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Heat transport in insulator/ferromagnetic-insulator/insulator heterogeneous
nanostructures at low temperatures
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A kinetic approach to the heat transport by phonons and magnons through a ferromagnetic insulator (FI)
layer located between two massive insulators (I1 and I2) is analytically considered. The effective transverse heat
conductivity of such a layered system with an arbitrary thickness of the FI layer is calculated, and the thickness
at which the size effect is manifested in the thermal conductivity is found.
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I. INTRODUCTION

Magnon propagation in magnetically ordered dielectric
crystals can transfer heat in the same way as lattice excitations
or phonons [1–4]. Heat transfer in multilayer heterostructures
containing a layer of a ferromagnetic dielectric is of interest
for both basic and applied research. The scientific aspect of
the problem of thermal conductivity of multilayer systems is
that Fourier’s law cannot be directly applied to the analysis
of heat transport in layered nanostructures, where the mean
free path of phonons is greater than the layer thickness, and
the boundary conditions at the interfaces have a significant
effect on heat transport. Thus, the microscopic approach is
required to describe the heat flux in I1/FI/I2 nanostructures,
since this allows for the correct consideration of the influence
of the interlayer boundaries on the thermal conductivity of the
multilayer structure.

In multilayer systems, heat transfer plays an important
role in the spin Seebeck effect (SSE) and in the whole field
of spin caloritronics, which has been actively developed in
recent years. [5–7] Specifically, spin caloritronics considers
the problems of generation and control of spin currents by
means of heat fluxes. [8] In this area, the longitudinal SSE
(LSSE), which consists of generation of a spin current parallel
to the heat temperature gradient, is of great interest because
it can produce spin current densities that are two orders of
magnitude larger than those produced via electronic or reso-
nant excitation. [9,10] The LSSE experimental results allow
us to study the kinetics of interacting electrons, phonons,
and magnons in multilayer structures. Since the ferromagnetic
insulator (FI) plates (or films) deposited on the high heat-
conducting dielectric substrates are usually studied in LSSE
experiments, for a correct theoretical description, it is also
necessary to consider two related problems.
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The first problem is to calculate the temperature jump at
the FI/I interface, i.e., the thermal resistance of the interface
Rth (commonly called the “Kapitza resistance”). It has been
previously discussed in detail in Ref. [11].

The second problem, which was not solved microscopi-
cally until now is the calculation of the effective transverse
heat conductivity of I1/FI/I2 layered system (with tempera-
tures T1 �= T2 for I1 and I2) at an arbitrary thickness of the FI
layer, where both magnons and phonons transfer the heat flow.

In Ref. [11] it was shown that, for the ferrodielectric-
insulator FI/I interface at low temperatures (T � θD, where
θD is the Debye temperature of the FI layer), there exists a
size effect. The latter manifests itself in the dependence of
the Kapitza resistance Rth for thin FI plates (films) on the
frequency of phonon-magnon collisions, whereas for thick
plates, the value of Rth does not contain the magnetic char-
acteristics of a ferrodielectric. To explain the growth of the
magnetic contribution with decreasing thickness of the FI
layer, we note that the transfer of heat from the heated
magnons to the cooler I layer is realized with phonons. If the
thickness of the FI layer d is much larger than the average free
path of phonons with respect to their scattering on magnons
lpm, then the magnons and phonons in the FI layer are ther-
malized and Rth is determined by the acoustic transparency
of the FI/I interface. In this case, there is no contribution of
magnons to Rth.

However, if d � lpm, then most phonons emitted by
magnons in the film leave it without interacting with the
magnons, even after several reflections from the boundaries.
As a result, in contrast to the case d � lpm, the Kapitza re-
sistance Rth depends more on the magnon-phonon interaction
than on the acoustic transparency of the FI/I boundary.

