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Torque equilibrium spin wave theory of Raman scattering in an anisotropic triangular lattice
antiferromagnet with Dzyaloshinskii-Moriya interaction
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We apply torque equilibrium spin wave theory (TESWT) to investigate an anisotropic XXZ antiferromagnetic
model with Dzyaloshinskii-Moriya interaction in a triangular lattice. Considering the quasiparticle vacuum as
our reference, we provide an accurate analysis of the noncollinear ground state of a frustrated triangular lattice
magnet using the TESWT formalism. We elucidate the effects of quantum fluctuations on the ordering wave
vector based on model system parameters. We study the single-magnon dispersion, the two-magnon continuum
using the spectral function, and the Raman spectrum of bimagnon and trimagnon excitations. We present our
results for the HH, VV, and the HV polarization Raman geometry dependence of the bimagnon and trimagnon
excitation spectra where H (V) represents horizontal (vertical) polarization. Our calculations show that both
the HH and the HV polarization spectra can be used to determine the degree of anisotropy of our system. We
calculate the Raman spectra of Ba;CoSb,04 and Cs,CuCl,.

DOLI: 10.1103/PhysRevB.103.024417

I. INTRODUCTION

The effect of quantum fluctuations on the ground state and
the phase diagram of frustrated magnets has been a topic of
interest in recent years [1-8]. The two-dimensional triangu-
lar lattice antiferromagnet (TLAF) is a canonical example
of a frustrated magnetic system. There are several examples
of TLAF (see Table I). Due to the melting of long-range
magnetic order by frustration [9,10], the two-dimensional tri-
angular lattice is considered as a natural spin-liquid candidate
[11,12]. Even when magnetic long-range order exists, the
competition between various interactions has consequences
on the ground state and the phase diagram, especially for
low-dimensional spin systems [13,14]. Quantum fluctuations
can be non-negligible even for ordered magnets with 120°
spiral order [15-17].

The noncollinear spin structure of the triangular lattice
leads to interesting phenomena such as the presence of a roton
minimum [18,19] and a continuum of high-energy magnons
[20-22]. Similar to superfluid “He [23] and fractional quan-
tum Hall systems [24], Zheng et al. [20-22] defined the M
and M’ points of the Brillouin zone (BZ) of a triangular lattice
as rotonlike points. The formation of the local minimum is
caused by quantum fluctuations [25,26]. The roton signal has
been observed in inelastic neutron scattering (INS) experi-
ments [16,18,27,28]. However, the nature of the high-energy
continuum in the triangular lattice is still controversial. The
continuous excitation at high energy [20-22] may come from
fractional excitation of a proximate spin-liquid phase [29-33]
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or from strong magnon-magnon interactions [34-36]. In this
context, Raman spectroscopy serves as a powerful tool to
probe lattice distortions and the effect of ground-state quan-
tum fluctuations. It has already been used to detect magnon
excitations in TLAF [37-43]. Raman’s advantage is the sen-
sitivity to polarization geometry [44] and magnon-magnon
interactions [45,46], which is helpful for studying the high-
energy continuum. Note, a previous resonant inelastic x-ray
scattering (RIXS) calculation [47] on an anisotropic TLAF
has investigated the polarization-independent bimagnon and
trimagnon spectra.

There are a couple of Raman scattering experiments on the
anisotropic triangular lattice compounds «-CaCr,04 [40] and
«-SrCr,Oy4 [41]. However, the model Hamiltonian for these
two compounds is complicated. From a theoretical perspec-
tive, Raman bimagnon calculation for the TLAF has been
performed with a square lattice Raman scattering operator
[48] within the framework of interacting spin wave theory
[45,46]. However, the presence of divergence in the order-
ing wave vector and singularity of the spin wave spectrum
calls for renewed attention to accurately describe the non-
collinear frustrated triangular lattice magnet [47] beyond the
(1/5)-spin wave theory analysis. The Raman spectrum should
be carefully reconsidered with appropriate quantum fluctua-
tion effects and with the proper underlying lattice symmetry.
The recently established torque equilibrium spin wave theory
(TESWT) considers the spin Casimir effect of a noncollinear
system caused by the zero-point quantum fluctuations [13].
This formalism cures the ordering wave vector of any diver-
gence and is as convenient as (1/S)-spin wave theory. The
computed phase diagram of the anisotropic TLAF is consis-
tent with series expansion (SE) and modified spin wave theory
(MSWT) [3,49]. Since quantum fluctuations cause modifica-
tion of the ordering wave vector, its influence on the magnon
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TABLE I. Ordered antiferromagnetic triangular lattice materials.
The third (fourth) column is the nearest-neighbor exchange inter-
action J (ordering wave vector). Our torque equilibrium spin wave
theory approach for Raman spectrum calculation can be applied
to any of the ordered triangular lattice materials listed below. In
this paper, we only report on the Raman scattering spectrum of
Ba3CoSb209 and CSQCUC14.

