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Domain-wall dynamics in a nanostrip with perpendicular magnetic anisotropy induced by
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A numerical and analytical study of the dynamics of domain walls (DWs) in a magnetic tunnel junction
with perpendicular magnetic anisotropy in a free layer is presented. Equilibrium states of the domain wall are
obtained for various widths of the structure. The corresponding symmetries of the components of spin transfer
torques TST T and the polarizer directions favoring stable DW motion under perpendicular current injection are
obtained. The DW steady motion with velocities up to 200 m/s at current densities below 106 A/cm2 is reported.
The Walker breakdown is demonstrated, and the dynamics of the postthreshold DW motion is investigated for
various configurations of torques and polarizer directions. To have analytical insight into the investigated regimes
of DW dynamics a theoretical model is developed and verified by micromagnetic simulations.
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I. INTRODUCTION

Recently, studies of domain-wall (DW) dynamics in ferro-
magnetic nanowires have attracted much attention [1–5]. This
is due to both purely fundamental interests and promising ap-
plications. Controlled DW dynamics can be used in spintronic
devices such as racetrack memory [6], logic units [7–10],
and spintronic memristors [11–13], which imitate neuronal
synapses [14] and have great potential for use as the hard-
ware basis of neuromorphic computational architectures. In
this context, materials with perpendicular magnetic anisotropy
(PMA) are of particular interest. Compared to materials
with in-plane magnetic anisotropy, magnetic tunnel junctions
(MTJs) with PMA [15–17] have attractive advantages, such
as a lower critical excitation current, higher thermal stabil-
ity [18–20], and a smaller DW width. Thus, PMA-based MTJs
have the potential to be next-generation, energy-efficient,
high-density spintronic devices.

Early DW-based spintronic device concepts required in-
duced magnetic fields to control DW dynamics [1,21,22].
However, it was found that this approach is hardly suitable
for close-packed arrays of nanoscale devices due to significant
cross-talk effects. Spin-orbit torques (see the review in [23])
are another possible way to excite DW. Possible types of
spin-orbit torque required for the excitation of steady DW
motion for various anisotropy and DW types were first ana-
lyzed numerically in [24]. Such an approach of spin-orbit DW
excitation was recently considered in detail for PMA materi-
als [25–28]. In addition, spin-orbit coupling in ferromagnets

can lead to the anomalous Hall effect and anisotropic mag-
netoresistance, which can also move the DW [29]. However,
spin-orbit structures are more difficult to use to determine
the position of a DW compared to magnetic tunnel junc-
tions, with which it is possible to determine the position of a
DW through the tunneling magnetoresistance. Thus, the spin-
orbital torques, despite the higher efficiency of DW excitation,
may be less attractive for neuromorphic and other real-life
applications [14].

An alternative approach based on current-induced DW mo-
tion has been the subject of many experimental [2,4,30–32]
and theoretical [33–37] studies. In these works, nanostruc-
tures were usually represented by a long and narrow magnetic
nanostrip containing a DW. For this geometry, there are two
possible current configurations: current in plane (CIP), when
spin-polarized current flows in the plane of the magnetic film,
and current perpendicular to the plane (CPP), when it flows
perpendicular to the magnetic film surface. The CIP case was
analyzed in detail for both planar and perpendicular magnetic
anisotropies [38–41]. For the case of CPP geometry, it was
demonstrated numerically [42] and experimentally [43,44]
that the DW velocities can be up to two orders of magnitude
higher than in the CIP configuration, provided that the cur-
rent densities are equal. Thus, the CPP configuration requires
relatively low current densities for efficient DW dynamics
excitation [45,46]. The drawback of this configuration is the
higher electric current required for efficient DW motion in a
large cross-section area, which, however, can be addressed
by using local current injection [47]. A detailed analytical
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description of DW dynamics under the CPP injection with
analysis of various polarizers was presented recently [48].
However, all these results correspond to the in-plane or even
zero magnetic anisotropy, while the case of the CPP geom-
etry in combination with the PMA ferromagnetic nanostrip
remains unclear.