In our approach, the transverse heat flow through the FI
layer, located between two massive insulators with tempera-
tures TH and TB is considered (TH > TB). The analysis of the
transverse thermal conductivity of a layered heterostructure is
based on the Boltzmann kinetic equation for the phonon distri-
bution function Nq, as well as on the assumption that magnons
in the FI layer are thermalized due to magnon-magnon
collisions and have a temperature Tm. This assumption is
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justified because the magnon-magnon relaxation time is usu-
ally shorter than the magnon-phonon collision time. [12,13]
It is assumed that phonons interact with magnons, however,
the phonon temperature is not introduced when describing
the phonon-magnon interaction. Since heat is transferred by
phonons across the boundary of FI/I , an important part of the
analysis is ruled by the boundary conditions for the function
Nq. These conditions account for the phonon reflection from
the FI boundaries and the exchange of phonons between the FI
layer and the massive I plates with temperatures of TH and TB.
The temperature TH will be considered sufficiently low, and
therefore, collisions of phonons with lattice defects and with
each other as well as phonon-magnon Umklapp processes can
be ignored. Since we neglect phonon-phonon collisions, the
phonon temperature in the FI layer cannot be introduced. Note
that the relative simplicity of such a microscopic model allows
one to obtain results in an analytic form.

The paper is organized as follows. In Sec. II, a microscopic
description of the heat transfer in a multilayer system is pre-
sented, and the transverse effective thermal conductivity of the
layered I1/FI/I2 heterostructure is calculated. In Sec. III, the
transverse heat transfer is analyzed using the phenomenolog-
ical two-temperature model (2TM), i.e., in terms of magnon
and phonon temperatures. Comparison of the 2TM results
with the results of the microscopic approach allows us to find
out the conditions under which the use of the phenomeno-
logical 2TM is justified. In Sec. IV, the main conclusions
are formulated. Appendix A contains the calculation of the
phonon distribution function in the FI layer. The numerical
value of the criterion for thick and thin layers of yttrium iron
garnet (YIG) is found in Appendix B.

II. KINETIC APPROACH TO HEAT TRANSFER ACROSS
I1/FI/I2 INTERFACES

In this section, we consider the transverse heat transfer in
heterostructures containing a layer of FI. Even through our
approach can be applied to different layered heterostructures,
here, we will consider only a relatively simple heterostructure
depicted in Fig. 1. Suppose that insulator I1 has a temperature
TB, the temperature of insulator I2 is equal to TH , and TH > TB.

The phonon contribution to the heat flow through the het-
erostructure is found under the assumption that magnons are
thermalized due to magnon-magnon collisions and have a
temperature Tm. The condition for thermalizing the magnon
subsystem in FI is that the frequency of magnon-magnon
collision is higher than the frequency of magnon-phonon
collisions. By the way, even when the magnon temperature
of the Bose-Einstein distribution can no longer be estab-
lished on the basis of direct intermagnon collisions, Tm can
still be introduced [14]. Namely, the value of Tm is justified
in the limit d � lpm because of the effective intermagnon
collisions via the phonons. These circumstances allow us
to reduce the formulated problem to a solution of the sta-
tionary kinetic equation for the phonon distribution function
and then to determine ∇Tm as a function of thermal flow Q
and the temperatures of the insulators from the heat-balance
equation.

In addition, the good transparencies α1 ∼ 1 and α2 ∼ 1
of the FI/I interfaces will be of special interest, since they

FIG. 1. Reflection and refraction of phonon modes at the bound-
aries of media in a I1/FI/I2 layered structure. The filling numbers of
phonon states with wave vector q are denoted by N≶

q . The symbol >

represents phonons with a positive z component of the wave vector q,
whereas the symbol < denotes phonons with a negative z component
of q. Phonons transitioning from the dielectric layer to the FI layer
are shown by dashed lines. TB is the temperature of the massive
substrate, which plays the role of the thermostat, Tm is the magnon
temperature, and TH is the temperature of the top dielectric plate
(TH > TB).

allow simple boundary conditions for the phonon distribution
function. The ballistic propagation of the phonon emitted by
the FI layer not only simplifies the expressions for heat dissi-
pation in the sample but also stipulates the necessary condition
for realization of the size effect, described thoughtfully in
Ref. [11].

