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Chiral droplets and current-driven motion in ferromagnets
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We find numerically skyrmionic textures with skyrmion number Q = 0 in ferromagnets with the
Dzyaloshinskii-Moriya interaction, perpendicular anisotropy, and the magnetostatic field. These have a skyrmion
part and an antiskyrmion part, and they may be called chiral droplets. They are stable in an infinite film as well as
in disk-shaped magnetic elements. Droplets are found in films for values of the parameters close to the transition
from the ferromagnetic to the spiral phase. Under spin-transfer torque, they move in the direction of the spin
flow and behave as solitary waves of Newtonian character, in stark contrast to the Hall dynamics of the standard
Q = 1 skyrmion.
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I. INTRODUCTION

Since the experimental observation of skyrmions in fer-
romagnetic materials with the Dzyaloshinskii-Moriya (DM)
interaction, a substantial amount of work has been devoted
to their statics and dynamics [1]. Chiral skyrmions are topo-
logical solitons that have the same topological features as
magnetic bubbles [2], but the detailed features of the chiral
skyrmion profile are specific to it [3,4]. Most work has largely
focused on the axially symmetric chiral skyrmion predicted in
Refs. [3,5]. Different crystal symmetries give rise to various
types of DM interactions, and these, in turn, define the kinds
of skyrmions that can be stabilized [5,6]. In Ref. [7] the
observation of antiskyrmions was reported, that is, skyrmions
that have a winding number opposite to that of the standard
axially symmetric skyrmions.

The dynamics of skyrmions is linked to their topol-
ogy [8,9]; specifically, it depends on the topological number,
usually called the skyrmion number Q. Skyrmions with
Q �= 0, such as the axially symmetric skyrmions or the
antiskyrmions with Q = ±1, are called topological, while
skyrmionic textures with Q = 0 are called topologically triv-
ial. Topological, Q �= 0, skyrmions are spontaneously pinned
in a ferromagnetic film [9,10]. By contrast, topologically triv-
ial magnetic solitons propagate freely as Newtonian particles.
An example is provided by the skyrmionium [8,11,12], an
axially symmetric skyrmionic texture with trivial topology.

We focus on Q = 0 solitons that can be constructed as
skyrmion-antiskyrmion pairs. In Refs. [13,14], observations
of topologically trivial objects in DM materials were reported,
with a skyrmion part and an antiskyrmion part in the case of
Ref. [14]. In Ref. [15], Q = 0 textures were found numerically
within a model with frustrated isotropic exchange and DM
interaction, and they are termed “chimera skyrmions” due to
the coexistence of skyrmion and antiskyrmion parts.

We find numerically, within a model with DM interaction
and the magnetostatic field, a skyrmionic texture with Q = 0

that has a skyrmion part and an antiskyrmion part. This is
an asymmetric configuration, and its shape resembles that of
a liquid droplet. The skyrmion part occupies a much larger
area than the antiskyrmion part. In a recent work [16], the
droplet was found to be stable without the magnetostatic field
contribution. We find that a static droplet is a stable structure
in a ferromagnetic infinite film as well as in a disk-shaped
element, within appropriate ranges of the model parameters.
In the case of a film, we study the dynamics of the chiral
droplet under in-plane current. The droplet is traveling in the
direction of the current and presents Newtonian dynamics and
no Magnus force effect.

The outline of the paper is as follows. Section II defines the
model and the notations used in the paper. Section III presents
the static solutions for chiral droplets in an infinite film. Sec-
tion IV studies the dynamical behavior of a droplet under
current. Section V presents droplet solutions in a disk-shaped
particle. Section VI contains our concluding remarks. In the
Appendix we give a brief explanation of the skyrmion and
antiskyrmion configuration represented via the stereographic
variable.

