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Anomalous transport measurements have recently been observed through a wide doping range in the cuprates.
Motivated by this, we investigate the effects of a state that shares many features consistent with those of the
pseudogap, the mixed triplet-singlet d-density wave state, and examine whether its presence could help explain
these observations. For a sufficiently doped system Li and Lee (arXiv:1905.04248.) showed that that these
density wave states produce a nonzero thermal Hall effect. Through the effect that density waves have on the
localized spins of a square lattice in a magnetically ordered phase, we find that the mixed triplet-singlet d-density
wave state induces stable Dzyaloshinskii-Moriya (DM) interactions among the localized spins in the presence
of an external magnetic field. As similar antisymmetric exchange couplings have yielded nonzero thermal Hall
contributions, we examine this induced DM interaction by applying Holstein-Primakoff (HP) transformations
to study the resulting magnon excitations of the spin models for both antiferromagnetic and ferromagnetic
backgrounds, relevant to the near-half-filling and heavily overdoped regimes, respectively. Furthermore, because
the triplet-singlet d-density wave is experimentally challenging to detect directly, we discuss the magnetic
signatures that this state can possibly induce away from the pseudogap regime. We calculate the magnon
dispersion for La2−xSrxCuO4 and find that the density wave induces a weak dx2−y2 anisotropy; upon calculating
the non-Abelian Berry curvature for this magnon branch, we show explicitly that the magnon contribution to
κxy is zero. Finally, we calculate corrections to the magnetic ground state energy, spin canting angles, and the
spin-wave dispersion due to the topological density wave for ferromagnetic backgrounds. We find that terms
linear in the HP bosons can affect the critical behavior, a point previously overlooked in the literature.
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I. INTRODUCTION

Despite concerted efforts to illuminate the precise nature
of the pseudogap phase of the cuprate high-temperature su-
perconductors [1–4], it remains unclear which of a host of
competing order parameters is responsible for the interesting
behavior of this phase. One promising candidate [5] is the
� = 2 spin-singlet order, the d-density wave (DDW), which
gives rise to a dx2−y2 gap and currents that alternate between
adjacent plaquettes on a square lattice. The relevance of this
state is certainly believable given the proximity of the pseu-
dogap phase to the antiferromagnetic Mott insulator at low
doping, which doubles the Brillouin zone in the same way and
is susceptible to singlet pairing.

This density wave state of nonzero angular momentum
belongs to a larger class of such states [6], and it is worth ex-
ploring other, more exotic members of this class related to the
singlet DDW which maintain the key characteristics necessary
for relevance to the pseudogap phase. Such states are also
of some interest due to their topological properties [7]. We
focus on a mixed triplet-singlet DDW order, which has gener-
ated interest recently due to promising transport calculations
consistent with surprising physics found in the pseudogap
phase of the cuprate superconductor La2−xSrxCuO4 and re-
lated compounds [8,9]. Namely, for nonzero hole doping,
the mixed triplet-singlet DDW state generates a nonvanishing

thermal Hall conductivity κxy and hosts hole pockets on the
reduced Brillouin zone boundaries consistent with Hall coef-
ficient measurements [10,11].

At the mean-field level a general density wave state may be
described by the Hamiltonian

HDDW =
∑
k,Q

c†
k+Q

[
�

μ

Q(k)τμ
]
ck + H.c., (1)

where c†
k and ck are the electron creation and annihilation

operators at wave vector k; Q is the wave vector at which
the density wave condensation occurs; �

μ

Q(k) is proportional
to an element of some representation of the space group
of Q on the lattice; τ 1, τ 2, and τ 3 are the Pauli matrices;
and τ 0 = 1. This Hamiltonian can be thought of as aris-
ing from a mean-field decomposition of nearest-neighbor
electron-electron interaction terms in the most general prob-
lem [12–15] in which the order parameter

〈c†
k+Q,αck,β〉 = [

�
μ

Q(k)τμ
]
αβ

(2)

acquires a nonzero value for some nonzero Q. In our work
we assume that all terms which transform nontrivially under
rotations and translations are captured by this mean-field de-
composition.
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Here we consider a specific example of Eq. (1), namely, the
triplet-singlet DDW wave [7] (denoted iσdx2−y2 + dxy),

�i
Q(k) ∝ iW0Ni(cos kx − cos ky),

�0
Q(k) ∝ 	0 sin kx sin ky,

(3)

where Ni is a unit vector pointing along the spin quantization
direction, i = 1, 2, 3, and Q = (π/a, π/a). In real space the
Hamiltonian is written as

HDDW = Ht + Hs, (4)

with

Ht = iW0

4

∑
i,α,β

(−1)m+n(N · σ )αβ

× [c†
i+ax̂,αci,β − c†

i+aŷ,αci,β ] + H.c. (5)

and

Hs = 	0

4

∑
i,α,β

δα,β (−1)m+n

× [c†
i+ax̂+aŷ,αci,β − c†

i+ax̂−aŷ,αci,β ] + H.c. (6)

