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Ab initio based models for temperature-dependent magnetochemical interplay in bcc Fe-Mn alloys
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Body-centered cubic (bcc) Fe-Mn systems are known to exhibit a complex and atypical magnetic behavior
from both experiments and 0 K electronic-structure calculations, which is due to the half-filled 3d band of
Mn. We propose effective interaction models for these alloys, which contain both atomic-spin and chemical
variables. They were parameterized on a set of key density functional theory (DFT) data, with the inclusion of
noncollinear magnetic configurations being indispensable. Two distinct approaches, namely a knowledge-driven
and a machine-learning approach have been employed for the fitting. Employing these models in atomic Monte
Carlo simulations enables the prediction of magnetic and thermodynamic properties of the Fe-Mn alloys, and
their coupling, as functions of temperature. This includes the decrease of Curie temperature with increasing Mn
concentration, the temperature evolution of the mixing enthalpy, and its correlation with the alloy magnetization.
Also, going beyond the defect-free systems, we determined the binding free energy between a vacancy and a Mn
atom, which is a key parameter controlling the atomic transport in Fe-Mn alloys.
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I. INTRODUCTION

Thermodynamic and kinetic properties of Fe-based alloys
can be strongly influenced by magnetism. For instance, previ-
ous studies have shown that magnetism in Fe-Cr alloys has a
crucial impact on the mixing enthalpy and induces an asym-
metry in the mutual solubility of Fe and Cr at low temperature
[1,2]. It is also believed that, for a large range of con-
centrations in Fe-Co alloys, the ferromagnetic-paramagnetic
(FM-PM) transition is closely linked to the body-centered-
cubic (bcc) to face-centered-cubic (fcc) structural transition
[3–5]. In fcc Fe-Mn alloys stacking-fault energies strongly
depend on magnetic order [6]. Also, it is clearly known from
experiments that the FM-to-PM transition in a bcc Fe sys-
tem induces an abrupt acceleration of the diffusion of Fe
and most of solute [7–17]. Among the binary Fe alloys, the
Fe-Mn system exhibits some special behavior related to the
half-filled 3d band of Mn. For example, the typical diffu-
sion acceleration around the Curie point is not visible for
Mn solutes in bcc Fe [7,18]. Pure bulk Mn itself shows a
complex magnetostructural phase diagram [19,20]. Further, a
strong magnetoelastic coupling in Fe-Mn alloys was raised
previously [21]. However, so far, the magnetothermodynamic
and magnetokinetic interplays in Fe-Mn systems remain
unclear.

This study is focused on bcc Fe-Mn, since we are mainly
interested in the Fe-rich part of this alloy. As can be seen in the
equilibrium phase diagram from, for example, Witusiewicz
et al. [22] and Bigdeli et al. [23], the stable domain of
bcc Fe-Mn is limited to the dilute region (at most 5 at. %
Mn). Despite the restricted homogeneity region, bcc Fe-Mn
presents some intriguing properties, such as an extremely
environment-dependent magnetic state of Mn solutes [24,25]
and the anomalous Mn-solute diffusion behavior in bcc Fe-

Mn. An accurate finite-temperature modeling of properties
in this system that properly account for magnetic effects is
highly necessary but challenging.

Up to now, mainly two distinct modeling approaches have
been employed for the study of magnetic alloys at finite tem-
peratures. On one hand, the disordered local moment (DLM)
approach [26–31], often combined with the coherent poten-
tial approximation (CPA), allows one to describe alloys with
both chemically and magnetically random structures, in order
to mimic an ideal paramagnetic solid solution occurring at
high temperatures. Recently, the itinerant coherent potential
approximation (ICPA) has also been employed for the descrip-
tion of the PM state [32]. Some DLM studies were also carried
out adopting supercells. For instance, a spin-space average
approach was used to describe the disordered magnetic state
[1,33,34]. Note that magnetic short range orders (SRO) are
usually not taken into account in these approaches, and that
the temperature evolution of the alloy properties cannot be
directly predicted.

The other methodology, based on the parametrization of
effective interaction models (EIMs) containing a magnetic and
a chemical contributions has also shown interesting results for
the study of materials properties as functions of temperature.
Namely, Pierron-Bohnes et al. have used such an approach,
based on the Ising model, in an early study on Fe-Co alloys
[35]. A more sophisticated magnetic cluster expansion (MCE)
approach was later applied by Lavrentiev et al. to the study
of Fe-Ni [36], Fe-Cr [37], and Fe-Ni-Cr [38] alloys. Similar
models were also developed by Ruban et al. [28] for Fe-Cr
and by Tran et al. [39] for Fe-Co alloys. These models are
generally used in on-lattice Monte Carlo (MC) simulations for
finite temperature studies, Chapman et al. [40] have recently
adapted the MCE model by Lavrentiev et al. [37] for spin-
lattice dynamics simulations. The latter simulation technique
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is exempted from the rigid-lattice constraint but is computa-
tionally much more demanding.

So far, such effective models have mostly been employed
for the prediction of magnetic properties rather than thermo-
dynamic properties such as phase diagrams. The simulations
for the former are usually performed at fixed atomic struc-
tures, where only the magnetic structure evolves. This is
mainly due to the complexity and high computational cost
of MC simulations if dealing with a coupled evolution of
both chemical and magnetic degrees of freedom. Moreover,
the available models are limited to defect-free alloys, which
prevents us from modeling kinetic properties.

In order to investigate the full interplay between mag-
netism and thermodynamic and defects properties for bcc
Fe-Mn alloys, we aim at developing an effective interaction
model, fitted on ab initio results, which takes all the rele-
vant chemical and magnetic variables explicitly into account.
Because the Mn magnetic moments exhibit significant mag-
nitude variations for different local chemical environments,
and in a highly complex way, the magnetic-interaction part
of our model is based on a generalized Heisenberg formalism
[1,37]. We first obtained a model for ideal Fe-Mn alloys. Then,
as real materials are never defect-free, we also modified the
obtained defect-free EIM to include the presence of a vacancy,
as previously done for bcc Fe [17]. Being the simplest of the
structural defects, vacancies play a crucial role in the atomic
transport in Fe alloys. Note that magnetic properties of Fe
and Mn atoms and the chemical interactions can significantly
change around a vacancy [25].

An accurate parametrization procedure of such EIMs is
generally a nontrivial task. In this paper, we propose two
different strategies: The first one relies on the knowledge of
key properties of the system, identified from prior density
functional theory (DFT) results. The second one applies a
machine-learning approach. Both resulting models [respec-
tively, knowledge-driven (KD) and machine-learning (ML)
models] are compared for quality assessment, and advan-
tages and drawbacks of the two approaches are derived and
discussed.

The paper is organized as follows: Section II describes de-
tails of DFT calculations for the models parametrizations and
of Monte Carlo simulations for finite-temperature studies. The
two strategies for the parametrization of EIMs are explained in
Sec. III, and the accuracy of the obtained models are verified
in Sec. IV. Then, the EIMs are applied (in Sec. V) to the
prediction of various temperature-dependent properties that
cannot be accessed directly from DFT calculations. As much
as possible, the agreement with experimental or Calphad re-
sults is discussed.

II. COMPUTATIONAL METHODS

Throughout the paper, magnetic moments are expressed
in Bohr magnetons and the model parameters are energies,
expressed in meV.

A. Density functional theory calculations

In this work, density functional theory (DFT) calculations
are performed in order to parametrize the effective interaction

models. Although a full description of these calculations and
the results is given in Ref. [25], we provide the key features in
this section.

The DFT calculations are performed using the projector
augmented wave (PAW) method [41,42] as implemented in
the VASP (Vienna ab initio simulation package) code [43–45].
The results presented are obtained using the generalized
gradient approximation (GGA) for the exchange-correlation
functional in the Perdew-Burke-Ernzerhof (PBE) form [46].
All the calculations are spin polarized. 3d and 4s electrons are
considered as valence electrons. The plane-wave basis cutoff
is set to 400 eV. Atomic magnetic moments are obtained by
a charge and spin projection onto the PAW spheres [44,45] as
defined by the PAW potentials.