In accordance with the considerations above, we assume
that the distribution of magnons is characterized by the tem-
perature Tm. At the same time, the distribution function for
phonons Nq(z), where q is the phonon wave vector, should be
determined from the kinetic equation.

sz
∂Nq(z)

∂z
= Lpm{N, n}, (1)

with appropriate boundary conditions. In Eq. (1), sz is the
projection of the phonon velocity on the z axis, and Lpm

is the phonon-magnon collision integral [14], which can be
expressed as

Lpm{N, n} = νpm[Tm(z), q]{n[Tm(z)] − Nq(z)}. (2)

Here, n[Tm(z)] = [exp(εk/Tm) − 1]−1 is the equilibrium
Bose-Einstein distribution with the z-dependent magnon tem-
perature Tm (kB = 1). In the long wave limit ka � 1, the
magnon dispersion law is εk = θC (ak)2, where a is the
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lattice constant and θC is the temperature, which coincides in
order of magnitude with the Curie temperature. In Eq. (2),
νpm[Tm(z), q] is the frequency of collisions between the
phonon of frequency ωq = sq and the magnons. The depen-
dence of the frequency νpm on the magnon temperature leads
to the fact that the mean free path of phonons depends on the
transverse coordinate z. This feature somewhat complicates
the analysis of the I1/FI/I2 system as compared with the
I1/N/I2 system, where the mean free path of phonons in a
normal metal N does not depend on the electron temperature
[15].

Adding the solution scheme from Ref. [16] for the ki-
netic equation, with details placed in the Appendix section
of Ref. [11], we denote the phonon reflection coefficients
at boundaries 1 and 2 as β1 and β2, such that βi = 1 − αi,
i = 1, 2, where α(θ ) is the transparency coefficient. We con-
sider the case of ballistic propagation of the phonons emitted
by FI through the FI/I boundary, taking into account the
finite transparency of the FI/I interface within the framework
of the acoustic-mismatch theory [17]. The notation N≷

q (z) =
N (z, qx, qy, qz ≷ 0) allows us to write the boundary condi-
tions for Nq(z) in Eq. (1) for z = 0 and z = d as follows (see
Fig. 1):

N>
q (0) = α1nq(TB) + β1N<

q′ (0), (3)

N<
q (d ) = α2nq(TH ) + β2N>

q′ (d ). (4)

These boundary conditions suggest that phonons emitted from
the FI layer to the insulators I1 and I2 no longer return. This
assumption is justified when I1 and I2 are single-crystal di-
electrics with high thermal conductivity.

In the acoustic mismatch model [17–19], the probability of
passage α depends on the angle of incidence of the phonon θ

and acoustic impedances of adjacent media Z = ρs and Z ′ =
ρ ′s′:

α(θ ) = 4ZZ ′ cos θ cos θ ′/(Z cos θ ′ + Z ′ cos θ )2. (5)

The condition for the independence of the heat flux from
the z coordinate can serve as the equation for Tm(z):

Qz = −km
dTm

dz
+

∫
qz>0

d3q

(2π )3
h̄ωqsz[N

>
q (z) − N<

q′ (z)]. (6)

Here, km is the magnon thermal conductivity, and the second
term on the right side is the share of the heat flux carried
by phonons. It can be seen that substituting Eq. (A9) and
Eq. (A10) into Eq. (6) gives the integro-differential equation
for Tm(z).

Below, considerable attention is paid to the limit d � lpm,

when the determinant D ≈ 1, since it is in this limit that
the magnons make a significant contribution to the heat flow
through the I1/FI/I2 heterostructure. Note that the calcula-
tion of the integral J1 neglects terms that are of the order of
(d2Tm/dz2)|z=0 and the term proportional dTm/dz falls out,
since (dTm/dz)|z=0= 0. As a result, we have J1 ≈ nq[Tm(0)],
and similarly the integral J2 ≈ nq[Tm(d )].