The Hamiltonian H0 + HDDW describes a topological Mott
insulator [6,7] with a quantized spin Hall conductance; it is
a variant of the singlet d-density wave model hypothesized
[5] to explain the pseudogap phase of the cuprates. Unlike
the singlet d-density wave state, however, the mixed triplet-
singlet (iσdx2−y2 + dxy)-density wave state does not inherently
break time reversal symmetry, yet it retains most of the sig-
natures of the singlet d-density wave state. For example,
the (iσdx2−y2 + dxy)-density wave state possesses hole pock-
ets centered along the Brillouin zone diagonals which are
consistent with both the measured Hall coefficient [8] and
some aspects of quantum oscillation experiments [16–18].
Recently, second-harmonic generation experiments have sug-
gested that an inversion symmetry breaking is responsible for
large second-harmonic-generation signatures in YBa2Cu3Oy

[19], but we note that this could be due to, in principle, the
quadrupole moment induced via a triplet d-density wave [6].

This model was shown by Li and Lee [9] to produce a
nonzero thermal Hall effect away from half filling; however,
despite considerable effort, we have not managed to exactly
reproduce their plots using their parameter values and instead
find a thermal Hall effect which is an order of magnitude
smaller for the nonzero temperatures shown here in Fig. 1.
Details of the calculation are highlighted in the Appendix.

We now ask ourselves, What effect does this density wave
state have on the pertinent magnetic physics near half filling?
In our work we assume that at nonzero doping the density
wave will survive in the presence of long-range magnetic or-
der [9]. The triplet part of the density wave order parameter in-
duces a staggered spin current [13] on the bonds of the lattice,
and hence, for neighboring lattice points A and B, this intrin-
sic spin current implies that there exists no center of inversion
at any point C on the bond connecting A and B, thereby al-
lowing an antisymmetric exchange among the localized spins
[20,21]. These types of (staggered) antisymmetric exchanges
have been considered in the literature [22] but to our knowl-
edge have never been considered in the context of being
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FIG. 1. Thermal Hall conductivity κxy/T as a function of tem-
perature T produced by the triplet-singlet DDW state defined by
Eq. (3) with 	0 = 0.3t , magnetic field B = 0.0075t/μB, t ′ = −0.1t ,
W0 = 2t at a doping of p = 0.06. κxy is listed here in units of k2

B/h̄.

generated via the spin currents associated with density wave
states. The spin currents intrinsic to the triplet flavored density
wave states induce a Dzyaloshinskii-Moriya (DM) interac-
tion between the underlying neighboring spins [20], and we
investigate the effect that this DM interaction has on antifer-
romagnetic and ferromagnetic spin textures, using a Holstein-
Primakoff transformation expanded about the ground state.
It was previously demonstrated [22–24] that certain DM in-
teractions can lead to a thermal Hall effect. We find that
the particular DM interaction induced by triplet-singlet DDW
states cannot contribute to κxy, which is consistent with spec-
ulations on the nature of the neutral excitation responsible for
the sizable thermal Hall conductivity seen in the cuprates [8].

There are strong constraints and unique properties
associated with the DM vectors that are generated by triplet
density waves. Because triplet density wave states break
spin-rotational invariance, the associated Goldstone boson
excitations will destroy the two-dimensional triplet density
wave order at finite temperatures unless there is some external
mechanism which stabilizes the triplet density wave order pa-
rameter like interlayer coupling. However, we find that when
the underlying band structure is sufficiently topologically
nontrivial insofar as it hosts a nonzero spin Hall conductance
and an external magnetic field is turned on, the triplet density
wave induced DM vectors are energetically stable in the ab-
sence of interlayer coupling. Furthermore, these DM vectors
are pinned to be collinear with the magnetic field, regardless
of its direction, and the DM interaction will have the same
symmetry as the form factor of the triplet density wave.

In the following we derive the DM coefficients induced
by triplet density waves and investigate the effects they have
on the physics of the underlying spin textures of the lattice.
We find that for a ferromagnetic background, the ground state
remains perfectly collinear below some critical strength of the
density wave; above the critical strength, the ground state ac-
quires a nonzero canting angle, and we show that linear boson
terms shift the classically predicted threshold for a nonzero
canting angle. Assuming a small DM interaction, the disper-
sion of the magnons in this case develops a characteristic
dx2−y2 gap. For an antiferromagnetic background we find that
the density wave induced DM interaction has a small effect
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unless there is some weak ferromagnetism present. We com-
pute the spin-wave spectrum appropriate to La2−xSrxCuO4

(LSCO) and find that for modest density wave strengths there
exists a small dx2−y2 anisotropy.

