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We report a theoretical overview of the magnetic domain wall behavior under an electric current in infinitely
long nanotubes with azimuthal magnetization, combining the one-dimensional analytic model and micromag-
netic simulations. We highlight effects that, besides spin-transfer torques already largely understood in flat strips,
arise specifically in the tubular geometry: the Œrsted field and curvature-induced magnetic anisotropy resulting
both from the exchange interaction and material growth. Depending on both the geometry of the tube and the
strength of the azimuthal anisotropy, Bloch or Néel walls arise at rest, resulting in two regimes of motion largely
dominated by either spin-transfer torques or the Œrsted field. We determine the Walker breakdown current in all
cases, and highlight the most suitable parameters to achieve high domain wall speed.
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I. INTRODUCTION

Magnetic nanowires and to a lesser extent nanotubes
have been synthesized for three decades, and mostly inves-
tigated magnetically as large assemblies [1–4]. The number
of investigations at the scale of single objects has been
sharply increasing in recent years, through sensitive analytical
techniques [5,6], magnetic microscopies [7–10], or electric
transport [11–15]. The focus has been largely devoted to
magnetic domain walls (DWs), motivated by the prediction
of existence of a new type of DW in soft-magnetic nanowires
and nanotubes with head-to-head domains, characterized by
the absence of Walker breakdown and thus high DW speed
[16,17], and a new dynamic regime with emission of spin
waves [18]. The picture of DWs at rest [8,19] and their qua-
sistatic motion [14,20–22] has been confirmed experimentally
in wires; however, reports on their mobility and precessional
dynamics are only emerging [23].

While theory predicts that domains are longitudinally mag-
netized in nanowires and nanotubes made of a soft-magnetic
material, in recent years several experimental reports pointed
at the possible existence of magnetic domains with fully or
partly azimuthal magnetization, at least at the outer periph-
ery of the object, both wires [24,25] and tubes [10,26]. The
dipolar field minimization in finite-length [27–29] or diameter
modulated wires [30–32] may promote such states. However,
the unambiguous observation of azimuthal magnetization in
very long nanotubes can only be explained by the existence
of a microscopic contribution to the magnetic anisotropy,
favoring the azimuthal and not longitudinal magnetization
direction, e.g., through inverse magnetostriction.

DWs emerge between two such domains with opposite
circulation, which do not move under the application of a
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uniform magnetic field [25], as the Zeeman energy of both
domains is the same. It is thus expected that only an electric
current may set such DWs into motion. Interestingly, besides
the conventional spin-transfer torques, a significant Œrsted
field directly coupled to the azimuthal magnetization through
Zeeman energy may exist in a tubular geometry. Its ampli-
tude may reach several tens of mT for nanotube diameter of
few tens of nanometers and for current densities comparable
to those required for the spin-transfer-torque-induced DW
motion, e.g., of the order of 1012 Am−2. Curvature-induced
anisotropy together with Œrsted field effects suggest that ac-
cording to the DW type their dynamical features may be very
different from the case of thin flat strips, now well established
theoretically and experimentally [33,34]. While the effect of
the Œrsted field has been reported for the DW nucleation
at the ends of axially magnetized wires [35,36] and drafted
for the DW motion in these structures [37], there exists no
overview of the Œrsted field effect on the DW motion in
nanotubes with azimuthal magnetization.

It is our purpose here, to draw the general picture of
current-driven DW motion in the case of azimuthal domains
in the tubular geometry, ahead of experimental reports. We
consider nanotubes and not nanowires, and with outer di-
ameter below 100 nm, for the sake of simplicity. This way,
we expected to extract unambiguously the physics of DWs
in relation with size and curvature, and with the strength
of azimuthal anisotropy. We combine analytical modeling
and micromagnetic simulations to draw the panorama of the
statics of DWs, and their dynamics under applied current
including spin-transfer torque effects and the Zeeman effect
of the Œrsted field.

II. THEORETICAL FRAMEWORK

A. General micromagnetic framework

Domains and DWs in a ferromagnetic material are usually
described within the framework of the micromagnetic theory

2469-9950/2021/103(2)/024434(13) 024434-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7429-1080
https://orcid.org/0000-0002-7440-7191
https://orcid.org/0000-0001-7717-5229
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.024434&domain=pdf&date_stamp=2021-01-19
https://doi.org/10.1103/PhysRevB.103.024434


JÉRÔME HURST et al. PHYSICAL REVIEW B 103, 024434 (2021)

[38], which is based on a continuous description of the unit
magnetization vector m and of all other quantities. In the pres-
ence of a spin-polarized electron flow through the magnetic
texture, the time evolution of m is governed by the Landau-
Lifshitz-Gilbert (LLG) equation [39], generalized with the
so-called adiabatic and nonadiabatic spin torques [40]:

dm
dt

= γ0

μ0Ms
m × δE[m]

δm
+ αm × dm

dt

− [U · ∇]m + βm × ([U · ∇]m), (1)

with γ0 = μ0|γ | the gyromagnetic ratio, α the phenomeno-
logical Gilbert damping coefficient, and E[m] the functional
of volume density of energy of the system, which may in-
clude exchange, magnetostatic, anisotropy, and Œrsted field
contributions. The spin-transfer torque contributions are pro-
portional to the electric current J via U = −μBPJ/(eMs ) with
P the spin-polarization ratio, μB the Bohr magneton, e the
(positive) elementary charge, and β the nonadiabatic coeffi-
cient.

In most cases, the functional for the volume density of
energy has a nontrivial dependence on spatial coordinates,
and requires a fully numerical treatment. Nevertheless, under
some conditions, it may be simplified and thus the behavior
of the magnetic texture may be predicted analytically. In the
next section, we described aspects specific to the case of the
tubular geometry with a thin shell.

In this paper, we combine analytical results with numerical
solutions of Eq. (1), obtained using a home-built finite ele-
ment freeware FEELLGOOD [41–43]. We consider the material
parameters of Permalloy Ni80Fe20 as a prototypical soft mag-
netic material: exchange stiffness A = 13 pJm−1, μ0Ms = 1 T
the spontaneous induction, and P = 0.7 the spin polarization
of conduction electrons. We use α = 1 to reach equilibrium
configurations, and α = 0.02, β = 0.04 to describe the dy-
namics of DWs under current.

B. Micromagnetism in the tubular geometry

In the following, we make use of the cylindrical basis (eρ ,
eφ , ez) for referencing locations in space. We describe the unit
magnetization vector m with spherical coordinates, fully de-
termined by two angles: polar θ = θ (ρ, φ, z), and azimuthal
	 = 	(ρ, φ, z) as follows:

m =
⎛
⎝mρ

mφ

mz

⎞
⎠ =

⎛
⎝sin θ cos 	

sin θ sin 	

cos θ

⎞
⎠. (2)

These notations are illustrated on Fig. 1(a), and are common
for the tubular geometry [4,16,44].