Based on the above arguments, perpendicular current injec-
tion seems to be the most efficient way of DW excitation, with
the exception of spin-orbit torques, which, however, are lim-
ited by the difficulty of reading the DW position and are not
as effective for neuromorphic applications [14]. Indeed, the
maximum velocities and minimum required current densities
have been reported for the CPP geometry of current injec-
tion [42,44–46,48]. However, all these results were obtained
for the case of in-plane anisotropy, while PMA may further
improve energy efficiency. At the same time, despite the large
number of above-mentioned works devoted to domain walls in
nanostrips, there is no clear understanding of the DW motion
in MTJs upon perpendicular current injection into a ferromag-
net with PMA. To date, there has been only one experimental
demonstration [14] of DW motion in an MTJ with PMA
in the CPP geometry, which encourages detailed numerical
and analytical study of the mechanisms and features of DW
dynamics.

In this paper, we investigate in detail the DW dynamics
induced by the perpendicularly injected spin-polarized current
in an MTJ with PMA. We report the results of micromagnetic
modeling on the stable DW states in a free layer of various
widths. We also study in detail the influence of different po-
larizer directions and torque types on the DW dynamics con-
ditions and features. The DW steady motion with velocities up
to 200 m/s at current densities below 106 A/cm2 is reported.
We analyze DW transformation during motion and demon-
strate the Walker breakdown for each DW steady-motion
regime. Finally, we provide analytical insight that shows good
agreement with micromagnetic simulations and helps to ana-
lyze the effect of different parameters on the results.

II. SYSTEM AND METHODS

Let us consider an MTJ nanostrip [Fig. 1(a)], which con-
sists of a ferromagnetic polarizer layer, a spacing insulator,
and a ferromagnetic free layer with a single domain wall.
The following geometrical parameters of MTJ were cho-
sen: free-layer thickness h = 2.2 nm, length L = 5000 nm,
width w = 10–300 nm. The magnetic parameters were cho-
sen according to experimental results [14]: uniaxial magnetic
anisotropy along the z axis, saturation magnetization MS =
1050 emu/cm3, anisotropy constant K = 7 × 106 erg/cm3,
exchange constant A = 2 × 10−6 erg/cm, damping parameter
α = 0.005. The magnetization dynamics in a nanostrip can
be described by the Landau-Lifshitz-Gilbert equation with an
additional term responsible for the spin transfer torque:

Ṁ = −γ M × Heff + α

MS
M × Ṁ − TST T , (1)

where M is the magnetization vector, γ is the gyromagnetic
ratio, α is the Gilbert damping constant, MS is the saturation
magnetization, and Heff is the effective field consisting of
the magnetostatic, exchange, anisotropy, and demagnetization
fields. The spin transfer torque can be written [49–51] as

FIG. 1. (a) Schematic representation of the considered MTJ
structure with a single domain wall. (b) The dependence of the angles
ϕ between the x axis and the average DW magnetization and �

between the x axis and the DW plane and their difference in the
relaxed state on the MTJ width in the x direction. Inset: Néel and
Bloch domain walls. Red and blue correspond to the perpendicular
component of M, white is zero, and arrows show the direction and
magnitude of planar components.

a sum of two orthogonal components, TST T = TST + TFLT ,
where the Slonczewski torque (ST) equals TST = −γ aJM ×
[M × mref ]/MS and the fieldlike torque (FLT) equals TFLT =
−γ bJ [M × mref ]. Here, mref is a unit vector along the magne-
tization direction of the polarizer layer; aJ ≈ h̄ jP/(2heMS ),
where h is the thickness of the free layer, h̄ is the reduced
Planck constant or Dirac constant, j is the current density,
e > 0 is the charge of the electron, and P = 0.4 is the spin
polarization of the current; bJ = ξCPPaJ , where ξCPP is taken
to be about 0.4 [45].

Micromagnetic simulations consisting of Eq. (1) numerical
integration on a 2 × 2 nm rectangular grid were performed
using our SPINPM micromagnetic finite-difference code based
on the fourth-order Runge-Kutta method with adaptive time
step control for time integration. To focus on the effect of the
spin-polarized current, we ignored the Dzyaloshinskii-Moriya
interaction, Oersted fields, and thermal fluctuations.