II. THE EFFECTIVE MAGNETIC HAMILTONIAN

For any type of mixed triplet-singlet density wave conden-
sation the mean-field Hamiltonian in the absence of on-site
repulsion or ferromagnetic coupling can be written in the
suggestive manner

H =
∑

i j

c†
iα (ti jδα,β + iλi j · σ)c jβ, (7)

where all singlet density wave terms are absorbed into the def-
inition of ti j and λi j are the triplet density wave terms which
couple to σ. It can be shown [20,25] that this λi j induces a DM
interaction in the underlying spin structure (antiferromagnetic
or ferromagnetic) whose coefficients are given by

Di j = λi jTr σ Nji, (8)

where Nji ≡ 〈c†
i c j〉 = − 1

π

∫ EF

−∞ Im Gji(E )dE , Gji(E ) is the
Green’s function defined by H and EF is the Fermi en-
ergy. Tracing the spin index over an expansion of Gji(E ) =
f (E )t ji/t + g(E )λ ji · σ/t + O(λ2/t ) reveals that to leading
order Gji(E ) should have the same symmetry as t ji under
translations and rotations. In this work we consider a specific
example of Eq. (1), written in real space as

HDDW = H0 + Ht + Hs, (9)

where H0 is the tight-binding Hamiltonian of the underlying
crystal lattice which is some union of all square planar lattices
which host the triplet-singlet DDW. For this particular triplet
DDW case, because λi j connects only nearest neighbors, t ji

is simply the tight-binding kinetic energy coefficient, which
we will assume to transform trivially under rotation; thus, we
write

Di j = αλi j (10)

for some constant α. Because we will allow the density wave
strength to be a tunable parameter, we will henceforth absorb
α and all other constant numerical prefactors into the defini-
tion of W0. The DM coefficients for the triplet dx2−y2 -density
wave therefore become

DN
i,i±ax̂ = (−1)ix+iyW0,

DN
i,i±aŷ = −(−1)ix+iyW0, (11)

where i = ix + iy and the superscript N denotes that the DM
vector points along the N direction. We stress that the method
implemented here can be applied, in general, to triplet density
waves in any angular momentum channel. The direction of the
DM vector is along the triplet quantization axis, and the form
factor associated with the triplet density wave dictates the
symmetry of the DM vector on the lattice. To understand the
order of magnitude of the DM interaction induced by density
waves one can directly use Moriya’s perturbation theory result
(including the on-site repulsion U ) [26]

D ≈ 2tW0

U
, (12)

which implies that a density wave mediated DM interaction is
roughly on the scale of 10–100 meV for LSCO at low doping
for density wave strengths W0 ∼ t .

For a density wave induced DM interaction to not be
disordered by Goldstone modes at finite temperatures there
must be some mechanism which externally stabilizes the
triplet density wave’s quantization axis, i.e., the direction of
N. Previously it was suggested that interlayer coupling was
needed to stabilize the direction of N [7]; however, it was
recently shown [9] that the direction of N for the triplet-singlet
DDW in two dimensions can be stabilized by the bulk orbital
magnetization’s coupling to the magnetic field. Explicitly, a
magnetic field induces a bulk orbital magnetization M, which
is given by [27]

M = −
∑

α=N·σ=±1

e

hc
Cα	EZ,α, (13)

where Cα is the Chern number of the band of spin α, e is the
electron charge, h is Planck’s constant, c is the speed of light,
and 	EZ,α is the Zeeman splitting,

	EZ,α = −αμBsgn(W0)N · B, (14)

where μB is the Bohr magneton. For the case of the triplet-
singlet DDW the resulting energy density due to the orbital
magnetization-magnetic field is [9]

	EZeeman = −μBB2

πc
sgn(W0	0)(N · B̂), (15)

which implies that it is energetically most favorable for
W0	0N ‖ B. Thus, for 	0 > 0, B �= 0, Eq. (11) necessarily
becomes

DB
i,i±ax̂ = (−1)ix+iy |W0|,

DB
i,i±aŷ = −(−1)ix+iy |W0|. (16)

From this argument alone we see that stable density wave
induced DM interactions in two dimensions can arise from
only topological density waves with nonvanishing spin Hall
conductance; that is, given 	EZ,+1 = −	EZ,−1, stability is
only guaranteed if C+1 = −C−1. Furthermore, because den-
sity wave induced DM vectors must be collinear with the
magnetic field, they will transform like the magnetic field
under rotations and time reversal. This immediately implies
that the corresponding magnons in the problem will have no
contribution to any thermal Hall effect because of the spin
rotation and time-reversal symmetry considerations outlined
by Samajdar et al. [23],

κxy[J, Di j, B] = κxy[J, RφB̂Di j, RφB],

κxy[J, Di j, B] = −κxy[J,−B̂Di j,−B],
(17)

where Rφ is the vector representation of spin rotation by some
angle φ about the axis defined by φ̂. Rotating the system about
an angle π about an axis perpendicular to B̂ maps RφB̂ to −B̂
and hence κxy = −κxy = 0. The bulk magnetization [Eq. (13)]
would, in principle, produce a small ferromagneticlike signal
detectable in polar Kerr measurements as long as the external
magnetic field is not exactly zero for weak disorder at small
enough temperatures. More detailed calculations involving
interlayer coupling, the inclusion of magnetic impurities, and
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nonzero temperatures should be considered in future work to
quantitatively compare this triplet-singlet DDW bulk mag-
netization signal to the polar Kerr rotation data previously
gathered [28]. Interesting questions to ask are how the Gold-
stone modes would disorder the DM vectors in the absence of
an external magnetic field and how the DM vectors behave for
density wave states with vanishing spin Hall conductances.