Material Space group J (meV) Q
Ba3;CoSb,0y [50] P65 /mmc 1.67 (2/3,0,1)
CuCrO, [51] R3m 2.8 (0.658,0,0)
a-SrCr, 04 [17] Pmmn Jmean™ 5 (0.6609,0,1)
a-GaCr,0y4 [16] Pmmn 8.8 (0.6659,0,1)
LuMnO; [22] P63cm 9 (2/3,0,0)
Cs,CuCly [47] Pnma 0.48 (0.530,0,0) [20]
Cs,CuBry [52] Pnma 1.35 (0.575,0,0)

and multimagnon excitations (bimagnon and trimagnon) is an
important question to investigate.

In this study, we extend the analysis of the J-J' tri-
angular lattice Heisenberg magnet to the case of a XXZ
model with Dzyaloshinskii-Moriya (DM) interaction. First,
we apply TESWT to obtain the ordering wave vector. We
find that the DM interaction is more favorable to stabilizing
the helix state compared to XXZ anisotropy. Similar to the
quasi-one-dimensional helimagnets [14], the mere presence
of XXZ anisotropy can lead to a shift in the phase bound-
ary. Second, we calculate the spectral function within the
TESWT framework. We find that the magnon excitations
are more stable with DM interaction and XXZ anisotropy.
Our calculations show the presence of quasiparticle excitation
and continuum in the spectral function. Third, we calculate
the polarization-dependent bimagnon and trimagnon Raman
spectra under TESWT. Distinct from the noninteracting calcu-
lation, the bimagnon spectrum in the HV polarization displays
a single-peak feature with magnon-magnon interactions con-
sidered. We find that the bimagnon intensity is polarization
independent for the isotropic TLAF. However, the bimagnon
excitation occurs only in HV polarization for the anisotropic
TLAF. In the HV polarization, spatial anisotropy reduces the
bimagnon intensity and peak energy. DM interaction also
reduces its intensity, especially in a system with increasing
spatial anisotropy. In spite of a spin gap, DM interaction in-
duces an upshift of the bimagnon peak towards higher energy,
while XXZ anisotropy downshifts the bimagnon peak to a
slightly lower energy. The trimagon excitation is consider-
able and contributes to the continuum in the HH polarization
for the TLAF. We also compute the Raman spectrum of
Ba;CoSb,09 and Cs,CuCly. For Baz;CoSb,0Qg, its Raman
spectrum has a sharp peak and a broad shoulder in both the
HH and the HV polarizations. For Cs,CuCly, its Raman spec-
trum has a sharp bimagnon peak in HV polarization. We find
that the primary contribution to the Raman intensity in the HH
polarization comes from the trimagnon excitation. However,
in the HV polarization, both the bimagnon and the trimagnon
excitations mix and give a broad spectrum.

This paper is organized as follows. In Sec. II we introduce
the XXZ model with spatial anisotropy and DM interaction.
In Sec. III we compute the spin wave spectrum and spectral

2
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FIG. 1. (a) Triangular lattice with anisotropic exchange constants
J and J' acting along the bonds. (b) Experimental geometry setup
to study polarization effects within Raman scattering. 8;, denotes
lattice vectors. H (horizontal) and V (vertical) indicates polarization
direction of the incoming and outgoing light.

function by applying TESWT. In Sec. IV we utilize TESWT
to calculate the bimagnon and trimagnon Raman spectra. In
Sec. IV A we derive the expressions for the Raman operator,
their polarization dependence, and the magnon-magnon inter-
action effects. In Sec. IV B we present and discuss our results
on spatial anisotropy, spin anisotropy, magnon-magnon in-
teraction, and polarization dependence. Then, we present the
Raman spectrum of Ba3;CoSb,0O9 and Cs,CuCly. Finally, in
Sec. V we provide our conclusions

II. MODEL

Triangular lattice materials can contain spatial or spin
anisotropies. In the case of Cs,CuCl; and Cs,CuBry, DM
interaction is present and generates a spin gap. However,
the large gap of Cs,CuBry in the energy dispersion cannot
be generated exclusively by the DM interaction [52,53]. Ad-
ditionally, spin-orbit coupling may lead to XXZ anisotropy
which has been used to explain the presence of a gapped
spectrum in some TLAF materials [54,55]. Even though
Ba3CoSb, 0y is spatially isotropic in its exchange interaction,
its magnetization is well explained by a spin—% XXZ (spin-
anisotropic) model on a triangular lattice [50,56-59]. Thus, to
conduct a thorough study of the frustrated TLAF systems, we
consider XXZ anisotropy in addition to anisotropic exchange
interaction and DM interaction. Our model is written as

81482
H=17) [S'S+Si85+ AS)S)]
(ij)

81,62
H Y [SESY 4 8555 + ASYSY]
(ij)

81,8
— ) D (S x8)), e)

(ij)
where (ij) refers to nearest-neighbor bonds on the triangu-
lar lattice and §;, are the nearest-neighbor (NN) vectors
along the diagonal bonds [see Fig. 1(a)]. The four parame-
ters (J,J', D, A) contained in the model correspond to the
exchange constants along the horizontal bonds, the exchange
constants along the diagonal bonds, DM interaction along
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the yy direction (D > 0) [20], and XXZ spin anisotropy,
respectively.

