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Critical temperature and low-energy excitations in gapped spin systems with defects
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We discuss theoretically the magnetically ordered phase induced by magnetic and nonmagnetic impurities in
three-dimensional and quasi-low-dimensional systems with singlet ground states separated by a gap from excited
triplet states. Using ideas of the percolation theory, we estimate the transition temperature TN (n) to the Néel
phase at a small concentration n of defects, derive the density of states of low-energy elementary excitations,
and examine the contribution of these excitations to the specific heat and magnetization. Our expressions for
TN (n) and for the specific heat describe well available experimental findings obtained in various appropriate
systems: spin- 1

2 dimer materials, spin-ladder compounds, spin-Peierls, and Haldane chain materials. However,
our expression for TN (n) differs considerably from many of those proposed before.

DOI: 10.1103/PhysRevB.103.024420

I. INTRODUCTION

Spin systems with singlet ground states separated by a gap
from lowest (triplet) excitations have attracted much atten-
tion recently both experimentally and theoretically. Particular
examples of such objects include systems containing spin- 1

2
dimers which are weakly coupled by three-dimensional in-
teractions, spin- 1

2 ladders, spin-Peierls dimerized chains, and
integer-spin Haldane chains.

It is well established that a magnetic or a nonmagnetic
impurity induces in these systems a local magnetic moment
and a magnetically ordered cloud arises around the defect
[1–11]. The staggered magnetization in the cloud drops off
exponentially with the distance beyond the volume whose
shape and size is determined by the ground-state properties
of the pure host system. An Ruderman-Kittel-Kasuya-Yosida-
like effective interaction arises between the induced magnetic
moments via these clouds, or, equivalently, via the gapped
bulk excitations exchange (see also below). In host systems
on bipartite lattices with commensurate spin correlations, this
effective coupling is nonfrustrated and it leads to a Néel
magnetic order at small enough temperature TN (n) at finite
impurities concentration n (the phenomenon of the “order-
by-disorder” type). Then the disorder-induced magnetically
ordered part of the system produces gapless excitations inside
the singlet-triplet gap. To the best of our knowledge, these
excitations have not been discussed analytically so far.

One of the aims of the present paper is to fill up this gap.
We demonstrate below that ideas of the percolation theory are
very useful in solving this problem. We demonstrate in Sec. III
that the disorder-induced band of excitations consists of two
parts: The low-energy part is governed by long-wavelength
propagating antiferromagnetic spin waves above which local-
ized states appear. We show in Sec. IV that these excitations
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determine the behavior of the staggered magnetization and the
specific heat at T � TN (n).

Besides, we scrutinize below previous estimations of the
Néel temperature TN (n). It was shown in Refs. [4,12,13] that
various spin-ladder, spin-Peierls dimerized chain, and spin-1
Haldane chain materials show a linear dependence of TN (n) in
a range of small n. An exponential dependence TN (n) ∝ e−c/n

is frequently used [10,14] in quasi-one-dimensional (1D) ma-
terials, which, however, requires unrealistic parameters c to fit
experimental data [4]. In contrast, we demonstrate in Sec. II
that the dependence of the Néel temperature on n is more
complicated which can give a linearlike behavior in a certain
range of n. We find that TN (n) ∝ e−c/n1/3

as it was estimated in
Ref. [15], where, however, the constant c was not obtained. It
is shown in Sec. V that our formulas for TN (n) and the specific
heat describe well existing experimental data in a variety of
relevant compounds.

Section VI contains a summary and our conclusion.

