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Surface critical behavior of coupled Haldane chains
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The nonordinary surface transitions at the (2 + 1)-dimensional quantum critical point precluded in the
corresponding classical critical point have been found recently. The mechanism of such behavior that is only
found in dimerized Heisenberg models to date is still under debate. To illuminate the role of symmetry-protected
topological (SPT) phases in inducing such nonordinary behaviors, we study a system on a two-dimensional
square lattice consisting of interacting spin-1 Haldane chains, which has a genuine SPT phase—the Haldane
phase—at weak interchain interactions and a quantum critical point, belonging to the classical three-dimensional
(3D) O(3) universality class, to the Néel phase. Different from previously studied models, there is no dimerization
in the current model. Cutting the system along the chain direction or perpendicular to the chain direction exposes
two different surfaces. Using unbiased quantum Monte Carlo simulations, we find that the two different types of
surfaces show completely different surface critical behaviors at the bulk critical point, resulting from different
surface states in the SPT phase. For the system with surfaces along the chain direction, the surface critical
behavior is of ordinary type of the bulk 3D O(3) critical point, while for the surfaces perpendicular to the chain
direction, the surface critical behavior is nonordinary, consistent with nonordinary transitions found in dimerized
Heisenberg models. Our numerical results demonstrate that the gapless surface state in the gapped SPT phase
together with the gapless mode of the critical point is a pure quantum scenario that leads to the nonordinary
transition.

DOI: 10.1103/PhysRevB.103.024412

I. INTRODUCTION

The field of classical surface criticality behavior (SCB) is
rather mature [1,2]. It is both well known and understood
based on renormalization group theory [3,4] that tuning the
surface coupling leads to the realization of different surface
universality classes. In particular, in cases where the sur-
face can hold a long-range order, e.g., the two-dimensional
(2D) surface of the three-dimensional (3D) Ising model, three
different SCB universality classes, namely, ordinary, extraor-
dinary and special transitions, can be realized. However, for
models with continuous symmetry that cannot hold a long-
range order on the surface at finite temperature due to the
Mermin-Wagnar theorem [5], e.g., the 2D surface of a 3D
O(n) model with n � 3, it is widely accepted that there
is neither extraordinary nor special transition. According to
the quantum to classical mapping particularly valid in un-
frustrated quantum antiferromagnets (AF), the d-dimensional
SU(2) quantum critical point can be described by a (d + 1)-
dimensional classical effective O(3)-symmetric Ginzburg-
Landau theory. [6] We thus expect that there is neither special
nor extraordinary surface transition at the 2D SU(2) quantum
critical points.

*waguo@bnu.edu.cn

However, a nonordinary SCB was recently found in the 2D
Affleck-Kennedy-Lieb-Tasaki (AKLT) [7] to Néel quantum
critical point, which belongs to the 3D O(3) universality class
[8]. The bulk quantum criticality is realized by the spin-1/2
AF Heisenberg (AFH) model on a decorated square lattice
(DS). The surface transition has exponents different from
those of the ordinary transition of the 3D O(3) critical point,
suggesting that an impossible SCB occurs at the quantum crit-
ical point, denying the quantum to classical correspondence.
Such an unusual behavior was attributed to the symmetry-
protected topological (SPT) [9,10] phase which, in contrast
to the trivial (non-SPT) disordered phase, has gapless surface
states. At the quantum critical point, such pure quantum-
originated gapless states together with the gapless critical
modes lead to unconventional SCB [8]. Since then, several
theoretical works appeared to study the coupling of SPT edge
modes to bulk critical modes [11–13].

This discovery has inspired further interests in the inves-
tigation on SCBs with pure quantum origin. Ding et al. [14]
found that different ways of cutting 2D periodic dimerized
Heisenberg models on the square lattice into systems with
boundaries can lead to all three types of SCB universality
at the bulk quantum critical points that belong to the 3D
O(3) universality class. In particular, for the columnar dimer-
ized Heisenberg model, a system with surfaces formed by
nondangling spins shows SCB corresponding to the ordinary
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transition of the 3D O(3) class, while, remarkably, a system
with surfaces formed by dangling spins shows nonordinary
SCB, with exponents in agreement with the special transition
of the 3D O(3) class—numerical values of the exponents are
close to those obtained by the renormalization-group calcula-
tions for the special surface transition of the 3D O(3) model.
Similar results are obtained by Weber et al. [15] indepen-
dently.

Furthermore, Weber and collaborators studied the SCB at
the same quantum critical point between the AKLT phase
and the Néel phase of the spin-1/2 Heisenberg model on the
DS lattice studied in [8] but with a different cut introduced.
They found that the system shows the ordinary SCB on the
nondangling surface, although it shows the same nonordinary
transition as that found by Zhang and Wang [8] on the dan-
gling surface. This finding challenges the role of SPT in the
origin of nonordinary SCBs. In addition, they studied another
quantum critical point separating the plaquette valence-bond
crystal (PVBC) phase and the Néel phase of the same model.
Nonordinary and ordinary transitions are again found at the
dangling and nondangling surfaces, respectively.

The exponents for the nonordinary transitions among var-
ious models agree well; therefore, they are taken as an
indication for a distinct universality class. Nevertheless, it was
also observed that the exponent varies upon perturbations;
thus, the universality is less universal than previously antic-
ipated [16].