The spin spiral ground state can be described by an order-
ing wave vector Q. To analyze the spin wave spectrum of this
magnetic model, we first transform from the laboratory to the
rotated local coordinate frame [47]. Then, successive appli-
cations of the Holstein-Primakoff (HP), the Fourier, and the
Bogoliubov transformations give us the effective first-order
1/§ expansion Hamiltonian as

o .
Heff = Z |:(S£k —+ 58k)C£Ck + Tk(C:;CLk + Ckc—k)]
k

[s |1
+{z W[E%QH(I,Z;DCTC;Q

! SO,
+ 5 {Zk}: ®,(1, 2, 3)clc;c3:| + H.c.}

1
gy 2 @ell, 233, A)ccjeses, @
{ki}

where cli (ck) is the quasiparticle creation (annihilation) op-
erator in momentum space. The numbers 1, 2, 3, ...denote
the wave vectors ki, ky, k3, .... The formulas of the vertex
coefficients ®,, ®;, and P, are given in the Appendix. We
set J = 1 meV in all our subsequent calculations. Thus, our
model has three parameters (J', D, A), where J' and D rep-
resent interaction strength relative to the exchange interaction
J. In the next section, we will analyze the above bosonized
Hamiltonian for its spin wave spectrum. As mentioned before,
the (1/S)-spin wave theory cannot treat the quantum fluctu-
ations appropriately, which in turn leads to divergences and
singularities in the calculation of the ground state [14]. Thus,
we will analyze this model using TESWT.

III. TESWT SPIN WAVE SPECTRUM

Torque equilibrium spin wave theory formalism gives the
correct ground state and phase diagram for spin spiral mag-
nets [13,14,47]. The phase diagram that results from TESWT
formalism is consistent with previous numerical calculations
[3,49]. The essential conceptual difference between spin wave
theory and TESWT is the reference ground state. The former
considers the classical vacuum as the ground state, while the
later considers the quasiparticle vacuum state as the correct
starting point. Although linear spin wave spectrum g is physi-
cally well behaved at the classical ordering wave vector Q. =
(Qd, 0, 0), it yields an incorrect ground-state wave vector (see
Fig. 2). Within the TESWT approach the goal is to find a
redefined Hamiltonian whose classical ordering wave vector
Q. is equal to the final ordering wave vector Q of the original
state. Henceforth, the tilde variable will signify parameters of
the torque equilibrium shifted Hamiltonian.

To implement TESWT we rewrite the quadratic term of our
model as H>(J', D, A, Q) = Hy(J', D, A, Q) + HS, where the
superscript ¢ represents the counterterm which will regularize
the original singular Hamiltonian. Due to the small values of
D and (1 — A) in real materials, we take D = D and A = A.

a b)0.6
(a) ol _o.1) (b)
—(0.05,1) &
—(0,0.95) =04
< <
~
&8 | 0.2
S
0
)
0 05 1 15 2 25 0 05 1 15 2 25
J’ J'

FIG. 2. Ordering wave vector (a) Q/m and (b) (Q — Q.)/7
versus J' for spin-% system. The black, blue, and red lines show
results for parameters (D, A) equal to (0,1), (0.05,1), and (0,0.95),
respectively.

Next, the spin Casimir torque is defined as

TS(-(Q) = Z <\Ijvac

k

0Hju
9Q

\Ijvac>’ (3)

where |Wy,.) represents the expectation value of the quasi-
particle vacuum state. Next, we utilize the torque equilibrium
condition, within the approximation of T.(Q) = T,.(Q), to
obtain the final ordering wave vector as

0Ey(Q) S 9ok
20 +§ d E_O’ “4)

where F = F (7 , 5, Z, Q) (F is an arbitrary operator here).
The corresponding functions are shown in the Appendix.

Figure 2(a) shows the ordering vector Q of the spin-
% system obtained using TESWT. Without DM interaction
and XXZ anisotropy, the TLAF orders in an antiferromagnet
phase for J > 1.2. DM interaction influences the ordering
wave vector more than XXZ anisotropy. It enlarges the re-
gion of spiral phase. Figure 2(b) shows the difference of
ordering vector between TESWT and linear spin wave theory
(LSWT). For J’ < 1, TESWT gives a smaller Q (compared
to LSWT) and the ground state becomes closer to the ferro-
magnet. Whereas, with J > 1 TESWT gives a larger Q and
the ground state will be nearly antiferromagnetic in arrange-
ment. Thus, we conclude that the spin Casimir effect induces
collinear arrangement of spins. Since we are analyzing a
coplanar noncollinear spin configuration we will restrict our
XXZ anisotropy values. It is evident from Fig. 2(b) that with
DM interaction, the difference between TESWT and LSWT
becomes smaller, indicating that it weakens quantum fluctu-
ations. The Hamiltonian shift results in the one-loop torque
equilibrium effective Hamiltonian given by

i B
Her = Z |:(S§k + 88k)Cka + Tk(ckcik + ckC_k)
k

e SOy
+ Sepeyck + —2k (cpel + CkC—k):|

eIk

5(1(17 2; 3)CICEC3
{ki}
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FIG. 3. Momentum and energy dependence of the spectral function A(k, w) for a spin—% system. The points in the chosen path are defined
as '=1(0,0), K= (4n/3,0), K' = 27/3, 271/\/§), and M = (0, 27t/\/§). The parameters (J', D, A) are (a) (0.5,0,1), (b) (0.5,0.05,1),
(c) (0.5,0,0.95), and (d) (1.1,0,1). The solid red lines show the on-shell dispersion wy [see Eq. (9)].