We now study the effect of this dynamically generated
DM interaction on the isotropic two-dimensional Heisenberg
ferromagnet and antiferromagnet. Namely, we consider

H = ±J
∑
i, j

Si · S j +
∑
i, j

Di j · (Si × S j ) − B ·
∑

i

Si, (18)

where J is the absolute value of the spin exchange, ± cor-
responds to the antiferromagnetic and ferromagnetic cases,
respectively, and the DM interaction includes the contribution
from the density wave.

III. THE ANTIFERROMAGNETIC BACKGROUND

The triplet-singlet density wave induced DM interaction
will typically have little effect on perfectly antiferromagnetic
backgrounds in the linear spin-wave approximation. This is
because, upon turning on a magnetic field to stabilize the
DM interaction, the localized spins will flop perpendicular
to the magnetic field direction. Terms which couple to W0

in this case are proportional to higher-order terms in the
Holstein-Primakoff (HP) bosons. When this happens only
very large density wave strengths will cause distortions in the
magnetic ordering. On the other hand, if there exists some
small ferromagnetic component associated with the otherwise
antiferromagnetic ordering, the density wave induced DM
interaction appears in terms quadratic in the HP bosons and
thus will affect the magnon dispersion. This is the case for
LSCO which we will consider in the following.

Taking B = Bẑ, the DM matrix for LSCO can be written
[29–31] as Di j = (−1)ix+iy D, where

D =
⎛
⎝

√
2D cos θd

√
2D sin θd W0

−√
2D sin θd −√

2D cos θd −W0

0 0 0

⎞
⎠. (19)

The x and y spin direction entries are due to the buckling of the
oxygen atoms out of the copper oxide plane and induce a weak
net ferromagnetic moment out of the copper oxide plane.
The z spin direction entries come from Eq. (16), where we
have assumed a nonzero density wave strength ∝ W0. We find
the mean-field ground state by summing the classical energy
over the two sublattices and then numerically minimizing this
energy with respect to the two sets of spherical angles which
characterize the classical spin directions. Here we parametrize
the spins as

〈ni〉 = (cosφi, sinφi, nz ), (20)

where nz is the weak ferromagnetic canting due to D. For
density wave strengths on the order of t the ground state is
unchanged, characterized by antiferromagnetic spin flopping
in the plane perpendicular to the magnetic field with a weakly
ferromagnetic component pointing along B induced by D.
Closely following the work of Han et al. [24], we choose the

form of the classical ground state to be

〈n̄i〉 = − (−1)ix+iy

√
2

cos θc(x̂ + ŷ) + sinθcẑ. (21)

We expand our spin operators about this mean-field ground
state [32]

Si = ai〈ni〉 + ti (22)

so that we can perform the appropriate HP substitution. The
amplitudinal reduction along the mean-field state is given as

ai = S − b†
i bi, (23)

and to leading order in boson density operators, the transverse
fluctuation operator ti is given by

ti = t x′
i x̂′

i + t y′
i ŷ′

i, (24)

with

t x′
i =

√
S

2
(b†

i + bi ),

t y′
i = i

√
S

2
(b†

i − bi ),

(25)

where the primed coordinates are defined such that x̂′
i × ŷ′

i =
〈ni〉. Upon substitution of these operators into the antiferro-
magnetic version of Eq. (18) the terms quadratic in boson
creation and annihilation operators in the Hamiltonian can be
written in real space as (redefining the couplings to absorb S)

H = [4J ′ + Bsin(θc)]
∑

i

b†
i bi −

∑
〈i, j〉

Jtx′
i t x′

j + J ′t y′
i t y′

j

+
∑

i

D′[t x′
i t y′

i+x + t y′
i t x′

i+x − t x′
i t y′

i+y + t y′
i t x′

i+y

]
+ i

∑
iW0(−1)ix+iy [bib

†
j − b†

i b j], (26)

where J ′ = J/cos(2θc) and D′ = cos(θc)D(cos θd + sin θd ).
We take the Fourier transformation and write our Hamiltonian
in Nambu form as

H =
∑

k

1

2
ψ

†
k Hkψk, (27)

where ψ
†
k = (b†

k, b†
k+Q, b−k, b−k+Q) and

Hk =

⎛
⎜⎝

Ak 2iWksinθc Bk 0
0 −Ak 0 −Bk

0 0 Ak −2iWksinθc

0 0 0 −Ak

⎞
⎟⎠ + H.c., (28)

where

Ak = 2J ′ + B

2
sinθc + 1

2
(J ′ − J )(coskx + cosky),

Bk = −2iD′(cos kx − cos ky) − (J ′ + J )(coskx + cosky),

Wk = W0(cos kx − cos ky). (29)