Although it is apparent that the nonordinary SCBs have
purely quantum origin, the mechanism is not yet clear. One
possible scenario is that the dangling surface forms a spin-1/2
AFH chain. Because of the topological θ term, the prolif-
eration of topological defects in the corresponding classical
field theory are suppressed and the surface captures the gap-
less state, complemented with the critical mode of the bulk,
thus leading to the nonordinary transition [14,15]. However,
a recent work by Weber and Wessel [16] shows that this
scenario is problematic: The dangling surface of the spin-1 AF
Heisenberg model also shows unexpected nonordinary surface
transition, although the bond correlations strongly depend on
the values of S [17]. The role of SPT in the nonordinary SCB,
which was challenged [14,15], as mentioned in previous text,
was further objected by the finding that the suggested AKLT
phase of the spin-1/2 Heisenberg model on the DS lattice
can be adiabatically connected to the quantum-disorder state
of the bilayer Heisenberg model on a square lattice without
breaking any symmetries, which suggests that the disordered
phase is not a real SPT phase [15].

In consideration of the current confusing situation, it is
beneficial to study a model with a genuine SPT phase sep-
arated from the Néel phase by a quantum critical point that
belongs to the 3D O(3) universality class and to investigate
whether a nonordinary SCB related to the SPT gapless sur-
face mode exists, irrelevant to dimerization, which defines the
dangling and nondangling edges of spins. In this work, we
study coupled Haldane chains forming a 2D square lattice,
with intrachain interaction Jy and interchain interaction Jx, as
shown in Fig. 1. The model describes materials that attracted
considerable research [18–30].

In one dimension, the Haldane phase [31,32] with the SPT
order [9,10] is characterized by a nonlocal string order [33]
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FIG. 1. The coupled S = 1 vertical Haldane chains form a 2D
square lattice with two different settings of boundaries. (a) Periodic
boundary conditions are applied in the x direction, while open bound-
aries are used in the y direction. Two surfaces along the x direction
are exposed. (b) Periodic boundary conditions are applied in the y
direction, while open boundaries are used in the x direction. Two y
surfaces are formed. Jx (horizontal blue bonds) and Jy (vertical bold
black bonds) are interchain and intrachain couplings, respectively.

parameter. With open boundaries, the Haldane chain carries
gapless spin-1/2 excitation. This is easy to understand from
the AKLT state by deforming the S = 1 spin into two S = 1/2
spins. In two dimensions, the model has a gapped Haldane
phase for Jx � Jy. Although the string order parameter is
argued to decay exponentially for arbitrarily small interchain
coupling [34], it is demonstrated that the Haldane phase re-
mains a nontrivial SPT state for small but finite interchain
coupling [35]. It is clear that the model can be adiabatically
connected to the Haldane phase in one dimension as Jx → 0.
As a result, the system should be able to present nontrivial
surface states that are either gapless or degenerate edge states.
The spatial inversion symmetry about the chain protects edge
states of surfaces along the x direction against dimerization
[35,36].

Increasing interchain coupling Jx, the model will be
brought into a Néel phase. The quantum critical point between
the SPT Haldane and the Néel phase [35,37–42] locates at
Jx = 0.043648(8) and the transition belongs to the 3D O(3)
universality class [41].

To study the SCBs of the model, we use a periodic bound-
ary condition along one direction and make open boundary
boundaries along the other direction by cutting a row/column
of bonds perpendicular to this direction. The spins connected
by these bonds form two surfaces. Figure 1(a) shows a sys-
tem with the periodic boundary in the x direction and open
boundaries in the y direction. Two x surfaces are formed by
cutting a row of Jy bonds. Figure 1(b) shows a system with a
periodic boundary in the y direction and open boundaries in
the x direction. In this case, two y surfaces are exposed.

The model is suitable for checking the role of the
symmetry-protected gapless surface state in inducing the
nonordinary SCB because, different from previous works
[8,15], there is no dimerization, therefore, no dangling or
nondangling surface. Using unbiased quantum Monte Carlo
(QMC) simulations, we find that in the gapped Haldane phase,
the string order parameter S of the chain, either with open
ends or periodic, decays exponentially with system size L.
This is different from simulation results reported in [35],
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but in agreement with the theoretical prediction [34]. The
spin-spin correlation along the surface decays algebraically
for the x surfaces, but exponentially for the y surfaces. This
effect is attributed to the fact that in the SPT phase, the latter
surfaces (y surfaces) are gapped, while the former surfaces are
gapless because a spin-1 model has spin-1/2 excitations. Such
a gapless surface mode in x surfaces, together with the critical
modes, may induce a nonordinary surface critical behavior.
Indeed, our numerical results show that the system with x sur-
faces shows nonordinary SCB, while the system with y sur-
faces shows ordinary SCB. This proves that the nontrivial
surface states of an SPT state can induce nonordinary SCB.

The paper is organized as follows: In Sec. II, we introduce
the model, discuss the bulk quantum phase transition, and de-
scribe the quantum Monte Carlo methods. In Sec. III, we study
the properties of the SPT phase. We investigate the string
order parameter and its decaying behavior when couplings
among chains are included. In particular, we discuss the string
order parameter for the case in which surfaces are presented.
We also show the surfaces are gapless when the bulk is gapped
in the SPT phase. We then discuss the SCBs at the bulk critical
point in Sec. IV. In Sec. IV A, we present our results on the
ordinary transition along x surfaces. In Sec. IV B, the results
of nonordinary SCB are presented. We conclude in Sec. V.