1~ -
+ 5 {; ®,(1, 2, 3)clc;c§i| —I—H.c.}

1 ~
+ 2y > 0.1, 2;3, H)ejclesca, Q)
{ki}

with

o~ N
&y = = (AgAx — BiBg) — &,
&k
c 1~ B
Oy = er(AkBk — ByAy). (6)
k

In such a noncollinear spin system, we consider the renor-
malization of magnon dispersion up to 1/S order. Thus,
the counterterm contributions from H; and H, are neglected
[13,14]. Within this scheme the first-order renormalized
Green’s function in the one-loop approximation is given by

G '(k, ) = © — S& — [Sej,
+ Ze(k) + Z§(k, 0) + Sk, )], (D)

where Sep is the counterterm from H,. ic(k) = 8¢y de-
scribes the quartic correction following mean-field averages.
Eg’b(k, ) are the self-energy contributions from the cubic
interaction and are given by

- S .k, k — k; k)2
So(k, w) = Z [P, (ky 1:K)|

_W . w—SEkl —ngk,kl +i0+’
1
S |5 (k;, —k — K, K)[?

2k, w) = ®)

_W . a)—f—Sgkl +S§k+k| — 0t
1

The on-shell approximation for the renormalized Green’s
function, in the self-energy contribution, is given by wgx =
S€k. Thus, the first-order renormalized magnon energy can be
calculated as

o = SEx + Sef + (k) + Sk, ST + 2k, SE). (9)

Note, all our derivations are applicable for both low- and
high-spin values. Quantum fluctuations are maximal when
S = %, as is in our case. The real and imaginary parts of wy are
the magnon dispersion and the magnon decay, respectively.
To obtain an intuitive understanding of the single-magnon
excitation, we calculate the spectral function, which is
defined as

AKK, ) = —%ImG(k, w). (10)

In Fig. 3 we report our spectral function calculation for var-
ious model parameters. The intensity plots show broadening
of the quasiparticle excitation and presence of two-magnon
continuum in all the panels, which is consistent with a previ-
ous study on the isotropic TLAF [36]. Thus, magnon-magnon
interactions are important in the triangular lattice. Compared
to Ref. [36], spatial anisotropy causes a downshift of the con-
tinuum energy. In Fig. 3(a) the dispersion shows no gap at the
ordering wave vector. This is consistent because the DM inter-
action is set to zero and the Hamiltonian is at the spin-isotropic
point A = 1. From Figs. 3(b) and 3(c) we observe that DM
interaction and XXZ anisotropy can suppress damping and
stabilize magnon excitations. Both XXZ anisotropy and DM
interaction can generate gaps at the ordering wave vector,
thereby reducing magnon decay. However, DM interaction has
a greater effect of suppression on magnon decay than XXZ
anisotropy. In Fig. 3(b), the consistency between the spectral
function and dispersion indicates that the on-shell calculation
is more reasonable with DM interaction. However, the spec-
trum is inconsistent with the on-shell dispersion when J > 1
[see Fig. 3(d)]. Thus, we restrict our Raman calculations to pa-
rameters where the spatially anisotropic exchange interaction
does not exceed one. In fact, this is a valid parameter regime
for real materials [47,50,52,54].

IV. TORQUE EQUILIBRIUM SPIN WAVE THEORY

RAMAN SPECTRUM

Raman scattering has the ability to detect magnon exci-
tations due to its sensitivity to magnon-magnon interactions

024417-4



TORQUE EQUILIBRIUM SPIN WAVE THEORY OF RAMAN ...

PHYSICAL REVIEW B 103, 024417 (2021)

and polarization [37-41,44-46,60]. Thus, we consider inter-
actions to study the continuum shown in Fig. 3. Experimental
data from INS indicate that the highest energy of a single
magnon is about 20 meV [17]. Considering the presence of
magnetic interactions in a real material (which are known
to introduce downshifts in the Raman spectrum), it is de-
batable whether the high-energy excitation above 40 meV
in the unpolarized Raman experiment [41] of «-SrCr,O4
may be attributed to a bimagnon. Based on our calcula-
tions and the location of the Raman spectrum peaks, we
conclude that it most probably contains the trimagnon ex-
citation. Thus, the study of trimagnon Raman spectrum is
valuable. In addition to the unpolarized Raman detection, a
polarization-dependent Raman spectrum will provide further
perspective on the understanding of bimagnon and trimagnon
excitation. Hence, we study polarized Raman scattering of
TLAF to investigate the bimagnon and trimagnon excitation
behaviors. In comparison to RIXS, Raman scattering is a more
mature technique restricted to scattering momentum ¢ ~ 0.
For the bimagnon, the momentum of individual magnons can
be nonzero, as long as the momenta of the two magnons
approximately sum to zero. The same rule applies to the
trimagnon.

To date, from a theoretical perspective, a substantial num-
ber of studies have been pursued within LSWT and an
interacting framework to investigate the Raman spectrum
of TLAF Heisenberg model [37,38,45,46]. However, since
LSWT leads to a divergent ordering wave vector and fails
to describe the ground state, it is not suitable to calculate
the magnon excitation. Thus, we apply the TESWT to study
the Raman bimagnon and trimagnon excitations of TLAF.
One of the key developments reported in this paper is on
trimagnon calculation and our discussion of the polarization
dependence of the bimagnon and trimagnon excitations. Ne-
glecting polarization, the bimagnon intensity is zero at the I'
point. However, the real spectrum of the anisotropic TLAF
is polarization dependent. Next, we discuss the polarization
dependence and how it helps to analyze the composition of
Raman spectrum.