II. NÉEL TEMPERATURE

We adopt in our theoretical discussion ideas proposed in
Refs. [16–18] for disordered ferromagnets. For definiteness,
we consider below the spin- 1

2 dimer system on a cubic lattice
whose Hamiltonian has the form

H =
∑

i

{
J S(ri,1)S(ri,2)

+
∑

j=x,y,z

Jj
[
S(ri,1)S(ri+e j ,1) + S(ri,2)S(ri+e j ,2)

]}
, (1)

where S(ri,q) is the spin q (q = 1, 2) from the dimer at the
lattice site ri, J > 0 is the intradimer exchange coupling
constant, and Jx,y,z > 0 are exchange coupling constants be-
tween spins from neighboring dimers along the corresponding
directions. A generalization is straightforward of the results
obtained below to other relevant spin models.
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The effective exchange coupling between two induced
spins inside the host system with the gapped spectrum of
elementary excitations εk = �

√
1 + ξ 2

x k2
x + ξ 2

y k2
y + ξ 2

z k2
z is

related to the static spin correlation function and has the form
(see, e.g., Refs. [1,19])

J (r) = C
∫

H2
m

εk
eikrdk = (4π )2C

3

H2
m

Vξ�

1

R
K1(R) (2)

at r � 1, where � = √
J [J − 2(Jx + Jy + Jz )] is the gap

value, ξ 2
x,y,z = J Jx,y,z/�

2, C is a constant of the order of unity,
Hm = Jx + Jy + Jz is the local molecular field made by an
impurity in the host system, Vξ = 4π

3 ξxξyξz, R = ( x
ξx

,
y
ξy

, z
ξz

),
and K1(R) is the modified Bessel function, and we omit the
sign depending on whether the couple of spins belong to the
same sublattice. At R � 1, K1(R) ∝ 1/R. Equation (2) reads
at R � 1 as

J (r) = J0
e−R

R3/2
, (3)

J0 = (4π )5/2C

6
√

2

H2
m

Vξ�
. (4)

It is seen from Eq. (3) that Vξ is a volume of an ellipsoid
with axes ξx, ξy, and ξz inside which the effective exchange
coupling is not exponentially small.

We assume for the beginning that spins are classical and
consider the role of quantum effects at the end of this section.
To estimate the transition temperature TN (n) in a mean-field
manner, we follow Ref. [16], start with a very small n, and
introduce the quantity R(T ) at which

S2J (r) = T (5)

[see Eq. (3)]. The latter equality determines the surface of
an ellipsoid with axes R(T )ξx, R(T )ξy, R(T )ξz and with the
spin at the center. Due to the exponential dependence of J (r)
on r and thermal fluctuations, another spin lying inside and
outside of the ellipsoid is correlated and uncorrelated with the
spin at the center, respectively (provided that other spins are
away from these two). Consequently, our task is reduced to
the problem of finding a percolation threshold in a system of
oriented randomly distributed ellipsoids. The solution of the
latter problem is well known [20]: The infinite network and
the percolation disappear when

nV = 2.736, (6)

where V = R(T )3Vξ is the ellipsoids volume. This line of
argument is valid as long as R(T ) � 1 [because the effec-
tive exchange coupling (2) is not exponentially small at
R < 1] which implies that Vξ n � 2.7 [see Eq. (6)]. Another
restriction appears from the requirement that the ellipsoid
with axes R(T )ξx, R(T )ξy, and R(T )ξz should cover more
than one lattice site in each direction so that R(T ) �
max{1, 1/ξx, 1/ξy, 1/ξz}. Finding R(T ) from Eq. (6) and sub-
stituting the result to Eq. (3), one obtains from Eq. (5)

TN (n) ∝ J0S2
√

Vξ ne−1.4/(Vξ n)1/3
,

if (Vξ n)1/3 � min{1, ξx, ξy, ξz}, (7)

where we omit a numerical factor bearing in mind that this is
the mean-field estimation of the critical temperature.