An non-axial component of magnetization corresponds
to 	 �= 0. It gives rise to a curvature-induced contribu-
tion to the exchange energy inversely proportional to the
square of the nanotube’s radius [44]. This favors align-
ment of magnetization along the nanotube axis, to avoid
this energy. Therefore, the experimental observation of az-
imuthal domains in long nanotubes, for which magnetostatic
energy associated with the nanotube’s ends can be disre-
garded to favor azimuthal magnetization such as in curling
states [27,28], hints at the existence of an extra energy term

FIG. 1. (a) Sketch of the basis of cylindrical coordinates describ-
ing positions in space, and the two angles defining magnetization in a
spherical basis. (b) Sketch of the nanotube cross section. Illustration
of four magnetic textures: (c) axial single domain; (d) azimuthal
single domain; (e) Néel-like DW; (f) Bloch-like DW. Here lex and 
0

stand, respectively, for the dipolar exchange length and the effective
anisotropy exchange length and are defined later in the text.

favoring the azimuthal direction. Here we will describe it
phenomenologically as its microscopic origin is not proven
at present, either inverse magnetostriction combined with
curvature-induced anisotropic strain, or intergrain interface
anisotropy combined with anisotropic grain shape. Azimuthal
anisotropy may be taken into account either as an easy-axis
anisotropy contribution along the azimuthal direction −Kφm2

φ

with Kφ > 0, or as a hard-axis anisotropy contribution along
the nanotube axis Kzm2

z with Kz > 0. From Eq. (2) it appears
that the two descriptions are equivalent only for 	 = π/2,
with Kz = Kφ , i.e., in the absence of radial component. Exper-
imentally, the anisotropy field associated with the azimuthal
anisotropy has been found not to exceed a few tens of mT
so far [26], which is negligible against the cost of radial
magnetization, analogous to a perpendicularly magnetized
film in rolled-strip picture for a nanotube; see Fig. 1). How-
ever, this difference must show up in critical situations, e.g.,
at the transition from Néel to Bloch DWs upon increasing
the nanotube thickness (analogous to the thickness of a thin
film). In the present work, we make the choice of a hard-axis
anisotropy contribution along the nanotube axis. This slightly
favors radial magnetization against the choice of an easy-
axis anisotropy contribution along the azimuthal direction,
for a given value of K , so that the transition from Néel to
Bloch DWs is expected to occur at a slightly lower nanotube
thickness. This must be kept in mind, as we will see in the
following that the type of DW occurring has a crucial impact
on their dynamics. Besides, for the sake of completeness, in
the present work we also consider values of anisotropy much
larger than those reported so far, so that the difference between
the two choices becomes even more significant.

In the following, we include the phenomenological hard-
axis anisotropy term in the so-called thin-shell analytical
model detailed in [44]. The principle of this model is to eval-
uate the magnetostatic energy by neglecting the contributions
of magnetic volume charges and considering only the surface
penalty for magnetization pointing along the normal to the
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cylindrical surface, analogous to a rolled thin film. Therefore,
the model is best suited to describe thin nanotubes. In this
case, the functional for the volume density of energy reads

E [m] =
∫

dVE0[m]

=
∫

dV

[
A(∇m)2 + μ0M2

s

2
m2

ρ + Km2
z

]
. (3)

To describe the DW dynamics, we work in the frame of a 1D
model, boiling down to a z dependence only of all quantities.
This takes advantage of the cylindrical symmetry, assuming an
azimuthal invariance, and also no variation along the radius,
which is reasonable in the case of thin nanotubes. Therefore,
θ (ρ, z, φ) and 	(ρ, z, φ) become θ (z) and 	(z). The energy
functional Eq. (3) becomes

E [m] = SA
∫

dz

[(
dθ

dz

)2

+ sin2 θ

(
d	

dz

)2

+ sin2 θ

λ2
+ sin2 θ cos2 	

2
ex

+ cos2 θ

W 2

]

= S
∫

dz E0[θ (z), 	(z)], (4)

with W = √
A/K , ex =

√
2A/μ0M2

s the dipolar exchange
length, S = π (R2

e − R2
i ) the surface of the nanotube section,

and λ =
√

(R2
e − R2

i )/(2 ln(Re/Ri )). Here, Re and Ri denote, re-
spectively, the external and the internal radius of the nanotube,
with its thickness defined as �R = Re − Ri. The two first
terms in the integral (4) correspond to the exchange energy
commonly found in 1D DW dynamics models such as for
flat strips, whereas the third term is the curvature-induced
exchange energy, specific to the tubular geometry. The param-
eter 1/λ may be seen as the curvature parameter. Its value is
large for small radius and approaches zero when the radius
becomes infinite. Also, λ is similar to the radius for thin-shell
tubes (Re ≈ Ri). The fourth term in Eq. (4) corresponds to the
demagnetization energy and the last term is the contribution
of the uniaxial anisotropy.

For the sake of future discussion on the residual quantita-
tive differences between this 1D model and full micromag-
netic simulations, let us summarize the key approximations
of the 1D model: radial dependence of magnetization is not
included and magnetostatic energy is taken into account as
a local ultrathin-film-like term. That is, the approximation
for the dipolar energy consists in neglecting the contributions
of curvature to the dipolar energy which arise from volume
charges and nonlocal dipolar interactions.

III. DOMAINS AND DOMAIN WALLS AT REST

Following the standard procedure of the energy functional
minimization (Appendix A) we obtain a set of two differential
equations describing equilibrium magnetic distributions:

d2θ

dz2
= sin θ cos θ

[(
d	

dz

)2

− 1


2
0

+ cos2 	

2
ex

]
, (5)

d2	

dz2
sin θ + 2

d	

dz
cos θ = − sin θ sin (2	 )

22
ex

, (6)

FIG. 2. Threshold values of the hard-axis anisotropy strength
K1, separating axial monodomain (below de curve) from azimuthal
monodomain (above the curve), as a function of the nanotube thick-
ness for three different external radii. The markers with the error
bars correspond to an estimation of K1 obtained with micromagnetic
simulations.

with 
2
0 = A/(K − K1) and K1 = A/λ2. 
0 is the effective

anisotropy exchange length for azimuthal magnetization. It is
not straightforward to find analytical magnetization profiles
satisfying both Eqs. (5) and (6). Nevertheless, it is possible to
find some particular solutions.

A. Azimuthal versus axial domains

Two trivial stable solutions are {θ = 0 ; 	 = cste} and
{θ = π/2 ; 	 = π/2}. These correspond to axial [longitudi-
nal, Fig. 1(c)] and azimuthal [Fig. 1(d)] domains, respectively.

The total energy Etot of the axial single domain state is
V K , against VA/λ2 for the azimuthal single domain state.
Here, V = LS is the volume of the nanotube, S being the
area of its cross section, and L its length. The ground state
is therefore axial magnetization for K < K1, and azimuthal
magnetization for K > K1, which is well known [4]. The un-
derlying physics is already clear from the examination of the
third and fifth terms on the right-hand side of Eq. (4): noticing
that sin2 θ = 1 − cos2 θ , curvature-induced exchange and the
azimuthal anisotropy of microscopic origin play competing
roles. They are exactly balanced for W = λ, and thus for
K = K1. Fig. 2 shows K1 versus the nanotube thickness and
for different nanotube diameters.