A. Raman scattering operator and interactions

Standard perturbation theory formalism applied to
electron-radiation interaction can be used to compute
the Raman scattering cross section [61-63]. Since we
are studying magnetic Raman scattering, the operator
should be expressed in terms of spin operators which
obey the underlying lattice symmetry. Our triangular
lattice model Hamiltonian contains spatial anisotropy, DM
interaction, and XXZ anisotropy. Thus, the expression for
the polarization-dependent second-order Raman scattering
operator is

O =73 PO, (S} ia, T SiShs, + ASIS ;)
ey

= D; - (Si x Siys)) |, an

where §; denote the lattice vectors: §; = (%, 0, ﬁ), & =

(%, 0, —*/7§), and &; = (1,0, 0).! The polarization geometry
and the symmetry of the experimental setup are captured in
the P;(0, ¢) operator coefficient. We consider the polarization
of the incoming and outgoing light as &, = (cos 6, 0, sin6)
and &, = (cos ¢, 0, sin ¢), respectively, where 6 and ¢ are
defined with respect to the xj axis. The sketch of the exper-
imental geometry is shown in Fig. 1(b). Lattice symmetry
was employed to analyze the different types of magnetic
excitations. Since we are considering a quasi-2D TLAF, for
generality, we calculated the Raman spectrum of both the
isotropic (C3,) and the anisotropic case (C»,), respectively.
The Raman-active modes of the C3, and C,, systems are
given by the irreducible representations A; + E and A; + A,
respectively.

In terms of the Bogoliubov magnons the polarized Raman
scattering operator takes the following form:

O =" Bulexeox + e y)
k

+ Y F(p, =k — p, K)(cpexpex — ey _peh),
k.p
(12)

where the scattering matrix element gk and ]? k,—k —p,p)
are given by

3
Bu=SY_ PO, )[ftt — (7 +)rn]  (13)

j=1
and
F,—k—p,p)
3
iV28 <
== 2_Pi0.9)
j=1
X [ij(ﬁp + ij) X (ﬁ—k—pik +5—k—pﬁk)
+ ;j,fkfp (ﬁ*kfp + T):kfp) X (ﬁk?ip + fak/jp)
+ Cjk(ﬁk + Uk) x (ﬁpg—k—p +5pﬁ—k—p)]- (14)

We note that the summation of the momenta in the bimagnon
(trimagnon) scattering matrix element adds up to zero. In the
above equations we have introduced the following functions:

Eix =2[AJ;+Jjcos(Q-8;) —D;sin(Q - ;)] cos(k - §;)
—4[Jjcos(Q-8;) — Djsin(Q - §;)],

Ak = [AJ; —Jjcos(Q - 8;)+ D;sin(Q - §;)] cos(k - §;),

ik = —[J;sin(Q - §;) + Djcos(Q-8;)]sin(k - 8;). (15)

Note, in our earlier publication (Jin et al. [47]), there was a typo-
graphical error in the reported RIXS scattering operator expression.
The expression missed the DM interaction term which was consid-
ered in our study. The correct reported form of the RIXS operator
expression should be Rq = ZM e[ J;5S; - Sivs — Ds - (S; x Siyvs)].
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For the C3, symmetry the P;(60, ¢) coefficient is given by the
following function:

P1
P (0. ¢) =ein(0) P e (@)ar)!
pP1
pP3 - e
+ €in(0) P4 80ut(¢))ajl
P+ —D3
—P4  —D3 -
+ &in(0) | —pa Equ (@), (16)
—P3
with of' = 1, of' = =207 = —205' = 1/2, o3> =0, and

ot‘lg2 = —otZE2 = \/5/4 [37,38]. We note that each irreducible
representation contains an overall multiplicative form factor
exclusive to that channel. Within the polarization defined
above, the scattering spectrum is dependent only on the
(p1, p3) coefficients. To proceed with the calculation (in the
absence of adequate information to calculate these form fac-
tors) we make a simplification by setting p; = p3 = 1 in all
subsequent calculations. Note, el isthe transpose of &qy. For

out

the G, symmetry, the P;(6, ¢) coefficient is given by

Ps
Pi (0. ¢) =ein(0) Pe Eau (@I}

p7

14
+ &in(0) 0
P8

o @2, ()

with n’;' =1, n/;z =0, and 17?2 = _,71242 = /3/4. Within the
defined polarization, the spectrum is independent of the pg
coefficient. To simplify, we set ps = p7 = pg =1 in our
computations.