The k-point grids used in our calculations were adjusted
according to the size of the supercell. They were chosen to
achieve a k sampling equivalent to a bcc cubic unit cell with
a 16 × 16 × 16 shifted grid, following the Monkhorst-Pack
scheme [47]. The Methfessel-Paxton broadening scheme with
a 0.1 eV width was used [48]. The convergence threshold
for the electronic self-consistency loop was set to �E =
10−6 eV and atomic position relaxations with conservation
of the total volume of the system were performed down to
a maximum residual force of 0.02 eV/Å. We have verified
that the magnetic structures and cluster formation energies
are well converged with respect to the choice of k-point grids
and the cutoff conditions. The resulting error bars for en-
ergy differences and magnetic moments of Fe and Mn are,
respectively, 0.02 eV, 0.01 μB, and 0.1 μB. These are mainly
associated to the convergence of the plane-wave energy cutoff
and the k-grid density. All the alloy concentrations given in
the paper are expressed as atomic percent, if not explicitly
otherwise indicated.

Our fitting database consists in various systems
containing Mn. Some are simply isolated Mn solutes Mn
dimers at various distances (up to 8nn) in the Fe lattice,
providing crucial information on the magnetic behavior
of Mn solutes in a highly diluted environment and the
behavior of the surrounding Fe magnetic moments. The
dataset also contains random solid solutions over the whole
range of concentrations (along with B2 and L12 ordered
phases) whose mixing enthalpy is crucial to determine the
phase separation and ordering tendency of the alloy. These
tendencies are indeed the basis of alloys thermodynamic
properties. Finally, the dataset also contains clusters from 3
to 15 Mn atoms with various magnetic states each. Since bcc
Fe-Mn exhibit an unmixing tendency, the presence of these
clustered configurations in the dataset is also very important to
model the magnetic preferences of Mn atoms in these clusters
during the decomposition. The random solid solutions are
modeled using special quasirandom structures (SQS) which
are obtained by generating 100 random configurations and
selecting the lowest short range order among these. For
each of these systems, several magnetic configurations
have been generated. We note that, for isolated Mn solutes
and Mn dimers in pure Fe, various noncollinear magnetic
configurations were also considered. Considering the various
chemical and magnetic configurations, the fitting database
contains approximately 20 dimer configurations, 20 Fe-Mn
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SQS systems, and one hundred Mn-cluster configurations.
For more details, see Ref. [25].

B. Monte Carlo simulations

All the Monte Carlo (MC) simulations presented in this
work are performed on a 16 000 atoms system assuming a
bcc lattice (20 × 20 × 20 cubic unit cells). Random solutions
are generated by randomly distributing p Mn atoms in the
Fe matrix, where p is defined as the total number of atoms
multiplied by the imposed Mn atomic concentration. In these
simulations, the number of atoms is sufficiently large to ensure
a proper random distribution of local environments. It has
been checked that the results do not depend on the distribution
of atoms in random solutions. For each simulation, 5 × 108

initial spin equilibration Metropolis attempts are performed
in order to thermalize the magnetic structure. In the most
difficult case, the convergence is reached after approximately
108 steps. For the spin-MC simulations at a fixed atomic
configuration, we perform additional 4 × 108 MC steps for
data collection.

In the simulations involving both magnetic equilibrations
and atomic exchanges (namely spin-atom MC), after the spin
thermalization, we perform a Metropolis attempt to exchange
the respective positions of two randomly chosen atoms, once
every Ns spin-MC steps. Convergence tests were done in order
to ensure that enough spin-MC steps are performed between
two successive atom-exchanges attempts. In the present cal-
culations, 100 spin-MC attempts are carried out randomly
anywhere in the system and 500 spin-MC attempts are per-
formed in the two nearest-neighbor shells of the exchanged
atoms.

In the presence of a vacancy, we follow a Monte Carlo
method proposed in our previous study [17] which allows
to determine the vacancy formation magnetic free energy as
a function of temperature. The overall principle is that two
separate subsystems are considered with the first one frozen
at the FM state, while the magnetic configuration of the sec-
ond one is allowed to evolve according to temperature. The
vacancy is allowed to visit each site of the two subsystems
via the Metropolis algorithm. Note that when the vacancy
goes from one subsystem to the other, the resulting energy
change should also account for the fact that the energy of an
Fe atom (calculated by dividing the total energy of the system
by the number of atoms composing it) at each temperature,
is generally different in both subsystems. This total energy
of the system results from an average of the total energy over
100 million spin-MC steps (different spin configurations) after
thermalization of spins. Then, based on the relative number of
visits to the two systems and the vacancy formation energy
at the FM state, which is known to be 2.20 eV. Since in this
study the vacancy properties are studied at the dilute Mn limit,
we only consider the vacancy of Fe, which we believe to be a
reasonable approximation, and the energy per atom calculated
as it is described above is practically the same as the energy
of an Fe atom. More details can be found in Ref. [17].

Please note that the lattice vibrational entropies are not
intrinsically accounted for in the present EIM Monte Carlo
setup. When necessary, they can be calculated additionally us-
ing DFT, in a similar way as in Ref. [17]. In the present study,

we neglected spin-orbit coupling both in the DFT calculations
and MC simulations because the effect is generally weak in
these systems, when focusing on bulk properties [49–51].

III. EFFECTIVE INTERACTION MODEL

In this study, the EIMs adopt a Hamiltonian within
the same formalism as in Refs. [36,37]. It is composed
of a magnetic part, which includes an onsite term and a
Heisenberg-like term and a pairwise chemical (nonmagnetic)
interaction part.

The Hamiltonian has the following formal expression:

H =
N∑
i

(
AiM

2
i + BiM

4
i + CiM

6
i

)

+
N∑
i

P∑
n

Zn∑
j

J (n)
i j Mi · M j +

N∑
i

P∑
n

Zn∑
j

V (n)
i j σi · σ j,

(1)

where N is the total number of atoms, P is the maximum range
of interactions in terms of neighbor shells, Zn is the coordi-
nation number of each neighboring shell, Mi is the magnetic
moment of the ith atom, Mi is its magnitude. V (n)

i j and J (n)
i j

represent, respectively, the chemical pair interaction and the
magnetic exchange-coupling parameters between atoms i and
j, at a range n. As shown in the Appendix, these interaction
parameters V (n)

i j and J (n)
i j depend on the chemical species of

the ith and the jth atoms. σi is the occupation of the ith site,
whose value is 1 if there is an atom on the site, and 0 if there
is a vacancy. Note that since every pair interaction is counted
twice, the 1/2 factor is included in the pairwise interaction
parameters (V (n)

i j and J (n)
i j ) listed in the Appendix.

Ai, Bi, and Ci are the magnetic onsite parameters of the
ith atom. In order to keep this model as simple as possible,
only three terms are considered in the magnetic onsite terms.
Their role is to prevent the divergence of the magnetic moment
magnitudes caused by the spin longitudinal variations due to
the Heisenberg-like terms.

We use the DFT data described in Sec. II A to determine
the free parameters. We present, in the following subsections,
the two models fitted on the same DFT dataset and based
essentially on the same Hamiltonian but resulting from the
two different parametrization strategies.

A. Knowledge-driven (KD) model

For this model, we have chosen to determine the free
parameters guided by key characteristics of this system that
are revealed by the DFT investigations. In particular (i) in
the presence of a magnetic frustration, the Mn-Mn interaction
generally dominates over the Fe-Mn AF tendency, and (ii)
the presence of two magnetic minima for a Mn solute, with
their relative stability highly dependent on the local chemical
environment [25].

A least-squares fitting method is applied. As the problem
is over-determined, we applied a progressive parametrization
procedure to reproduce a large number of physical properties
derived from the DFT calculations. To this end, a priority is
given to those data we consider to be the most important and
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compromises are accepted for less relevant properties as, e.g.,
NM Fe.

The procedure consists of fitting first the magnetic-
interaction parameters of pure Fe and pure Mn on the
respective bulk magnetic properties. In a second step, we
fit the Fe-Mn magnetic interactions parameters, keeping the
pure-system parameters fixed. In order to fit these mag-
netic parameters, we use the DFT-predicted energy difference
between systems with identical atomic configurations but dis-
tinct magnetic states. It allows us to attribute the total energy
difference to the variation of the magnetic state. As the EIM
will be applied to on-lattice MC simulations, any deviation
from the perfect bcc structure due to atomic relaxations in the
DFT calculations is not explicitly considered, but its effect
on the total energy is taken into account in the energy differ-
ences. Finally, once a satisfactory set of magnetic parameters
is found, the nonmagnetic parameters (associated to chemical
bonding) are fitted on the DFT predicted mixing energies of
Fe-Mn random solutions, represented by special quasirandom
structures (SQSs).