II. FORMULATION

We consider a ferromagnetic film with exchange, easy-axis
anisotropy perpendicular to the film and interfacial DM inter-
action. We denote the saturation magnetization by Ms and the
normalized magnetization vector by m = (mx, my, mz ), with
m2 = 1. The magnetic energy is

E = A
∫

[(∂xm)2 + (∂ym)2]dV + K
∫ (

1 − m2
z

)
dV

+ D
∫

[êx · (∂ym × m) − êy · (∂xm × m)] dV

− 1

2
μ0M2

s

∫
hm · m dV, (1)
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where êx, êy, êz denote the unit vectors in the respective di-
rections, A is the exchange parameter, K is the easy-axis
anisotropy parameter, D is the DM parameter, and hm is the
magnetostatic field normalized to the saturation magnetiza-
tion.

Considering the thin-film approximation for the magneto-
static field, we decompose it into a local part, −mzêz, and a
nonlocal part, h′

m,

hm = −mzêz + h′
m, (2)

and note that h′
m tends to zero for very thin films. Substituting

Eq. (2) in Eq. (1) gives rise to an effective anisotropy parame-
ter (that includes the local part of the magnetostatic field)

Keff = K − 1
2μ0M2

s . (3)

The statics and dynamics of the magnetization vector are
described by the Landau-Lifshitz equation derived from the
energy in Eq. (1). Including a Gilbert damping term, we have

∂t m = −γ m × Heff + α m × ∂t m, (4)

where α is the damping parameter. The effective field is de-
fined by

Heff = − 1

Ms

δE

δm
, (5)

and it has the form

Heff = μ0Ms

[
2A

μ0M2
s

�m + 2Keff

μ0M2
s

mzêz

+ 2D

μ0M2
s

(êy × ∂xm − êx × ∂ym) + h′
m

]
. (6)

It is instructive to write the dimensionless form of Eq. (4).
Using �w = √

A/Keff as the unit of length, we obtain the
dimensionless Landau-Lifshitz-Gilbert (LLG) equation

∂τ m = −m × heff + αm × ∂τ m, (7)

where

heff = �m + mzêz + 2ε(êy × ∂xm − êx × ∂ym) + h′
m

κ
, (8)

and we have introduced the dimensionless DM parameter

ε = D

2
√

AKeff
(9)

and the dimensionless anisotropy parameter

κ = 2Keff

μ0M2
s

. (10)

Equation (8) indicates that varying κ amounts to tuning the
effect of the magnetostatic field. The normalized time variable
in Eq. (7) is

τ = t

τ0
, τ0 = 1

γμ0Msκ
. (11)

When we set h′
m = 0 in model (8), the ground state is the

spiral for ε > 2/π ≈ 0.637, while we have the ferromagnetic
state for ε < 2/π [3]. Only the latter regime is considered in
this work. Skyrmions with axial symmetry are stable excited

FIG. 1. The magnetization configuration produced by the
form (13) representing a skyrmion-antiskyrmion pair. The lower half
of this configuration has the features of a skyrmion, and the upper
half has the features of an antiskyrmion. This is used as the initial
condition in the energy relaxation algorithm for finding a static
solution of the equation.

states on the ferromagnetic state. All magnetic configurations
are characterized by the skyrmion number defined as

Q = 1

4π

∫
q dxdy, q = m · (∂ym × ∂xm), (12)

where q is the topological density. The skyrmion number Q is
integer valued for all magnetic configurations with a constant
m at spatial infinity. For definiteness, we assume m = (0, 0, 1)
at spatial infinity in all our calculations.

III. CHIRAL DROPLET TEXTURES

We are looking for solutions of model (7) with skyrmion
number Q = 0. An ansatz for a Q = 0 configuration is conve-
niently given in terms of the stereographic variable, defined in
the Appendix, as

�0 = a

x + i|y| , (13)

where a is an arbitrary constant. The magnetization config-
uration produced by the form (13) is shown in Fig. 1. Half
of this configuration has the features of a skyrmion similar
to the form (A2), and the other half has the features of an
antiskyrmion similar to the form (A3). Such a configuration
may be called a skyrmion-antiskyrmion pair.