To set an order of magnitude, K1 is of the order of mT for
realistic material parameters and radius: K1 ≈ 8mT for Re =
50 nm and Ri = 40 nm, and is comparable to values reported
for nanotubes in the literature [10,45].

B. Néel-like and Bloch-like domain walls

Here we focus on domain walls in infinitely long tubes,
separating two domains with the azimuthal magnetization of
opposite directions, which from the above we expect for K >

K1. Note that the case of domains with axial magnetization,
such as expected for K < K1, has been already well described
[16,46–48]: domain walls may be of either transverse type or
azimuthal type (also called curling or vortex wall). The former
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is promoted for small diameter and thick shell, while the latter
is promoted for large diameter and thin shell.

On a theoretical basis, profiles of domain walls shall be
found for a uniform value 	 = π/2 or θ = π/2 along the
entire tube. On this basis, we shall consider two cases to
reduce the partial differential equations describing magneti-
zation (Appendix B).

For 	 = π/2, we find the following magnetization profile:

mρ = 0, mφ = ± tanh
( z


0

)
, mz = cosh−1

( z


0

)
. (7)

This is a DW of length 
0, for which magnetization remains
parallel to the tube surface at every location [Fig. 1(e)]. By
unrolling the surface of the cylinder, mapping it to a flat
strip aligned along z and width 2πR with periodic boundary
conditions, we notice that this corresponds to a 180◦ Néel DW,
so that we will refer to it as a Néel DW in the following.

For θ = π/2, we find the following magnetization profile:

mρ = cosh−1
( z

ex

)
, mφ = ± tanh

( z

ex

)
, mz = 0. (8)

This is a DW of length ex, for which magnetization is per-
pendicular to the surface of the nanotube at the center of the
DW [Fig. 1(f)]. By unrolling again the surface of the cylinder,
mapping it to a flat strip, this corresponds to a 180◦ Bloch DW,
so that we will refer to it as a Bloch DW in the following.

Within the 1D model, the thickness of Néel and Bloch
walls is given, respectively, by the effective anisotropy ex-
change length 
0 and the dipolar exchange length ex. This
is a direct consequence of the approximated dipolar energy
used in Eq. (3) together with the 1D model assumption which
allow Néel walls (respectively, Bloch walls) to be independent
of the strength of the dipolar field (respectively, the effective
anisotropy field).

In order to characterize both DWs versus the anisotropy
coefficient K , we calculate their total energy using Eq. (4),
and their length using the so-called Thiele definition [16,49]:

�T = 2S∫
dz

[( dmρ

dz

)2 + ( dmφ

dz

)2 + ( dmz

dz

)2] . (9)

The Thiele definition is of particular relevance for the dis-
cussion of DW dynamics, as will be considered in the next
section, and of practical interest to compare the 1D model with
fully three-dimensional (3D) distributions resulting from mi-
cromagnetic simulations. For the 1D model considered here,
(9) simplifies to �T = 
0 for the Néel DW and �T = ex for
the Bloch DW.

Figure 3 shows an example of DW profile, comparing the
1D model with 3D micromagnetic simulations. The 1D model
appears fairly faithful, especially for thin-shell tubes. Fig-
ure 4 allows a global comparison, displaying the total energy
and the Thiele length for both types of DWs as a function
of the hard-axis anisotropy coefficient K . This figure high-
lights the existence of a cross-over value for anisotropy, for
which both DWs have the same energy, and incidentally the
same length. This is a direct consequence of the tradeoff be-
tween anisotropy (and to a lesser extent azimuthal exchange)
energy disfavoring longitudinal magnetization in the core of
a Néel wall and out-of-plane-like magnetostatic energy dom-
inating in the core of a Bloch DW. This explains that the 1D

FIG. 3. (a) Néel DW magnetization profile along the z direc-
tion. Black dashed lines correspond to Eq. (7). Red and blue lines
correspond to micromagnetic profiles averaged over ρ and φ for
two nanotube shell thicknesses: �R=5 nm and �R=20 nm. The
following parameters have been used: α = 1, K = 2 × 104 J/m3,
Re = 50 nm, L =1500 nm. (b) Micromagnetic distribution of Néel
and Bloch DW.

model predicts the cross-over for K2 = A(1/λ2 + 1/2
ex). For

K < K2 the Néel DW is the ground state. Its width 
0 results
from the competition between exchange and magnetostatic
energy of the DW. It scales with 1/(K − K1), diverging at
K = K1, reflecting the softening of effective anisotropy and
the continuous transition from a Néel DW to an axial mon-

FIG. 4. (a) and (b) Total energy and (c) and (d) DW length as a
function of the hard-axis anisotropy parameter K . Solid lines corre-
spond to the 1D model and crosses to micromagnetic simulations.
The red (respectively, blue) color highlights the case of Néel (re-
spectively, Bloch) DW being of lower energy in the micromagnetic
simulations, thus the ground state under static conditions. For all
graphs the following parameters have been used: α=1, Re = 50 nm,
L = 700 nm, while �R = 5 nm and �R = 20 nm in the left and
right columns, respectively. Vertical dashed line highlights K2 values
expected from the 1D model.
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odomain. For K > K2, the Bloch DW is the ground state.
Its energy and length are independent of the strength of the
axial anisotropy, as there are no magnetic moments point-
ing along the axial direction. According to the 1D model,
the nanotube thickness has an impact on the DW energy,
however, not changing significantly the cross-over between
the Néel and Bloch DWs. Indeed, the threshold values of
the anisotropy K1 and K2 depend on the nanotube thick-
ness, however, their variation remains moderate: K1 = 0.57 ×
104 Jm−3 and K2 = 40.37 × 104 Jm−3 for 5 nm thickness and
K1 = 0.81 × 104 Jm−3 and K2 = 40.62 × 104 Jm−3 for 20 nm
thickness.

Micromagnetic simulations agree reasonably well with
the 1D model for DW energies and lengths for thin-shell
nanotubes (�R < 5 nm), while the discrepancy is more pro-
nounced for thicker shell nanotubes. This has a sizable impact
on the threshold anisotropy value K2, which the simulations
find lower than the 1D model predicts. For instance, in mi-
cromagnetics, Bloch DWs are already the ground state for
K = 15 × 104 Jm−3 and 20 nm thickness, while the 1D model
predict a value around 40 × 104 Jm−3. This difference is less
pronounced for thinner shells, but still significant.