According to the fluctuation-dissipation theorem, the Ra-
man scattering intensity can be related to the multimagnon
susceptibility. In our particular case, the bimagnon and tri-
magnon susceptibilities are defined as

B . ~ ~
x2(w) = f dre™” ZBkBk’<Ter(T)C—k(f)C]t’Cik’)a
0 "
(18)

P
@ = [ dee™ 3 FopFin
0

kKk'pp’

x (Trer(T)ex—p(Tep(TIey el _yer), (19)

where 7, is the time-ordering operator. (-) is the av-
erage of the ground state. Here, we study the case of
zero temperature 8 = 1/kgT. According to Fermi’s golden
rule, the noninteracting scattering intensity is related to
the bare Green’s function Go(k, ®) = 1/(w — 0 +i0%)
with a)l((o) = Sek in the quasiparticle representation. Apply-
ing Wick’s theorem, the noninteracting spectrum can be

£ | @ HH ® HV —I (J'=1)
g2 —5, (J' =0.5)
S oLy (J' = 1)
) --I; (J' = 0.5)
>
+
‘0
g
3
=0

0 1 2 0 1 2

w/3JS w/3JS

FIG. 4. Noninteracting bimagnon (solid lines) and trimagnon
(dashed lines) Raman spectra of spin-% system in (a) HH and (b) HV
polarizations. DM interaction and XXZ anisotropy are absent in the
system. The red and black lines are calculated with J' = 1 under
C;5, symmetry. The blue and green lines are calculated with J' = 0.5
under C,, symmetry.

calculated as
h@) =2 Bis(w— o — o),
Kk

L(w) =6 Z flfy_k_p,pB(a) — a)]((o) — a)g)(_p — w:,(])).

k.p
(20)

The noninteracting result is shown in Fig. 4 and will be dis-
cussed in Sec. IV B along with the interacting case.

Next, we consider the 1/S correction to the bimagnon
excitation. The two-particle propagator Ik (@) from Eq. (18)
is given by

do’

Gk (@ + @)G_k(—0 )Tk (0, @).
2

2D

Hkk/(a)) = 21/

The vertex function Iy (w, ') can be computed from the
Bethe-Salpeter equation which is expressed as [64]

f . d(,()l
P (@, @) = bae + )22 | ——Gi(@ + 01)G, (—01)
k;

x Vir, (@, 0T (@, 01), (22)

where Vi§ (o, 01) = Vi (@, 01) + Vg, is the two-particle
irreducible vertex. For the Raman process, the scattering mo-
mentum q ~ 0, thus leading to the disappearance of vertices
V§C) and V3(d). Thus, the cubic vertex is calculated as

S ~ ~
Vi, (@, o)) = a Betkn k—ki: K)®*(—k, k — k;; —k;)
x Go(k — kj, 0 — wy)
+ Ok (k, ky — k; k)P, (—ky, ki — k; —k)
x Go(k; — k, w; — @)]. (23)
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The four-point vertex Vékl originating from the quartic Hamil-
tonian is given for our Raman case as

1 1 1 1
4
Vik, = w |:4 (Ao + By + EAk-&-kl + EBHk' + EA"—"I

1
+ Ekak] —Ag — Ah)MkMkIUkUkl

+ (Ak—k, + Bk—k, + Ak+k, + Brik, — Ak — Ak,)
< (urtty, + vivi,) — 2Bi + Bi,) (i + Vi) b, Vi,
— (2B, + Bi) (i, + v, ) k] - (24)

Next, considering the appropriate time domain of 7 €
[—o0, o], the expression for the interacting bimagnon Raman
intensity is given by

1
h(w) = ——Im Z[)?mn(w) — Xmn(—)]. (25)

In the above calculation we will assume that the two on-shell
magnons are created and annihilated in the intermediate prop-
agators with o' =~ —wl((o) = —S&k — Sef and w; = —a)]((?) =
—S%k, — Sey, . We calculate the bimagnon susceptibility in the
matrix form 7 = Bi[1 — fk,p]’ll'[kgk, where Iy = 2[w —
2wy + i0*]7! is the renormalized two-magnon propagator
[47,64].

B. Bimagnon and trimagnon Raman spectra

We calculate the spectrum under HH, VV, and HV po-
larization (as realized in experimental setup), where H and
V represent the horizontal and vertical polarizations of the
incoming and outgoing lights, as shown in Fig. 1(b). For
example, in our notation HV polarization implies &, = H and
&out = V. The Raman signal from the isotropic TLAF can be
explored by one of these three polarization choices originating
from the irreducible representations o' + «®' (HH, VV) and
o (HV) modes. Note, HH = VV only for the anisotropic
TLAF.

The noninteracting Raman spectra for the isotropic cases
are shown in Fig. 4. The bimagnon spectrum is polariza-
tion independent since the red solid lines of Figs. 4(a) and
4(b) are the same. However, the trimagnon is polarization
dependent since the black dashed lines of Figs. 4(a) and
4(b) behave differently. The trimagnon intensity in the HH
polarization is much greater than that in the HV polarization.
For the anisotropic case, the Raman signal under HH (VV)
polarization and HV polarization stems from n* and n*
mode, respectively. As the Raman scattering operator of the
bimagnon in A; mode is commutable with H,, the bimagnon
intensity in this channel is zero [see the blue solid line in
Fig. 4(a)]. Different from the two-peak feature observed in
the Raman response of the isotropic TLAF in Fig. 4, the
bimagnon spectrum of the anisotropic case presents a single-
peak structure with a downshift in peak energy.