At larger concentration n, many scenarios arise depending
on values of ξx, ξy, and ξz. We consider now some of them to
illustrate the main ideas. At ξx, ξy, ξz � 1 [and at (Vξ n)1/3 � 1,
see Eq. (7)], ellipsoids with the volume Vξ form a three-
dimensional percolating network and each spin has on average
Vξ n � 1 neighbors inside the volume Vξ who interact with
it by the exchange coupling of the order of J0 [see Eqs. (2)
and (4)]. Then, the mean molecular field acting on the given
spin is estimated as J0(Vξ n) and it determines the transition
temperature in this “three-dimensional” regime that reads
as

TN (n) ∝ J0S2(Vξ n), if (Vξ n)1/3 � 1 and ξx, ξy, ξz � 1.

(8)
If some of ξx, ξy, and ξz is smaller than unity, then the

ellipsoid with axes R(T )ξx, R(T )ξy, and R(T )ξz does not cover
more than one lattice site in the corresponding direction or
directions when (Vξ n)1/3 � min{1, ξx, ξy, ξz} [see Eq. (7)]. Let
us discuss a “two-dimensional” regime with ξx � ξy ∼ ξz < 1.
At (Vξ n)1/3 � ξx, the exchange coupling between spins inside
the yz plane is much larger than that along the x direction.
Then, we have a quasi-2D spin system, the transition tem-
perature of which is determined (up to a logarithmic factor)
by the in-plane exchange coupling. The latter is given by
Eq. (3), where now R = R2 = ( y

ξy
, z

ξz
). Following the same

logic as above, one has to solve a two-dimensional problem
of percolation in the system of randomly distributed oriented
ellipses with concentration n. The percolation arises in this
case at [20] nV2 = 4.51 [cf. Eq. (6)], where V2 = R2(T )2vξ

and vξ = πξyξz is the ellipses area. One estimates with the
logarithmic precision [cf. Eq. (7)]

TN (n) ∝ J0S2ξx(vξ n)3/4e−2.1/
√

vξ n,

if (Vξ n)1/3 � ξx and ξx � ξy ∼ ξz < 1, (9)

where the factor ξx comes from the logarithm of the ratio of
the in-plane exchange coupling (∼e−2.1/

√
vξ n) and the inter-

plane one (∼e−1/ξx ).
The most pronounced quantum effect which can influence

the results obtained above is the formation of the “nonmag-
netic” singlet state of two closest spins-1/2 coupled by the
antiferromagnetic exchange. However we expect that this ef-
fect is small in “d-dimensional” regimes with d � 2. Indeed,
the fraction of spins involved in such couples is estimated as
n1−1/d which is much smaller than unity at d � 2 [41]. Be-
sides, spins interact ferromagnetically in half of these couples.

III. LOW-ENERGY EXCITATIONS

To lighten notation, we assume below that ξx = ξy = ξz =
ξ . Corresponding results can be obtained similarly at ξx �=
ξy �= ξz. In particular, general expressions for the specific heat
and the magnetization are obtained from those presented be-
low by a simple replacement of ξ by (ξxξyξz )1/3.

A. Spin waves

We discuss first the long-wavelength hydrodynamic excita-
tions (spin waves) at a small concentration of defects n � 1.
Such excitations appear due to the disorder-induced magneti-
cally ordered part of the considered system. We will be guided
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by the linear dispersion relation for low-frequency spin waves
[21],

ωk = C(n)k, (10)

where the spin-wave velocity C(n) has the form

C(n) =
√

2ϒ(n)/χ⊥(n), (11)

where χ⊥ is the transverse susceptibility and ϒ is the helicity
modulus (i.e., a measure of the energy required to create a spa-
tial variation in the magnetization). The latter quantity can be
found as it was done in Ref. [18] for disordered ferromagnets.
ϒ ∝ σ/n, where σ is the conductivity of a related resistor
network [22]. The electron conductivity is well known [23]
in the system of chaotically distributed centers in which the
probability of electron jump between centers is determined by
Eq. (3):

σ ∝ r−(ν+1)
c

1

r3/2
c

e−rc/ξ , (12)

where ν is the critical index of the correlation length in the
percolation theory and

rc = 0.87/n1/3 (13)

is the critical radius of spheres at which the infinite cluster
disappears and which is determined by Eq. (6). As a result,
one obtains from Eq. (12)