1. Magnetic parameters from pure bcc Fe and bcc Mn properties

The Fe-Fe magnetic exchange-coupling parameters (Ji js)
and the onsite parameters (AFe and BFe, for the sake of sim-
plicity CFe = 0) are determined by using energies from DFT
calculations performed on pure Fe systems (128-atom super-
cells) with various magnetic states. The Ji js are fitted up to
the fifth nearest-neighbor (5nn) shell. The systems used in
our DFT study include ferromagnetic (FM), antiferromagnetic
(AF), double-layer antiferromagnetic (AFD), quadruple-layer
antiferromagnetic (AF4), nonmagnetic (NM), and also tens of
magnetically disordered systems (random collinear magnetic
moments). For the magnetically ordered structures, the cal-
culations are performed using the corresponding equilibrium
lattice constant (a0). For the magnetically disordered struc-
tures, the FM equilibrium a0 was assumed. We checked that
the residual pressure remains lower than 10 kbar. We note that
the obtained set of Ji js is highly consistent with an earlier
literature study [52].

Since we are mainly interested in the Fe-rich region of
bcc Fe-Mn alloys, an accurate description of bcc Mn bulk
properties is not a priority. However, it is still necessary to fit
correctly the Mn magnetic parameters (AMn, BMn, and Ji js, for
the sake of simplicity CMn = 0) in order to predict properly the
interaction between various Mn solutes and the Mn clustering
in the Fe lattice. We fit these interaction parameters on DFT
data of pure bcc Mn in a similar way as for the Fe parameters.
The Ji js are also considered up to the fifth neighbor shell.

Please note that the relative values of Fe-Mn and Mn-Mn
Ji js control the competition of these interactions in the pres-
ence of a magnetic frustration. They have a critical effect in
the determination of the magnetic ground state of Fe-Mn sys-
tems, especially when Mn clusters are present. Therefore, in
practice, the obtained Mn-Mn parameters are slightly adjusted
once the Fe-Mn Ji js are determined.

Figure 1 shows the curves of the magnetic onsite energy
imposed by the magnetic onsite terms as a function of the
magnetic moment magnitude for Fe and Mn atoms. The onsite
energies Ai, Bi, and Ci in Eq. (1) do not depend on the mag-

FIG. 1. Evolution of the magnetic onsite energy as a function of
the magnetic moment magnitude. The magnitude of Fe spins is stiffer
than the magnitude of Mn spins.

netic environment. As can be noticed in Fig. 1, the minimum
of the Mn curve is more shallow and flatten than the one of Fe.
This is consistent with DFT data [25] indicating that the mag-
netic moment magnitude of Mn atoms is much more dispersed
than the ones of Fe atoms, for different local environments.

Figure 2 shows the model prediction of the energy dif-
ference between the respective magnetic ground state and
various ordered magnetic states of pure bcc Fe and bcc Mn,
using the final sets of parameters. For a close comparison,
the DFT magnetic configurations are used as input for the
EIM. The comparison with DFT results shows that the energy
hierarchy of the various ordered magnetic states is well repro-
duced, while some deviations in quantitative energy values (in
particular for NM-Fe) result from a compromise of consider-
ing various materials properties.

2. Fe-Mn magnetic parameters

As for Fe-Fe and Mn-Mn magnetic parameters, the Ji js
between Fe and Mn spins are also considered up to the 5nn
shell. They are obtained by fitting to DFT energy differences
between Fe-Mn systems (namely isolated Mn solutes, small
Mn clusters, and Fe-Mn random solutions) with the same
atomic configuration but different magnetic structures. Fit-
ting these parameters with random solutions over the whole
range of concentrations offers a large amount of different
local environments which allows to naturally sample more
accurately the particularly complex variations of average Mn
magnetism with Mn concentration. Also, since the Mn-Mn
magnetic interactions are dominant over Fe-Mn ones, the
magnetic properties of clusters are expected to be dictated
mainly by Mn-Mn interaction parameters.

It is worth mentioning that the presence of a magnetic
frustration can be partially resolved by two alternative solu-
tions: Either decreasing the spins magnitudes or developing a
noncollinear magnetic arrangement. Both features were found
in the case of Fe-Cr systems [53]. For the Fe-Mn alloys, the
antiferromagnetic tendency of Fe-Mn and Mn-Mn interac-
tions, although weaker than the Fe-Cr case, can also induce
the emergence of a magnetic frustration at low or intermediate
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FIG. 2. Model predictions of the energy differences between ordered magnetic states of bcc Fe (left) and bcc Mn (right), using the magnetic
moments predicted from DFT, compared to DFT results.

temperatures. We note that, using simple local-environment
independent Ji js, many noncollinear ground states are found
when performing Monte Carlo simulations. These states are
actually an artifact of the EIM, since their energies are signif-
icantly higher than those of other collinear states according to
our DFT verification.

In order to solve this problem, we added to the Fe-Mn
exchange-coupling parameters a spin-angle dependence, fitted
to DFT noncollinear data obtained for an isolated Mn solute in
bcc Fe [25] (Fig. 3). The principle is to add a penalty term Jn

0 ·
θ−90◦

90◦ that depends on the angle θ between the Mn magnetic
moment and the average magnetic moment of the Fe atoms
in the two nearest-neighbor shells of the concerned Mn atom.
Figure 3 presents the energy dependence of a systems with an
isolated Mn atom in a FM Fe matrix on this angle θ . As can
be observed, our expression allows to reproduce correctly the
noncollinear barrier between the two collinear minima with
the angle equal to 0◦(FM-Mn) and 180◦(AF-Mn).

In addition, as shown by DFT studies Ref. [25], it is
specifically for Fe-Mn alloys very important to consider the
dependence of the Fe-Mn magnetic-interaction trend on the

FIG. 3. Energy of an isolated Mn atom in a ferromagnetic Fe
matrix with various angles compared to the Fe atoms. The ground-
state configuration (Mn antiparallel to Fe) is chosen as a reference.

Mn concentration in random solutions. In the dilute limit,
the Fe-Mn interaction tends to be antiferromagnetic, while at
higher concentration (above 7 at. % Mn) it becomes ferro-
magnetic. In order to properly reproduce this feature, a local
concentration dependent term (fourth degree polynomial) is
also added to the Fe-Mn Ji js.

The final expression for the Fe-Mn exchange-coupling pa-
rameters is:

Jn
Fe-Mn =

[
Jn

0 · θ − 90◦

90◦

]
+ a · [Mn]4

loc + b · [Mn]3
loc

+ c · [Mn]2
loc + d · [Mn]loc + e, (2)

where the Jn
0 is the original Jn

Fe-Mn parameter, before consider-
ing the angle and concentration dependencies. This parameter
ensures the neighbor-shell dependence of the interaction
(since the angle and concentration dependencies do not de-
pend on the interatomic distance). [Mn]loc is the local Mn
concentration in the five nearest-neighbor shells around the
concerned atom.

3. Nonmagnetic parameters

At this point, all the free parameters of the magnetic
part of the Hamiltonian are determined and may be used to
estimate the magnetic contribution of the energy difference
between two systems. It is for instance possible to calculate
the magnetic contribution to the mixing energy of Fe-Mn solid
solutions at any concentration, using the following expression:

Emix(Fe-Mn) = E tot(nFe + pMn) − nE (Fe) − pE (Mn)

n + p
,

(3)

where E tot(nFe + pMn) is the total energy of the Fe-Mn solid
solution, E (Fe) is the energy per atom of pure bcc Fe (in its
lowest energy magnetic state: FM), and E (Mn) is the energy
per atom of pure bcc Mn.

The fitting of these nonmagnetic parameters is performed
using the DFT Fe-Mn SQS systems, as they include a large
number of different local environments. Also, mixing energies
of these random alloys are a good indicator of the phase
separation or ordering tendency of the alloy, which is one of
the fundamental thermodynamic properties of alloys.
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FIG. 4. Total mixing energy obtained from DFT calculations and
the effective interaction model. The DFT configurations and mag-
netic moments have been used as input for the EIM.