III. MODELING RESULTS AND DISCUSSION

First of all, micromagnetic modeling of relaxation in a free
layer with a single DW was carried out for different widths.
One can relate DW evolution from Néel to Bloch type to
the magnitude of ϕ, which is the angle between the x axis
and the average DW magnetization in the relaxed state. The
Néel domain wall corresponds to ϕ = 90◦, and the Bloch wall
corresponds to ϕ = 0◦. The range of ϕ values from 90◦ to 0◦
corresponds to the hybrid state of the DW. The dependence
of the angle ϕ on the free-layer width in the x direction is
illustrated in Fig. 1(b). For widths up to 110 nm, the mag-
netization relaxes to the Néel DW, for a width of more than
110 nm, the wall becomes a hybrid, and for a width above
300 nm, the Bloch-type DW is an equilibrium state. These
results are consistent with an experimental work [14]. Indeed,
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TABLE I. Summary of the DW motion (no, no spin current in-
duced DW motion; slow motion, extremely slow DW motion, which
can be neglected; fast motion, steady DW motion).

mref = (1, 0, 0) mref = (0, 1, 0) mref = (0, 0, 1)

Néel TFLT slow motion no fast motion
TST fast motion no slow motion

Bloch TFLT no slow motion fast motion
TST no fast motion slow motion

although DW magnetization at widths of about 300 nm is not
parallel to the x axis, the DW plane also has a certain tilt at an
angle � from the x axis; therefore, the type of DW should
be defined by the difference ϕ − �, which is almost zero
for the mentioned widths. The reason for the tilt of the DW
plane is a rather strong magnetostatic field. Our simulation
demonstrates that at half the saturation magnetization, the DW
plane is perfectly aligned with the x axis, and the Bloch-type
DW becomes stable at widths of about 150 nm. It is also
possible to avoid this tilt by designing a low magnetostatic
shape, for example, with the half-ring geometry, as in [45].

To identify the conditions for DW motion in the outlined
MTJ structure, we studied the effect of the spin current while
taking into account TST and TFLT separately. We chose 50-
and 300-nm-wide nanostrips (with Néel and Bloch initial
DWs in a free layer, respectively) as the system for the study.
For each geometry, we considered a polarizer magnetized
in the x, y and z directions. Thus, six configurations (three
polarizations and two torques) for each DW type (width) were
considered (see Table I) .

Let’s start with planar polarizers. In the case of mref =
(1, 0, 0), a Bloch-type DW cannot be excited by either TST

or TFLT . A Néel-type DW starts a considerably fast steady
motion with TST action. However, TFLT also leads to the
Néel DW steady motion, but the velocity in this case is ex-
tremely low (< 1 m/s). The origin of such DW behavior will
be explained later. In the case of mref = (0, 1, 0) we have
the opposite situation: a Néel-type DW cannot be excited by
either TST or TFLT , while a Bloch-type DW demonstrates a
considerably fast steady motion under the action of TST and an
extremely slow steady motion under TFLT action. It is worth
noting that in both no-motion cases, the corresponding mref

directions are parallel to the DW magnetization in the DW
core, and the vector product of the torques is zero.

In the case of a perpendicular polarizer [mref = (0, 0, 1)],
both initial DW types start very slow (< 1 m/s) steady motion
under the action of TST . At the same time, TFLT induces
steady motion of significant velocity for both initial DW types.

As seen from Table I, four steady-motion configurations
were observed: TST excitation with mref = (1, 0, 0) for Néel
and mref = (0, 1, 0) for Bloch and TFLT excitation with
mref = (0, 0, 1) for both DW types. Now let’s focus on DW
dynamics in these torque and polarizer configurations. In all
these cases, after the DW motion is initiated by the spin
current, which reaches its amplitude instantaneously, ϕ starts
to tilt gradually during the acceleration of the DW until the
steady-motion regime is reached and the DW is transformed
into a hybrid-type DW [see, for example, Fig. 2(a)]. There-
after, the DW continues its steady motion with constant ϕ

FIG. 2. Displacement of the Néel DW (70 nm wide) vs time
in the case of (a) steady motion before Walker breakdown for
j = 0.04 × 106 A/cm2 (in the case of a perpendicular polarizer),
(b) oscillatory DW motion after Walker breakdown for j = 0.9 ×
106 A/cm2 (in the case of a perpendicular polarizer), and (c) DW
shift and stop after Walker breakdown for j = 1.2 × 106 A/cm2 (in
the case of a planar polarizer).