ϒ(n) ∝ n(2ν−1)/6e−0.87/(ξn1/3 ), (14)

It is seen from Eq. (14) that the main contribution to the
helicity modulus is made by those spins whose distance to
the nearest neighbors lies in the interval (rc − ξ, rc + ξ ). This
result is natural because the infinite network in which the
long-wavelength spin waves can propagate should contain
bonds with exchange energy of the order of J (rc): The cou-
pling energy of spins a distance r � rc away from each other
is much smaller than the energy of the spin wave and two spins
oscillate in phase if r � rc. Because ξ � rc, the considered
infinite network is the network which arises in a system close
to the percolation transition. Then, the correlation length of
this network reads as

L ∼ rc(rc/ξ )ν ∝ n−(1+ν)/3. (15)

It is well known that the transverse susceptibility of randomly
depleted antiferromagnet diverges near the percolation thresh-
old pc as (p − pc)−τ [24]. Thus, one has for this quantity in
our system

χ⊥(n) ∝ (rc/ξ )τ
[

exp (−rc/ξ )

r3/2
c

]−1

∝ n−(2τ+3)/6e0.87/(ξn1/3 ).

(16)
One obtains from Eqs. (11), (14), and (16) for the spin-wave
velocity

C(n) ∝ n(1+ν+τ )/6e−0.87/(ξn1/3 ). (17)

It is interesting to note that the concentration dependence
of C(n)/TN (n) does not contain the exponential factor [see
Eqs. (7) and (17)]

C(n)/TN (n) ∝ n(ν+τ−2)/6. (18)

Propagating spin waves exist in depleted antiferromagnets
if their wavelength is larger than the correlation length [21].
Thus, well-defined spin waves having spectrum (10) exist in
our system up to the energy

ωm ∼ C(n)/L ∝ n(3+3ν+τ )/6e−0.87/(ξn1/3 ). (19)

Excitations with higher energies are localized.

B. Localized excitations

To make further consideration more compact, we omit for
simplicity 1/R3/2 in Eq. (3) and assume that

J (r) = J0e−R, (20)

bearing in mind that the exponential behavior of the effective
coupling plays the major role on long distances at n � 1.

As in disordered ferromagnets [17,18], a substantial part
of the low-energy spectrum in our system consists of local
excitations. The simplest excitation of this type is a local flip
of a spin whose nearest neighbor is situated at a distance
larger than the average distance 1/n1/3. Due to the exponential
dependence of the exchange coupling, such spins are weakly
bound to the bulk of magnetic atoms. The density of states
of such excitations is determined by the distribution function
W (ε) of molecular fields which can be found in the mean-field
approximation as it was done in Refs. [17,18] for ferromag-
nets. Because the mean-field treatment of antiferromagnets is
similar in many respects to that of ferromagnets, we present
below main formulas and refer the reader to Refs. [17,18] for
extra details.

The molecular field acting on spin i reads as

Hi = 〈S〉
N∑

j=1

J (ri − r j ), (21)

where 〈S〉 is the mean spin value and N is the total number of
impurities. Then the molecular-field distribution function has
the form [25]

W (ε) = 1

V N

∫
δ

[
ε − 〈S〉

N∑
j=1

J (r j )

]
dr1 · · · drN , (22)

where V is the volume of the system. Taking into account
Eq. (20) and integrating Eq. (22) by parts, we obtain

W (ε) = 1

2π

∫ ∞

−∞
e−ipε−D(p)d p, (23)

D(p) = iv〈S〉J0 p
∫ 1

0
ln3(x)eip〈S〉J0xdx, (24)

where v = 4π
3 nξ 3 � 1.