We perform numerical simulations using MUMAX3 [17].
We use the form (13) as the initial condition and apply
an energy minimization procedure. First, we use the mini-
mize() function of MUMAX3 that applies a conjugate gradient
method for energy minimization. The energy is minimized
until the error in the magnetization is smaller than 10−5

in every micromagnetic cell. We then integrate the Landau-
Lifshitz-Gilbert equation without the precession term until
either the total energy of the system reaches the numerical
noise floor of the simulation or the total simulation time ex-
ceeds 10 ns. The above methodology converges to a static
skyrmion-antiskyrmion configuration for a narrow range of
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TABLE I. Values for material parameters used in most of our
simulations presented in the figures: Ms is the saturation magneti-
zation, A is the exchange parameter, K is the easy-axis anisotropy
parameter [Keff includes the local effect of the magnetostatic interac-
tion according to Eq. (3)], and D is the DM parameter.

Parameter Value

Ms 8.38 × 105 A/m
A 1.1 × 10−11 J/m
K (Keff ) 11.93 (7.518) × 105 J/m3

D 3.5 × 10−3 J/m2

values of the dimensionless parameters ε, κ and for a range
of film thicknesses.

The complicated numerical minimization protocol fol-
lowed is necessary because we found that a simple mini-
mization via the micromagnetics package MUMAX3 can give
spurious static configurations of the form studied in this work.

In most of the numerical simulations presented in the fol-
lowing figures, we use the set of parameter values shown in
Table I. The resulting values for the length scale and timescale
in Eq. (7) are �w = 3.81 nm and τ0 = 5.14 ps, respectively.
The values of the dimensionless parameters are

ε = 0.6086, κ = 1.704. (14)

Figure 2 shows a skyrmion-antiskyrmion configuration
which is found as a static solution of the LLG equation (4).
This resembles, in its overall shape, a droplet of liquid, and
we will therefore refer to it as a chiral droplet (or, sim-
ply, a droplet). A larger part of the configuration has the
features of a skyrmion, and a smaller part has the features
of an antiskyrmion. It is not axially symmetric, nor does it
have a circular shape. In the example shown in Fig. 2, the
antiskyrmion part is at the top part of the droplet, but the
configuration can be rotated without changing its energy.

Figure 3 shows the distribution of the topological density
q defined in Eq. (12) for the skyrmion in Fig. 2. The area
of negative topological density is concentrated in the small
part of the droplet where the antiskyrmion is located, and it
takes very high values. The area of positive q is spread over a
much larger area around the droplet domain wall, and it takes
smaller values.

We could find stable chiral droplets only in thin films.
For df = 0.5 nm, we find a static droplet for values of the
dimensionless parameter in a narrow range around ε = 0.61.
Keeping ε constant, we could choose the DM parameter
in the range 2.9 mJ/m2 � D � 6 mJ/m2 (while varying the
anisotropy parameter K appropriately). We could also find
stable droplets for film thickness smaller than df = 0.5 nm
and for similar parameter values. Also, a stable droplet
for film thickness df = 1 nm for the parameter values D =
6 mJ/m2, K = 26.5 × 105 J/m2 (other parameters are as in
Table I). These values correspond to ε = 0.6086, κ = 5.01.
The droplet is stable for a range of parameter values around
the ones given above. We finally note that, as the parameter
space is large and hard to explore exhaustively, we cannot
exclude that the droplet may also exist for values of the pa-
rameters beyond those reported in this paper.

FIG. 2. (a) A static skyrmion-antiskyrmion droplet with Q = 0
found numerically for the parameter values given in Table I and for
film thickness df = 0.5 nm. For comparison, a Q = 1 skyrmion in
the same system has a radius of ∼16 nm. (b) Blowup of the anti-
skyrmion part of the configuration, where we show the full resolution
of the simulation. The simulated domain in the plane of the film is
400 × 400 nm2, and periodic boundary conditions are used. The cell
size in the simulations is approximately 0.195 × 0.195 × 0.5 nm3

(2048 × 2048 × 1 cells). We have performed simulations with dif-
ferent cell sizes to confirm that the presented droplet configuration
does not depend on the cell size.