We attribute this discrepancy to the demagnetization en-
ergy, which is imperfectly taken into account in the 1D model,
as a local term and focusing on surface magnetic charges, not
volume magnetic charges. In the case of nanotubes, volume
charges can be approximated by neglecting, respectively, the
variation of mρ and mφ along the radial and azimuthal direc-
tion as follows:

ρm = −Ms∇ · m ≈ −Ms(mρ/ρ + dmz/dz). (10)

In Eq. (10), the first term results from the curvature. It matters
for Bloch DWs, however, depends only weakly on the thick-
ness of the shell. Indeed, it simply reflects a shift of surface
charges from the inner surface to the volume, to account for
the unequal inner and outer surface and preserve the total
amount of charges of the Bloch DW, so that in the end it is
already reasonably taken into account in the 1D model. The
second term shows up specifically in the Néel DW, giving
rise to an internal demagnetizing field, and is not considered
in the 1D model for the Néel DW. The physics revealed
by the micromagnetic simulations is therefore analogous to
the transition from Bloch to Néel DWs in thin films upon
lowering their thickness [50], resulting from a tradeoff be-
tween vertical versus planar demagnetizing fields. Therefore,
we expect that for nanotubes of large diameter and therefore
negligible curvature effects, the transition from Néel to Bloch
or even cross-tie DWs [10] is found for a value of thickness
corresponding to that in thin films [51]. Thus, while the trends
for DWs in nanotubes with azimuthal magnetization can be
understood with an analogy to a rolled thin film and the 1D
model, Fig. 3 reveals an effect specific to nanotubes: in micro-
magnetic simulations, the radial component of magnetization
mρ in a Néel DW is nonzero, an effect growing with the
shell thickness. The reason is the existence of volume charges,
which were already known to induce a radial tilt of magne-
tization for Bloch-point DWs in nanowires [16] and vortex
DWs in nanotubes [17,44] with head-to-head magnetization.
For these DWs the tilt is monopolar, while for a Néel DW
the tilt is bipolar, as it is associated with a dipolar distribution

of charges. An alternative view is that, mathematically, ρm is
decreased as dmz/dz and mρ have opposite signs. The bipolar
character of the domain wall tilt prevents the system from the
chiral symmetry breaking which in other cases is responsible
for the chiral dependent domain wall dynamics [17,44] or
asymmetric spin wave propagation [52].

IV. 1D MODEL OF DOMAIN WALL MOTION

In this section we investigate the dynamics of Néel and
Bloch DWs by means of a 1D model, the variational for-
mulation of the LLG equation, and the collective coordinate
method. We consider the dynamics driven by a homogeneous
charge current flowing along the axial direction of the nan-
otube J = J ez. The current couples to magnetization through
two effects. First, it induces an Œrsted field in the entire nan-
otube, and second, it gives rise to spin-transfer torques in the
DW. The Œrsted field has been considered theoretically, for
example, to assist magnetization reversal in cylindrical core-
shell nanostructures [35]. We take into account both effects.

A. Œrsted field

The Œrsted field within the nanotube shell (Ri � ρ < Re)
reads

HŒ(ρ) = eφJρ[1 − (Ri/ρ)2]/2, (11)

which modifies the energy density functional [Eq. (4)] as
follows:

E[θ (z), 	(z)] = E0 − 2A sin θ sin 	

2
Œ

. (12)

Here we introduced the characteristic length Œ =√
2A/(μ0MsHŒ ), with HŒ defined as the averaged value

of the Œrsted field inside the nanotube shell (Appendix C),

HŒ = JR = J (Re − Ri )(Re + 2Ri )

3(Re + Ri )
. (13)

The quantity Œ could be called the Œrsted exchange length,
balancing exchange and Œrsted-Zeeman energy, in analogy
to the dipolar exchange length ex. To set an idea, the Œrsted
field at the external nanotube surface is 6–20 mT for a current
density J = 1 × 1012 Am−2 in a nanotube of radius 50 nm
and shell thickness �R = 5–20 nm. While no experiments of
current-induced DW motion have been reported in nanotubes
to date, the latter parameters for radius and current density
are similar to the case of DW motion in cylindrical nanowires
reported experimentally [23].

B. Equation of motion

In order to quantify the DW motion we use the so-
called collective coordinate method [40,44], in which the
whole magnetic texture is described with a small number of
macroscopic variables. This simplifies the resolution of the
dynamics of magnetization using the variational formulation
of Eqs. (1) and (12), detailed in Appendix D. The core of
the collective variables method is to find a suitable ansatz for
the DW profile, to get an exact expression for the action and
the dissipation function of the system [53,54]. This allows
one to construct a tractable set of differential equations for
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each time-dependent collective variable. Assuming that the
DW remains rigid during motion, we introduce the coordinate
of the center of the DW z0(t ), its length 
(t ), and its radial tilt
χ (t ). For our purpose we set the following ansatz for the DW
profile:

mρ = sin χ (t ) cosh−1

[
z − z0(t )


(t )

]
,

mφ = tanh

[
z − z0(t )


(t )

]
,

mz = cos χ (t ) cosh−1

[
z − z0(t )


(t )

]
. (14)

The ansatz (14) allows one to describe Néel and Bloch DWs,
depending on the value of χ . At t = 0, the collective variables
are initialized to their values at rest: z0 = 0, 
 = 
0, χ = 0
for the Néel DW, and z0 = 0, 
 = ex, χ = π/2 for the Bloch
DW.

After some algebra (see Appendix D), we obtain the fol-
lowing equations of motion for each collective variable:


̇



= 12γ0A

απ2μ0Ms

(
1


2
− cos2 χ


2
0

− sin2 χ

2
ex

)
, (15)

ż0 = χ̇


α
− γ0


α
HŒ + β

α
U, (16)

χ̇ = 1

τ (1 + α2)

[
2HŒ

Ms
− α sin (2χ )

(
1 − 2

ex


2
0

)]

+ U


(α + 1/α)

(
1 − β

α

)
, (17)

with τ = 2/(γ0Ms) and U = −μBPJ/(eMs ).
These equations are analogous to 1D models for the com-

bined field and current-driven motion of DWs with axial
domains, in nanostrips [54,55] or for vortex DWs in thin-shell
nanotubes [44,56]. Indeed, if we permute the magnetization
and current-induced magnetic field from the azimuthal to the
axial direction and vice versa, we recover the system behav-
ior described previously. However, new terms related to the
hard-axis anisotropy contribution may play a significant role,
in particular (1 − 2

ex/

2
0). Besides, in contrast to the case

of external uniform longitudinal magnetic field case reported
previously [44], the strength of the Œrsted field is linked to
the charge current flowing through the nanotube, so that the
corresponding driving force cannot be considered separately
from that of spin-transfer torques.