The difference between the mixing energy obtained from
DFT calculations (which includes magnetic and nonmagnetic
contributions) and the magnetic contribution of the mixing
energy from the EIM provides the nonmagnetic contribution
of the mixing energy. Chemical parameters of the model are
fitted to the latter in order to accurately reproduce the DFT to-
tal mixing energy with the model. Figure 4 shows the mixing
energies obtained from DFT and also the mixing energies cal-
culated with the KD and ML models, using the DFT magnetic
and atomic configurations (without further relaxation).

B. KD model including a vacancy

With minor modifications, the obtained KD model can be
extended to account for the presence of a small concentration
of vacancies, represented by a Fe-Mn supercell containing a
vacancy. We have verified that the adopted MC simulation
cell (with 16 000 atomic sites) allows us to consider the
vacancy as isolated and ensures the convergence of the various
studied properties. In this work, we parametrize the model
for Fe-Mn alloys that are very dilute in Mn. To do so, we
follow a similar approach as described in Ref. [17] for the
extremely dilute Fe-Cu-vacancy system. We note however
that in the present case the effects of vacancies on the local
magnetic moment of Mn solutes is more complex than what
is observed with Cu solutes. As explained in Ref. [25], the
presence of a vacancy highly favors the AF-Mn state to the
detriment of FM-Mn. Such complexities have to be taken into
account when parametrizing the interactions in the presence of
a vacancy. Also, in Ref. [17] the model was parameterized for
the extremely dilute case of one Cu solute and one vacancy
in bcc Fe, while in the present case, the model was first pa-
rameterized without vacancies for various concentrations (see
Sec. III A). Only then the parameters were adjusted to take
into account the presence of a vacancy nearby a Mn solute,
which makes the approach slightly different.

The overall principle is to preserve the parametrization
obtained for the defect-free Fe-Mn system and to include

some variations in the parameters for atoms near the va-
cancy. The onsite Ai and Bi parameters of both Fe and Mn
species are modified for atoms located at the first and second
nearest-neighbor (1nn and 2nn) shells of the vacancy in order
to model the magnitude variation of the magnetic moments
induced by the presence of a vacancy. Indeed, DFT results
show that nearby a vacancy, the 1nn (resp. 2nn) Fe atoms
magnetic moment magnitude tend to increase (resp. decrease)
by 0.2 μB [17]. Also, J0 parameters are modified for the atoms
at 1nn and 2nn sites of the vacancy in order to capture the
change of the relative energetic stability of the two magnetic
minima of a Mn atom in Fe. For example, as predicted by DFT
calculations [25], for an isolated Mn in Fe, the state with the
Mn spin antiparallel to the Fe spins (AF-Mn) is 0.05 eV lower
in energy than the state with the Mn spin parallel to the Fe
spins (FM-Mn). But, if the Mn solute is at 1nn of a vacancy,
this energy difference increases to 0.25 eV.

C. Machine-learning (ML) model

For the parametrization of the machine-learning model, a
ridge regression approach was employed. Such a regression
allows us to optimize the set of parameter βi (representing
J (n)

i j ,V (n)
i j , etc.) belonging to the different terms h j of the

Hamiltonian (1) without evaluating the DFT data points in-
dividually. Within this technique an overfitting is avoided by
adding penalty terms with Lagrange multipliers λ j :

L(β) =
∑

i

(
Ei −

∑
j

β jh j (xi )

)2

+
∑

j

λ jβ
2
j . (4)

For the sake of consistency with the knowledge-driven
model, the prediction only accounts for the same training set
{xi, Ei}i of spin and chemical configurations together with
their corresponding DFT energies, ignoring their derivatives
and forces. As one of the consequences, the model does not
necessarily reproduce the correct spin structure for the ground
state in the Mn-rich regime.

Such kind of method has already been used to successfully
predict interatomic interactions in nonmagnetic elemental
metals after a training with thousands of DFT data [54–56].
Recently, a similar type of ML approach was employed to
obtain a Heisenberg spin Hamiltonian [57]. Our regularization
in the last term of Eq. (4) differs, however, from standard ML
applications by the fact that various Lagrange multipliers λ j

are used to account for the different sizes and nature of the
physical parameters β j .

The regression is performed for the complete training set
of collinear DFT data, but the selection of a proper starting
point is subject to the two-step approach. Accordingly, the
model parameters for pure Fe were fitted firstly to the DFT
data containing only Fe atoms in collinear calculations. The
parameters β

(0)
j obtained in this step are then used as input

parameters for the fitting of model parameters β
(0)
j + β j of

the full model in the second step:

L(β) =
∑

i

(
Ei −

∑
j

(
β

(0)
j + β j

)
h j (xi )

)2

+
∑

j

λ jβ
2
j . (5)
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This two-step approach exploits the multivariate normal
distribution of the prior probability distribution of the fit pa-
rameters following the Bayesian interpretation of the ridge
regression [58]. In other words, the probability of finding
the fit parameters for pure Fe in the second fitting step
is given by normal distributions, for which the variance is
given by the regularization factor. Finally, the noncollinear
terms were determined separately via a standard least square
method. For the ridge regression method, the data points
were separated into 10 training sets, out of which one
set was used for validation at each cross-validation step.
The machine-learning model uses the same model Hamil-
tonian (1) as before with minor modifications as explained
below.

1. Magnetic parameters for pure bcc Fe and Mn

In order to meet the above-mentioned challenges to repro-
duce the magnetic ground state in the Mn-rich regime, the
onsite terms for the Mn magnetic moment magnitude involve
AMn, BMn, and CMn terms [see Eq. (1)] whereas in the case
of Fe the description is limited to the two onsite terms AFe

and BFe. Fig. 1 shows the variation of energy per atom for
the onsite terms as a function of the magnetic moment. As
compared to the KD model, the stabilization of the Fe mo-
ment is slightly more pronounced, yielding almost the same
moment magnitude. For the Mn atoms, however, the magnetic
moments are even more dispersed than in the KD model, with
hardly any change in the energy until the magnitude becomes
relatively large (|M| > 3).

The two-step approach ensures that even after the regres-
sion with all collinear DFT results the ground states of pure
Fe can be reproduced with an error per atom around 1 meV
(cf. Fig. 2). We can see that the energy values for pure Mn
were not reproduced with the same precision. This is also
because the dataset mostly consists of Fe-rich DFT results,
so that for the sake of reproducing Mn interactions embedded
in Fe, the pure Mn interactions had to be compromised. As a
consequence, the machine-learning model puts more empha-
sis on pure Fe than the KD approach, which yields the better
description of pure FM Fe.

2. Fe-Mn pair-interaction parameters

The Fe-Mn Heisenberg parameters in the machine-learning
model contain five different values for the first five shells,
i.e., have the same form as for pure Fe and pure Mn.
However, a correction term cMn�JFe-Mn, which depends on
the global Mn fraction in the system cMn, was added to
each of the five Heisenberg parameters. This replaces all
the terms in Eq. (2) that explicitly contain the local Mn
concentration. Furthermore, an angle-dependent contribution
Jn

0 |MMn × 〈MFe〉|2/|MMn|2, where 〈MFe〉 is the average mag-
netic moment of Fe, was added to each Mn atom.

Figure 3 shows the variation of the angle-dependent part
for the Fe-Mn interactions. Similarly to the knowledge-driven
model, it reproduces the noncollinear barrier from AF to FM
spin structures as manifested by the DFT results.

For consistency with the KD-model, nonmagnetic interac-
tions are considered up to the fifth nearest neighbor in the
case of Mn-Mn interactions and up to the second nearest-

neighbor for Fe-Mn and Fe-Fe interactions. Contrary to the
fitting procedure of the KD model, these parameters are fitted
altogether with the magnetic ones, by taking into account the
differences of total energy between the various configurations
obtained via DFT calculations. Together, the ML model con-
tains fewer analytical terms for the composition dependence
of the exchange-coupling parameters, consistent with the phi-
losophy of an automatized machine-learning approach.

We note that values of the model parameters obtained with
the two different fitting techniques largely differ in some
cases by several orders of magnitude (e.g., VFe-Fe) or even
the sign (e.g., J (3nn)

Fe-Fe). In the case of the chemical interaction
parameters, however, it is a consequence of different reference
choices.

IV. GROUND-STATE PROPERTIES:
ACCURACY OF THE MODELS

In this section, the accuracy of the two models is verified
and discussed through a comparison with DFT results on
properties of bcc Fe, bcc Mn, and bcc Fe-Mn systems. In
each case, equivalent atomic configurations as in the DFT data
are used, whereas the magnetic structures for the models are
determined using Monte Carlo spin relaxations.