Expanding Tm(z′) with respect to the small temperature
gradient looks like Tm(z′) = Tm(z) + (dTm/dz)|z(z − z′). Sub-
stituting this expansion into Eq. (A9) gives the phonon

distribution function at d � lpm:

N>
q (z) = e−r(z)

{
α1nq(TB) + β1nq[Tm(0)]

} + nq[Tm(z)]

× [1 − e−r(z)] + dnq

dTm

dTm

dz

dz

dr
[−1 + (r + 1)e−r(z)],

(7)

and similarly, from Eq. (A10), we get the expression

N<
q′ (z) = e−r(d )+r(z){α2nq(TH ) + β2nq[Tm(d )]}

+ nq[Tm(z)][1 − e−r(d )+r(z)] + dnq

dTm

dTm

dz

dz

dr

×{−1 + [r(d ) − r(z)]e−r(d )+r(z)}, (8)

If z � lpm and (d − z) � lpm, then terms containing
exp(z/lpm) and exp[−(d − z)/lpm] can be ignored. As such,
in the region that is removed from the transition layers, the
heat flux can be written as

Qz = −km[Tm(z)]
dTm

dz
− 2

∫
qz>0

d3q

(2π )3
h̄ωq

s2
z

νpm

dnq

dTm

dTm

dz
.

(9)

Since at z � lpm and at (d − z) � lpm the magnons and
phonons are thermalized, then Eq. (9) can also be written as

Qz = −km[Tm(z)]
dTm

dz
− kp[Tm(z)]

dTm

dz
, (10)

with

kp(T ) = 2
∫

qz>0

d3q

(2π )3
h̄ωq

s2
z

νpm(T )

dnq

dT
. (11)

(Here and below, Tp = Tm is accounted for.) Note that the
value of phonon thermal conductivity is determined by the
frequency of phonon-magnon collisions. In pure FIs, the fre-
quency of phonon-magnon collisions νpm(T ) is given by the
following expression (see for example, Ref. [11]):

νpm(T ) = D(T )JD(T, x, y0), (12)

in which D(T ) = (θCθD/8π h̄θp)(T/θC )3, where θD = h̄s/a,
θp = Ms2, s is the average sound velocity, M is the magnetic
ion mass, and

JD(T, x, y0) =
∫ ∞

y0

dyy(x + y)

[
1

ey − 1
− 1

ex+y − 1

]
. (13)

Here, x = h̄ωq/T , y = εk/T , and y0 = θ2
D/4T θC . In the in-

tegral over the dimensionless magnon energy y, the lower
integration limit y0 reflects the Cherenkov character of the
emission of phonons by magnons. Namely, only magnons
whose energy is higher than θ2

D/4θC can emit phonons.
At low temperatures T � θ2

D/4θC , the phonon thermal
conductivity has the form

kp(T ) = 4C

3π

θ2
Cθp

h̄2sθD

(
4T θC

θ2
D

)2

exp

(
θ2

D

4T θC

)
, (14)

where C = ∫ ∞
0 x4e2x(ex − 1)−3dx ≈ 27.41. The rapid in-

crease in phonon thermal conductivity with decreasing
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temperature is a consequence of the Cherenkov character of
the emission of phonons by magnons. We note that the for-
mula in Eq. (14) is valid if lpm is less than d .

From the general equation for Qz(z), it is possible to
derive an equation for Tm(0) and Tm(d ). Let z = 0, then
(dTm/dz)|z=0= 0, and considering that d � lpm,

Qz = −
∫

qz>0

d3q

(2π )3
h̄ωqszα1{nq[Tm(0)] − nq(TB)}

= − π2

120

〈α1〉
h̄3s2

[
T 4

m (0) − T 4
B

]
, (15)

where 〈α1〉 = ∫ π/2
0 α(θ ) sin(2θ )dθ.

In the case of small heat fluxes, when Tm(0) − TB � TB,

Qz = −π2

30

〈α1〉T 3
B

h̄3s2
[Tm(0) − TB].

At z = d , considering that (dTm/dz)|z=d= 0 and d � lpm,

Qz = − π2

120

〈α2〉
h̄3s2

[
T 4

H − T 4
m (d )

]
. (16)

In the case of low heat fluxes, when TH − TB � TB and
Tm(d ) − TB � TB,

Qz = −π2

30

〈α2〉T 3
B

h̄3s2
[TH − Tm(d )].