Similar to the case of strips, a low current enables a steady-
state solution with χ̇ = 0, while above a cross-over value
of currents a so-called Walker regime sets in, with χ̇ �= 0.
However, in contrast to a flat strip and depending on the circu-
lation of the azimuthal domains with respect to the direction
of current, two distinct situations occur. In the first case the
Œrsted field and the spin-transfer torques cooperate, meaning
that they tend to move the DW in the same direction. In
the second case they compete. Indeed, spin transfer always
promote motion along the flow of electrons, while the effect
of the Œrsted field depends on the relative circulation of the
two domains [Fig. 5(a)]. We will see that this competition has
consequences both in the steady state and Walker regimes, for

FIG. 5. (a) Schematics for the cases of competing and cooperat-
ing Œrsted and spin-transfer torques, depending on the relative sign
of domain circulation and applied current. For each configuration, we
sketch two possible situations: an Œrsted field dominated dynamics
(upper plot) and a spin-transfer-torque-dominated dynamics (lower
plot). (b) Upper plot shows absolute value of JW given by Eq. (18)
versus the magnitude of anisotropy K for two nanotube thicknesses:
10 nm (solid lines) and 20 nm (dashed lines). Lower plot shows
absolute value of JW versus K obtained in micromagnetic simulations
for 20 nm shell thickness. In both cases, black color stands for the
omission of spin-transfer torques, while red (respectively, blue) stand
for cooperating (respectively, competing) Œrsted and spin-transfer
torques. The external radius value is Re = 50 nm.

both Néel and Bloch DWs, although quantitative differences
show up depending on the DW type.

C. Walker regime

The absolute value of the critical current Jw separating
the two dynamical regimes, steady state and Walker, reads
(Appendix E)

JW = α

μ0MsR

∣∣∣∣μ0M2
s

2
− (K − K1)

∣∣∣∣
×

∣∣∣∣1 + C±
τμBP

2
weR
(β − α)

∣∣∣∣
−1

, (18)
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with 
w = [1/(2
2
0) + 1/(22

ex)]−1/2 and C± = +1 (respec-
tively, −1) for cooperating (respectively, opposing) Œrsted
field and spin-transfer torques. The two effects are clearly
separated in Eq. (18), in the first and second brackets: that of
the effective azimuthal anisotropy, and that of the spin-transfer
torque acting through the polarization of conduction electrons.
This is illustrated on Fig. 5(a), and discussed below. Note
that Eq. (18) is valid for a wide range of physical parameters
including the one used in the present study (see Sec. II A), but
for some specific material parameters, satisfying Eq. (E4), the
more general formula (E2) should be used.

The critical current varies linearly with the anisotropy K ,
decreasing in the region with Néel DW as the ground state,
and increasing in the region with a Bloch DW as ground state.
This reflects the internal restoring force of the DW against
the excitations, driving it away from equilibrium during the
dynamics. The cross-over from the Néel to the Bloch ground
states highlights a soft mode, obviously associated with no
restoring force and thus the Walker regime for any applied
current. In this very specific case, the DW moves along the
z axis at constant linear velocity, with a core precessing in
the ρ − z plane at constant angular velocity without changing
its length. This case is analogous to the purely precessional
motion of transverse-vortex DWs in cylindrical nanowires
[16,57–59]. In the general case the DW speed is oscillating,
however, for very large currents J � Jw it is possible to derive
an analytic formula for the time-averaged DW speed ampli-
tude from Eqs. (15)–(17):

〈|ż0|〉t = αγ0
HŒ

1 + α2
+ C±

U (1 + βα)

1 + α2
, (19)

where 
 = 
w corresponds to the time averaged DW length.
In this regime and for realistic values of α, the Œrsted field-
dependent term is negligible compared to the STT-dependent
term so that the direction of motion is imposed by the electron
flow. The physics is analogous to strips, with a combination
of motion induced by current and magnetic field, except that
those cannot be fixed independently in our system since they
both originate from the current density.

Micromagnetic simulations confirm this picture
qualitatively [Fig. 5(b)]. Quantitatively, the K2 values for
the transition of Bloch to Néel DWs at rest are lower than in
the 1D model, with a discrepancy increasing with the shell
thickness. As discussed in Sec. III, we attribute this difference
to the magnetic volume charges neglected in the 1D model,
further promoting Bloch DWs such as in thin flat films.

D. Steady-state regime

In the low current regime J < Jw, the out-of-plane angle
χ converges in time to a constant value. During this transient
process, the DW progressively accelerates and contracts, until
reaching the steady-state regime with a constant velocity and
length. For very low currents (J 
 Jw) one derives


 � 
0 and |ż0| � γ0
0HŒ

α
+ C±

βU

α
(Néel), (20)


 � ex and |ż0| � γ0exHŒ

α
+ C±

βU

α
(Bloch), (21)

where Eq. (20) stands for Néel DWs and Eq. (21) stands
for Bloch DWs. Once again, Eqs. (20) and (21) are similar
to the case of DW motion in strips, except that the sources
of anisotropy and magnetic field are different. Both types of
DW are in a steady-state regime, with two contributions to
the velocity: Œrsted-field-induced and spin-transfer-torque-
induced. The first term is proportional to the DW width, thus
its strength is very sensitive to the DW type and plays a more
or less important role in comparison with the second term.
It means that in some particular cases one may observe either
Œrsted-field dominated or spin-transfer-torque-dominated dy-
namics. For this reason, below we examine in more detail
the dynamics of Néel and Bloch DWs, combining 1D model
equations of motion (15)–(17) solved with a standard Runge-
Kutta solver (RKK4), and micromagnetic simulations.

V. DYNAMICS OF NÉEL WALLS

In the steady-state regime, Néel DWs may demonstrate rel-
atively high velocities. Indeed, their dynamics in this regime
is largely dominated by the Œrsted field contribution, re-
lated to a relatively large DW width [Figs. 4(c) and 4(d)]
for moderate anisotropy ∼1 × 104 Jm−3, such as typical for
the experimental situation reported so far [26]. Under these
conditions the dipolar restoring force preventing the trans-
formation of a Néel DW into a Bloch DW is large, and the
maximal speed that a DW may reach is around 800 ms−1 for
the material and geometrical parameters considered here, and
almost independent of the nanotube thickness. However, the
mobility is larger for thicker-shell nanotubes, as in this case
the average Œrsted field induced in the magnetic material is
higher for a given density of current. In turn, this translates in
a lower Walker current JW. The effect of spin-transfer torques
is moderate in those conditions (Fig. 6), for all nanotube
shell thicknesses studied here. Qualitatively similar behavior
of steady velocities has been observed in micromagnetic sim-
ulations in Fig. 7 although the values of velocity are lower.
To visualize the impact of competing and cooperating Œrsted
and spin-transfer torque, in Figs. 6 and 7 we have plotted
the absolute value of the DW velocity, the direction of DW
motion being towards positive z (respectively, negative z) for
cooperating (respectively, competing) configuration as shown
in Fig. 5(a) for Œrsted dominated dynamics.