W (ε) can be found also from the following simplified con-
sideration which is in agreement with Eqs. (23) and (24). At
not too small ε, when 3v ln2 (〈S〉J0/ε) � 1 and ε � 〈S〉J0, the
distribution function is determined by molecular fields acting
on spins whose distances to all other spins are larger than the
average distance 1/n1/3. The molecular field ε acting on such
a spin and made by its nearest neighbor located at distance
r(ε) reads as [see Eq. (20)],

ε = 〈S〉J0 exp [−r(ε)/ξ ]. (25)
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Each spin located in a spherical layer (with the considered
spin at the center) of radius r(ε) and thickness ξ produces this
molecular field. Because the number of unpaired spins given
by 4πnr2(ε)ξ is small in this layer in the considered regime
(3v ln2 (〈S〉J0/ε) � 1), the molecular field distribution func-
tion is determined by the probability to find a nearest neighbor
at distance r(ε) which is given by the Poisson distribution [25]

W (ε) = WP(ε) = 4πnr2(ε) exp

[
−4π

3
nr3(ε)

]∣∣∣∣dr

dε

∣∣∣∣
= 3v

ε
ln2

( 〈S〉J0

ε

)
exp

[
−v ln3

( 〈S〉J0

ε

)]
. (26)

W (ε) given by Eq. (26) grows as ε decreases approximately
as 1/ε when v ln3 (〈S〉J0/ε) � 1.

At smaller molecular fields, when 3v ln2 (〈S〉J0/ε) � 1,
the number is large of spins in the layer with radius r(ε) and
thickness ξ . Then W (ε) < WP(ε) in this regime and, conse-
quently, W (ε) → 0 at ε → 0 [see Eq. (26)]. Thus W (ε) has a
maximum at εm satisfying 3v ln2 (〈S〉J0/εm) ≈ 1.

Because W (ε) tends to zero as ε → 0 faster than any power
law, spin waves give the major contribution to the density of
states at ε < ωm, where ωm is given by Eq. (19).

IV. MAGNETIZATION AND SPECIFIC HEAT

The specific heat can be expressed as follows [17]:

Cm = n
∫ ∞

0
C(ε)W (ε) dε, (27)

C(ε) = (βε)2

[
1

4 sinh2(βε/2)
− (S + 1/2)2

sinh2 βε(S + 1/2)

]
, (28)

where β = 1/T . Equation (27) may be rewritten as

Cm = n
∫ ∞

0
W (ε)F (ε)(βε)2e−βε dε, (29)

F (ε) = e2βε

(eβε − 1)2 − (2S + 1)2e2(S+1)βε

[e(2S+1)βε − 1]2 . (30)

The bounded smooth function F (ε) is positive at ε � 0,
F (0) = S(S+1)

3 , and F (∞) = 1. To estimate the integral in
Eq. (29), let us consider first the following quantity [cf.
Eq. (29)]:

I1 = β2
∫ ∞

0
W (ε)ε2e−βε dε = β2 d2

dβ2

∫ ∞

0
W (ε)e−βε dε.

(31)

One obtains from Eqs. (23) and (24)

I0 =
∫ ∞

0
W (ε)e−βε dε = e−D(iβ ) = e−v f (βSJ0 ), (32)

f (x) = (γ + ln x)3 + π2

2
(γ + ln x) + 2ζ (3), (33)

where γ is the Euler constant and ζ (x) is the zeta function.
Substituting Eq. (32) into Eq. (31), one obtains

I1 = {(v f1)2 + v f1 − 6v[ln(βSJ0) + γ ]}e−v f (βSJ0 ), (34)

where f1 = 3[ln(βSJ0) + γ ]2 + π2/2. It is clear from
Eqs. (31), (32), and (34) that I1 � I0 at small temperature
when 3v ln2 (βSJ0) � 1 [i.e., when T � SJ0 exp(−1/

√
3v)].