II. MODELS AND METHOD

The model we study here is S = 1 AFH chains (Haldane
chains) coupled by weak interchain interactions, forming a 2D
square lattice, as illustrated in Fig. 1. The Hamiltonian of the
model is given by

H = Jx

∑
〈i, j〉x

Si · S j + Jy

∑
〈i, j〉y

Si · S j, (1)

where 〈i, j〉y are nearest neighbors along the chains with the
coupling strength Jy > 0, while 〈i, j〉x are nearest neighbors in
two neighboring chains, with the interchain coupling Jx > 0.
We set Jy = 1 and consider g ≡ Jx < Jy. The system has a
quantum critical point (QCP) separating the Haldane phase
and the Néel phase at gc = (Jx )c = 0.043648(8) [41]. The
transition belongs to the 3D classical O(3) universality class
with the correlation exponent ν estimated to be 0.70(1) and
γ = 1.373(3) [41].

For 0 < g < gc, the bulk is at a gapped disordered Haldane
phase, which is an SPT phase [35] with y-parallel Haldane
chains behaving as independent S = 1 AFH chains. However,
the string order parameter is zero because the string order is
unstable under the perturbation of interchain couplings [34].
Cutting the lattice along the x direction, each independent
S = 1 Haldane chain carries two effectively degenerate S =
1/2 spins at the ends, which form the x surfaces of the system.
These effective spins couple each other on the edge along the
x direction by weak interchain couplings, forming two gapless
S = 1/2 AFH chains. On the other hand, cutting along the y
direction exposes two surfaces formed by two periodic S = 1
Haldane chains; thus, gapless edge states are not introduced.
The two different cuts are graphed in Fig. 1.

In this work, we use the stochastic series expansion (SSE)
[43] quantum Monte Carlo method with the directed loop
updating algorithm [44] to study the system, with special

attention devoted to the SPT phase and the surface critical
behavior induced by the SPT physics and bulk critical mode.
The simulations are performed on square lattices. The strong
spatial anisotropy in the couplings lead to large corrections
to scaling near the critical point in systems with aspect ratio
setting to 1 [41]. Larger aspect ratio R = Ly/Lx can reduce the
corrections. Since the corrections to scalings will not change
the system’s behavior in the thermodynamic limit, we have
not done a systematic study to optimize the ratio. Instead,
we adopt R = 4 for simplicity. The inverse temperature β is
scaled as L to probe ground-state properties, considering the
dynamical critical exponent z = 1 for the bulk criticality.

III. SYMMETRY-PROTECTED TOPOLOGICAL PHASE

In one dimension, the Haldane phase is characterized by
the hidden nonlocal string order [33], which is defined as
follows:

S (i, j) =
〈

Sz
i exp

(
iπ

j−1∑
k=i+1

Sz
k

)
Sz

j

〉
, (2)

where i, j are two spins in the chain and k labels a spin in
between them. The string order is finite for |i − j| → ∞ in
the 1D Haldane phase. This definition can also be used for the
2D spin-1 AFH system by restricting i, j, and k as spins along
an individual chain.

It was predicted that the string order is not stable and
decays exponentially for arbitrarily weak interchain coupling
by means of perturbation theory and bosonization [34]. How-
ever, it was shown numerically that the string order parameter
decays algebraically in the Haldane phase of coupled Haldane
chains according to finite-size data up to linear size L = 72
at interchain couplings much weaker than the critical value
[35]. Therefore it is necessary to investigate the string order
parameter for various values of g < gc in the Haldane phase,
including those that are close to the critical point. We will
calculate the parameter up to much larger system sizes than
those reached in the literature, so that we can pin down the
scaling behavior of the string order parameter in the 2D Hal-
dane phase. Furthermore, we will investigate the string order
parameter in different boundary conditions.

We focus on the string order parameter S (L/2) at the
maximum available distance |i − j| = L/2 of a chain along
the y direction. The results are shown in Fig. 2.

For systems with periodic boundary conditions (PBCs) in
both x and y directions, the results are shown in Fig. 2(a).
We find that for g < gc, the nonlocal string order decays
exponentially with system size since it is large enough, in
agreement with the theoretical prediction of [34]. For small
g, e.g., g = 0.01, which is studied in [35], such exponentially
decaying behaviors are clearly seen only when system sizes
are much larger than 72.

We then study the nonlocal string order parameter for sys-
tems with periodic boundary conditions along one direction,
but open boundary conditions along the other direction with
two surfaces exposed, as shown in Fig. 1. For the configura-
tion of Fig. 1(a), we calculate S(L/2) along a chain connecting
the two x surfaces. The starting site in Eq. (2) is chosen to be
at the surface and the ending site sits at the center of the chain.
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FIG. 2. String order parameter of a chain at the maximum avail-
able distance S(L/2) at different interchain couplings for systems
with (a) periodic boundaries, (b) open boundaries in the y direction,
and (c) and (d) open boundaries in the x direction, shown on a
linear-log scale. For (b), the chain has open ends at the x surfaces
where the starting spin locates. For (c) the chain is at the center of
the system, and, for (d), the chain is one of the y surfaces.