In the FI region removed from boundary layers, the FI tem-
perature gradient, with an accuracy up to terms proportional
to lpm/d, is determined by the following equation:

dTm

dz
= [Tm(d ) − Tm(0)]

d
,

At d � lpm, the effective thermal conductivity of the FI
layer keff = |Qz|d/(TH − TB) can be obtained from the follow-
ing systems of equations:

|Qz|Rth,1 + |Qz|Rth,2 = TH − Tm(d ) + Tm(0) − TB, (17)

|Qz| = (km + kp)[Tm(d ) − Tm(0)]/d, (18)

where the magnon and phonon thermal conductivities are
taken at T = TB, and the thermal resistance of the boundary
between the FI and the insulator is written as

Rth,i = 30h̄3s2

π2〈αi〉T 3
B

. (19)

As such, at d � lpm, we have

keff = d

Rth,1 + Rth,2 + d/(km + kp)
. (20)

Note that the 2TM discussed in Sec. III gives Eq. (36)
for the effective thermal conductivity, which coincides ex-
actly with the microscopic calculation result in Eq. (20)
at d � lpm.

We turn to the limiting case of thin FI layers d � lpm

when the determinant of the system D = 1 − β1β2. Since in
the linear approximation with respect to d/lpm we have to
set exp(−z/lpm) ≈ 1 and exp[−(d − z)/lpm] ≈ 1, then J1 =
J2 = dnq(T m)/lpm, where T m = Tm(d/2). Thus, the integrals
J1 and J2 are of the order of d/lpm and can be neglected in

the zero approximation with respect to d/lpm. As a result,
in the zero approximation with respect to d/lpm, the phonon
distribution is given the following equalities:

N>
q = {α1nq[TB + β1α2nq(TH )]}/(

1 − β1β2
)
, (21)

N<
q = {α2nq[TH + β1α1nq(TB)]}/(

1 − β1β2
)
. (22)

Neglecting the magnon heat transfer (since in thin FI
layers, the phonons do not have time to transfer energy to
magnons), we have

Qz = − π2

120h̄3s2

〈
α1α2

1 − β1β2

〉(
T 4

H − T 4
B

)

≈ − π2T 3
B

30h̄3s2

〈
α1α2

1 − β1β2

〉
(TH − TB). (23)

From here, we obtain the result

keff = π2T 3
B

30h̄3s2
d

〈
α1α2

1 − β1β2

〉
, (24)

where averaging over incidence angles is defined by 〈 f 〉 =∫ π/2
0 sin 2θ f (θ )dθ . Note that, in the case of thin FI layers and

αi ∼ 1, the thermal conductivity keff is of the order of cpsd;
that is, it coincides with the phonon thermal conductivity with
an average phonon mean free path of the order of the thickness
of the FI layer. [In our model, the phonon specific heat cp =
(2π2/15)(T 3

B /h̄3s3).]

III. THERMAL CONDUCTIVITY OF THE I1/FI/I2

HETEROSTRUCTURE IN THE
TWO-TEMPERATURE APPROXIMATION

In the microscopic approach used above, the calculation of
the phonon contribution to the transverse thermal conductivity
of the I1/FI/I2 system required solving a kinetic equation.
To simplify the thermal conductivity calculations, it is desir-
able to use a simpler phenomenological approach. As will be
shown below, the two-temperature approximation, in which
the phonons and magnons are considered to have temperatures
Tp and Tm, respectively, could be suitable for this task [20,21].