Previously, we discussed the importance of magnon-
magnon interaction within the context of the spectral function
of a TLAFE. Thus, we calculated the interacting Raman
multimagnon spectrum using Eq. (25). Figure 5 shows the in-
teracting bimagnon intensity with different parameters under

—~2 2
Z (a) —(0.5,0,1,1/2) (b) —(0.5,0.05,1,1/2)
3 —(0.8,0,1,1/2) —(0.8,0.05,1,1/2)
= —(1,0,1,1/2) —(1,0.05,1,1/2)
el

-
4 1

>

i

i

g

Q

£

=

=0 0

fg (C) _(05’()*09511/2) (d) _(0'510:173/2)
g —(0.8,0,0.95,1/2) —(0.8,0,1,3/2)
= —(1,0,0.95,1/2) —(1,0,1,3/2)
el

-

A 2

>

+

R

=]

Q

+~

=]

=0 0

0 1 2 0 1 2
w/3JS w/3JS

FIG. 5. Interacting Raman bimagnon spectra of spin-% systems
in HV polarization with different parameters (J', D, A, §).

HYV polarization. We note that the bimagnon intensity with
HH (VV) polarization is almost zero. We study the effect of
magnon-magnon interactions, spatial anisotropy, DM interac-
tion, XXZ anisotropy, and spin value on Raman bimagnon
spectrum. Considering interactions, the spectrum in the HV
polarization displays a single-peak structure in the isotropic
model compared to the two-peak structure of the noninter-
acting calculation. Spatial anisotropy decreases the intensity
and the peak energy. DM interaction shifts the peak towards
higher energy. Although XXZ anisotropy introduces a gap, the
bimagnon peak has a slight downshift in energy.

As anisotropy increases, the system tends to behave like a
quasi-one-dimensional (quasi-1D) spin chain. Thus, it reduces
the bimagnon intensity and leads to the downshift of the peak
similar to what is predicted to occur in the RIXS spectrum
[47] at the roton scattering momentum q = M and q = M'.
However, unlike the RIXS spectrum, the DM interaction
causes a decrease in the Raman intensity [compare Fig. 5(a)
to Fig. 5(b)]. The reduction effect is also seen in the XXZ
model if we compare Fig. 5(a) to Fig. 5(c). This reduction
can be attributed to the influence of DM interaction and XXZ
anisotropy on the bimagnon scattering matrix element. With
increasing spatial anisotropy, DM interaction plays a more
important role. Thus, the Raman intensity reduction is more
prominent in the systems with greater spatial anisotropy. The
renormalized dispersion is shown in Fig. 3. DM interaction
introduces a spin gap, resulting in the higher peak energy
in Fig. 5(b) compared to Fig. 5(a). Although a tiny gap is
generated by XXZ anisotropy, the bimagnon peak shifts to
lower energy slightly in Fig. 5(c) compared to Fig. 5(a). In
addition, the large spin value weakens the quantum fluctu-
ations and magnon-magnon interactions [compare Fig. 5(d)
to Fig. 5(a)]. Thus, Fig. 5(d) shows an energy upshift with
vanishing shoulder, similar to the noninteracting case.

We study the Raman spectrum of two real materials
Ba3CoSb,0y (isotropic TLAF) and Cs,CuCly (anisotropic
TLAF). The Raman spectrum of Ba3;CoSb,Oy in Cj,
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FIG. 6. Interacting bimagnon and noninteracting trimagnon Ra-
man spectra of Ba;CoSb, 0y and Cs,CuCly. The left (right) column is
under HH (HV') polarization. The first line is for Ba;CoSb,0g with
', D, A) = (1,0,0.954) [50]. The second line is for Cs,CuCl, with
J', D, A) = (0.316,0.025, 1) [47].

symmetry is shown in Figs. 6(a) and 6(b). For Ba3CoSb,0y,
with DM interaction set to zero and J = J’ the ground state
is close to a 120° noncollinear magnetic order. We use
the parameters from the electronic spin resonance (ESR)
experiment of Susuki et al. [50] as an input for our Ra-
man computation. The Raman spectrum of Cs,CuCly in Cy,
symmetry is shown in Figs. 6(c) and 6(d). The fit parameters
for Cs,CuCly were chosen from our earlier TESWT INS fit-
ting result [47].

The BazCoSb,O9 Raman spectrum shows two prominent
features for both the HH and HV polarizations. In the HH po-
larization there is a clear separation of energy excitation. The
bimagnon peaks around ~1.1J, whereas the trimagnon peaks
around ~3.3J. However, the bimagnon intensity is much
greater than the trimagnon response in the HH polarization
geometry. For the HV case, the Raman intensity is dominated
by the bimagnon signal. For Cs,CuCly the bimagnon signal is
almost zero in the HH channel. Thus, the trimagnon is the
main contribution. This response is different from that ob-
served in the isotropic TLAF Ba3;CoSb,0y. Hence, we can use
the HH signal as a signature to identify anisotropic behavior
in a TLAF. The trimagnon signal is broad and spreads over an
energy range of ~J-3J. In contrast, the HV polarization for
Cs,CuCly supports a nonzero signal for both the bimagnon
and the trimagnon intensities. The bimagnon peaks at ~0.6J
and the trimagnon is maximum around ~1.2J. This behavior
is qualitatively similar to what we observe for BazCoSb,Oy
Raman signal in the HH geometry. The bimagnon inten-
sity for Ba;CoSb,0y is greater than Cs,CuCly. This can be
explained by the presence of stronger spin coupling along
the diagonal bonds for the isotropic TLAF. Furthermore,

comparing Fig. 6(b) to Fig. 6(d) we find that the trimagnon
response survives only in the anisotropic case, consistent with
Fig. 4(b). Thus, we can also judge the degree of anisotropy of
the system from the HV polarized Raman spectrum.