The results are shown in Fig. 2(b). The nonlocal string order
parameter is found to decay exponentially with system size
L. For the configuration of Fig. 1(b), we study two situations.
First, we calculate the string order parameter S (L/2) of the
periodic chain forming the y surface. The results are shown
in Fig. 2(d). Then, we calculate S (L/2) of the chain sitting at
the middle of the system. The results are shown in Fig. 2(c).
Again, we see exponential decay of the string order parameter.
Apparently, the open boundaries do not considerably affect
the finite-size behavior of the nonlocal string order, which
remains fragile as in periodic systems.

The exponential decaying of the string order parameter is
expected to behave in the following way:

S (L/2) ∝ exp (−αL/2), (3)

with α ∼ g2 in the case of g being small enough [34]. Similar
to correlation functions, α could be regarded as the inverse
characteristic length. We fit S (L/2) of systems with all bound-
ary conditions at several values of g below gc to Eq. (3).
The fits are carried out with data up to system size L = 192.
To obtain statistically sound fits, small systems with L < 48
are excluded. The obtained α as functions of g2 for different
boundary conditions are graphed in Fig. 3. We then fit the
estimated α(g) for various boundary conditions to the func-

0.000
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0.009

0.012 0.022 0.0252 0.032 0.0352 0.042 g2
c

α

g2

PBCs
OBCs-y
OBCs-x(E)
OBCs-x(C)

FIG. 3. The inverse characteristic length α versus g2 for systems
with different boundary conditions. The two straight lines correspond
to the scaling of the form α(g) ∝ g2.

tion α = cg2 with c an unknown parameter. We find perfect
consistency to the theory for g � 0.03, as illustrated in Fig. 3.

Nonetheless the string order parameter vanishes in two
dimensions, the Haldane phase remains a gapped weak SPT
phase [35], which is fabricated by alignment of the 1D SPT
state. The 1D Haldane chain with open ends supports degen-
erate S = 1/2 edge states. In two dimensions, we expect the
open ends forming two surfaces that can be considered as two
gapless S = 1/2 AFH chains, as shown in Fig. 1(a), while the
bulk ground state is gapped. These gapless states are protected
by the translational symmetry along the x direction.[45]

To show the above expectations are correct, we study the
equal-time spin-spin correlation defined as

C(i, j) = 〈(
Sx

i Sx
j + Sy

i Sy
j

)〉
, (4)

which equals 2〈Sz
i Sz

j〉 by symmetry and can be calculated
through the following Green function:

G(i, j) = 1
2 (〈S+

i S−
j 〉 + 〈S−

i S+
j 〉), (5)

which can be measured efficiently with an improved estimator
by using the loop updating algorithm in the SSE QMC simu-
lations [46].

We focus on two specific correlations. One is C‖(Lα/2)
that averages C(i, j) between two surface spins i and j at a
distance Lα/2 over the α = x or y surface under consideration.
The other is C⊥(Lα/2) that averages C(i, j) between two spins
i and j at a distance Lα/2 with i fixed on the surface and the
other spin j located at the center of the bulk, with the direction
i to j perpendicular to the surface, along the α direction.

We first study the system with x surfaces. The results of
C‖(Lx/2) at several g � gc as functions of system size Lx are
plotted on a log-log scale in Fig. 4(a). We find that C‖(Lx/2)
decays algebraically with (large enough) system size L for all
g, including the critical gc, indicating that the surface state is
gapless or critical. This is further manifested by the inset in
which the correlations are plotted on a linear-log scale.
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FIG. 4. Correlation functions C‖(Lx/2) (a) and C⊥(Ly/2) (b) of
the systems with x surfaces, as illustrated by Fig. 1(a), at the SPT
phase with different g up to gc. For the purpose of comparison,
C‖(L/2) for the S = 1/2 AFH chain is also shown here. (a) The main
plot is set on a log-log scale, and the inset is on a linear-log scale.
(b) The main plot is on a linear-log scale and the inset is on a log-log
scale.

More precisely, we expect the following finite-size scaling
ansatz for C‖:

C‖(L/2) = L−(d+z−2+η‖(g))(a + bL−ω ), (6)

where η‖(g) represents the surface anomalous dimensions,
which depends on g. ω > 0 represents the effective exponents
controlling corrections to scaling. d + z is the spacetime di-
mension. In the present model, d = 2 and z = 1.

The largest system size we reached is Ly = 320 and
Lx = 80. By gradually excluding small system sizes, we can
obtain statistically sound fits of Eq. (6) for all g, with the
correction-to-scaling term removed. For example, for the case
g = 0.03, we find 1 + η‖ = 1.82(3) by fitting Eq. (6) with the
correction-to-scaling term discarded to the finite-size data in
the range of 48 � Lx � 80. The reduced χ2 of the fit is 1.58
with the goodness of fit defined as the P value of the χ2 dis-
tribution P = 0.175. For g = 0.02, we have to exclude sizes
smaller than Lx = 32 to obtain a satisfying fit. We have also
attempted including a multiplicative logarithmic correction to
the simple power-law decay as in the 1D spin-1/2 AFH chain,
but no improvement was found in the fitting, and the decay
exponents 1 + η‖ are always close to 2. We conclude that
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FIG. 5. For a system with surfaces shown in Fig. 1(b) at the SPT
phase with different g up to gc: (a) correlation along the surface
C‖(Ly/2) vs Ly; (b) correlation perpendicular to the surface C⊥(Lx/2)
vs Lx . The two main plots are set on linear-log scales and the two
insets are on log-log scales.

although the edge is gapless, the anomalous exponent is not
consistent with the 1/r decay with multiplicative logarithmic
corrections for the spin-1/2 AFH chain [47–49]. For compari-
son, C‖(L/2) for the S = 1/2 AFH chain is shown in Fig. 4(a).
It is evident that the x surface cannot naively be considered as
a spin-1/2 AFH chain.