At first, we will not take into account the Kapitza resistance
at the I/FI boundary. The simplest formulation is that of the
problem with a given heat flux Qz, which receives contribution
from the phonons and magnons. The heat flux associated with
phonons is determined by the equality Qp = −kp∇Tp, where
the temperature of the phonons obeys the following stationary
heat equation:

−kp
d2Tp

dz2
= D(Tm)K (Tm, Tp), (25)

where D(Tm) is presented in Eq. (12) and

K (Tm, Tp) =
∫ ∞

0

u3du

eu − 1
[JD(Tm, x = u, y0)

−μ4JD(Tm, x = uμ, y0)],
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with

JD(Tm, x, y0) =
∞∑

p=1

(1 − e−px )e−py0

×
[

x

(
y0

p
+ 1

p2

)
+

(
y2

0

p
+ 2y0

p2
+ 2

p3

)]
.

Here, μ = Tp/Tm. One sees that, when μ = 1, i.e., the phonon
and magnon temperatures are equal, K = 0, as expected. In
the limiting case of large y0, which corresponds to the limit of
low temperatures, K becomes exponentially small: K ∼ e−y0 .
Because the contribution to JD(Tm, x, y0) from the term with
p = 2 is proportional to e−2y0 , we can confine our considera-
tion by p = 1 in the limit y0 � 1, obtaining [11]

K (Tm, Tp) = ϕ1�(5){1 + μ5[ζ (5, 1 + μ) − ζ (5)]}
+ϕ2�(4){1 + μ4[ζ (4, 1 + μ)] − [ζ (4)]}.

Here, ϕ1 = e−y0 (y0 + 1), ϕ2 = e−y0 (y2
0 + 2y0 + 2), �(n) is

the � function of n, and ζ (n, 1 + μ) is the generalized
Riemann ζ function [see their definitions in Eq. (A31) in
Ref. [11]].

A similar equation for magnon temperature

−km
d2Tm

dz2
= −D(Tm)K (Tm, Tp). (26)

In the linear approximation, when TH − TB � TB, the tem-
peratures of the magnons and phonons differ little from the
substrate temperature TB. If the magnon-phonon τmp and
phonon-magnon τpm energy relaxation time are introduced
according to cp/τpm = cm/τmp, then the equations for Tp and
Tm look like

d2Tp

dz2
+ cp

τpmkp
(Tm − Tp) = 0, (27)

d2Tm

dz2
+ cp

τpmkm
(Tp − Tm) = 0, (28)

To use the symmetry of the problem, in this section, we
will assume that the FI layer is located in the region −d/2 <

z < d/2. In this case, the boundary conditions look like

Tp(−d/2) = TB + |Qz|Rth,1, Tp(d/2) = TH − |Qz|Rth,2,

(29)

dTm/dz|−d/2 = dTm/dz|d/2 = 0. (30)

The last expression reflects the fact that magnons do not
transfer heat across the boundaries of the FI layer. Note that,
because of symmetry, Tp(0) = Tm(0). The heat flow equation

Qz = −kp
dTp

dz
− km

dTm

dz
(31)

can be integrated from zero to some coordinate z. Since the
heat flux in the FI layer is constant, we have the equality

Tp = 1

kp
[−kmTm(z) + (kp + km)Tp(0) − Qzz]. (32)

It follows from Eq. (28) that

d2Tm

dz2
− cp

τpmkm

{
Tm + 1

kp
[kmTm − kT Tp(0) + Qzz]

}
= 0,

(33)

where kT = km + kp. The solution of the equation for Tm that
satisfies the boundary condition in Eq. (30) looks like

Tm(z) = Tm(0) + Qzλ

kT

sinh(z/λ)

cosh(d/2λ)
− Qz

kT
z. (34)

where λ = [τpmkmkp/cp(km + kp)]1/2. Substituting Tm(z) in
Eq. (32), we get

Tp(z) = Tp(0) − km

kp

Qzλ

kT

sinh(z/λ)

cosh(d/2λ)
− Qz

kT
z. (35)

Considering Eq. (29) for the effective thermal conductivity
of the FI layer, keff ≡ |Qz|d/(TH − TB), we have

keff = kT

/[
1 + km

kp

2λ

d
tanh

d

2λ
+ kT

d
(Rth,1 + Rth,2)

]
. (36)

Unlike Ref. [21], the expression in Eq. (36) takes into account
the contribution of the thermal resistance of the boundaries to
keff. This contribution can be significant at low temperatures
(TB ∼ 1 K), and it must be taken into account when analyzing
experimental data.