V. CONCLUSION

We applied TESWT to calculate the bimagnon and tri-
magnon Raman spectra of an isotropic and an anisotropic
TLAF. We extended TESWT to the XXZ model considering
both spatial anisotropy and DM interaction. Our calcula-
tion is an application of the TESWT formalism to Raman
spectroscopy analysis. We computed the TESWT corrected
ordering wave vector, the on-shell dispersion, the spectral
function, and the Raman spectrum in both Cs, and C;, sym-
metries for the HH and the HV polarizations.

Based on our calculations we find that even for our system,
the spin Casimir effect can induce an arrangement of collinear
spins [13]. Although DM interaction and XXZ anisotropy sta-
bilize the spiral order, spin wave theory is unable to predict an
accurate ordering wave vector for the system. Thus, one needs
to account for the presence of spin Casimir torque introduced
by zero-point quantum fluctuations. This reduces the range of
the spiral phase. Both XXZ anisotropy and DM interaction
introduce a gap at the ordering wave vector, leading to sup-
pression of damping and magnon excitation stabilization. We
note that DM interaction brings about a stronger suppression
effect on magnon decay than XXZ anisotropy. We also discuss
the sensitivity of Raman spectrum to polarization, system
parameters (J', D, A, S), and magnon-magnon interactions.
We find that large spin values cause an energy upshift with
vanishing shoulder due to the weakened quantum fluctuations
and magnon-magnon interactions. We also compute the bi-
magnon and trimagnon Raman spectra for BazCoSb,O9 and
Cs,CuCly. In an isotropic TLAF, the Raman spectrum is sen-
sitive to polarization for trimagnon excitation and independent
from polarization for the bimagnon excitation. However, the
converse holds true for the anisotropic lattice. The bimagnon
excitation is polarization dependent. We propose that the de-
gree of anisotropy of the system can be judged using either
the HH or the HV polarization. Based on our calculations, we
have shown that TESWT is a reliable method to calculate and
analyze the Raman spectrum of frustrated magnetic materials.
Finally, we hope that our results will inspire experimentalists
to perform measurements to verify our predictions.
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APPENDIX: (1/S)-SPIN WAVE THEORY

In this Appendix we state the expression for the functions introduced under 1/S LSWT, which can be easily applied under

the TESWT. The classical energy Eo(Q) is given by
Eo(Q) = NS*(Jg — o) = NS’yq.

with
kyx 3
Jx = J cosk, +2J cos > cos %_ky,
ke A3
e = 2D sin — ©os Tky.
The classical ordering vector Q.; is obtained by solving the following self-consistent equation:
VoEy(Q) =0.

The bare magnon dispersion is Sex with

Ek = ,/Alz( —Blz(,

Ak = 32AK + Yok + Yok — 41Q),
Bx = 3 (Yo+k + Y-k — 2AU).
The rest of the quadratic terms in Hs are obtained from a mean-field decoupling of the quartic Hamiltonian with
Sex = (uy + vg)8Ax + 2uvicd By,

where

Ok = (l/tlz( + Uﬁ)aBk + 2uk vk bAk,

where uy and vy are the Bogoliubov transformation coefficients given by

Ay 1
u = | — + =,
k 2e | 2

B0 A 1
Vg = —sgn — -,
Kk gn(By e 2

1 Bk
Ak ="+ 20D —|ApAkp+ Bp — A=Ay + By + By ) |-
p p

and

oB = ok _ L i[BP<A,”, By — Ok _ ﬁ) +AP(Bk n ﬂ)].
2 TNy 2 2 2
The cubic interaction terms are defined as
@,(1,2;3) = [y1 (w1 + vi)(uauz + v2v3) + P2(uz + v2)(uiuz + v1v3) — y3(us + v3)(Uiv2 + viug)l,
@(1,2,3) = [1(u1 + vi)(u2vs + vauz) + 2 (uz + v2)(1v3 + viuz) + P3(u3 + v3)(Urv2 + viw)],
with
kK = YQ+k — YQ-k-
The quartic interaction term is given by
®.(1,2;3,4) = — (B1 + By + By)(uruau3v4 + v1v2v3ug) — (By + By + B3)(u1u2v3u8 + v102U304)
— (B2 + B3 + By)(u1vau3utg + viuav3vg) — (By + B3 + B4)(u1v20304 + viuauzuy)
F[(Cr13+Co3+Cig+Coyg) — (A1 + Az + Az + A (u1uouzug + v1v20304)
F[(Cr2 + Caya + Ci3 + Coy) — (A1 + Az + A3 + A1 v2u304 + ViU v314)
F+[(Cry2 + Caya + Crg + Co3) — (A1 + A + A3 + A (1 V20314 + ViU U3 VL),
where Cy is

Cx = Ak + Bk.
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