Meanwhile, as shown in Fig. 4(b) on a linear-log scale,
C⊥(Ly/2) exponentially decays with system size Ly at all
g < gc, indicating that the bulk is gapped for g < gc. This is
further exhibited by the log-log plot in the inset. For g = 0.03,
a fit to the function C⊥(x) = a exp(−x/ξ ) with finite-size data
in the range 128 � Ly � 320 finds statistically sound results
of ξ = 27.8(1), with reduced χ2 = 1.25 and a P value at
P = 0.28.

On the other hand, for the system with open surfaces along
the y direction, exposed by cutting a column of interchain
Jx bonds, the surfaces are two periodic spin-1 chains weakly
coupled to the bulk, as illustrated in Fig. 1(b). We find that the
surface states are gapped, even though the string order param-
eter vanishes with finite interchain coupling included. This is
obtained from the results of C‖(Ly/2) at several g as functions
of system size Ly, as shown in Fig. 5(a). Although there are
strong finite-size effects, we can fit C‖(Ly/2) to exponentially
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decaying forms of system size Ly for large enough system
sizes, which indicates the surface states are gapped at the Hal-
dane phase. Meanwhile, as shown in Fig. 5(b), C⊥(Lx/2) also
exponentially decay with system size Lx at g < gc, reflecting
the fact that the bulk is gapped for g < gc.

IV. SURFACE CRITICAL BEHAVIORS

At the bulk critical point, some classical systems can have
ordered surfaces if the interactions at the surface are enhanced.
When this occurs, the ordered surface exhibits additional sin-
gular behavior, which is called as an extraordinary transition.
Furthermore, fine-tuning the surface couplings can lead the
surface to a multicritical point, at which the surface and
bulk are critical simultaneously. This is the special transi-
tion. As discussed in Sec. I, according to quantum-classical
correspondence, we expect no special and/or extraordinary
surface transition in the present model because there cannot
be a long-range order that breaks the continuous symmetry
in the 2D surface of a classical model at finite temperature
due to the Mermin-Wagnar theorem [5]. Here, in this section,
we show that due to a pure quantum effect, a nonordinary
surface transition can be realized at the surface perpendicular
to the coupled Haldane chains without fine-tuning surface
couplings, while at another surface, the system shows the
ordinary SCB.

To study the surface critical behavior, we here, in addition
to the correlations C‖ and C⊥, introduce the squared staggered
surface magnetization defined as

m2
s1 = 1

2L2
α

[〈( ∑
i∈surface

(−1)iSx
i

)2〉
+

〈( ∑
i∈surface

(−1)iSy
i

)2〉]
,

(7)
with i labeling the spins on the surface, which equals
1

L2
α
〈(∑i∈surface(−1)iSz

i )2〉 by symmetry. m2
s1 can be expressed

with the Green function defined in Eq. (5),

m2
s1 = 1

L2
α

∑
i, j∈surface

(−1)i+ jG(i, j), (8)

with i, j the spins on the surface and α = x for the surface
along the x direction and α = y for the y surface.

At bulk QCP, the surface should show power-law surface
critical behaviors. In addition to Eq. (6) with η‖ = η‖(gc),
m2

s1(L) and C⊥(L) obey the following finite-size scaling
forms [2],

m2
s1L = c + L2yh1 −(d+z)(a + bL−ω ), (9)

and

C⊥(L) = L−(d+z−2+η⊥ )(a + bL−ω ), (10)

in which yh1 is the scaling dimension of the surface’s staggered
magnetic field h1, η‖, and η⊥ are two surface anomalous
dimensions. The constant c in Eq. (9) results from the short-
range nonuniversal part of m2

s1. ω > 0 represents the effective
exponents controlling corrections to scaling. d + z is the
spacetime dimension. In the present model, d = 2 and z = 1.

The surface critical exponents yh1, η‖, and η⊥ are expected
to satisfy the following scaling relations [3,50,51]:

2η⊥ = η‖ + η, (11)
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FIG. 6. Ordinary surface transition of the system configuration of
Fig. 1(b). (a) Finite-size dependence of effective surface anonymous
exponents η̂(L) for C⊥(blue symbols) and C‖ (red symbols); the lines
show fits giving the estimates of η⊥ and η‖, respectively. (b) The
rescaled squared staggered magnetization of the surface spins m2

s1Ly.
The curve is a fit to the expected power-law decay with a constant
included.

and

η‖ = d + z − 2yh1, (12)

with η the anomalous magnetic scaling dimension of the bulk
transition in the d + z spacetime. For our model, d + z = 3
and η = 0.0357(13) [52] is the anomalous magnetic scaling
dimension for the 3D O(3) universality class.

We now proceed to study systems with surfaces at their
bulk quantum critical points to explore the surface critical
behaviors.