To understand the origin of the quantitative difference
between the 1D model and micromagnetic simulations, we
examine the DW length �T, maximum of the radial mag-
netization component mρ , and steady-state DW velocity
(Fig. 8). For a better visibility we kept only those curves
corresponding to purely Œrsted-field-induced dynamics, thus
without spin-transfer torques. With increasing current, the
radial component mρ increases and the DW width �T de-
creases, the latter being analogous to thin films. As in a
field-dominated regime the DW speed is proportional to the
DW width [Eq. (20)], this translates in a convex variation
of DW speed with current. Nevertheless, the DW length is
systematically overestimated by the 1D model. We believe
that it is due to the omission of the demagnetizing field,
thus failing to grasp the narrow core of Néel walls [51],
predominant for the Thiele definition of the DW width. This
is most likely responsible for the DW speed overestimation in
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FIG. 6. Time-averaged DW speed according to Eqs. (15)–(17)
for a Néel DW, versus the density of current. We considered two
thicknesses of shell (�R = 10 nm and �R = 20 nm) and three
different situations schematized in Fig. 5(a): black color for ab-
sence of spin-transfer torques, red color for cooperating Œrsted
and spin-transfer torques, and blue color for competing Œrsted and
spin-transfer torques. The vertical dashed lines highlight the value
of critical current JW defined by Eq. (18). The following parameters
have been used: K = 2 × 104 Jm−2 and Re = 50 nm. The inset plot
shows the time-averaged DW speed amplitude on a larger current
range with a shell of 10 nm of thickness.

the 1D model for the Œrsted field dominated dynamics. Note
that in spite of the high velocities that can be reached in this
field-dominated dynamics, the direction of motion of DWs is
dictated by the sign of circulation of azimuthal magnetization
in the two domains [Fig. 5(a)]. This means that two consecu-
tive walls in a nanotube move along opposite directions. This
is not desirable for most concepts of devices, implying the
absence of propagation of information, and the possibility for
DW annihilation. Finally, it must be stressed that the critical

FIG. 7. Comparison of the steady velocity amplitude of a Néel
wall, between the 1D model (solid lines) and micromagnetic sim-
ulations (symbols), versus the density of current. Three situations
schematized in Fig. 5(a) were considered: black color for ab-
sence of spin-transfer torque, red color for cooperating Œrsted and
spin-transfer torques, and blue color for competing Œrsted and spin-
transfer torques. The following parameters have been used: K =
2 × 104 Jm−3, Re = 50 nm, and �R = 5 nm.

FIG. 8. Domain wall length (upper panel), maximum out-of-
plane magnetization (middle panel), and DW speed amplitude (lower
panel) as a function of the current amplitude for three nanotube thick-
nesses and purely Œrsted-field-induced dynamics. Lines correspond
to the 1D model, and symbols to micromagnetic simulations. The
simulations were performed with the following parameters: Re =
50 nm, P = 0, and K = 2 × 104 Jm−3.

current JW and the maximum reachable speed decrease with
increasing thickness (and increasing anisotropy).

Above the critical current JW, depicted with the verti-
cal dashed lines in Fig. 6, the average speed drops sharply
and shows an oscillatory decreasing behavior typical for the
Walker regime. For very high current densities, unrealistic
experimentally, the DW speed rises again with a mobility
proportional to U [see Eq. (19)] and is driven mostly by
spin-transfer torque.

VI. DYNAMICS OF BLOCH WALLS

To illustrate Bloch DW behavior we plot in Fig. 9 the
time-averaged domain DW speed as a function of the electric
current amplitude, according to Eqs. (15)–(17).

In the steady-state regime below the critical current JW, the
DW velocity varies linearly with the current and is largely
determined by the effect of the Œrsted field, due to the
demultiplicating 1/α coefficient for the mobility [Eq. (21)].
Nevertheless, the mobility and thus the maximum speed
reachable is much lower than for Néel DWs with low
anisotropy, due to much narrower thickness ex; see Figs. 4(c)
and 4(d). Also, similar to the case of Néel DWs, the direction
of motion in the steady regime is dictated by the sign of
circulation of the azimuthal domains, so that two consecutive
DWs in a nanotube are expected to move along opposite di-
rections. The relative difference of slopes between curves with
cooperating or competing Œrsted and spin-transfer-torque-
induced contributions is more pronounced in comparison with
the Néel DWs considered in Fig. 6. This is related to the much
narrower width of the Bloch DWs so that field-induced and
spin-transfer-torque-induced driving forces contribute compa-
rably.

Above JW, the Bloch wall dynamics is largely dominated
by the spin-transfer torque. It means that in contrast to the
Œrsted field dominated dynamics the direction of the DW mo-
tion does not depend on the initial orientation of the domains
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FIG. 9. Time-averaged DW speed obtained with the 1D model
for a Bloch DW versus the density of electric current and for two
nanotube thicknesses: �R = 10 nm (full lines) and �R = 20 nm
(dashed lines), and for three different configurations: disconsider-
ing spin-transfer torques (black curves), with spin-transfer torque
and Œrsted field cooperating (red curve), and with spin-transfer
torque and Œrsted competing (blue curve). The vertical dotted lines
highlight the critical current JW defined in Eq. (18). The following
parameters have been used: K = 45 × 104 Jm−3, Re = 50 nm, and
α = 0.02.

and follows the electron flow direction. This allows better con-
trol of DW manipulation if needed. The DW average speed is
asymptotically proportional to C±U and, as expected, almost
does not depend on the shell thickness. For parameters studied
here, the 1D model predicts the DW speed increase by 50 m/s
for an increase of the applied current of 1 × 1012 Am−2.

The comparison between the 1D analytic model and mi-
cromagnetics demonstrates a qualitatively similar behavior
for parameters considered here: low critical current values Jw

[Fig. 5(b)], steady regime below Jw, and spin-transfer-torque-
dominated Walker regime above Jw (Fig. 10). However, the
estimation of the DW speed for the applied current of 1 ×
1012 Am−2, for instance, gives some difference in compar-
ison to the 1D model for Œrsted and spin-transfer torque
competing and cooperating configuration: 30 m/s and 64 m/s,
respectively. In contrast to the 1D model, this indicates that the
contribution from the Œrsted field is approximately 3 times
lower than that of spin-transfer torque and not completely
negligible.

Simulations allow grasping the complexity of the underly-
ing micromagnetic processes above JW, well beyond the 1D
model. In Fig. 10, we show the motion of a Bloch wall for
Œrsted and spin-transfer torque competing and cooperating
configurations. The direction of the Bloch wall movement is
imposed by the electron flow. We observe the switch of the

FIG. 10. (a) Unrolled-outer-surface maps for the micromagnetic simulation of the dynamics of a Bloch DW above the critical current.
Two situations are illustrated: competing Œrsted and spin-transfer torque (left panel) and cooperating Œrsted and spin-transfer torque (right
panel). The colors indicate the radial magnetization component mρ , and the two lateral scales are identical. The system is a Permalloy nanotube
with J = 1 × 1012 Am−2, K = 25 × 104 Jm−3, Re = 50 nm, �R = 10 nm, and α = 0.02. (b) Enlargement of the magnetic texture around the
DW taken at different times during the wall polarity switching process and corresponding to the situation shown above on the left side.
Note that the axial scale has been expanded, to allow for a better visibility. The white lines correspond to a stream plot displaying the in-plane
magnetization vector field (mz, mφ ) and the green lines indicate the iso-contours mφ = 0 (full lines) and mz = 0 (dashed lines). In addition,
vortex (V) and anti-vortex (AV) are indicated, each standing at the intercept between green dashed and full lines, i.e., mρ = ±1.
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Bloch wall polarity with intermediate Bloch-Néel transforma-
tion during its movement as expected in the Walker regime. It
is clear that the process of transformation from Bloch DW to
Néel DW is not the coherent rotation of the DW core, directly
mapped by the 1D model.