The spectrum is given by the absolute value of the eigen-
values of the dynamic matrix [33] K = (σ3 ⊗ I2)Hk; these
eigenvalues correspond to what are called particle and hole
bands for the positive and negative eigenvalues, respectively.
We plot the dispersion in Fig. 2 for a set of parameter values.
After taking into account both the particle and hole bands,
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kx
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2
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4

ωk

FIG. 2. Magnon dispersion ωk for ky = 0 in units of J for W0 =
0.3J , D = 0.1J , θd = 0.05, B = 0.05J . The spectrum remains anti-
ferromagnetic with small corrections increasing with the value of kx .

the dispersion consists of one fourfold degenerate magnon
branch very similar to that obtained when W0 = 0; because
W0 couples to the weak ferromagnetic moment, its effects on
the spectrum are small if the density wave strength is not very
large. Namely, tuning W0 from zero induces a weak anisotropy
in the magnon dispersion along the kx and ky directions. The
dispersion along kd = kx = ky is unchanged by increasing W0,
whereas the energy is increased along the k = (kx, 0), k =
(0, ky) directions. This anisotropy is demonstrated in Fig. 3,
where the largest deviation from the unperturbed magnon dis-
persion is roughly 0.4 meV when k = (0, π ) and k = (π, 0).
The thermal Hall conductivity is given by [34]

κxy

T
= −

∑
n

k2
B

h̄

∫
1

(2π )2

[
c2(nB(ωn,k )) − π2

3

]
�z

n(k), (30)

where

c2(x) =
∫ x

0
ds

(
ln

[
1 + s

s

])2

, (31)

−3 −2 −1 1 2 3
kx

0.1

0.2

0.3

0.4

Δω k

FIG. 3. The difference in the magnon dispersions (in meV) with
ky = 0, D = 12 meV, θd = 0.05, and B = 6 meV. The orange and
blue curves correspond to the difference between the W0 = 100 meV
and W0 = 0 dispersions and the difference between the W0 = 50 meV
and W0 = 0 dispersions, respectively.

FIG. 4. Non-Abelian Berry curvature calculated on a 200 × 200
lattice with W0 = 0.3J , D = 0.1J , θd = 0.05, B = 0.05J .

nB is the Bose distribution function, �z
n is the Berry curva-

ture of the nth band, and the sum is taken over the particle
bands. Because the particle band in this model is twofold
degenerate, we calculate its non-Abelian Berry curvature us-
ing the discretized link method [35]. We define the Berry
curvature as

�z(k) = −iln[Ũ1(k)Ũ2(k + e1)Ũ1(k + e2)−1Ũ2(k)−1],
(32)

where the vectors e1 = 2π (1, 0)/N and e2 = 2π (0, 1)/N and
N2 is the total number of lattice sites. The link variables are
defined as

Ũγ (k) = detUγ (k)

|detUγ (k)| , (33)

where the matrix entries of Uγ (k) are the eigenstate overlap
elements in the degenerate subspace, which for the magnon
case take the form [36]

Uγ (k) =
(〈ψ1(k)|ψ̃1(k + eγ )〉 〈ψ1(k)|ψ̃2(k + eγ )〉

〈ψ2(k)|ψ̃1(k + eγ )〉 〈ψ2(k)|ψ̃2(k + eγ )〉
)

.

(34)
Here the magnon eigenstates |ψi(k)〉 are the normalized
eigenvectors of K that correspond to the positive-energy
eigenvalues, i.e., the particle bands, and |ψ̃i〉 = (σ3 ⊗ I2)|ψi〉.
We plot the non-Abelian Berry curvature calculated on a
200 × 200 lattice in Fig. 4 for a characteristic set of pa-
rameter values. Assuming that Eq. (30) can be generalized
trivially for the case of non-Abelian Berry curvature for a
twofold-degenerate magnon branch, it can be seen immedi-
ately that κxy = 0 because our numerically calculated �z(k)
obeys �z(kx, ky) = −�z(−kx, ky) = −�z(kx,−ky), whereas
ω(kx, ky) = ω(−kx, ky) = ω(kx,−ky), thereby causing the in-
tegral to vanish.