until it reaches the edge of the nanostrip. It is worth noting
that planar and perpendicular polarizers induced motion in
opposite directions, which will be explained by the analytical
model later. With an increase in the current density, the steady-
motion velocity and ϕ also increase until the current density
reaches the critical value jw and Walker breakdown occurs.
However, this breakdown has different behavior for planar and
perpendicular polarizers. In the case of a perpendicular polar-
izer, once the critical value jw is reached, ϕ begins to change
continuously, and the DW starts to oscillate with some average
motion along the nanostrip [see, for example, Fig. 2(b)]. For
the planar polarizer case [with mref = (1, 0, 0) for Néel DW
and mref = (0, 1, 0) for Bloch DW], with an increase in the
current density from zero to jw, the angle ϕ changed from
ϕ0 (ϕ0 = 0 for Bloch DW and ϕ0 = π/2 for Néel DW) to
ϕ0 ± π/2, the DW type is transformed into the opposite one,
and the DW stops after a transitional shift [see, for example,
Fig. 2(c)]. The difference between Walker breakdowns can be
easily explained by comparing the above mentioned behavior
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FIG. 3. Average DW’s velocity for different widths vs current
density for (a) perpendicular polarizer and (b) planar polarizer. Solid
lines with solid dots represent steady motion, dashed lines and open
dots show averaged motion during oscillations, and crossed dots
illustrate post-Walker steady motion caused by magnetostatic stabi-
lization due to the finite size of the nanostrip.

with Table I. Indeed, according to Table I, for a planar po-
larizer, when DW changes its type to the opposite one, it can
no longer be excited by any of the torques. At the same time,
for the case of a perpendicular polarizer, motion is excited
for both DW types, so the DW continues to move, and ϕ

continues to change, which causes the DW oscillations and
its continuous transformation.

Once the symmetries of the components of spin trans-
fer torques (TST T ) and the polarizer directions that favor
the stable DW motion have been obtained, we proceed with
further quantitative analysis. To this end, series of micromag-
netic simulations were carried out at various current densities
and widths with favorable combinations of polarization and
torque. Modeling results demonstrate that DW velocity de-
creases with increasing DW width. Because of this, here, we
display in detail the cases of 10, 30, 50, and 70 nm since
for large widths the velocities become too small, although the
dependencies remain the same.

The dependences of the average DW velocity, obtained
by micromagnetic modeling for the cases of different polar-
izer directions and nanostrip widths, are shown in Figs. 3(a)
and 3(b). The velocity increases with the current density for
both planar and perpendicular polarizers [see solid lines with
solid dots in Figs. 3(a) and 3(b.)]. At a low current density, it
increases almost linearly, and at higher currents, the growth
becomes nonlinear, and the velocity tends to saturation. Then,
upon reaching the critical current density jw, Walker break-
down occurs.

In the case of a perpendicular polarizer, above the critical
current density jw, the DW starts to oscillate with some av-
erage displacement along the nanostrip. The average motion
during these oscillations is shown by the dashed line and
open dots in Fig. 3(a). This is not a steady motion, but it
is still possible to obtain a certain average velocity which
does not depend on the nanostrip length. At the same time,
the nanostrip length plays an important role in the case of
current densities slightly higher than jw. In the case of an
infinite nanostrip, the DW starts to oscillate immediately after
breakdown (see the dashed line), while in the case of a finite

nanostrip (L = 5000 nm), the DW structure is stabilized due
to the magnetostatic interaction near the edge of the nanostrip.
Indeed, at current densities slightly higher than jw, DW tends
to make one oscillation before reaching the nanostrip edge, so
DW should stop and then change the velocity direction for
the first time somewhere near the edge. At the same time,
micromagnetic modeling demonstrates that the magnetostatic
interaction prevents this stopping and subsequent velocity
direction change, as it tries to expel DW from the nanostrip
in the region near the edge. This leads to additional steady
motion above the Walker breakdown [see crossed dots in
Fig. 3(a)] for finite-size samples. Our simulation demonstrates
that the range of this post-Walker steady motion decreases
with an increase of length L.