In order to understand the droplet configuration, we have
to consider two main factors. We first note that the DM
energy gives a negative contribution only for the skyrmion
part. This is thus expanded at the expense of the antiskyrmion
part, which is suppressed. In the next step, we consider only
the domain wall region and note that the exchange energy
increases as the antiskyrmion part is suppressed and more
rapid changes of the magnetization occur. The result of the
two competing mechanisms is a small antiskyrmion part that
protrudes out of the rest of the domain wall in order to allow
more space for the domain wall of the skyrmion part. Implicit
in the above arguments is the assumption that the skyrmion
radius is similar to the case of the axially symmetric skyrmion
and it can be considered a given parameter.

The axially symmetric skyrmion is stabilized by the DM
interaction, and its size depends on the DM interaction

024431-3



NAVEEN SISODIA et al. PHYSICAL REVIEW B 103, 024431 (2021)

FIG. 3. The topological density q for the chiral droplet in Fig. 2.
The part where q < 0 (blue) occupies a very small region compared
to the part where q > 0 (red). The density q takes very large negative
values in a small region, while in the region with positive values, q is
small. The integrated topological density, or Q, is zero.

strength. For the parameters in Table I, its diameter is nu-
merically found to be approximately 40 nm, and it is thus
comparable to the size of the droplet. This shows that the DM
interaction is responsible for the stabilization of the droplet,
too. This is further verified by the fact that the droplets are not
stable when we continuously vary D to zero. The above show
that the chiral droplets are distinct from other topologically
trivial textures studied before, such as magnetic bubbles with
a zero topological number.

We conclude this section with a reference to previous
works on related textures. Reference [16] reports that the
chiral droplet is stable for 2/π ≈ 0.63 > ε > 0.59, within
an extended study on the diversity of chiral skyrmionic tex-
tures in a model without magnetostatic field. Textures with
skyrmion and antiskyrmion parts (“chimera skyrmions”), sim-
ilar to the ones reported here, have been found numerically
and studied within a model with frustrated isotropic ex-
change interaction and DM interaction [15,18,19]. Related
to our droplet are also the Q = 0 magnetic bubbles dis-
cussed within the relevant literature [2] and, more recently,
numerically calculated [20]. The latter are not chiral; they
are stabilized primarily by the magnetostatic interaction (and
a bias field), and their overall shape is almost circular. An-
other related structure (also termed a droplet) was reported
in Refs. [21,22], in films without DM interaction, and it is
a dynamical configuration exhibiting precession of spins. In
the chiral droplet studied here, spin precession does not occur
due to the breaking of rotational symmetry in the magnetiza-
tion space introduced by the chiral interaction. In Ref. [23],
Skyrmion-antiskyrmion pairs were studied for a model with
only exchange interaction, and they were found to be neces-
sarily propagating. A notable difference between the last two
studies of topologically trivial textures and the present droplet
is that the latter is found to be a static configuration.

IV. MOTION UNDER SPIN-TRANSFER TORQUE

We probe the dynamics of the Q = 0 droplet by applying
an in-plane charge current flowing in the magnetic film. We

model this system via the LLG equation including a Zhang-Li
spin-transfer torque term [24]

(∂t + Uμ ∂μ)m = −γ m × Heff + m × (α∂t + βUμ ∂μ)m,

(15)

where we have used the notation xμ with μ = 1 or 2 for
the two coordinates in the film plane. The velocity of the
electron flow is (U1,U2), and we will consider the two cases
(U1,U2) = (U, 0) and (U1,U2) = (0,U ), i.e., a current flow-
ing in the x direction and in the y direction, respectively. The
flow velocity U is called the adiabatic spin torque parameter,
and it is given by

U = PgμB

2|e|Ms
Je, (16)

where Je is the current density, P is the degree of polarization,
μB is the Bohr magneton, and g = 2 is the gyromagnetic ratio.
The parameter β, called the degree of adiabaticity, represents
the contribution of the nonadiabatic spin torque term relative
to the adiabatic one.