First, the distribution of Mn and Fe magnetic moments
magnitudes, defined as: In random solutions up to 50 at. %
Mn from DFT calculations [25] is shown in the top panel of
Fig. 5. The magnetic moment magnitude Mi of an atom i is
defined as:

Mi = ‖Mi‖, (6)

where Mi is the magnetic moment of the atom i. The data
reveal the complexity of Mn magnetism in bcc Fe, with very
scattered magnetic moment magnitudes. The bottom panel of
Fig. 5 shows the corresponding distribution obtained using the
KD model along with spin Monte Carlo simulations at 10 K.
Concerning the distribution of Fe magnetic moment magni-
tudes, the agreement between the two approaches is excellent.
In the case of Mn, although it is difficult to model such a
complex behavior with a simple model, both approaches show
the same general trend: a maximum around 2.0 μB and a wider
distribution than Fe.

Concerning the pure bcc Mn, when using the DFT pre-
dicted magnetic state as an input, the AFD state is properly
predicted (with both KD and ML models) as the lowest en-
ergy magnetic state, compared to FM, AF, and NM states
(see Fig. 2). However, when performing spin-MC simulations,
both models cannot capture the direction-dependent magnetic
interaction. Using the KD model, the magnetic ground state
predicted by Monte Carlo simulation is a spin glass without
any magnetic long-range order, whose energy is 0.02 eV/atom
lower than the AFD ground state. Due to the limited number of
DFT training data, this applies even stronger to the machine-
learning model, which also shows a disordered magnetic state,
which energy is 0.8 eV/atom lower than the AFD ground
state.

Both EIMs allows us to properly simulate the concentra-
tion dependency of the Fe-Mn magnetic interaction tendency,
as shown in Fig. 6, in comparison with DFT results. The
change of average Mn magnetic state is also explicited by
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FIG. 5. Distribution of Fe and Mn local magnetic moments in
Fe-Mn random alloys, up to 50 at. % Mn, using (top) DFT SQS
calculations and (bottom) interaction model coupled with Monte
Carlo simulations at 10 K.

the angle distribution of Mn magnetic moments compared
to the average magnetic moment of Fe atoms. The results
shown in Fig. 7 are obtained with spin Monte Carlo simulation

FIG. 6. Average magnetic moment of Mn atoms as a function
of Mn concentration, from DFT calculations and spin Monte Carlo
simulations at 10 K.

FIG. 7. Angle distribution between Mn magnetic moments and
the average magnetic moment of Fe atoms, in random solutions at 1,
6, and 10 at. % Mn concentrations, using the KD model along with
spin Monte Carlo simulations at 10 K.

at 10 K in random Fe-Mn solutions at 1, 6, and 10 at. %
Mn, using the KD model. It is clear that at 1% the coupling
tendency between Mn and Fe moments is antiferromagnetic
while increasing the concentration favors more and more the
ferromagnetic coupling. Also, in agreement with DFT pre-
dictions, noncollinear states are not predicted for such a low
temperature.

As explained in Sec. III, the mixing energy of the Fe-
Mn random solutions was used to parametrize the interaction
parameters of the models. At that stage, the models were
shown to correctly predict the mixing energies when adopting
the magnetic moments of the DFT data (Fig. 4). Here, we
investigate whether the EIMs can satisfactory predict mixing
energies at their own magnetic ground states.

The concentration dependence of bcc Fe-Mn mixing en-
ergy is determined by generating Fe-Mn random alloys at
various concentrations. The magnetic state of these random
configurations is relaxed via spin Monte Carlo simulation at
1 K, while the atomic structure is kept constant in order to
prevent the possible appearance of atomic short range order
or any phase separation.

Within the KD model the bcc Mn reference state presents a
spin glass as the lowest energy magnetic state, with an energy
close to that of the DFT magnetic ground state. In case of the
ML model, however, pure Mn and the Mn-rich region are less
accurately captured (see Sec. III C). Therefore, in the latter
case, we provide in Fig. 8 the mixing energy curves consider-
ing both the DFT and the ML-model magnetic ground states.

As can be seen in Fig. 8, the obtained mixing energies
are positive for all concentrations with the KD model and are
very close to the DFT data. When considering the ML model
with the MC relaxed magnetic state for the pure Mn reference,
all the mixing energies are positive although they exhibit too
large values (about ten times larger than the KD model and
the DFT data). The large difference between these two curves
suggests how the fitting is penalized when the dataset shrinks.
Indeed, we have performed most of our DFT calculations in
the Fe-rich domain and only a few in the Mn-rich domain.
Although the KD model is flexible enough to accommodate
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FIG. 8. Mixing energy of random solutions as a function of Mn atomic concentration. The black dotted line shows the results obtained
with DFT for comparison, the blue line shows the total mixing energy obtained from T = 1 K spin-MC simulations, the green and the orange
lines, respectively, show the magnetic and the nonmagnetic contributions of the mixing energy obtained via MC simulations.

to such a locally reduced dataset, the ML model exhibits spu-
rious ground states in the Mn-rich domain which jeopardize
the prediction of some properties (such as the mixing energy).
To illustrate that, we also provide the mixing energy curve
predicted by the ML model, using the DFT magnetic configu-
ration for pure Mn. As a result, mixing energies of the Fe-rich
part are in better agreement with DFT and KD model results
(since the pure Mn reference is now properly described), but
not the Mn-rich part which remains not accurately predicted.
The dramatic difference induced by the change of pure-Mn
reference energy suggests that the model would benefit from
a more complete dataset in the Mn-rich domain. Accordingly
the agreement with the present and previous [59] DFT results
differs for both models. In particular, the results for the KD
model indicate an unmixing tendency that is consistent with
experimental evidences [60].

A qualitative difference between the two models can be
observed when separating the magnetic and nonmagnetic con-
tributions of the mixing energy, as shown in Fig. 8. Using
the KD model, both magnetic and nonmagnetic contributions
exhibit positive values with a similar order of magnitude
(although the magnetic contribution shows larger values).
Using the ML model, where both contributions are fitted
simultaneously, the magnetic contributions are extremely
dominant, whereas the nonmagnetic terms are negative with
very small values.

This discrepancy between the two models illustrates that
the number of DFT training data and the available informa-
tion about the stability of input structures are insufficient to
accurately describe mixing in an automized ML approach. To
support the fact that artificial intelligence based approaches
generally require extended datasets, the example of previous
studies in Refs. [61,62] can be mentioned. These two studies
lead to very similar conclusions concerning the precipitation
kinetics in Fe-Cu bcc alloys, although the knowledge-driven
one [61] considers a few tens of barriers while the machine-
learning based study [62] requires 2000 barriers. At the same
time, our results also indicate that the energetic properties

are much more sensitive to the parametrization than the mag-
netic properties. The prediction of the latter is visibly more
robust.

Besides the magnetic properties of the Fe-Mn random
solutions, we have also verified the prediction of magnetic
ground state of Mn clusters in bcc Fe, in view of the unmixing
tendency of the alloy. We find that the two models correctly
predict the DFT ground state of every Mn-cluster configu-
ration from two to eight atoms (see Fig. 10 of Ref. [25]),
except in the case of the 5-Mn cluster (see Fig. 9) where the
ground state obtained from the EIM-MC simulation (using
both the KD and the ML models) is found to be 0.01 eV/Mn
less energetic than the ground state predicted by DFT
calculations.

V. MODEL PREDICTIONS OF
TEMPERATURE-DEPENDENT PROPERTIES

In this section, we provide examples to illustrate the appli-
cability and accuracy of the present models, for the prediction
of finite-temperature properties. We present the results of the
KD model for all the properties. When relevant, the outcomes
from the two models are compared. Such comparisons allow
us to assess the robustness and quality of the predictions in
scenarios for which DFT calculations are not feasible. The
first four subsections address magnetic and thermodynamic

FIG. 9. Visualization of the magnetic ground state of the 5-Mn
cluster as predicted using the models (both KD and ML) and DFT.
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FIG. 10. (top left) Temperature evolution of the reduced magnetization and the 1nn magnetic short-range order in pure bcc Fe. (top right)
Temperature evolution of the average magnetic moment magnitude of Fe atoms. (bottom) Distribution of the magnetic moment magnitude of
Fe atoms for various temperatures. The three panels are produced using the KD model along with spin Monte Carlo simulations.

properties at fixed atomic configurations, via spin Monte
Carlo equilibrations, while the last two subsections investigate
the interplay between magnetic and chemical configurations,
employing a coupled spin-atom MC simulations.

