K2Ni(MoO4)2 as an insulator. In
addition, analysis of the site-resolved density of states reveals
that the valence band is mainly composed of Mo-d and O-p
states, whereas the conduction band is dominated by the Mo-d
states.

G. Comparison between Ba3Mn2O8 and K2Ni(MoO4)2

It is inspiring to compare the S = 1 isolated dimer systems
between Ba3Mn2O8 [22,28] and K2Ni(MoO4)2. As sketched
in Fig. 11, the Mn dimers of Ba3Mn2O8 are connected in a
bilayer along the c direction to form a 2D triangular lattice.
In contrast, the Ni dimers of K2Ni(MoO4)2 are arranged in
chains along the a direction, while forming a triangular lattice
of the dimers. Obviously, a hexagonal lattice made of the S =
1 Mn dimers implies frustration in 2D. On the other hand,
the Ni dimers in K2Ni(MoO4)2 are frustrated along the chain
direction. Noteworthy is that the BEC of the triplet state has
been explored theoretically for Ba3Mn2O8 [28]. Considering
that the S = 1 Mn- and Ni-based dimer compounds share a
triangular lattice and a half-magnetization plateau, we expect
the occurrence of the BEC of triplons right above μ0Hc1 =
25 T, which should be addressed in a future study.

IV. CONCLUSIONS

In conclusion, we have successfully grown single crystals
of K2Ni(MoO4)2, which comprises a layered spin-1 dimer

FIG. 10. (a) Electronic band structure and (b) density of states for the AFM3 configuration of K2Ni(MoO4)2. The top of the valence band
is set to zero.
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FIG. 11. The isolated dimer models for (a) K2Ni(MoO4)2 and
(b) Ba3Mn2O8 are compared. K2Ni(MoO4)2 has the Ni dimers being
arranged along the a direction with weak interdimer frustration be-
tween the chains, and Ba3Mn2O8 with Mn dimers arranged in a 2D
hexagonal lattice.

system. The crystal structure and magnetic properties have
been extensively investigated with synchrotron XRD, neutron
powder diffraction, dc and ac susceptibility, and specific heat
measurements, together with theoretical calculations. From
the χs, M(H ), and Cm data, we determine a spin gap �/kB ≈

38 K. DFT calculations provide evidence that K2Ni(MoO4)2

behaves like an almost isolated 2D S = 1 spin dimer, being
consistent with our thermodynamic results. High-field M(H )
shows a half-magnetization plateau at 25 T, heralding the BEC
of triplons. K2Ni(MoO4)2 could be viewed as a rare spin
system of the shortest Haldane chain in the dimer limit that
may be tuned to a Haldane phase through uniaxial pressure
along the a axis.
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