If we assume rigid translational motion of the droplet with
a velocity V = (V1,V2), i.e., we make the traveling wave
ansatz, then we have ∂t m = −Vν∂νm. We substitute this in
Eq. (15), and following the method of Thiele [25], we take the
cross product of both sides with ∂λm, then contract with m,
integrate the resulting equations for λ = 1, 2 over all space,
and set Q = 0 [26]. This shows that the motion is in the
direction of the current flow with velocity [26,27]

V = β

α
U . (17)

Therefore, in a steady-state motion, the droplet is not expected
to exhibit a component of the motion perpendicular to the
current, in contrast to the typical dynamics of the Q = 1
skyrmion.

For a more detailed description of the droplet motion and
of the following simulations, we recall a fundamental re-
sult given in Ref. [26]. That is, a propagating solution of
Eq. (15) with velocity V is also a solitary wave solution of
the conservative Landau-Lifshitz equation, i.e., Eq. (4) with
α = 0, albeit with a different velocity VLL. Specifically, let
us assume an electron flow velocity (U, 0) and a droplet
propagating with velocity V in the direction of the current,
i.e., m = m(x − V t, y). Equation (15) gives

(U − V ) ∂xm = −γ m × Heff + α

(
β

α
U − V

)
m × ∂xm.

(18)
If we assume a propagating solution of Eq. (18) with velocity
V = β

α
U , then the same configuration is a solitary wave sat-

isfying the conservative (α = 0) Landau-Lifshitz equation (4)
with a velocity

VLL = V − U =
(

β

α
− 1

)
U . (19)

In the special case β = α, a static solution of Eq. (4), say,
m0(x, y), gives the propagating solution m(x, y, t ) = m0(x −
Ut, y) of Eq. (18), with velocity V = U .

We now proceed to numerical simulations in which we
use as the initial condition the static droplet shown in Fig. 2.
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FIG. 4. (a) Snapshots of an initially static droplet during a simulation where a current Je is applied in the x direction for times 0 � t � 75 ns.
The parameters are U = 3.86 m/s, β = 0.075, and the damping parameter is α = 0.03. (b) The velocity of the droplet as a function of time.
Upon switching on the current the velocity is V = 4.02 m/s in the current direction (denoted Vx). The droplet is then accelerated up to
V = 9.45 m/s, which is close to the value 2.5U . After switching off the current, the velocity drops instantly by approximately 4 m/s (which
is close to U ), to V = 5.37 m/s. The droplet continues to travel, and the damping term decelerates the motion until it stops. The component of
the velocity perpendicular to the current (denoted Vy) is very small and goes to zero for steady-state motion.

For the results presented in this section, we use a domain of
400 × 400 nm2 with periodic boundary conditions. The cells
have dimensions of approximately 0.39 × 0.39 × 0.5 nm3

(1024 × 1024 × 1 cells); that is, the lattice is coarser than the
one used for the achievement of the static droplet in Fig. 2.
We use P = 0.56, and for our typical choice of current Je =
1.0 × 1011 A/m2, we have a flow velocity U = 3.86 m/s.

To follow the dynamics of the droplet, we measure its
position (X,Y ) using the formulas

X =
∫

x(mz − 1) dxdy∫
(mz − 1) dxdy

, Y =
∫

y(mz − 1) dxdy∫
(mz − 1) dxdy

. (20)

We calculate the skyrmion velocity using finite differences of
the position.

In the following simulations, we have chosen a current in
the x direction and a damping parameter α = 0.03. We use
as the initial condition the droplet m0(x, y) in Fig. 2 rotated
by π (the reason for the rotation will become apparent in the
following). For β = α we observe that the droplet of the initial
condition is traveling with velocity V = U (within numerical
error) in the direction of the current, m = m0(x − Ut, y), as
anticipated from the discussion in connection with Eq. (19).
During the simulation the initial droplet remains unchanged.
We also observe a small component of the velocity ∼0.15 m/s
perpendicular to the current direction, and we attribute it to
numerical errors.