IV. THE FERROMAGNETIC BACKGROUND

It was previously shown [15] via a one-loop renormal-
ization group analysis of the extended U -V -J model that
triplet dx2−y2 -density wave condensation is energetically fa-
vorable for a range of interaction strengths given J/U < 0.
Furthermore, it was theoretically predicted [37] and recently
experimentally confirmed [38] that the highly overdoped
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cuprates show ferromagnetic ordering in the CuO2 planes. For
these reasons we investigate the mixed triplet-singlet density
wave DM interaction effects on a two-dimensional Heisen-
berg ferromagnet. Taking B = Bẑ, the symmetric exchange
term favors mean-field states of the form

〈S̄i〉 = nzẑ, (35)

and the antisymmetric exchange favors mean-field states of
the form

〈S̃i〉 = ξx(rix,iy )x̂ + ξy(rix,iy )ŷ,

ξx(ri ) = ξ0
[(−1)ix + (−1)iy ]

2
,

ξy(ri ) = ξ0
[(−1)ix − (−1)iy ]

2
. (36)

Thus, the mean-field state which occurs in the presence of
both types of exchange is

〈ni〉 = 〈S̄ix,iy〉 + 〈S̃ix,iy〉. (37)

We have checked that this is the true mean-field ground state
by summing the classical energy over the four sublattices and
then numerically minimizing the energy with respect to the
four sets of spherical angles which characterize the classical
spin directions. The mean-field energy per site in this case is
(restoring S)

E0

N
= −|J|zS2cos2(θ )/2 − 2S2|W0|sin2(θ ) − BScos(θ ),

(38)
where N is the number of lattice sites, z = 4 (6) in two (three)
dimensions, and θ is defined as the angle between 〈S̄ix,iy〉 and
〈ni〉. For the square lattice case the ground state is minimized
about θ = 0 for all 2W0 < z|J|/2 + B/S, whereas the ground
state is minimized at θ = cos−1{B/[4S(W0 − J )]} for 2W0 >

z|J|/2 + B/S.
Following the procedure highlighted in the previous sec-

tion, we expand the operators about the mean-field ground
state, Eq. (37), and substitute them into the ferromagnetic
version of Eq. (18) to yield the real-space Hamiltonian

H = E0 + H0 + H ′, (39)

where the classical mean-field energy E0 is defined in
Eq. (38), H0 is

H0 =
∑

i

μb†
i bi +

∑
〈i, j〉

[Z̄θg( j)b†
i b j + Z̃θg( j)b†

i b†
j

+ iJScos(θ )(−1)ix+iy bib
†
j + H.c.], (40)

with g( j) = +1 for j = i + x̂ and g( j) = −1 for j = i + ŷ,
the coefficients are defined as

Z̄θ ≡ JS

2
sin2(θ ) + W0S

2
[cos2(θ ) + 1],

Z̃θ ≡ JS

2
sin2(θ ) + W0S

2
[cos2(θ ) − 1],

μ ≡ 4JScos2(θ ) + 4W0Ssin2(θ ) + Bcos(θ ),

(41)

and H ′ is

H ′ =
∑

i

(−1)ix Aθ (b†
i + bi ), (42)

where

Aθ = sin(θ )

{√
S

2
B + [J (2S)3/2 − W0(2S)3/2]cos(θ )

}
. (43)

Terms linear in boson creation and annihilation operators im-
ply spin-wave creation and annihilation from the ground state.
Thus, assuming that the system is in its ground state, it is
typically argued in the literature that this coefficient Aθ must
vanish at each point i on the lattice; in the following we show
that allowing small Aθ has a nontrivial effect on the critical
behavior of the system.

There exist two unique solutions for vanishing Aθ : the
perfectly ferromagnetic case of θ = 0 and

|θ | = cos−1

[
B

4S(W0 − J )

]
, (44)

which is the aforementioned magnetic ground state canting
angle that occurs at the classical mean-field level when 2W0 >

2J + B/S. Anticipating quantum corrections to the ground
state canting angle, we opt to include the effects of Aθ �= 0;
however, to maintain consistency with the Holstein-Primakoff
substitution about the mean-field ground state it is understood
that Aθ is necessarily either small or exactly zero, i.e., we
are expanding sufficiently close to the classical mean-field
theory’s predicted relationship between the parameters. Thus,
instead of taking Aθ = 0, we eliminate terms linear in bosonic
creation and annihilation operators by performing the canoni-
cal transformation

bi = b̃i − (−1)ix x,

b†
i = b̃†

i − (−1)ix x,
(45)

where x is the C number

x = −Aθ

4Z̄θ + 4Z̃θ − μ
. (46)

Note that this transformation is well defined when the denom-
inator 4Z̄θ + 4Z̃θ − μ �= 0; this is, indeed, the case when we
investigate the physics in close proximity to the mean-field
behavior. The Hamiltonian then becomes

H = E0 − NxAθ + H ′
0 = E ′

0 + H ′
0, (47)

where H ′
0 is identical to the Hamiltonian written in Eq. (40)

but in terms of the transformed bosonic operators b̃i. Upon
Fourier transformation the total Hamiltonian can be written in
terms of the Nambu basis as

H = E ′′
0 − NxAθ +

∑
k

1

2
ψ

†
k Hkψk, (48)
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where ψ
†
k = (b̃†

k, b̃†
k+Q, b̃−k, b̃−k+Q),

Hk =

⎛
⎜⎜⎝

Z̄θ,k + μ/2 iJkcos(θ ) 2Z̃θ,k 0
0 −Z̄θ,k + μ/2 0 −2Z̃θ,k

0 0 Z̄θ,k + μ/2 −iJkcos(θ )
0 0 0 −Z̄θ,k + μ/2

⎞
⎟⎟⎠ + H.c., (49)

E ′′
0

N
= −2S(S + 1)[Jcos2(θ ) + |W0|sin2(θ )] − B(S + 1/2)cos(θ ), (50)

and Z̄θ,k = Z̄θ [coskx − cosky]/2, Z̃θ,k = Z̃θ [coskx − cosky],
Jk = JS[coskx + cosky].