In the case of a planar polarizer [Fig. 3(b)] we observe a
different behavior. Here, when the DW reaches its maximum
velocity at the critical current density jw, it transforms into
another type DW and then stops. However, this transitional
process of acceleration and deceleration requires a certain
time, during which the DW manages to shift significantly
(up to several thousand nanometers in our case) or even to
reach the edge of the nanostrip. A similar behavior of DWs in
short nanostrips above the Walker breakdown was observed
in [46]. Here, we managed to achieve the DW steady-motion
velocities up to 200 m/s at current densities below 106 A/cm2.
It is important to note that although these low levels of current
density may become relatively close to the noise level, they
are similar to those used experimentally in a similar DW-
based system [14], which makes them feasible. However, in
future experiments, one should be aware of the possibility to
encounter noise-related problems.

The symmetry of torque considered in this work, in prin-
ciple, can be obtained not only in the case of CPP injection.
In the first approximation, the cases of a planar polarizer are
similar to spin-orbit torques [23]. In this regard, the direction
of the polarizer can be associated with the direction of po-
larization of the current in the spin-orbit layer, and ST and
FTL can be associated with the spin Hall and direct Rashba
effects, respectively. With this in mind, one can find a perfect
correlation between Table I and the DW motion conditions
in the case of spin-orbit excitation [24]. The dependence of
the velocity on the current density for the spin-orbit case and
CPP injection case with a planar polarizer is also rather close.
At the same time, the effect of the perpendicular polarizer and
the corresponding torque symmetry cannot be achieved by the
spin-orbit effect due to in-plane polarization of the carriers.
This makes the perpendicular polarizer a unique condition for
only CPP injection.

In addition, it should be noted that the case of the
perpendicular polarizer is the most important in terms of
applications. Indeed, in this case, no one needs additional
layers for magnetoresistance-based DW detection since the
free layer is perpendicularly magnetized. However, in the
case of a planar polarizer and spin-orbit-based excitation, it is
necessary to add a perpendicularly magnetized analyzer layer.
At the same time, the perpendicular polarizer demonstrates
rather high DW velocities. Moreover, in this case, after Walker
breakdown, DW oscillation with some mean displacement
starts, which makes it possible to use this configuration even
at currents exceeding the Walker limit.
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TABLE II. Spin transfer torque components in spherical coordi-
nates for x, y, z polarizers.

mref (1,0,0) (0,1,0) (0,0,1)

Tθ −γ aJ sin ϕ γ aJ cos ϕ γ bJ sin θ

−γ bJ cos θ cos ϕ −γ bJ cos θ sin ϕ

Tϕ γ aJ cos ϕ sin θ cos θ γ aJ sin ϕ sin θ cos θ −γ aJ sin2 θ

−γ bJ sin θ sin ϕ +γ bJ sin θ cos ϕ

IV. ANALYTICAL MODEL

For analytical insight into DW dynamics in our case, let
us consider Eq. (1) in spherical coordinates (θ and ϕ are
the azimuth and polar angles, respectively) with the energy
within the framework of a one-dimensional model repre-
sented by ε = εexch + εmagn + εan + εsh.an., where exchange
energy εexch = A[(∇θ )2 + sin2 θ (∇ϕ)2], A is the exchange
constant, magnetostatic energy εmagn = 2πκM2

s sin2 θ sin2 ϕ,
anisotropy energy εan = K sin2 θ , K is a constant of perpen-
dicular magnetic anisotropy, and shape magnetic anisotropy
energy εsh.an. = −(2π − ζ/2)M2