A. Temperature dependence of bcc Fe magnetic properties

First of all, the reduced magnetization MR of pure Fe is
shown in Fig. 10. At each temperature, it is calculated as

MR =
∥∥∥∥ 〈Mi〉

〈Mi〉
∥∥∥∥, (7)

where 〈Mi〉 is the average of the magnetic moment of all the
atoms and 〈Mi〉 is the average of the magnetic moment mag-
nitude of all the atoms. The calculated TC is approximately
1060 K, compared to 1044 K obtained experimentally [63].
The result is almost the same for both models, indicating that
the slight deviations for AFD and NM energies in the KD
model (Fig. 2) have no impact on this property.

The 1nn magnetic short-range order (MSRO), defined here
as the nearest-neighbor spin pair-correlation function, is also
shown in Fig. 10. As can be noticed, in the low tempera-
ture domain (below TC) it decreases with temperature slightly
faster than the magnetization. On the opposite, at high temper-
ature (beyond TC), MSRO remains significant. These results
are in good agreement with previous studies [64–66]. The

significance of MSRO in both models, with only slightly
larger values in the machine-learning model, indicates the ro-
bustness and physical relevance of this prediction. Therefore,
the study of properties around TC needs to take MSRO into
account.

As shown in the upper panel of Fig. 10, the average mag-
nitude of Fe magnetic moments decreases with temperature
up to the Curie temperature. When T > TC , the average mag-
nitude increases very slightly with temperature. This curve is
in good agreement with the results of Lavrentiev et al. [37]
obtained with a similar approach. However, one should note
that these variations of the average magnitude are very small
(contained within 0.1 μB) which suggests that the classical
Heisenberg model is a good approximation for pure Fe.

The resulting temperature evolution of the magnitude dis-
tribution, shown in the bottom panel of Fig. 10, is a direct
consequence of the magnetic onsite terms shown in Fig. 1.
The results are in good agreement with a study of Ruban et al.
[1], performed with a similar approach.

B. Curie temperature of bcc Fe-Mn random solutions

The Curie temperature is a fundamental property of fer-
romagnetic systems. As our goal is to develop an effective
interaction model, capable to describe properly the magne-
tothermodynamic properties of the bcc Fe-Mn alloys at any
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FIG. 11. Temperature evolution of the total magnetization, for
various Mn atomic concentrations in the Fe-rich regime. The results
of the KD model (solid lines) and the ML model (dashed lines) are
compared.

given temperature, the Mn concentration dependence of TC in
the dilute Fe-Mn alloys is of great relevance.

In Fig. 11 the temperature dependence of total magnetiza-
tion for various Mn concentrations in the Fe-rich regime is
provided. The total magnetization M is defined as:

M = ‖〈Mi〉‖, (8)

where 〈Mi〉 is the average of the magnetic moment of all
the atoms. These calculations are all performed in random
solutions. The magnetization curves are systematically shifted
towards low temperatures with increasing Mn concentrations.
For dilute bcc Fe-Mn alloys a remarkable agreement be-
tween both models is observed, despite the fact that even
small differences in the analytical expressions of the Fe-Mn
exchange-coupling parameters are used. For 10 and 20 at. %
of Mn the shift is slightly stronger in the KD model as com-
pared to the ML model.

We estimate the Curie temperature TC as the inflection
point of the M(T ) curve [67]. The TC of each considered
concentration is reported in Fig. 12 in order to compare with
existing experimental results. As can be seen, TC decreases
with Mn concentration with a slope of approximately 10 K
per Mn at. %, in excellent agreement with most literature data.
Indeed, most experimental works have shown that TC tends to
decrease in the dilute limit linearly with Mn concentration, at
a rate of approximately 10 K per Mn at. % [68–71], as shown
in Fig. 12.

For intermediate compositions up to 20 at. % of Mn,
deviating experimental trends are reported in the literature.
While the slope of 10 K per Mn at. % continuous in the case
of Paduani et al. [68], Yamauchi et al. [72] found a larger
decreasing slope of around 43 K per Mn at. %.

One possible explanation for the deviation of Yamauchi
et al. is that their magnetic measurements are biased by the use
of cold rolling on the samples in order to stabilize the body-
centered cubic phase [72], which is not the case in the other
experimental studies. A recent study indeed suggests that a

FIG. 12. Curie temperature of dilute bcc Fe-Mn alloys as a func-
tion of Mn concentration. The solid and dashed blue lines show
our results while the symbols show literature experimental results.
Circles: Paduani et al. [68], squares: Yamauchi et al. [72], upward
triangles: Arajs et al. [69], stars: Li et al. [70], downward triangles:
Sadron et al. [71]. Our results are also compared to a CALPHAD
study shown with a dotted line: Bigdeli et al. [23].

plastic deformation has a significant impact on the atomic
short-range order of α-Fe-Mn systems [73], which according
to our results may affect the magnetic configuration. We note
that in order to stabilize α-Fe-Mn beyond 5 at. % Mn, Paduani
et al. have added 3 at. % Ti to the solution [68]. As the low
concentration results (below 5 at. % Mn) of Paduani et al.
are in excellent agreement with the studies using pure Fe-Mn,
it can be assumed that there is not significant effect of such
Ti addition on the magnetic state of the solution. A recent
Calphad assessment [23] also assumes such a decrease of TC

with Mn concentration at a rate of approximately 10 K per Mn
at. %, as shown in Fig. 12.

As explained in the previous section, the analysis of the KD
and ML models results shows that the magnetic ground state
predicted by Monte Carlo simulation is a spin glass without
any magnetic long-range order. Because of this, a Néel transi-
tion, which might occur in bcc Mn and in the Mn-rich limit of
the alloy, is not reproduced. There is no experimental evidence
of such a Néel transition because the bcc phase of pure Mn
is only stable at very high temperature (between 1411 and
1519 K). However, as we have shown in a previous study that
the DFT ground state of pure bcc Mn is AFD [25], we expect
a magnetic transition, going from this state to the PM state.
As we are mostly interested in the Fe-rich part, we believe it
is not crucial here to properly describe such properties in the
extremely Mn-rich domain.

C. Temperature dependence of Mn magnetic moment

As shown in Fig. 6, the average magnetic moment of Mn
atoms in bcc Fe-Mn solid solutions obtained from both EIMs
at very low temperature (1 K) Monte Carlo simulations shows
the same Mn concentration dependence as predicted by DFT
calculations. It tends to be antiferromagnetic to Fe magnetic
moments at low concentration (below the transition, which
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FIG. 13. Temperature evolution of the average magnetic moment
of Fe and Mn atoms in bcc Fe-Mn at various concentrations (0.1, 1,
and 10% at. Mn). The total magnetization of pure bcc Fe is shown as
a black dotted line for shape comparison.

occurs at about 7 at. % Mn) and ferromagnetic at high con-
centrations.

Using our models with spin Monte Carlo simulations, we
determine the evolution of the average magnetic moment of
Mn atoms with temperature, at fixed random atomic configu-
rations in order to avoid the appearance of atomic short-range
order. Fe-Mn random alloys at 0.1, 1 and 10 at. % Mn are
studied, in order to consider both Mn magnetic regimes, below
and beyond the Mn magnetic-state transition concentration.

As can be observed in Fig. 13, in both regimes and for both
models the absolute value of the average magnetic moment of
Mn atoms decreases with temperature faster than the average
moment of Fe (which decreases following the evolution of
the total magnetization). In the truly isolated-Mn case (0.1
at. % Mn) the decrease is almost linear and the curve reaches
0 approximately at the Curie temperature of the system. For
the more concentrated cases, the two parametrizations yield
qualitatively different trends. While the ML model predicts
an almost linear decrease of the Mn magnetic moment below
and above the magnetic-state transition concentration, the de-
crease is faster in the case of the KD model.

Additional analysis of our data confirms that the mag-
netic moment magnitude of Mn atoms tends to increase with
temperature, from around 1.85 to 2.05 μB in the consid-
ered temperature range. This attests that the loss of average
magnetic moment does not come from the longitudinal spin
excitations. A plausible cause of this fast decrease of the
average Mn moment magnitude compared to the Fe case
is the atypical presence of two magnetic minima for a Mn
atom in Fe, namely the AF and the FM states, with a rather
small energy difference (0.05 eV for an isolated Mn at 0K).
The AF state is the ground state for the isolated Mn, but
the FM state becomes gradually populated with increasing
temperatures.