The spectrum is given by the absolute value of the eigen-
values of the dynamic matrix [33] K = (σ3 ⊗ I2)Hk . The
Hamiltonian, written in terms of the appropriate Bogoliubov
operators γk , is then

H = Eg +
∑
k,n

ωk,nγ
†
k,nγk,n, (51)

where n is the band index and the ground state energy Eg is

Eg = E ′′
0 − NxAθ +

∑
k,n

ωk,n

2
. (52)

The canting angle is now determined by minimizing Eg with
respect to θ . The effects of the linear boson terms can be seen
by comparing the critical values of W ∗

0 obtained by E ′′
0 and

by E ′′
0 − NxAθ in the absence of quantum corrections. Upon

expanding E ′′
0 to leading order in θ we find (setting S = 1/2)

E ′′
0 (θ )/N ≈ −3J

2
− B +

[
B

2
+ 3J

2
− 3W0

2

]
θ2, (53)

whereas the expansion of E ′′
0 /N − xAθ is

E ′′
0 (θ )/N − xAθ ≈ −3J

2
− B +

[
B

4
+ J − W0

]
θ2. (54)

The critical value of W ∗
0 can be obtained by finding its value

when the θ2 coefficient changes sign. Hence, without linear

0.5 1.0 1.5 2.0 2.5 3.0
kx

0.5

1.0

1.5

2.0

ωk

FIG. 5. Magnon dispersion ωk with ky = 0 in units of J for
various values of density wave strength with B = 0.05J . The blue,
orange, green, and red curves correspond to W0 → 0, W0 = 0.25J ,
W0 = 0.5J , and W0 = J , respectively, all below W ∗

0 . As W0 is in-
creased, the gap at k = (π, 0) increases as 2W0.

boson effects W ∗
0 = J + B/3, whereas including the linear

boson effects reduces the critical value to W ∗
0 = J + B/4. This

technique can be applied to general noncollinear spin systems
to identify shifts in critical values of the parameters in the
theory.

The dispersion for modest values of W0 consists of two
twofold-degenerate branches with a characteristic dx2−y2 gap;
this is due to the translation symmetry breaking nature of
the DM interaction. For higher-period incommensurate triplet
density wave states the number of magnon branches will
be equal to the period of incommensurability because it is
precisely that period which determines the number of sites
contained per unit cell. For θ = 0 and S = 1/2 the magnon
dispersion is

ωk,n = 1
2 B + J

± 1
2

√
J2(coskx + cosky)2 + W 2

0 (coskx − cosky)2,

(55)

where ± corresponds to the upper and lower bands, respec-
tively. The dispersion is plotted along the high-symmetry
directions for some representative values of B, W0, and θ in
Figs. 5–8. As W0 is tuned from zero, the low-energy physics
is governed by the k = (0, 0) point, and gaps develop at
k = (π, 0), k = (0, π ) with an energy difference of 2W0. As
W0 approaches its critical value the lowest-energy excitations
are governed by k = (0, 0), k = (π, 0), and k = (0, π ). After
tuning W0 beyond the critical value of density wave strength,
the low-energy excitations are described entirely by the points

0.5 1.0 1.5
kd

0.5

1.0

1.5

2.0

ωk

FIG. 6. Magnon dispersion ωk along the line kx = ky = kd in
units of J for various values of density wave strength with B = 0.05J .
Tuning W0 does not alter the dispersion in this direction.
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0.5 1.0 1.5 2.0 2.5 3.0
kx

0.5

1.0

1.5

2.0

2.5

ωk

FIG. 7. Magnon dispersion ωk with ky = 0 in units of J for
various values of density wave strength with B = 0.1J with the
appropriate canting angles determined by minimization of Eq. (52).
The blue, orange, and green curves correspond to W0 → 1.25J ,
W0 = 1.35J , and W0 = 1.45J , respectively, all above W ∗

0 . As W0 is
increased, the gap at k = (π, 0) increases as 2W0. The low-energy
excitations are now governed solely by the points k = (0, π ) and
(π, 0).

k = (π, 0), k = (0, π ), and the spectrum is shifted upwards in
energy due to the canting of the localized moments.