In the next simulation, we choose β = 0.075 (that is, β =
2.5α). A current is applied for the time interval 0 � t � 75 ns,
and it is then switched off. Figure 4 shows snapshots of the
droplet during the simulation and the velocity of the droplet
as a function of time. Upon switching on the current the
droplet instantly acquires a velocity V in the current direction,
which is close to U . It is subsequently accelerated up to
V = 9.45 m/s, which is close to the value 2.5U and seems
to saturate. The propagating droplet is different (larger) than
the static one, as clearly seen in the snapshots.

When the current is switched off, at t = 75 ns the droplet
velocity is reduced instantly by approximately 4 m/s (which is

close to U ) to V = 5.37 m/s. From this point on, the relevant
equation is Eq. (4), while the reduction of the velocity is
anticipated based on Eq. (19).

Let us summarize the procedure. The electron flow [second
term on the left in Eq. (15)] induces an initial jump in the
droplet velocity. Further than that, the current initially accel-
erates the droplet, which thus presents Newtonian dynamics.
Note that this is analogous to the case of a skyrmionium [26].
The configuration gradually converges to a solitary wave solu-
tion of the conservative Landau-Lifshitz equation (see [28] for
a proof of this procedure in a similar problem). The solitary
wave continues to travel also after the current is switched
off. The damping term decelerates the motion until it even-
tually stops. We measure a small component of the velocity
in the direction perpendicular to the current (Vy) during the
acceleration and the deceleration phase. Part of it is due to
the way we measure the position of the droplet, and another
part is due to numerical errors. Specifically, the droplet grows
in size as it accelerates and shrinks as it decelerates, causing
its center, as we define it, to shift in the vertical direction. It
cannot be excluded that part of the vertical shift is a genuine
physical phenomenon. However, given the accuracy of the
present numerical calculation, this cannot be claimed on the
basis of the reported results.

In the next simulations, we use as the initial condition
the droplet exactly as shown in Fig. 2. We choose α = 0.1
and β = 0.2. The larger damping is chosen in order to avoid
transients and obtain the essential dynamics in a shorter simu-
lation time. Furthermore, we now choose P = 0.538, and this
gives U = 3.72 m/s.

We apply a current in the x direction, or (U1,U2) = (U, 0).
Figure 5(a) shows snapshots of the droplet during the simu-
lation. The motion is initially complicated, with the droplet
making a full π turn. For times greater than 150 ns steady-
state motion is reached, and the velocity has a constant value
of 7.41 m/s along the direction of the current, in very good
agreement with the theoretical prediction V = 2U given in
Eq. (17). We finally mention that for large values of β (e.g.,
β = 5α) the droplet is destroyed while it is moving, by

024431-5



NAVEEN SISODIA et al. PHYSICAL REVIEW B 103, 024431 (2021)

0 ns 20 ns
40 ns

60 ns
80 ns

100 ns 120 ns 140 ns 160 ns 180 ns 200 ns

0 ns 20 ns
40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns 180 ns 200 ns

20
40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns 180 ns 200 n

(a)

(b)

FIG. 5. Snapshots of the droplet in Fig. 2 when it is placed under spin torque at time t = 0 and is set in motion. The flow velocity is
(a) (U, 0) and (b) (0,U ) with U = 3.72 m/s. The damping parameter is α = 0.1, and the nonadiabaticity parameter is β = 0.2. The simulation
domain is 400 × 400 nm2, and we apply periodic boundary conditions.

expanding in size. We continue to present the full set of our
simulations before we proceed to give an explanation for the
steady state achieved by the droplet.

In the next simulation, we choose a current along the y
direction, or (U1,U2) = (0,U ). Figure 5(b) shows a series
of snapshots of the droplet during the motion. The droplet
is initially making a π/2 turn. A propagating steady state is
eventually reached with a velocity of 7.41 m/s in the y direc-
tion, in very good agreement with the theoretical prediction
V = 2U given in Eq. (17).