Note that, at d � lm, the expression in Eq. (36), obtained
on the basis of the 2TM, coincides exactly with the result of
the microscopic calculation in Eq. (20). At the same time, at
small thicknesses of the FI layer, d � lpm, the 2TM gives only
a qualitatively correct result.

The physical meaning of the length λ becomes clear if we
consider the limiting case km � kp when λ = (τpmkp/cp)1/2. It
is well known that, for gas, the thermal conductivity k ∼ clν,
where c is the specific heat of the gas, l is the average mean
free path of particles, and ν is their average thermal velocity.
For phonon gas, ν = s, and if we neglect the scattering by im-
purities, the average phonon mean free path l = lpm. As such,
for a phonon gas, we have kp ∼ cps2τpm, and λ ∼ sτpm = lpm.
Thus, λ is the length of the phonon-magnon collisions, that is,
the length at which phonons transfer their energy to magnons.

According to Eqs. (20) and (36), for thick FI layers (d �
lpm), the size effect in the thermal conductivity of layered
nanostructures begins to manifest itself at FI layer thicknesses
dcr ∼ kT (Rth,1 + Rth,2). If d � dcr, the thermal conductivity
of the thick FI layer is approximately equal to the total thermal
conductivity of the magnons and phonons, and if d � dcr,
the magnons and phonons scattering in the FI layer (i.e., the
quality of the FI layer) play a small role, and the traverse
thermal conductivity of the layered nanostructures is deter-
mined by the acoustic mismatch of the adjacent materials
keff = d/(Rth,1 + Rth,2). In the case of thin FI layers with
d � lpm, the thermal conductivity keff is given by Eq. (24). We
would like to emphasize that, since the values of lpm and dcr

increase with decreasing thermostat temperature, the role of
the size effect in the transverse thermal conductivity of layered
structures increases with decreasing temperature.
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IV. CONCLUSIONS

In this paper, the transverse heat transfer in a layered
I1/FI/I2 heterostructure at low temperatures is analyzed when
the magnons in the FI layer are thermalized. The analysis
is based on the Boltzmann kinetic equation for the phonon
distribution function with boundary conditions that account
for the reflection and refraction of acoustic waves as they pass
through the interlayer interfaces (Sec. II). Effective thermal
conductivity perpendicular to the layers is also calculated in
the two-temperature approximation, i.e., in terms of magnon
and phonon temperatures (Sec. III). Comparison of the results
obtained in Secs. II and III shows that a relatively simple
two-temperature approximation correctly describes the kinet-
ics of heat transfer in a multilayer system only in the case of
thick FI layers, wherein the thickness of the layer is signifi-
cantly greater than the phonon-magnon free path. For thinner
FI layers, the two-temperature approximation gives only a
qualitatively correct result for the effective transverse thermal
conductivity of the layered structure. (Note that the numerical
value of the criterion for thick and thin PI layers is given in
Appendix B for an example of a layer of YIG.)

The dependence of the transverse thermal conductivity
of the layered I1/FI/I2 structures on the thickness of the
FI layer increases significantly with decreasing tempera-
ture; therefore, it is necessary to take into account the
size effect when analyzing experimental results for low
temperatures.
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APPENDIX A: PHONON DISTRIBUTION FUNCTION

The equation for N>
q (z)

dN>
q

dz
+ 1

lpm(z)
N>

q = 1

lpm(z)
nq[Tm(z)], (A1)

has the solution

N>
q (z) = N>

q (0)e−r(z) +
∫ z

0

dz′

lpm(z′)
e[r(z′ )−r(z)]nq[Tm(z′)],

(A2)

where the phonon mean free path lpm(z) = |sz|/νpm(z) and

r(z) =
∫ z

0

dz′

lpm(z′)
. (A3)

The solution to the equation for N<
q (z) looks like

N<
q′ (z) = N<

q′ (d )e[r(z)−r(d )]

+
∫ d

z

dz′

lpm(z′)
e[r(z)−r(z′ )]nq[Tm(z′)], (A4)