Although the DW speed itself depends on the cooperation
or competition between Œrsted field and spin-transfer torque
[see the timeframe in Fig. 10(a)], the common feature for both
configurations is the nucleation of a vortex-antivortex pair
during Bloch wall polarity switching. As shown in Fig. 10(b),
initially the Bloch DW has a positive polarity (mρ > 0). Mag-
netization is progressively tilting toward the axial direction
until the creation of one or more pairs of vortex-antivortex
encompassing a small locus with mρ < 0. These move along
opposite directions, contributing to progressively reversing
the average DW polarity, until their mutual annihilation.

Similar but not identical qualitative behavior has been
described in other simulations, such as in strips [60], thin
films [61], or a vortex wall between head-to-head domains
in nanotubes [17,62]. The nucleation/annihilation processes
can be formalized on the topological basis of the so-called
skyrmion number preservation [63].

VII. CONCLUSION

We predict features of the statics and current-induced
motion of domain walls in ferromagnetic nanotubes with do-
mains with azimuthal magnetization. Experimental reports are
emerging on such tubes and walls, however, these are not
covered by existing theories that focus on axial magnetization
in domains; i.e., on a case that is expected for soft magnetic
material. We combine theory based on an analytical 1D model
to draw trends and to highlight the physics at play, with
micromagnetic simulations for an accurate description. While
thin-shell tubes may be mapped to a flat strip by a gedanken
unrolling, the resulting situation would be analogous to do-
mains with magnetization transverse to the strip, which has
not been covered yet. Besides, new physics arises specifi-
cally in tubes compared to strips due to curvature-induced
exchange-related anisotropy, volume magnetostatic energy
breaking the inversion symmetry, and most importantly the
interplay of the Œrsted field with spin-transfer torque. We
discuss step by step which features are analogous to strips,
and which are specific to tubes.

Key to all results is the transition from Néel to Bloch as
ground states for domain walls, the former favored for large
radius, low azimuthal microscopic anisotropy, and low shell
thickness. This duality has a key impact on the dynamics as
the Walker current is related to the restoring force between
the two types of walls, vanishing at the transition due to a soft
mode. Below the Walker current, the wall motion is mostly
driven by the Œrsted field, so that successive domain walls
move along opposite directions. In this regime, Néel walls
have a large width especially in the experimentally relevant
range of moderate azimuthal anisotropy, so that they may
reach a speed close to 1 kms−1, while Bloch walls move one
order of magnitude slower. Above the Walker current, the
motion is mostly driven by spin-transfer torque, with similar
speeds in both cases and all domain walls moving along the
electron flow. Therefore, a peculiar outcome is the change of

direction of motion of domain walls across the Walker current,
when the Œrsted field and spin-transfer torques compete.
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APPENDIX A: ENERGY FUNCTIONAL MINIMIZATION

In our 1D model, the functions θ (z) and 	(z) that minimize
the energy functional (4) are the solutions of the following
Euler-Lagrange equations:

dE
dθ

− d

dz

dE
dθ ′ = 0,

dE
d	

− d

dz

dE
d	 ′ = 0, (A1)

with derivatives θ ′ = dθ/dz, 	 ′ = d	/dz, energy functional
density E = E[m] and E [m] = ∫

dVE[m].

APPENDIX B: MAGNETIZATION PROFILE

By setting 	 = π/2, the differential equations (5) and (6)
reduce to

d2θ

dz2
= − sin θ cos θ


2
0

. (B1)

By multiplying Eq. (B1) by dθ/dz and by integrating the
differential equation over z, one obtains

(θ ′)2 − cos2(θ )


2
0

= Cste. (B2)

For Cste = 0 the solution of Eq. (B2) reads

θ±(z) = 2 tan−1
[
tanh

(
± z

2
0

)]
, (B3)

and the domain DW is located at z = 0. The θ+ solution
corresponds to the Néel DW between two azimuthal domains,
for which mφ=±1 at z=±∞, and θ− to the Néel DW with
mφ=∓ at z=±∞.

Similar, by setting θ = π/2, the solution corresponding to
the Bloch DW reads

	±(z) = 2 tan−1
[
tanh

(
± z

2ex

)]
. (B4)

APPENDIX C: AVERAGED ŒRSTED FIELD

In the 1D model, the quantities are assumed to depend only
on the z coordinate. As the Œrsted field varies in the radial
direction of the tube [see Eq. (11)], we consider the average
value of the Œrsted field in the 1D model. The averaged value
of the Œrsted field is taken over the nanotube cross section:

HŒ = J

2S

∫ 2π

0

∫ Re

Ri

[ρ[1 − (Ri/ρ)2]/2]ρdρdφ (C1)

= J (Re − Ri )(Re + 2Ri )

3(Re + Ri )
= JR. (C2)

APPENDIX D: EQUATION OF MOTION

To derive the time evolution of the collective variables
(15)–(17), we followed the approach used in Ref. [44]. We
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started with the LLG equation (1) in spherical coordinates,

Q̇ = γ0

μ0Ms

δE
δP

+ (1 − Q2)

[
αṖ + βU

dP

dz

]
− U

dQ
dz

,

Ṗ = − γ0

μ0Ms

δE
δQ − 1

1 − Q2

[
αQ̇ + βU

dQ
dz

]
− U

dP

dz
,

(D1)

where we defined Q = cos θ and P = 	. Equation (D1) has
a Hamiltonian structure, i.e., Ṗ = − dH(Q,P)

dQ , Q̇ = dH(Q,P)
dP

with the Hamiltonian density of the system H = γ0

μ0Ms
E[P,Q]

and its Lagrangian density:

L = PQ̇ − γ0

μ0Ms
E[P,Q]. (D2)

The equations of motion of the system are given by

δS

δQ = δR

δQ̇
and

δS

δP
= δR

δṖ
, (D3)

where S = ∫
dtL is the action of the system and L = ∫

drL
is the Lagrangian. The dissipation function of the system R =∫

dt drR reads

R = α

2

[ Q̇2

1 − Q2
+ (

1 − Q2)Ṗ2
]

+ U

[
dP

dz
Q̇ − dQ

dz
Ṗ

]

+ βU

[
Q̇ dQ

dz

1 − Q2
+ (

1 − Q2)ṖdP

dz

]
. (D4)

The next step consists of finding a suitable Ansatz for
the spatial profile of magnetization during the dynamics,
which contains a given number of time-dependent collec-
tive variables χi(t ), i.e., Q(r, t ) = Q[r, χi(t )] and P(r, t ) =
P[r, χi(t )]. Then the set of equations (D3) is replaced by a
new set of differential equations:

dL

dχi
− d

dt

dL

dχ̇i
= dR

dχ̇i
− d

dt

dR

dχ̈i
, (D5)

one for each collective variable. To benefit from this method
it is essential to find an analytic an accurate expression for the
Lagrangian and the dissipation function. The latter is obtained
by integrating over space the Lagrangian density and the dis-
sipation density function.