Hence, the main contributions to the integral in Eq. (29)
comes from εβ � 1 in which case one can replace F (ε) by
F (∞) = 1. Then, one obtains for the specific heat

Cm = n{(v f1)2 + v f1 − 6v[ln(βSJ0) + γ ]}e−v f (βSJ0 )

× at 3v ln2(βSJ0) � 1. (35)

In the opposite limiting case of 3v ln2 (βSJ0) � 1, the consid-
eration becomes somewhat more involved. It can be carried
out using series expansion of F (ε) in powers of e−βε as it is
done in Ref. [17], the result being

Cm = nvS(S + 1) ln2(βSJ0) exp(−v ln3(βSJ0))

× at 3v ln2 (βSJ0) � 1. (36)

The average impurity spin is given by [17]

〈Sz〉 =
∫ ∞

0
W (ε)

[
(S + 1/2) coth((S + 1/2)εβ )

− 1

2
coth(εβ/2)

]
dε. (37)

Representing coth((S + 1/2)εβ ) and coth( εβ

2 ) as series in
powers of e−βε , the calculation is reduced to taking integrals
of the type (32) with the result [17]

〈Sz〉 = S − exp[−v f (βSJ0)] at v ln3 (βSJ0) � 1 (38)

and

〈Sz〉 = S[1 − exp(−v ln3(βSJ0))] (39)

at 3v ln2 (βSJ0) � 1 and v ln3 (βSJ0) � 1. Notice that the in-
equality v ln3 (βSJ0) � 1 corresponds to the condition T �
TN which assumes S − 〈Sz〉 � S. At small temperatures when
3v ln2 (βSJ0) � 1, magnetization (38) drops off faster than
any power law. It means that 〈Sz〉 is basically governed by spin
waves at such T in agreement with conclusions of Sec. III B.

TABLE I. Correlation lengths ξx,y,z and gap � values in considered spin-gapped compounds found in previous experimental and numerical
works.

� (K) ξx ξy ξz Remarks

3D dimer compound TlCu1−xMgxCl3 7.5 9.6 2.5 2.5 Refs. [29–32], n = 2x
Spin ladder Bi(Cu1−x (Zn or Ni)x )2PO6 35 3.9 2.1 1.5 Ref. [4], n = 2x
Spin ladder Sr(Cu1−x (Zn or Ni)x )2O3 420 8.1 ∼2 ∼2 Refs. [4,33,34], n = 2x
Spin-1 (Haldain) chain Pb(Ni1−xMgx )2V2O8 30 ∼8 ∼2 ∼2 Refs. [4,35,36], n = x
Spin-Peierls chain Cu1−x (Zn or Ni)xGeO3 23 ∼10 ∼3 ∼1 Refs. [37–39], n = 2x
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FIG. 1. (a) Néel temperature TN as a function of concentration of unpaired spins n in doped spin-gapped systems TlCu1−xMgxCl3 [8,40],
spin ladders Bi(Cu1−x (Zn or Ni)x )2PO6 [4] and Sr(Cu1−x (Zn or Ni)x )2O3 [3,14], Haldane chain materials Pb(Ni1−xMgx )2V2O8 [35,36], and
spin Peierls chain compounds Cu1−x (Zn or Ni)xGeO3 [11]. The full and open symbols correspond to nonmagnetic and magnetic impurities,
respectively. Presented experimental data were taken from the cited papers by digitizing corresponding plots in them. Solid lines are drawn
using Eq. (7) with parameters summarized in Table I (the constant of proportionality in Eq. (7) is fitted for each material). (b) Same data as in
(a) but TN is divided by its value at x = 3%.

Owing to the pre-exponential factor in (35) and (36),
the specific heat falls off with decreasing temperature more
slowly than the magnetization does. As a result, the role of
local unpaired-spin flips is more essential in the specific heat
as opposed to the deviation of the average spin from the
saturation value.