V. DISCUSSION

Through the effect that density waves have on the localized
spins of a square lattice in a magnetically ordered phase,
we find that the mixed triplet-singlet d-density wave state
induces stable DM interactions among the localized spins
in the presence of an external magnetic field. The density
wave mediated DM vector is stabilized in topological systems
by the direction of the magnetic field, and the symmetry of
such a DM interaction is governed entirely by the angular
momentum channel of the triplet density wave. Although it
has been shown that the triplet-singlet density wave state

0.5 1.0 1.5
kd

1.1

1.2

1.3

1.4

1.5

ωk

FIG. 8. Magnon dispersion ωk along the line kx = ky = kd in
units of J with B = 0.1J with the appropriate canting angles de-
termined by minimization of Eq. (52). The blue, orange, and green
curves correspond to W0 → 1.25J , W0 = 1.35J , and W0 = 1.45J ,
respectively, all above W ∗

0 . Nonzero canting shifts the spectrum
upwards in energy.

produces a nonzero thermal Hall effect [9], the magnitude of
the experimentally measured thermal Hall effect exceeds the
maximum possible contribution from the density wave state
alone by an order of magnitude. The excitations of a spin
system including DM interactions can, in principle, contribute
to the thermal Hall conductivity [22–24]; however, we have
shown the particular form of DM interaction generated by the
triplet density wave does not seem to produce a nonzero κxy,
and thus, no additional contribution can be found through the
influence of the density wave state on the underlying spin sys-
tem. Triplet-singlet density wave order is notoriously difficult
to detect directly [7], and so it is important to explore pos-
sible influences that the state might have on its host system.
Experimental detection of such features could, for example,
help to assess the importance of the triplet-singlet DDW state
in the description of the pseudogap phase of the cuprates. The
magnetic structure of LSCO at low doping is the Néel order
with a small ferromagnetic moment. We have shown that in
such a system, the presence of the DDW induces anisotropy
in the spin-wave dispersion, reflecting the anisotropy of the
DDW. Furthermore, the magnon branch for such a system has
a non-Abelian Berry curvature that vanishes upon integration
in such a way that κxy = 0.

Additionally, a two-patch renormalization group analysis
of the U -V -J model indicates that triplet dx2−y2 -density wave
order is energetically favorable in a finite region of coupling
space given J/U < 0 [15]. Ferromagnetic ordering was also
predicted [37] to emerge in the highly overdoped cuprates and
experimentally confirmed [38] to exist in the CuO2 planes of
the cuprates. We find that the (iσdx2−y2 + dxy)-density wave
induced DM interaction in a two-dimensional ferromagnetic
system generically produces a magnon spectrum with two
branches with a characteristic dx2−y2 gap. For higher-period
incommensurate triplet density wave states in such a spin
system the number of magnon branches is equal to the density
wave’s period of incommensurability.

We have also found that the inclusion of terms in the
Hamiltonian linear in Holstein-Primakoff boson operators has
a nontrivial effect on the critical behavior of the Hamiltonian.
These terms are typically ignored in the literature, which is
justified when considering models that are far from the critical
regime; however, we have shown that they induce shifts in
the critical parameter values which control collinear to non-
collinear phase transitions.
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APPENDIX: CALCULATING THE THERMAL
HALL COEFFICIENT

In our calculation we compute κxy using the Mott-like
formula [34,39–42]

κxy

T
= 1

T 2

∫
(ε − μ)2

cosh2
(

ε−μ

2T

)σxy(ε)dε, (A1)

where μ is the chemical potential and σxy(ε) is the Hall
coefficient for the system at zero temperature with chemical
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potential ε. We implement the linear-in-field approximation
where calculation of κxy is greatly simplified at low magnetic
field strengths [43]; that is, we write

σxy(ε) ≈ B∂Bσxy(ε)|B=0 = −BB̃(ε), (A2)

where B is the magnitude of the magnetic field and B̃(ε) is the
effective Berry curvature density given by

B̃(ε) =
∑
nks

Bnskδ(ε − εnsk ). (A3)

Here n = ±1 for the lower and upper bands, and the spin
index s = ±1. The Berry curvature and dispersion for the
mixed triplet-singlet DDW are given by [7]

Bnsk = ns
tW0	0

E3
k

(sin2 ky + sin2 kx cos2 ky), (A4)

εnsk = ε2k − nEk, (A5)

where Ek is defined as

Ek =
√

4t2(cos kx + cos ky)2 + W 2
k + 	2

k, (A6)

where

Wk = W0

2
(cos kx − cos ky),

	k = 	0 sin kx sin ky, (A7)

and

ε2k = 4t ′ cos kx cos ky. (A8)

Upon integration over ε, Eq. (A1) simplifies to

κxy

T
= B

2T 3

∑
k ∈ RBZ
α = ±

B++k

[ −α(εααk − μ)2

cosh2(β(εααk − μ)/2)

]
, (A9)

which may be evaluated with ease. We numerically integrate
this quantity and plot it in Fig. 1.
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