For a comparison, we consider the same magnitudes in
dilute bcc Fe-Cr alloys, where Cr magnetic moments always
tend to be antiparallel to Fe moments [74]. These results
however show that the Cr average moment follows the same
decrease shape as in the Fe case and at variance with the Mn
case.

In order to go further in the analysis, we have determined
the ratio of Mn atoms at the FM state (FM-Mn) as a function

FIG. 14. Temperature dependence of the ratio of FM-Mn among
Mn atoms in bcc Fe-Mn at various concentrations (0.1, 1, and 10
at. % Mn). For the case of 0.1 at. % Mn the expected ratio from
Boltzmann theory (see text) is shown with the dotted line.

of the temperature. The results are shown in Fig. 14. We
can indeed observe that the ratio of FM-Mn atoms at low
temperatures is approximately 0% for the 0.1 and 1 at. % Mn
concentrations and is above 60% for the 10 at. % Mn case.
These results are in agreement with a previous DFT study
evidencing that the average magnetic moment of Mn atoms in
bcc Fe undergoes a transition from the AF-Mn state at low Mn
concentration to the FM-Mn state at high Mn concentration
(more than 7 at. % Mn) [25]. As temperature increases, the
ratio of FM-Mn evolves towards 50%. The details of the tem-
perature dependence, however, are qualitatively different in
both parametrizations, which explains the different behavior
in Fig. 13.

We also compared in Fig. 14 the ratio of FM-Mn in the
0.1 at. % Mn system from our Monte Carlo simulations and
the expected ratio from the Boltzmann theory, expressed as
follows:

NFM-Mn

NAF-Mn + NFM-Mn
= exp

(−�E
kBT

)
1 + exp

(−�E
kBT

) (9)

with NFM-Mn and NAF-Mn being, respectively, the number of
FM-Mn and AF-Mn atoms, and �E being the energy differ-
ence between FM-Mn and AF-Mn states obtained from DFT
calculations (�E = 0.05 eV at 0 K predicted by DFT and both
models).

We note that as temperature increases, the Fe magnetic
state becomes more and more disordered, and the terms AF-
Mn and FM-Mn are less and less defined. Especially, at
temperatures above the Curie point, as the system is paramag-
netic, there is no reason to expect the ratio to follow properly
the Boltzmann distribution. We keep classifying Mn atoms
depending on the direction of their spins along an arbitrary
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FIG. 15. Mixing energy of random Fe-Mn alloys as a function of
Mn atomic concentration for various temperatures. The black dashed
line shows the low temperature limit of mixing energy while the
black dotted line shows the nonmagnetic contribution, also corre-
sponding to the high temperature limit.

axis in order to illustrate their random distribution at high
temperatures.

D. Temperature dependence of Fe-Mn mixing energy

In the previous section, the mixing energy of bcc Fe-Mn
random alloys is calculated over the whole range of concentra-
tions at 1 K, using Monte Carlo simulations. Similar spin-MC
simulations were performed at various temperatures in order
to study the effect of temperature-dependent magnetism on
the mixing energy of bcc Fe-Mn alloys.

As shown in Fig. 15, the temperature evolution of the
bcc Fe-Mn mixing energy is related to the magnetization.
Indeed, for any given concentration, two regimes can be
clearly identified: Below the magnetic transition temperature,
the mixing energy curve remains quite similar to the 0 K
limit, while beyond the magnetic transition temperature, it
converges to a high temperature paramagnetic limit. It can
also be noticed that at both high and low temperature limits,
that is, as soon as for all the concentrations the temperature
is located either below or above the magnetic transition tem-
peratures, the mixing-energy curve is symmetric. But, for the
intermediate temperatures, an asymmetry appears between the
Mn-rich and the Fe-rich domains. Also, the Mn-rich mixing
energies decrease faster with increasing temperature than the
Fe-rich values. This asymmetry is consistent with the above-
mentioned two-regime behavior, considering the difference
between the Fe-rich and Mn-rich magnetic transition tem-
peratures. As previously described, we predict the magnetic
transition temperature to decrease with Mn concentration (see
Fig. 12). Actually, the Mn-rich phase should exhibit a Neel
magnetic transition temperature regarding the DFT magnetic
ground state, which we cannot reproduce as our model pre-
dicts a spin-glass magnetic structure at low temperature in the
Mn-rich side.

Please note that the decrease of the mixing energy with
temperature is only due to the magnetic contribution as there
is no atomic-position changes in these simulations. We notice
that the paramagnetic limit (2000 k) of the mixing energy
curve is very similar to the nonmagnetic contribution of the

0 K mixing energy (shown in Fig. 15), indicating that the
mixing between Fe and Mn atoms has a negligible impact on
the average magnitude of their respective magnetic moments.
Overall, the present results suggest that spin disordering fa-
vors the mixing of Fe and Mn, while spin ordering favors the
phase separation tendency.

It is worth mentioning that our results are in qualitative
agreement with a previous CALPHAD prediction [23], in
which the thermodynamic parameters lead to a fully positive
mixing energy of bcc Fe-Mn alloys which decreases with
temperature. For the sake of comparison, the mixing energy
at 50% at. Mn calculated using the parameters of this study
is 0.08 eV at a 1 K temperature (our value being 0.06 eV).
Concerning the decrease rate, the KD model predicts that the
50% at. Mn mixing energy converges to 0.015 eV around
2000 K while the mixing energy calculated using the pa-
rameters of Ref. [23] shows a slower decrease (0.06 eV at
2000 K). As we have shown in the previous section that the
low temperature mixing energy predictions of the ML-model
exhibit qualitative differences with DFT results, we chose not
to develop the temperature dependence of this property using
the ML model.

E. Temperature and concentration evolution
of atomic short-range order

The Monte Carlo results presented up to this point are
performed by varying only the magnetic configuration of the
system while the atomic structure is frozen. In order to go
further insights into the interplay between the magnetism and
thermodynamic properties versus temperature, it is necessary
to follow the evolution of both the magnetic and the atomic
structures simultaneously. Therefore, we include, in addition
to the Monte Carlo spin equilibration, atomic exchanges on a
bcc lattice.

To this end, bcc Fe-Mn alloys were studied at various
concentrations and temperatures, in order to evaluate the clus-
tering tendency for both degrees of freedom. We consider
the Cowley-Warren formulation of atomic short-range order
(ASRO) [75,76], for which the parameter

αMn
i = 1 − ni

ZiCFe
(10)

is averaged over all Mn atoms. Here, ni is the number of Fe
atoms on the ith nearest-neighbor shell of the considered Mn
atom, Zi is the coordination on the i-nn shell, and CFe is the Fe
atomic concentration of the system.

The calculated 1nn-ASRO is shown in Fig. 16 for a Fe-10
at. %-Mn alloy. The temperature evolution of the reduced
magnetization is also given for information. In order to inves-
tigate the interplay between the magnetic and chemical orders,
similar MC simulations have been performed with a fixed
spin temperature Ts, independent of the atomic temperature T .
Consistent with Fig. 8, the low temperature ASRO within the
KD model is dominated by the magnetic degrees of freedom.
Hence, by imposing a 1 K (resp. 2000 K) spin temperature, we
find a generally larger (resp. lower) ASRO. A similar trend
is also observed with ASRO of farther neighboring shells.
We therefore confirm that magnetic ordering enhances the
unmixing tendency in bcc Fe-Mn alloys.
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FIG. 16. 1nn atomic short range order and reduced magnetiza-
tion as functions of temperature obtained with the KD model, at a 10
at. % Mn concentration.

F. Vacancy properties near a Mn solute

As our KD model also allows to consider the presence
of a vacancy, it can be employed to predict the vacancy-Mn
interaction properties, particularly the magnetic free energy of
binding (accounting for the magnetic entropy) versus temper-
ature. This value dictates the vacancy concentration around
Mn, which is especially important for the determination of
solute diffusion coefficients via a vacancy mechanism [77,78].

In practice, we calculate the magnetic free energy of forma-
tion of a vacancy at a 1nn distance of the solute and in a pure
Fe lattice, by evaluating an equilibrium vacancy concentration
ratio between the system of study at each temperature and
a reference system with a known vacancy formation energy
(here the perfectly FM bcc Fe) via Monte Carlo simulations,

TABLE I. KD model: Magnetic and chemical interaction pa-
rameters between two atoms, depending on their relative distance,
respective species, and the eventual proximity of a vacancy (in meV).