A. Ordinary transition

We first consider the system that is cut to expose two y
surfaces along the y direction; see Fig. 1(b). The surfaces are
periodic spin-1 chains with length Ly. To study the SCB of
such a system at the bulk quantum critical point, the staggered
surface magnetization m2

s1, spin correlations C‖(Ly/2) and
C⊥(Lx/2) are calculated at gc. The numerical results of C‖ and
C⊥ are graphed in Fig. 5 and the results of rescaled m2

s1 are
plotted in Fig. 6(b).
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TABLE I. Results of surface critical exponents of the coupled Haldane chains (CHC). For reader convenience, the results of the SCBs
on other models with transitions in the 3D O(3) universality class are also listed for comparison, with CD-DAF the Dimer-AF QCP of the
columnar dimerized Heisenberg model, SD-DAF the Dimer-AF QCP of the staggered dimerized Heisenberg models, DS-DAF the Dimer-AF
QCP of the dimerized Heisenberg model on the DS lattice, DS-PAF the PVBC-AF QCP of the dimerized Heisenberg model on the DS lattice,
and 3D CH the three-dimensional classical Heisenberg model. For the SCB classes, “Nonord.” means nonordinary, “Ord.” means ordinary,
and “Sp.” means special. For the types of cuts, D means dangling and N means nondangling. The field theoretical (FT) results from various
methods are also listed for comparison.

SCB class Model/methods Cuts Spin S η‖ η⊥ yh1

Nonord. CHC x surface 1 −0.57(2) −0.27(2) 1.760(3)
Ord. y surface 1 1.38(2) 0.69(2) 0.79(2)

Nonord. [14] CD-DAF D 1/2 −0.445(15) −0.218(8) 1.7339(12)
Nonord. [15] D 1/2 −0.50(6) −0.27(1) 1.740(4)
Nonord. [16] D 1 −0.539(6) −0.25(1) 1.762(3)

Ord. [15] N 1/2 1.30(2) 0.69(4) 0.84(1)
Ord. [14] N 1/2 1.387(4) 0.67(6) 0.840(17)
Ord. [16] N 1 1.32(2) 0.70(2) 0.80(1)

Ord. [14] SD-DAF N 1/2 1.340(21) 0.682(2) 0.830(11)

Nonord. [8] DS-DAF D 1/2 −0.449(5) −0.2090(15) 1.7276(14)
Nonord. [15] D 1/2 −0.50(1) −0.228(5) 1.728(2)

Ord. [15] N 1/2 1.29(6) 0.65(3) 0.832(8)

Ord. [8] DS-PAF N 1/2 1.327(25) 0.680(8) 0.810(20)
Ord. [15] N 1/2 1.33(4) 0.65(2) 0.82(2)

Nonord. [15] D 1/2 −0.517(4) −0.252(5) 1.742(1)

Ord. [53] 3D CH Class. 0.813(2)

Ord. [54] FT, 4-d ε-exp Class. 1.307 0.664 0.846
Ord. [55] FT, d-2 ε-exp Class. 1.39(2)

Ord. [56,57] FT, Massive field Class. 1.338 0.685 0.831
Ord. [58] FT, Conformal bootstrap Class. 0.831
Sp. [59] FT, 4-d ε-exp Class. −0.445 −0.212 1.723

The spin correlations C‖(Ly/2) and C⊥(Lx/2) decay alge-
braically, as can be seen in the insets of Fig. 5. This is different
from the behaviors in the SPT Haldane phase, where both
of them decay exponentially. We fit the data to finite-size
scaling Eqs. (6) and (10) to find the anomalous surface scaling
dimensions η‖ and η⊥.

For large enough systems, the correction-to-scaling terms
in Eqs. (6) and (10) can be neglected. To estimate η‖, we found
the fit of C‖(Ly/2) is statistically sound for system sizes Ly �
128 and obtained η‖ = 1.38(2). Using data of system sizes
Lx � 48, we found a statistically sound fit of C⊥(Lx/2) and
obtained η⊥ = 0.68(1).

To fit for more system sizes, we need to include the
correction-to-scaling terms in Eqs. (6) and (10). However, it is
difficult to estimate the value of the effective exponent ω. To
verify our fits of η⊥ and η‖, we define an effective exponent η̂

for a pair of systems with sizes L and 2L,

η̂(L) = 1

ln(2)
(ln C(2L) − ln C(L)), (13)

where C(L) stands for one of the two correlations C‖(Ly) or
C⊥(Lx ). According to Eqs. (6) and (10), η̂(L) should converge
to 1 + η in the following way:

η̂(L) = 1 + η + cL−ω, (14)

where η stands for η‖ or η⊥ for corresponding η̂.
As shown in Fig. 6(a), the two effective exponents con-

verge to the 1 + η‖ and 1 + η⊥, respectively. Fitting the

data to Eq. (14), we obtained statistically sound fits for data
of sizes L � 24. The final estimations are η‖ = 1.378(9)
with ω = 1.45(4) and η⊥ = 0.69(2) with ω = 0.99(5). The
results are in good agreement with the estimations of η‖
and η⊥ obtained above. The final estimations are listed in
Table I.