The important feature shared by all the simulations that
we have seen in this section is the orientation of the droplets
with respect to the direction of motion in the steady state.
Specifically, in both Figs. 5(a) and 5(b), the droplet goes to
steady-state motion only after it rotates in order to achieve
the particular orientation. This is because the steady state
achieved is a solitary wave; that is, the propagating droplet is a
rigidly propagating solution of the Landau-Lifshitz equation.
Such solutions have well-defined features. For example, the
shape of the solitary wave defines its velocity. In our case,
the particular orientation of the droplets gives a solitary wave
velocity in the positive x axis for the case of Figs. 4 and 5(a)
and in the positive y axis in the case of Fig. 5(b). Exchanging
the positions of the skyrmion and the antiskyrmion would
invert the direction (sign) of the velocity. One could conclude
that the current sets the droplet in motion, revealing its solitary
wave character.

Regarding the configuration of a traveling droplet, a heuris-
tic argument can be given using the well-known dynamics of
topological skyrmions. Under the current, the skyrmion Hall
effect acts on the opposite topological charges of the two
parts of the droplet. The skyrmion part is pushed to the one
direction (upwards), while the antiskyrmion part is pushed
to the opposite direction (downwards). This explains why the
traveling droplet always acquires the same orientation.

In both Figs. 5(a) and 5(b), the droplet is deflected along
the y axis during the initial stages of the motion. We do not
have a full explanation of this phenomenon, but we give here
a description of it. In the case of Fig. 5(a), the skyrmion Hall
effect acting in the two parts of the droplet initially com-
presses it. Such a compressed droplet is expected to develop
a velocity in the direction perpendicular to the line connect-
ing its skyrmion and antiskyrmion parts. Since the droplet is
rotated, the motion due to the compression is at an angle to
the x axis, towards the positive y direction. The droplet is
apparently again decompressed at approximately t = 60 ns.
After this time, the skyrmion Hall effect acts in the two parts
to elongate the droplet. The rotating droplet is now deflected
towards the negative y direction.

The solitary wave character of topologically trivial
skyrmionic textures has been studied for the case of a
skyrmionium, a topologically trivial, Q = 0, configuration in
DM ferromagnets [11]. A static skyrmionium is axially sym-
metric, and a propagating one is elongated. A slowly moving
skyrmionium presents Newtonian dynamics, and a fast mov-
ing one (velocity close to the maximum) presents relativistic
dynamics [8].

V. A DROPLET IN A DISK ELEMENT

Static chiral droplets are also found in the confined ge-
ometry of a magnetic disk-shaped element (a magnetic dot).
We apply an energy relaxation algorithm as in Sec. III. This
converges and gives a static skyrmion-antiskyrmion droplet
for a wide range of parameter values.

We find droplets for a thickness df = 0.5 nm and for sim-
ilar parameter values as in the case of a film. In addition,
we were also able to find stable droplets for larger thick-
nesses. Fig. 6 shows droplets in dots of two different sizes
with df = 5 nm and for different sets of parameter values. In
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FIG. 6. Static skyrmion-antiskyrmion droplets in disk elements
with thickness df = 5 nm. (a) The disk diameter is d = 70 nm. The
parameter values are as in Table I. (b) The disk diameter is d =
120 nm. The parameter values are D = 1 mJ/m2, K = 4.43505 ×
105 J/m3 (other parameters are as in Table I). In this case, we have
a more extended antiskyrmion part. For comparison, we note that a
usual skyrmion (with Q = 1) has an approximate radius of 15 nm for
the dot in (a) and 30.5 nm for the dot in (b). They are thus somewhat
larger than the corresponding Q = 0 configurations shown here.