Distance 1nn 2nn 3nn 4nn 5nn

JFe-Fe −3.39 −2.26 −0.83 0.42 0.44
JMn-Mn 1.51 1.30 0.26 −0.98 0.53
J0 0.057 0.066 0.042 0.089 0.026
VFe-Fe −10.85 8.18 0 0 0
VMn-Mn 4.63 −1.93 −1.06 −0.19 0.25
VFe-Mn −6.09 3.75 0 0 0
J0(1nnvac) 0.232 0.261 0.187 0.327 0.138
VFe-Mn(1nnvac) 30.2 −17.3 0 0 0
J0(2nnvac) 0.189 0.212 0.151 0.267 0.110
VFe-Mn(2nnvac) −30.2 17.3 0 0 0

using the same approach as in Ref. [17]. A description is
given in Sec. II B. The 1nn Mn-vacancy binding free energy
results from the difference between these two formation free
energies.

The left panel of Fig. 17 shows the vacancy formation
magnetic free energy in pure Fe and at 1nn sites of a Mn solute
in Fe, as functions of temperature. Concerning the pure Fe
case, the vacancy formation magnetic free energy obtained in
the low and high temperature regimes (respectively, 2.20 and
1.99 eV in FM and PM magnetic states) is in agreement with
previous experimental and DFT data from the literature which
range from 2.00 to 2.24 eV in the FM state and from 1.54 to
1.98 eV in the PM state [16,79–82]. We note that the vacancy
formation magnetic free energy in the PM state shows very
scattered results in the literature, which are very sensitive to
the computational details, while the various studies are very
consistent concerning the FM state [16,79–82]. As can be
noticed, at low temperatures the formation free energy at 1nn
sites of the solute is approximately 0.14 eV lower than the
value in pure Fe, which is consistent with the magnetic free

FIG. 17. Left panel: Temperature dependence of the vacancy formation magnetic free energy, in pure Fe (orange) and in the nearest-
neighbor shell of a Mn solute (blue). Right panel: Temperature dependence of the vacancy-Mn magnetic free energy of binding. The involved
spin-MC simulations adopts a temperature rescaling factor corresponding to a Bose-Einstein statistics, in order to obtain numerical results
consistent with the previous study [17]. The same re-scaling factor for pure Fe is applied for the extremely dilute Fe-Mn system.
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TABLE II. KD model: Magnetic onsite terms of Fe and Mn
atoms, depending on the presence or not of a vacancy (in meV). The
superscripts 0, 1, and 2 in this table refer, respectively, to the absence
of vacancy in the two nearest neighbor shells of the concerned atom
(0), the presence of a vacancy in its first neighbor shell (1), and the
presence of a vacancy in its second neighbor shell (2).

Interactions A0 B0 A1 B1 A2 B2

Fe −259.0 27.6 −250.2 24.7 −285.7 35.2
Mn −37.70 6.93 −116.2 8.54 −37.70 6.93

energy of binding obtained via ab initio calculations. This re-
sult is also consistent with an earlier study [83] which reports
0.17 eV for the Mn-Vac binding energy in FM Fe. That same
study also reports that the vacancy-Mn interaction vanished in
the PM state. Also, a previous first-principles work [84] found
the Mn-vac binding energy in the FM state to be 0.16 eV.
Interestingly, as the temperature increases, this difference de-
creases towards approximately zero in the fully paramagnetic
regime (right panel of Fig. 17). This solute-vacancy binding
behavior indicates that the magnetic disorder is able to erase
the chemical effects in the very dilute alloys. Since we have
observed an identical behavior in the case of Cu solutes in Fe
[17], while Cu and Mn have very different magnetic proper-
ties, it appears to be a general behavior, independent of the
chemical nature of the solute.

VI. CONCLUSIONS

Body-centered cubic Fe-Mn alloys present complex and
atypical magnetic-interaction behaviours. Guided by the goal
of studying temperature-dependent properties of these alloys,
we parameterized an effective interaction model containing
explicitly both magnetic and chemical variables. We adopted
a knowledge-driven fitting procedure, that is, using only a
rather small amount of relevant DFT data. A progressive
parametrization strategy was used, which puts emphasis on
those data considered to be physically most important. Based
on conclusions from DFT studies, one of our assumptions
is the dominance of Mn-Mn magnetic interactions over the
Fe-Mn ones, in the presence of a magnetic frustration. Also,
the atypical presence of two magnetic minima for Mn solutes
should be correctly captured. Further, including noncollinear
magnetic configurations in the fitting database turned out to
be essential for a satisfactory model.

In order to benchmark the model and its dependence on
the knowledge-driven assumptions, it was compared with
a second parametrization method. To this end, we used a
machine-learning technique based on ridge regression for the
same training data. Apart from the dependence of the start-
ing values, the resulting model considered all the DFT data

TABLE IV. ML model: Magnetic and chemical interaction pa-
rameters between two atoms, depending on their relative distance,
and respective species (in meV).

Distance 1nn 2nn 3nn 4nn 5nn

JFe-Fe −14.4 0.03 2.65 0 0
JFe-Mn −2.23 0 0 0 4.14
JMn-Mn 24.29 16.09 −8.96 −10.00 10.00
VFe-Fe −1927.36 −0.12 0 0 0
VMn-Mn −1188.99 −1302.10 −53.32 −2.86 47.48
VFe-Mn −1577.47 −659.95 0 0 0

simultaneously without bias. Though being aware of the in-
sufficient data density for machine learning techniques, this
twofold strategy raised our awareness of strengths and po-
tential imprecision of the knowledge-driven model. It turned
out that the magnetic interaction strength is rather independent
of the fitting procedure, while the energetic properties such as
the mixing enthalpies are much more sensitive to the model
parameters. In fact, the energetic properties in the alloys are
highly dependent on the magnetism.

Finite temperature Monte Carlo simulations were then per-
formed in order to show the ability of the KD model to predict
properties which are not included in the fitting data. For
instance, the Mn concentration dependence of the magnetic
transition temperature is found in excellent agreement with
most experimental results. At variance with most experimen-
tal methodologies, only providing averaged properties, our
approach allows to access the local magnetic moment around
individual atoms. It allowed us to study the temperature evo-
lution of the distribution of the angle between neighboring Fe
and Mn spins, along with the evolution of magnitude of Mn
magnetic moments. We observed that, contrary to Cr atoms
in bcc Fe-Cr alloys, the average magnetic moment of Mn
atoms in bcc Fe-Mn does not follow the total magnetization
decrease. Indeed, the temperature induced magnetic disorder-
ing of Mn atoms is reinforced by the possibility for each spin
to switch between the AF-Mn and FM-Mn states.

The temperature dependence of the mixing energy over the
whole range of concentration was also determined. The results
suggest that the unmixing tendency is highly related to the
magnetic order of the system. Moreover, we identified a cor-
relation between the chemical short-range order and the total
magnetization of the system. We show that if constraining the
spin temperature to asymptotically low or high temperature
values highly affects the 1nn chemical SRO. This study al-
lowed to further confirm the enhancement of the unmixing
tendency by the magnetic ordering.

Finally, we show that it is fully possible to go beyond
the ideal defect-free alloys and to consider the presence of
a vacancy using such a model. We provided as an example

TABLE III. KD model: Parameters of the polynomial function describing the local Mn concentration dependence of Fe-Mn magnetic
interaction parameters (in meV).

Interaction a b c d e

Value (meV) 6.50 × 10−8 −8.40 × 10−6 3.83 × 10−4 −7.16 × 10−3 3.04 × 10−2
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TABLE V. ML model: Magnetic onsite terms of Fe and Mn
atoms (in meV).

Interactions A B C

Fe −142.70 15.64 0
Mn −3.83 −2.22 0.34

of application the temperature evolution of the vacancy for-
mation magnetic free energy nearby a Mn solute, showing a
strong decrease of solute-vacancy binding with the emergence
of magnetic disorder. This result is the first key ingredient for
the study of Mn solute diffusion in bcc Fe, to which a future
paper will be fully dedicated.
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APPENDIX: MODEL PARAMETERS

The parameters of the two models are given in
Tables I–VI.
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