The rescaled surface magnetization m2
s1Ly as function of

system size Ly exhibits a power-law decay to a nonzero con-
stant c, in the way of Eq. (9). For large enough system sizes,
the correction-to-scaling term via the effective exponent ω in
Eq. (9) can be dropped. A nonlinear fit based on Eq. (9) finds
c = 4.552(1), suggesting that the transition is of ordinary
type. The scaling dimension of the surface magnetic field is
obtained as yh1 = 0.78(1). In the fit, we restricted the system
sizes to Ly � 64 and, thus, neglected the correction-to-scaling
term. We have also attempted to set ω = 1.5 in Eq. (9) and
fitted it to data of sizes Ly � 24. The fit has a good reduced
χ2 = 1.18 and P value P = 0.31 and finds c = 4.554(1)
and yh1 = 0.79(1), which are reasonably consistent with the
fit without the correction-to-scaling term but only for large
enough system sizes. The final estimate of yh1 is listed in
Table I.

The exponents found here obey the scaling relations
Eqs. (11) and (12). They also agree well with the correspond-
ing exponents found for the ordinary surface transition of O(3)
bulk criticality in other 2D quantum models [8,14–16] and
are consistent with those of the ordinary transition of the 3D
classical O(3) universality class [53].
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This result is understandable because we know that for the
ordinary SCBs, the algebraic correlations are all bulk-induced
behaviors. This is also true for the quantum critical system so
far discussed. However, all those ordinary SCBs found thus far
in the quantum critical points of dimerized systems occur at
surfaces formed by so-called nondangling spins. Nevertheless
here, the interesting finding is that the y surfaces of the current
model are weakly coupled to the bulk and are, therefore,
actually formed by a type of dangling spin.

B. Nonordinary transition

We now study the critical behavior of the surfaces along the
x direction exposed by cutting a row of Jy bonds, as illustrated
by Fig. 1(a). In Sec. III, we have shown that the surface state
of the x surface is gapless even in the quantum disordered SPT
phase. Together with the gapless critical mode induced by the
critical bulk, a nonordinary SCB is expected. We calculate
the surface magnetization m2

s1(Lx ) and the spin correlations
C‖(Lx/2) and C⊥(Ly/2) for systems with x surfaces at the bulk
critical point gc.

The numerical results of C‖(Lx/2) and C⊥(Ly/2) as func-
tions of system size are shown in Fig. 4. The power-law
decays of C‖(Lx/2) and C⊥(Ly/2) with system size Lx(Ly) are
observed.

We now apply finite-size scaling analysis to determine the
surface anomalous exponents.

We start with fitting the scaling ansatz Eq. (10) to the
finite-size data of C⊥(Ly/2). First, we only use data of large
enough system sizes, expecting the correction-to-scaling term
can be discarded. This is true for L � 200, where we find that
it is unnecessary to include the correction term in Eq. (10).
Our fit finds a statistically sound estimate of η⊥ = −0.27(1).
The result is also stable upon further excluding data points
of small sizes. Nevertheless, it is tempting to include the
correction-to-scaling term so that we can fit more data of
smaller sizes. However, it is difficult to find the value of the
effective exponent ω. Setting ω to different values, e.g., ω = 1
or 1.5, leads to different estimates of η⊥.

We then define an effective exponent η̂ for a pair of sys-
tems with sizes L and 2L, as in Eq. (13), where C(L) stands
for correlations C⊥. η̂(L) should converge to 1 + η⊥ in the
way of Eq. (14), according to Eq. (10). We show the size
dependence of the effective exponent η̂ in Fig. 7(a) and fit
the data to Eq. (14). We find a statistically sound estimate
of η⊥ = −0.27(2) for data of L � 64, with the effective cor-
rection exponent found to be ω = 1.7(5). This value of ω is
different from that in other models studied thus far [8,14–16],
where ω is found (or simply set) to be 1. The obtained results
of η⊥ are listed in Table I.

The rescaled surface magnetizations m2
s1Lx as a function

of system size Lx are graphed on a log-log scale in Fig. 7(b),
showing a power-law behavior, as expected in Eq. (9) with
the constant c = 0. Using data of system sizes larger than
L = 200, we obtain a statistically sound fit to Eq. (9) with the
correction-to-scaling term discarded, since the system sizes
are sufficiently large. The fit leads to yh1 = 1.761(2). The
result is stable upon further excluding more data points. If
we include the correction-to-scaling term, we can fit more
data of smaller sizes to the scaling form of Eq. (9). In this
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FIG. 7. Nonordinary surface transition on the surfaces of the
configuration of Fig. 1(a). (a) Finite-size dependence of the effective
surface anonymous exponent η̂(L) for C⊥ (blue symbols) and C‖ (red
symbols). The blue line shows a fit to η̂ of C⊥. The red and dark green
lines show two fits to η̂ of C‖. (b) The rescaled squared magnetization
of surface spins m2

s1Lx . The curve is a fit to the expected scaling.

case, the fitting results are not sensitive to the value of ω used.
Statistically consistent estimates of yh1 are obtained. The best
fit is yh1 = 1.758(2) with ω = 1.5 for data of L � 128. The
final estimate is listed in Table I.

We now turn to fit the data of C‖ to the scaling ansatz
Eq. (6). First, we only use data of large enough system sizes,
expecting the correction-to-scaling term can be discarded.
With data of L � 256, this leads to η‖ = −0.67(2). However,
further discarding small system sizes leads to a change in
the estimate of η‖. This result suggests that the correction-to-
scaling term cannot be dropped, even for sizes larger than 256.