S sin2 θ . The parameter ζ �
1 describes the difference between the demagnetizing fac-
tor in the z direction Nz in the considered case and in the
case of an infinite film (Nz = 4π − ζ ). The parameter κ de-
termines the difference between magnetostatic fields in the
cases of a nanostrip and an infinite film. It can be calcu-
lated approximately, considering the demagnetization factors
and magnetostatic interaction of each domain. However, here,
we obtain it more accurately by micromagnetic modeling as
κ = |〈Hms〉|/4πMS , where 〈Hms〉 is the magnetostatic field
distribution from the micromagnetic simulation, which was
averaged along the x axis (across the nanostrip). With this in
mind, Eq. (1) takes the following form:

sin θϕ̇ − αθ̇ = −ωQδ2
0θyy + ω sin θ cos θ sin2 ϕ

+ωQδ2
0 sin θ cos θ (ϕy)2

+ωQ sin θ cos θ + Tθ ,

sin θ θ̇ + α sin2 θϕ̇ = ωQδ2
0 sin2 θϕyy

−ω sin2 θ sin ϕ cos ϕ + Tϕ, (2)

where ω = 4πγ κMS , Q = K⊥/2πκM2
S , δ0 = √

A/K⊥, K⊥ =
K − (2π − ζ/2)M2

S . The spin transfer torque components Tθ

and Tϕ depend on the polarizer direction mref and are summa-
rized in Table II.

Now, let us use a Walker-like assumption. We will look
for a solution in the form ϕ = ϕ(t ), θ = θ [(y − q(t ))/δ(ϕ)],
where δ(ϕ) = δ0/

√
1 + Q−1 sin2 ϕ and q(t ) is the position of

DW. Under these assumptions Eq. (2) can be reduced to

∂2θ

∂y2
− 1

δ2(ϕ)
sin θ cos θ = −1 + α2

ωQδ2
0

sin θ
∂ϕ

∂t

− α

Qδ2
0

sin θ sin ϕ cos ϕ

+ 1

ωQδ2
0

(
Tθ + αTϕ

sin θ

)
. (3)

The solution to the homogeneous equation corresponding to
Eq. (3) in this case is well known and is a kink solution that
describes the shape of the domain wall:

θ0 = 2 arctan

[
exp

(
±y0 + y − q(t )

δ(ϕ)

)]
. (4)

Consider the solution to Eq. (3) to be θ = θ0 + θ1, where
θ1 � 1. Neglecting small values and bearing in mind that
∂2θ0/∂y2 − sin θ0 cos θ0/δ

2(ϕ) = 0, we can rewrite Eq. (3) as

L̂θ1 = f (θ0), L̂ = ∂2

∂y2
− cos 2θ0

δ2(ϕ)
,

f (θ0) = −1 + α2

ωQδ2
0

sin θ0
∂ϕ

∂t
− α

Qδ2
0

sin θ0 sin ϕ cos ϕ

+ 1

ωQδ2
0

(
Tθ + αTϕ

sin θ0

)
. (5)

According to the Fredholm alternative, this equation has
a solution if and only if the right side f (θ0) of the equation
is orthogonal to the eigenfunction of operator L̂ with zero
eigenvalue, which can be found from the equation L̂θ

(0)
1 =

0. For the present problem the required eigenfunction takes
the form θ

(0)
1 = ∂θ0/∂y. Then, considering that ∂θ0/∂y =

± sin θ0/δ(ϕ), the solvability condition is

〈sin2 θ0〉
(

(1 + α2)
∂ϕ

∂t
+ αω sin ϕ cos ϕ

)
= T, (6)

where 〈· · · 〉 means integration over y and T = 〈Tθ sin θ0 +
αTϕ〉 varies for different polarizers. After integration over y,
one can obtain

2(1 + α2)
∂ϕ

∂t
+ 2αω sin ϕ cos ϕ = 1

δ(ϕ)
Ti, (7)

where the impact of different polarizer directions Ti has the
form

Tx = 2πγ δ(ϕ) sin ϕ(−aJ − αbJ ),

Ty = 2πγ δ(ϕ) cos ϕ(aJ + αbJ ),

Tz = 2γ δ(ϕ)(bJ − αaJ ). (8)

Let us now consider the stationary motion of the DW. In
this case ∂ϕ/∂t = 0 and Eq. (7) can be solved directly for each
polarizer. There are five stationary solutions up to a period:

ϕx1 = arccos

(−aJ − αbJ

HW x

)
at (aJ + αbJ )2 < H2

W x,

ϕx2 = 0,

ϕy1 = arcsin

(
aJ + αbJ

HWy

)
at (aJ + αbJ )2 < H2

Wy,

ϕy2 = π/2,

ϕz = 1

2
arcsin

(
bJ − αaJ

HW z

)
at (bJ − αaJ )2 < H2

W z, (9)

where HW x = HWy = 4ακMS and HW z = 2πακMS . To find
the velocity of the DW for each ϕi case, recall that ∂θ0/∂t =
∓V sin θ0/δ(ϕ), which follows from Eq. (4). At the same time,
Eq. (4) will be a solution of Eqs. (2) under the following con-
dition: Tθ , Tϕ, α, ∂φ/∂t → 0. In this case, the second equation
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in Eqs. (2) gives ∂θ0/∂t = −ω sin θ0 sin ϕ cos ϕ, which leads
to the dependence of the velocity on ϕ:

V = ωδ0 sin ϕ cos ϕ√
1 + Q−1 sin2 ϕ

. (10)

Using it, the corresponding DW velocities for each solution ϕi

are

Vx1 = πγ δ0

α

−(aJ + αbJ )
√

H2
W x − (aJ + αbJ )2

HW x

√
1 + (QHW x )−1

√
H2

W x − (aJ + αbJ )2

,

Vx2 = 0,

Vy1 = πγ δ0

α
(aJ + αbJ )

√√√√ H2
Wy − (aJ + αbJ )2

H2
Wy + Q−1(aJ + αbJ )2

,

Vy2 = 0,

Vz = γ δ0

α

bJ − αaJ√
1 + (2Q)−1− (2QHW z )−1

√
H2

W z − (bJ − αaJ )2

.

(11)

It should be noted that the Vx1 case is in good agreement
with the analytical results for spin Hall effect induced DW
motion, analyzed in [27]. This correlates with the similarity in
symmetry between the spin Hall effect and the Slonczewski
torque with the x-axis polarizer.

Taking into account that α is small and only the term with
the torque amplitude (aJ or bJ ) without factor α contributes
to ϕ and V significantly [52], these solutions fully correspond
to Table I. Indeed, in the case of an x polarizer, there are two
solutions: a Bloch DW with zero velocity ϕx2 and a moving
DW, which starts from an ideal Néel DW at zero current and
moves with a decrease in ϕx1 from π/2 with increasing current
until Walker breakdown occurs at ϕ = 0 and DW stops. After
that, the DW becomes an ideal Bloch DW with no motion. In
the case of a y polarizer, there are also two solutions: a Néel
DW with zero velocity ϕy2 and a moving DW, which starts
from an ideal Bloch DW at zero current and moves with ϕy1

increasing from ϕ = 0 with increasing current until Walker
breakdown occurs at π/2 and the DW stops. After that, the
DW becomes an ideal Néel DW with no motion. In both these
cases of planar polarizer, the DW moves under the action of
the Slonczewski torque, and the contribution of the fieldlike
torque is negligible (aJ � αbJ ); however, FLT can lead to
ultraslow motion, which was also observed in micromagnetic
simulations.

For the z polarizer, both Néel and Bloch DWs begin to
move mostly under the action of the fieldlike torque (since
bJ � αaJ and the Slonczewski torque leads only to ultraslow
motion, which also agrees with the modeling results) with
ϕz changing with increasing current until Walker breakdown
occurs at ϕ = π/4 + πn, n ∈ Z . However, in contrast to the
case of planar polarizers, when approaching the Walker limit
(π/2 or 0), the velocity vanishes; here, Walker breakdown oc-
curs at ϕ = π/4, which corresponds to the maximum velocity
according to Eq. (10). Due to this, the DW does not stop in
this case but switches to the nonstationary-motion regime. It

FIG. 4. Dependence of ϕosc and the corresponding velocity Vosc

on time for HJ = 1.2HW z and a nanostrip width of 50 nm, obtained
from the equations.

is also worth noting that the analytical results also demonstrate
the opposite direction of DW motion for z and x polarizers, the
same as in micromagnetic simulations. This strictly follows
from the opposite signs in Vz and Vx1.