The constant N>
q (0) and N<

q′ (d ) are determined by the bound-
ary conditions. Substituting Eqs. (A2) and (A4) into the

boundary conditions gives

N>
q (0) = 1

D
[α1nq(TB) + β1α2e−r(d )nq(TH )

+β1J1 + β1β2e−r(d )J2], (A5)

N<
q′ (d ) = 1

D
[α2nq(TH ) + β2α1e−r(d )nq(TB)

+β2J2 + β1β2e−r(d )J1], (A6)

where the determinant D = 1 − β1β2e−2r(d ),

J1 =
∫ d

0

dz′

lpm(z′)
e−r(z′ )nq[Tm(z′)], and (A7)

J2 =
∫ d

0

dz′

lpm(z′)
e−r(d )+r(z′ )nq[Tm(z′)]. (A8)

Note that, if d � lpm, then the integral J1 gets its main con-
tribution from the region z′ � lpm � d, and the integral J2 get
its main contribution from (d − z′) � lpm � d. If d � lpm,

then phonons have almost no interaction with magnons, and
the heat transport through the thin FI layer is of a purely
phonon nature. At d � lpm, the integrals J1 and J2 are small,
since they are of the order of d/lpm.

By substituting N>
q (0) and N<

q′ (d ) into Eqs. (A2) and (A4),
we get the following for the phonon distribution functions:

N>
q (z) = exp[−r(z)]

D
[α1nq(TB) + β1J1

+β1α2e−r(d )nq(TH ) + β1β2e−r(d )J2]

+
∫ z

0

dz′

lpm(z′)
e−r(z)+r(z′ )nq[Tm(z′)], (A9)

N<
q′ (z) = exp[−r(d ) + r(z)]

D
[α2nq(TH ) + β2J2

+β2α1e−r(d )nq(TB) + β1β2e−r(d )J1]

+
∫ d

z

dz′

lpm(z′)
e−r(z′ )+r(z)nq[Tm(z′)]. (A10)

APPENDIX B: PHONON MEAN FREE PATH

For a given phonon energy, the frequency of phonon-
magnon collisions is determined by Eqs. (12) and (13). The
phonon energy-averaged frequency of phonon-magnon colli-
sions was calculated in Ref. [22] and has the following form:

ν pm = ν0

(
T

θC

)3∫ ∞

0
dx

x4ex

ex − 1

∫ ∞

y0

dy
(y + x)yey

(ey − 1)(ex+y − 1)
,

(B1)

where

ν0 = 15

32π5

θC

Mas
.

To compare theory with experiment, one should also take
into account the scattering of phonons at the boundaries of FI
layer. Since phonon-magnon collisions and phonon scattering
at the sample boundaries are statistically independent, the
average phonon mean free path lp can be written as lp =
(1/lpm + 1/ld )−1, where ld is boundary scattering phonon
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FIG. 2. The temperature dependence of the phonon mean free
path lp(T ) = [1/lpm(T ) + 1/ld ]−1. Experimental data are taken from
Ref. [3].

mean free path, and lpm = s/ν pm. The temperature depen-
dence of the average phonon free path is shown in Fig. 2.
Agreement between theory and experiment [3] was achieved
by selecting two adjustable parameters, namely the value of
ld and the numerical coefficient in the expression for lpm.
At T � 1 K, the dependence lpm(T ) weakly depends on y0,
which means that the Cherenkov effect upon emission of
phonons by magnons manifests itself at lower temperatures.
From a comparison of theory with experiment, it follows that,
at temperatures T < 1 K, phonons are mainly scattered at the
interface between FI and I layers, and at temperatures T >

10 K, phonon scattering by magnons dominates, while phonon
scattering at the sample boundaries and Umklapp processes
play a secondary role.

As seen from Fig. 2, for YIG at T ≈ 10 K, the phonon-
magnon mean free path lpm ≈ 10−3 cm, from which the
criterion of thick and thin YIG layers (at T ≈ 10 K) imme-
diately follows.
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