Fig. 6(a), we have a smaller dot, and the parameter values
are the same as those used in Fig. 2 for the infinite film. The
droplet is stable for a range of parameter values. For fixed
ε = 0.6086, the droplet is stable for 3.0 � D � 7.6 mJ/m2

(when the anisotropy parameter K is appropriately varied).
In Fig. 6(b), we have a larger dot, and the parameter val-

ues (given in the caption) correspond to ε = 3.16 and κ =
0.00515. The value of ε is outside the range for the existence
of a skyrmion in a film (when the long-range part of the
magnetostatic field is neglected). This shows that the effect
of the magnetostatic field due to the confined geometry of
a dot is substantial. The magnetostatic field from the lateral
boundaries contributes to stabilizing the configuration. This
phenomenon has already been noted in connection with mag-
netic bubbles in dots [29–31]. The effect is verified in the
present case.

In the case of Fig. 6(b), the antiskyrmion part is smoother
than in all other examples presented in this paper. This can be
attributed to the magnetostatic field originating in the bulk in

combination with the DM interaction. It thus appears that the
details of the configuration can be tuned, at least in the case of
a droplet in a confined geometry.

In order to explore the origin of the configuration smooth-
ing, we have calculated numerically droplets in a dot
neglecting the magnetostatic field. We have observed that the
droplet becomes smaller as the dot size decreases; thus, the
boundaries do have an effect acting to shrink the droplet size
(for the spin configuration at boundaries, see, e.g., Ref. [32]).
However, we have not observed a smoothing of the droplet
configuration. Therefore, the magnetostatic field is necessary
to obtain a smoother droplet profile in a dot.

VI. CONCLUDING REMARKS

We have found numerically skyrmionic textures that have
both a skyrmion part and an antiskyrmion part (chiral
droplets), with skyrmion number Q = 0 in ferromagnets with
perpendicular (easy-axis) anisotropy and DM interaction, in-
cluding the magnetostatic field. They exist, in thin films,
for a narrow range of parameter values. Under current, they
move along the current exhibiting no Magnus force effect, and
thus, their dynamics is different than the dynamics of Q = 1
skyrmions. Their robustness is seen in their behavior under
currents, where they persist for times long enough to fully
reveal their dynamics.

In view of the predicted narrow range of parameters
for their stability in infinite films, it would appear to be
a challenge to observe them experimentally. Nevertheless,
topologically trivial objects in the form of skyrmion-
antiskyrmion pairs have already been observed [14].
Skyrmion-antiskyrmion pairs could also be very common as
transient (short-lived) states. We expect that the results of the
present paper will also help in understanding such states.

One could consider materials that support antiskyrmions,
such as those reported in Ref. [7]. We have also found numer-
ically skyrmion-antiskyrmion droplets in such systems. They
are very similar to the droplets presented in this paper, except
that the skyrmion part is replaced by an antiskyrmion part and
vice versa. That is, the antiskyrmion part is larger, and the
skyrmion part is smaller.

In materials with some special form of DM interaction,
such as those studied in Ref. [6] (especially in Supplementary
Note 1), the skyrmion and the antiskyrmion are both favored.
In such models, a skyrmion-antiskyrmion droplet can be ex-
pected to have greater significance.

We have found that chiral droplets exist for a wider range
of parameter values also in confined geometries. Given the
robustness of the Q = 0 droplets in magnetic dots, experi-
mental observation of these appears to be plausible. Particular
attention should be given to the dynamics of a Q = 0 texture
in a dot as it is expected to be different than the rotational
dynamics of Q = 1 skyrmions [33].
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APPENDIX: STEREOGRAPHIC VARIABLE FOR
SKYRMIONS

Skyrmion configurations often have a simple represen-
tation when we use the stereographic projection of the
magnetization, defined as

� = mx + imy

1 + mz
. (A1)

The axially symmetric form

�S = a

ρ
eiφ = a

x − iy
, (A2)

where (ρ, φ) are polar coordinates and a is an arbitrary con-
stant giving the skyrmion radius, represents a skyrmion of unit
degree, Q = 1. The form

�A = a

ρ
e−iφ = a

x + iy
(A3)

has opposite winding than solution (A2), as seen in the sign
of the complex exponent. Such a configuration has skyrmion
number Q = −1, and it represents an antiskyrmion.
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