We thus include the correction term with ω values set to 1
and 1.5, respectively, in Eq. (6) and fit the data to it. We can
obtain statistically sound fits for data of system size L � 160
for both values of ω. However, the obtained η‖ are different
and still flow with the ranges of the system sizes used in the
fits.

We then define an effective exponent η̂ for a pair of
systems with sizes L and 2L as in Eq. (13), where C(L)
stands for correlations C‖. According to Eq. (6), η̂(L) should
converge to 1 + η‖ in the way of Eq. (14). The size-dependent
effective exponents η̂ are graphed in Fig. 7(a). Fitting the
data to Eq. (14), we find a statistically sound estimate
of η‖ = −0.61(3) for data of L � 64, with the effective
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correction exponent ω = 1.3(2). This fit is shown as the dark
green line in Fig. 7(a). The value of ω is slightly different
from 1 that was assumed in other models studied thus far
[8,14–16]. However, if we fixed ω = 1 and restricted to
system sizes L � 100, we find η‖ = −0.57(2) with a reduced
χ2 = 2.5 and P value P = 0.11. The fit is shown as the
red line in Fig. 7(a). This last estimate of η‖ obeys the
scaling relations Eqs. (11) and (12) with the other exponents
obtained above. It also agrees with or is close to results found
at the dangling surfaces of other models with dimerized
Hamiltonians [14–16], where a gapless surface state and
the bulk critical state coexists, and the multicritical point is
named the nonordinary transition. We therefore choose this
value as the final estimate, which is listed in Table I.

It was first noted by Ding et al. [14] that the exponents
found in the nonordinary transitions mentioned above are sur-
prisingly in agreement with the field theoretic prediction with
ε expansion (ε = 4 − d ) to the special SCB of d-dimensional
O(n) models by setting ε = 1 and n = 3, [3,59] even though
the 3D O(3) model does not feature such a multicritical point,
as discussed in Sec. I. However, such an SCB was claimed
less universal because of slight variation when perturbing the
surface [15,16].

Although a previous work attributes the phenomena to the
gapless surface state of the SPT bulk state [8], the role of SPT
was challenged by the fact that the nondangling edge shows
ordinary SCB at the same AKLT to Néel QCP. It was further
opposed by the finding that the suggested AKLT state is not a
real SPT phase [15]. Our model shows a genuine SPT phase
separated from the Néel phase by a QCP in the 3D O(3) uni-
versality class. Our results provide evidence of nonordinary
SCB induced by SPT physics in the surface perpendicular to
the spin-1 chains. In particular, our model does not have a
dangling edge or surface; instead, the surface we study here
is not dangling at all. Nevertheless, we find the nonordinary
SCBs at the bulk 3D O(3) critical point. We therefore believe
the SPT physics is essential here.

V. CONCLUSIONS

The discovery of nonordinary surface transitions at the
bulk quantum critical point, which is precluded in the cor-
responding classical critical point, has inspired interests in
investigations on the quantum origin of such behaviors. To
date, studies have been focused on dimerized antiferromag-
netic Heisenberg models, and it was noted that surfaces
formed by dangling spins in the dimerized models show such
nonordinary SCBs. However, the role of SPT and spin-1/2
related topological terms have still been under debate.

We have studied the system of coupled Haldane chains in
a two-dimensional square lattice with interchain couplings,
which has an SPT Haldane phase when the interchain cou-
plings are weak. With the increase in interchain couplings,

the model enters a Néel phase through a quantum critical
point belonging to the 3D O(3) universality class. Different
from previously studied dimerized models, this model does
not have surfaces formed by dangling or nondangling spins;
therefore, it offers an opportunity to test the role of SPT in
the origin of nonordinary SCBs. In particular, the model is
anisotropic. The surfaces along the spin-1 chain direction (x
surfaces) are completely different from the surfaces perpen-
dicular (y surfaces) to the chain direction.

Using unbiased quantum Monte Carlo simulations, we
have studied in a great detail the string order parameter of the
gapped Haldane phase and its surface states. We found that
although the string order decays exponentially with system
size, as interchain interactions are introduced, the x-surface
states are gapless even in the gapped Haldane phase, while
the y surface is gapped. This verified that the gapless surface
state is the property of an SPT phase.

We then studied the surface critical behaviors of surfaces
along the x and y direction at the bulk critical point by cal-
culating the spin-spin correlations along the surface and/or
perpendicular to the surface and the surface magnetization.
Ordinary SCBs were found at the surfaces along the spin-
1 chain direction, which have gapped surface states in the
gapped SPT phase. We found that gapless surface states at
the surfaces perpendicular to the spin-1 chains in the gapped
SPT phase result in multicritical nonordinary transitions at
the quantum critical point, with exponents in agreement with
those found in other SCBs at dangling surfaces of dimerized
models. This behavior is of pure quantum origin because
nonordinary SCB is precluded in the 3D classical O(3) mod-
els. All exponents found in the surface transitions, either
ordinary or nonordinary, satisfy the scaling relations.

Although the quantum origin of the nonordinary SCB in
dimerized Heisenberg models seems to not be particularly
induced by the SPT physics and given that the mechanism
of nonordinary SCBs in these models remains unclear, our
numerical results support that the SPT and its gapless surface
states together with the gapless critical modes offer at least
one quantum origin of nonordinary SCB.
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