V. APPLICATION TO RELEVANT COMPOUNDS

The theory developed above can be applied to the following
gapped compounds doped with magnetic and nonmagnetic
impurities a lot of experimental data for which have been
obtained so far: spin- 1

2 dimer system TlCu1−xMgxCl3, spin-
ladder materials Bi(Cu1−xZnx )2PO6 and Sr(Cu1−xZnx )2O3,
spin-Peierls chain Cu1−xZnxGeO3, and spin-1 Haldane chain
Pb(Ni1−xMgx )2V2O8. Parameters of these substances are col-
lected in Table I. As it is seen from Fig. 1(a), the transition
temperature TN is described well by Eq. (7) in all of these
spin systems at n < 0.06. Figure 1(b) demonstrates that
TN (n)/TN (x = 3%) given by Eq. (7) shows a linear-like be-
havior in the considered range of n which describes well the
experimental data. The seeming universality of TN (n)/TN (x =
3%) in the considered compounds at n < 0.06 was noted
first in Ref. [4]. It is seen also from Fig. 1 that a deviation
of theoretical curves from experimental points takes place
outside of the domain of Eq. (7) validity [i.e., at (Vξ n)1/3 � 1],
where a one-dimensional behavior is expected from the above
discussion. Consideration of this regime is out of the scope of
the present paper.

We are not aware of experimental results for the magneti-
zation. The magnetic part of the specific heat was measured
before in Bi(Cu0.97Zn0.03)2PO6 [26], Cu0.98Zn0.02GeO3 [27],

FIG. 2. Magnetic specific heat Cm divided by T for doped
two-leg spin ladder Bi(Cu0.97Zn0.03)2PO6 [26], Haldane chain mate-
rials Pb(Ni0.98Mg0.02)2V2O8 [28], and spin-Peierls chain compounds
Cu0.98Zn0.02GeO3 [27]. Solid lines are drawn using Eq. (36) (with the
replacement of ξ by (ξxξyξz )1/3 and with parameters from Table I) and
varying J0 and the overall constant.
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and Pb(Ni0.98Mg0.02)2V2O8 [28] at quite large temperatures
when Eq. (36) is valid. We present the available experimental
data in Fig. 2 and demonstrate that they can be fitted accu-
rately by Eq. (36) (with the replacement of ξ by (ξxξyξz )1/3

and with parameters from Table I) varying J0 and the overall
constant.

VI. SUMMARY AND CONCLUSION

In conclusion, we discuss theoretically the magnetically
ordered phase induced by small concentration n of magnetic
and nonmagnetic impurities in gapped three-dimensional and
quasi-low-dimensional systems with singlet ground states. We
apply the percolation theory to find analytical expressions for
the transition temperature TN (n) to the Néel phase, density
of low-energy excited states, magnetization and specific heat.
The low-energy part of the impurity-induced band of exci-

tations [i.e., the energy interval from zero to ωm given by
Eq. (19)] is composed of propagating antiferromagnetic spin
waves whose spectrum is given by Eqs. (10) and (17). Above
spin waves, localized excitations arise. Our expression (7) for
TN (n) describes well available experimental data at n < 0.06
obtained in spin- 1

2 dimer materials, spin-ladder compounds,
spin-Peierls, and Haldane chain materials (see Fig. 1). The
obtained analytical result (36) for the magnetic specific heat
Cm is in good agreement with available experimental findings
at n < 0.06 and T � TN (see Fig. 2).
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[41] The probability to find a couple of spins a distance r away
from each other who have no closer neighbors is estimated as
n2(1 − n)vr3 ≈ n2e−nvr3

, where v is a constant of the order of
unity giving the volume of two intersecting spheres of a unit
radius the distance between centers of which is equal to unity.

We use here that n is the probability to find a spin at a given
lattice site. Integration of this result on r from unity to infinity
gives the total probability to find such couple of spins which
is proportional to n2−1/3. The generalization of this result to
another dimension d reads as n2−1/d .
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