To describe the nonstationary-motion regime, consider
Eq. (7). In the case of (bJ − αaJ )2 > H2

W z and a z polarizer,
this equation can easily be integrated with the initial condition
ϕ(t = 0) = π/4 since it is exactly at this angle that the non-
stationary regime starts. The resulting dependence of ϕ above
the Walker breakdown, up to a period, is represented by

ϕosc = arctan

⎧⎨
⎩

√
H2

J − H2
W z

HJ
tan

⎡
⎣arctan

⎛
⎝ HJ + HW z√

H2
J − H2

W z

⎞
⎠

− γ t
√

H2
J − H2

W z

⎤
⎦ − HW z

HJ

⎫⎬
⎭, (12)

where HJ = bJ − αaJ . Using this and Eq. (10), we can nu-
merically calculate the velocity of the DW above the Walker
breakdown. For example, the time dependence of ϕosc and the
corresponding velocity Vosc for the case HJ = 1.2HW z and a
nanostrip width of 50 nm is demonstrated in Fig. 4. As can
be seen, the analytical model also demonstrates oscillatory
motion above the Walker breakdown for the z polarizer, which
was observed in micromagnetic modeling. To calculate the
average velocity 〈Vosc〉 above the Walker breakdown, this de-
pendence can be averaged.

It is important to note that the one-dimensional model does
not take into account some additional magnetization excita-
tions (for example, spin waves, x-axis DW deformations, etc.)
considered in micromagnetic modeling. It is, in some aspects,
possible to add these excitations indirectly by increasing the
damping parameter α since additional excitations lead to
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FIG. 5. Analytical dependence of the DW velocity on the current
for different polarizer directions and widths (10, 30, 50, and 70 nm).
In (a), the solid line corresponds to Vz, and the dashed line corre-
sponds to 〈Vosc〉. In (b), the solid line corresponds to Vx1.

additional dissipation. For our analytical results, we increase
it to α = 0.012 to achieve a better fit with simulations.

A summary of the analytically obtained DW velocity de-
pendence on the current for every polarizer direction and
different widths (10, 30, 50, and 70 nm) is presented in
Figs. 5(a) and 5(b). In Fig. 5(a) the solid line corresponds
to Vz, and the dashed one corresponds to 〈Vosc〉; in Fig. 5(b)
the solid line corresponds to Vx1. We choose Vx1, but not Vy1,
because for the considered widths we have the Néel DW at
zero current, so for the y polarizer we had to take Vy2, which is
zero. These results show good agreement with micromagnetic
simulations (see Fig. 3). This proves the applicability and reli-
ability of the analytical model. However, despite the fact that
the analytical solutions perfectly match all regimes (except
the post-Walker finite-size steady regime, which obviously
cannot be reproduced by the one-dimensional model) and the
values of velocities from the micromagnetic modeling, the
critical currents differ slightly from the simulation. This is
mainly due to the fact that the magnetostatic interaction in the

model is rather simplified. As we mentioned earlier, we use
the parameter κ , which is obtained from the magnetostatic
field distribution. This creates a realistic difference between
cases with different widths, and without it the velocities and
critical currents would be the same for every width. However,
micromagnetic analysis shows that the magnetostatic field,
which determines κ , changes during the DW motion with a
change in ϕ. Hence, our estimates of κ for the static DW case
give only the correct order for it but not the dependence on the
current, which changes the critical currents.

V. CONCLUSIONS

In this paper, we reported a detailed study, both analyti-
cally and by micromagnetic modeling, of DW dynamics in
a nanostrip with PMA induced by a perpendicularly injected
spin-polarized current. The stable DW states depending on the
nanostrip width were presented. The influence of different po-
larizer directions and torque configurations on the dynamics
was analyzed in detail. The polarizer and torque configura-
tions at which the steady-state DW motion is feasible were
presented. The Walker breakdown was demonstrated, and the
dynamics of the postthreshold DW motion was investigated
for various configurations of torques and polarizer directions.
An analytical model of the system under consideration was
proposed and verified by micromagnetic simulations. Our
results show the possibility of efficient excitation of DW in
nanostripes with PMA with velocities up to 200 m/s at current
densities less than 106 A/cm2 in the case of perpendicular
current injection. Based on all these, one may expect that
the thin-film PMA-based DW spintronic structures will form
the basic platform for the next generation of magnetic logic
devices, memristors, racetrack memories, etc., possessing a
very high energy efficiency.
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