Using the Ansatz (14), we find the following expression for
Q and P:

Q = cos χ (t )

cosh
[ z−z0(t )


(t )

] , P = tan−1

{
sinh

[ z−z0(t )

(t )

]
sin χ (t )

}
. (D6)

The Lagrangian of the infinitely long-system associated with
this Ansatz reads

L(z0,
, χ ) = − 2γ0AS


μ0Ms

(
1


2
− cos2 χ

λ2
+ sin2 χ

2
ex

+cos2 χ

W 2
+ 2z0


2
Œ

)
+ 2Sż0 tan−1

(
1

tan χ

)
,

(D7)

and the dissipation function,

R(z0,
, χ ) =αS

(
ż0

2



+ 
χ̇2 + π2
̇2

12


)

+ 2SU ψ̇ + 2SUβ

(
z0


2

̇ − 1



ż0

)
. (D8)

Note that some constant terms have been skipped since they
do not contribute to the equations of motion. Finally, using
Eq. (D5) together with the expressions (D7) and (D8), we find
the equation of motion (15)–(17) of the main text.

APPENDIX E: DERIVATION OF THE
CRITICAL CURRENT

The steady regime is defined as a rigid motion of the DW
for which only the center of the DW varies in time with a
constant speed. In the framework of the 1D model, the steady
regime corresponds to the following relations:

ż = cste and 
̇ = χ̇ = 0 (E1)

for the dynamical variables in the equation of motion (15)–
(17). This leads, in the steady regime, to a relation between
the applied current J and the out-of-plane tilting angle χ :

J (χ ) = α

μ0MsR
χ0

(
μ0M2

s

2
− (K − K1)

)
sin (2χ )

×
⎡
⎣1+τμBP(β − α)

2eR sgn(
)

√(
cos(χ )


0

)2

+
(

sin(χ )

ex

)2
⎤
⎦

−1

,

(E2)

where sgn(
) = ±1 denotes the two different orientations
of the magnetic domains. It is worth noting that, in absolute
value, the term on the right side of (E2) has generally an upper
bound. Thus, it means that if the applied current is above
this value, there is no corresponding value of χ satisfying the
steady regime conditions (E1). This is exactly the definition of
the Walker regime which separates the steady motion regime
from the precessional motion regime. Therefore, we define the
critical current JW as follows:

JW = max(|J (χ )|). (E3)

By analyzing the behavior of J (χ ), we found that JW takes its
maximal values around π/4 modulo (π/2) for the material
parameters used in the main text (β = 2α = 0.04). Setting
χ = π/4 modulo (π/2) in (E2) and exploring all the different
configurations (current directions, Œrsted, and STT compet-
ing or cooperating), we arrived at the simplified expression
(18) of the critical current provided in the main text. We
found that, for the material parameters used in the main text,
Eq. (18) provides a relatively good estimation of the critical
current defined by Eqs. (E2) and (E3). Nevertheless, when
analyzing the critical current over a wide range of material
parameters, we found that Eq. (18) is not always valid. Large
deviations are observed when the expression (E2) diverges
leading to an infinite critical current JW. It can be shown that
this situation occurs for the competing (respectively, cooperat-
ing) Œrsted and spin-transfer-torque configurations for β > α

(respectively, β < α) and for material parameters satisfying
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the following bounding condition:

min(
0, ex ) � τμBP|α − β|
2eR

� max(
0, ex ). (E4)

Taking the material parameters used in the main text, the ex-
pression in the middle of Eq. (E4) is lower than 2 nm and thus

much lower than the exchange length and 
0 for reasonable
anisotropy strengths. The expression (18) can therefore be
used to estimate the critical current for the material parameters
used in the main text. If we consider other material parame-
ters, it may happen that the infinite critical current regime can
be reached even for reasonable anisotropy strengths.
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[4] M. Staňo and O. Fruchart, in Handbook of Magnetic Materials
(Elsevier, Amsterdam, 2018), Chap. Magnetic nanowires and
nanotubes.

[5] D. P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi,
R. Huber, P. Berberich, J. Arbiol, A. Fontcuberta i Morral, D.
Grundler et al., Nano Lett. 12, 6139 (2012).

[6] B. Gross, D. P. Weber, D. Rüffer, A. Buchter, F. Heimbach,
A. Fontcuberta i Morral, D. Grundler, and M. Poggio, Phys.
Rev. B 93, 064409 (2016).

[7] Y. Henry, K. Ounadjela, L. Piraux, S. Dubois, J.-M. George,
and J.-L. Duvail, Eur. Phys. J. B 20, 35 (2001).

[8] N. Biziere, C. Gatel, R. Lassalle-Balier, M. C. Clochard, J. E.
Wegrowe, and E. Snoeck, Nano Lett. 13, 2053 (2013).

[9] J. Kimling, F. Kronast, S. Martens, T. Böhnert, M. Martens, J.
Herrero-Albillos, L. Tati-Bismaths, U. Merkt, K. Nielsch, and
G. Meier, Phys. Rev. B 84, 174406 (2011).

[10] R. Streubel, J. Lee, D. Makarov, M.-Y. Im, D. Karnaushenko,
L. Han, R. Schäfer, P. Fischer, S.-K. Kim, and O. G. Schmidt,
Adv. Mater. 26, 316 (2014).

[11] B. Doudin, G. Redmond, S. E. Gilbert, and J.-P. Ansermet,
Phys. Rev. Lett. 79, 933 (1997).

[12] U. Ebels, A. Radulescu, Y. Henry, L. Piraux, and K. Ounadjela,
Phys. Rev. Lett. 84, 983 (2000).

[13] D. Rüffer, R. Huber, P. Berberich, S. Albert, E. Russo-
Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D.
Grundlerbd, Nanoscale 4, 4989 (2012).

[14] H. Mohammed, E. V. Vidal, Y. P. Ivanov, and J. Kosel, IEEE
Transactions on Magnetics 52, 6000405 (2016).

[15] M. C. Giordano, K. Baumgaertl, S. R. E. Steinvall, J. Gay, M.
Vuichard, A. F. i Morral, and D. Grundler, arXiv:2004.1592.

[16] A. Thiaville and Y. Nakatani, in Spin Dynamics in Confined
Magnetic Structures III (Springer, Berlin, 2006), pp. 161–205.

[17] M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R.
Hertel, Appl. Rev. Lett. 100, 252401 (2012).

[18] M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R.
Hertel, Appl. Rev. Lett. 99, 122505 (2011).

[19] S. Da Col, S. Jamet, N. Rougemaille, A. Locatelli, T. O.
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